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Enhanced cohesion of matter on a cylindrical surface
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We evaluate the cohesive energiesEb of four systems in which particles move on a cylindrical surface, at
fixed distanceR from the axis. We find quite nonuniversal dependences ofEb on R. For the Coulomb binding
problem,Eb is a monotonically decreasing function ofR. For three problems involving Lennard-Jones inter-
actions, the behavior is nonmonotonic;Eb is larger atR5` than atR50. The maximum binding corresponds
to R;0.7s, wheres is the hard core parameter. Consequences of the enhanced binding are discussed.
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The discovery of carbon nanotubes has stimulated a r
evolution of ideas, experiments, and understanding conc
ing states of matter confined to the proximity of a cylindric
surface.1–3 Examples of such systems include electro
present within a nanotube and atoms or molecules mov
just outside or within such tubes. This paper reports un
pected behavior we have found in studies of four such s
tems: a1/2 pair of charges bound by the Coulomb inte
action, a pair of atoms interacting with a Lennard-Jones~LJ!
interaction, an ensemble of4He atoms, which condense
and a low density fluid consisting of classical atoms. W
assume that all particles move on a cylindrical surface
radiusR and infinite length. This has been shown to be
case for molecules coating the inner surface of nanotu
havingR;6 to 9 Å.4 The assumption of surface confineme
simplifies the calculations without sacrificing the bas
physics.

For each of these four systems, considerable attention
been directed previously to the investigation of two extre
limits of the present problem. The limitR5`, here called
‘‘flatland,’’ is that of particles moving on a plane, i.e., a two
dimensional~2D! problem. This has been extensively pu
sued in connection with both the 2D electron gas and mo
layer films.5–7 The opposite limit,R approaching zero, is
here called ‘‘lineland,’’ a 1D limit. Matter in lineland ha
been explored for many years as an abstract problem8 and
has recently received particular attention in connection w
the possible realization of 1D phases within interstitial ch
nels, within nanotube bundles, or grooves, on the exte
surface of nanotube bundles.2,9–17 A logical question ad-
dressed in this paper is whether the properties of matte
‘‘cylinderland’’ evolves smoothly~or even monotonically!
between these limits as the value ofR is varied. We find that
the answer is ‘‘yes’’ in just one of the four cases and th
intriguing behavior arises in all four cases.

The first problem we address is the ground state bind
energyEb(R) of pair of charges located on the surface o
cylinder, interacting via Coulomb potential2e2/r wherer is
the interparticle separation. The Schro¨dinger equation for the
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hydrogen atom is exactly solvable in 2D, resulting in
ground state wave function proportional to exp(22r/a0), with
binding energyEb(`)52 Hartrees and mean separatio
a0 /2 between the interacting charges.18 Herea0 is the Bohr
radius. In the opposite limit of 1D, we encounter a we
known logarithmic divergence ofEb as R approaches
zero;19–21 the particle ‘‘falls to the center of the attractiv
force’’ in 1D. Recently, Kostovet al.22 have evaluatedEb for
this system, using a variational method. Figure 1 dep
their result for a three-parameter variational solution of
problem~for details see Ref. 22!. The energetics of binding
is found to exhibit amonotonictrend as a function of the
reduced curvatureC5a0 /R. The known 1D and 2D limits
of Eb are accurately reproduced by the variational calcu
tion. Note thatEb is very insensitive to the value ofC, as
long asC is small.23 This weak dependence is confirmed b
a perturbation theory calculation~see the inset of Fig. 1!.

The second problem we consider is the ground state
hesive energy~per atom! of a fluid consisting of4He atoms
whose nuclei are confined to the cylindrical surface. T

FIG. 1. Ground state energy of a (1/2) Coulomb pair of
charges, constrained to lie on a cylinder, as a function of curva
a0 /R. The points are the variational results and the solid line is a
to them. The inset compares the variational and perturbation th
~PT! results. The energy is expressed in Hartree units.
©2003 The American Physical Society03-1
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analogous problem has been extensively investigated
2D,24 for which it is relevant to superfluid films, and 1D
where it has been studied for potential application to an
teracting interstitial fluid.9–12 The problem of4He has also
received some attention in connection with endohedral
sorption within nanotubes.4 In 3D, the cohesive energy o
4He is Eb57.2 K. In 2D, it is 0.85 K and in 1D it
is ;3 mK. What R dependence is expected forEb on a
cylinder?

We have studied this problem variationally, using a
strow trial wave function, i.e., a symmetrized product of tw
particle functions that prevent hard-core overlap of the
oms. The pair factor in our trial wave function is o
McMillan form.25 The interatomic potential assumed in th
calculation is the modern ‘‘Aziz’’ potential.26 The results of
this liquid state calculation appear in Fig. 2. The depende
of Eb on curvature isnot monotonic. Indeed, the bindin
energy is a factor 3.7 higher nearR51.8 Å than in flatland.
The nonmonotonic dependence ofEb on C and the minimum
value atC5` stand in stark contrast to the monotonica
increasingdependence ofEb on C and maximum value a
C5` found for the Coulomb problem.

The origin of the binding energy maximum nearR
52 Å is the minimum in the He-He interaction nearr min
52.9 Å. The He fluid has a strong binding if the geome
encourages the particles to have such a spacing. This is
case for the cylindrical geometry, as indicated by the follo
ing argument. We introduce a function called the spec
area functiona(r ), defined as the area on the cylinder’s s
face at distancer from a specified point on the surface, p
unit distance from this point. Letting this point be the orig
we havea(r )5*d2r 8d(ur 82r u). In the flatland limita(r )
52pr , while in the lineland limit (R→0), a52pR. In the
cylindrical case,a(r ) is proportional to an elliptic integral
which exhibits a divergence atr 52R. The origin of this
divergence is that a particle on one side of the cylinder ha
divergent specific area at distance 2R; the sphere of this
radius is tangent to the cylinder. As a consequence, the
tem’s energy is lowered when this distance is such that
interaction is strongly attractive. The optimal binding do
not occur precisely when the minimum in the He-He pote
tial coincides with the diameter of the cylinder, but instead
;20% higher value ofR. This difference arises from th
zero-point energy of the system, which expands the nea

FIG. 2. Ground state cohesive energy~per atom! of a 4He fluid
on a cylinder as a function of radius.
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neighbor distance beyondr min . The same behavior occurs fo
liquid He in 2D and 3D4He; the ‘‘nearest-neighbor’’ peak in
the radial distribution function occurs at distance about 20
greater thanr min .27

What consequences accompany the greatly enhan
binding at this value ofR? Typically ~but not always!,
strongly cohesive systems exhibit relatively large speeds
sound. Here, the sound propagation speeds is derived from
the relation appropriate to longitudinal density fluctuatio
propagating parallel to the axis of the cylinderMs2

5r2@d2(E/N)/dr2#. In this expression,M is the atomic
mass andr is the 1D density; the derivative is evaluated
the ground state density. According to our calculationss
5230 m/s at the equilibrium densityr50.3 Å21 for the op-
timally binding radiusR51.8 Å. This value may be com
pared to the valuess5240, 90, and 8.0~3.0! m/s in 3D, 2D,
and 1D, respectively. We observe that the speed in cylind
land at the optimal radius issignificantlyenhanced relative to
both the 1D and 2D values ofs.

Since the cylindrical fluid is a 1D system, from the pe
spective of statistical mechanics, it undergoes no phase t
sitions at finiteT. There is, however, aT50 transition as the
system evolves from a liquid-vapor coexisting ground st
to a disordered fluid at nonzeroT, with a singular heat ca-
pacity @proportional tod(T)]. The integrated specific heat i
a monotonic function of the binding energy. This might
observable, due to inhomogeneity in any real system, a
smeared out maximum in the lowT specific heat. The fluid’s
compressibility diverges as exp@Eb /(kBT)# at low T, which
should be observable in an adsorption isotherm. Howe
we have thus far no definite calculations of these quanti
to compare with experiments. The problem is nontrivial b
cause of theT50 transition, invalidating conventional lowT
expansion methods.

The third problem we address is the curvature-depend
binding energyEb(R) of an atomic dimer on a cylinder o
radiusR. This is the two-body version of the liquid helium
problem just discussed, except that here we treat the gen
case of atoms interacting with an arbitrary Lennard-Jo
~LJ! interaction. One atom’s position is fixed at cylindric
coordinates (z,f)5(0,0) while the other moves over th
surface; their separation isr 5Az21@2R sin(f/2)#2. By scal-
ing distances relative to the hard-core diameters and the
energy relative to the well depthe( z̃5z/s,R̃5R/s, r̃
5r /s;Eb5Eb /e), the Schro¨dinger equation becomes

2hS ]2

] z̃2
1

1

R̃2

]2

]f2D C01@4~ r̃ 2122 r̃ 26!2Eb#C050.

~1!

Note that the ground state solution to this equation is de
mined by the boundary conditions and the value of the
mensionlessde Boer quantum parameterh5\2/Mes2. A
large value ofh implies a large zero-point energy and th
absence of any bound state, while a small value yields m
bound states. Here, we focus on a specific question: wh
the threshold value (h5h t) separating those problems fo
which the dimer exists (h,h t) from those for which it does
3-2
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not exist? The corresponding threshold value ofh t is known
for the limiting cases of 1D (h t50.1788) Ref. 10 and 2D
(h t50.269).28 We have determined the threshold for cyli
derland by computing the ground state energy variationa
identifying h t from the point when the attractive potenti
energy becomes too weak for the dimer to be bound.
cause the calculation is variational, the computed thresh
h t is a lower limit to the exact value. Ourh t results agree
well with the known 1D and 2D limits cited above. For th
general cylindrical case, the threshold value is shown in F
3. Qualitatively, it exhibits the same phenomenon as w
seen in the4He liquid binding problem. That is,h t is par-
ticularly large when the diameter of the cylinder is such t
the interatomic interaction across the cylinder is strongly
tractive. There is a small difference between values of
‘‘optimal’’ radius Ropt for the two problemsRopt/s has the
value 0.7 for the dimer problem and 0.77 for the4He binding
problem.

Bearing in mind the interesting behavior of the thresh
h t in the cylinderland, we next address the specific probl
of the binding energy (Eb) of 4He (h50.18) and3He (h
50.24) dimers on a cylinder. Employing the same var
tional approach as was used forh t , we compute the ground
state energy for these systems as a function ofs/R ~Fig. 4!.
Not surprisingly, we find significantly enhanced binding e
ergy for the4He and3He dimers within a particular range o
values ofR ~near 0.65s). The enhanced binding in the cy
lindrical geometry is particularly dramatic for the3He dimer,
yielding an increase inEb of 7 orders of magnitude com
pared to the 2D limit forEb .29

FIG. 3. Threshold value of the de Boer quantum parameter
the existence of a dimer consisting of two atoms, with an LJ in
action, as a function of inverse scaled radius.

FIG. 4. Ground state energy of4He ~circles! and 3He ~stars!
dimers on a cylinder.
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We now wish to discuss the implications of our results
spin-aligned hydrogen systems H↑ and D↑. The symbols H↑
and D↑ refer, respectively, to atomic hydrogen and deu
rium pairs interacting in theb3Su

1 state. For these system
the de Boer quantum parameterh has values larger than th
2D and 1D threshold values28 h(H↑)50.547@h t(2d) and
h t(1d) , andh(D↑)50.274.h t(2d) andh t(1d). The very
large value ofh for H↑ @h(H↑).h t(Ropt)# implies that an
H↑ dimer certainly cannot exist in 1D, 2D, or on any cylin
drical surface. The situation for D↑ system is more interest
ing, since the D↑ dimer does not exist in 2D and 1D, but
does exist on a cylinder for extended range of radii—fro
s/R'0.3 up tos/R'1.9. This is a unique situation.

Recently, the ground state properties of He dimers in c
fined geometry were studied by Kilicet al.30,31 They find a
similar effect on the binding energy due to the confineme
Eb is significantly enhanced when the width of the holdi
region is approximately equal to the range of the pair int
action. 3He and 4He dimers within a nanotube have bee
studied by Vranjeset al.32–34 Their model is different from
ours, since we constrain the atoms to move on a cylindr
surface. They also find that the binding energy depends oR
and exhibits nonmonotonic behavior.35 M. Aichinger and E.
Krotscheck have recently explored the3He dimer problem
using a fourth order real-space algorithm for solving loc
Schrödinger equations.36 That technique yields an exact e
genvalue, within numerical limitations. Their results~to be
published! indicate that the dimer’s binding energy is eve
greater~by a factor about 2.6! than is reported here for th
radius that binds the dimer most strongly. The value of t
optimal radius is close to the value found in the pres
work.

Having established that the3He dimer is so strongly
bound for radiusR;0.65s, we discuss briefly the ground
state of a system of many3He atoms. No condensed3He
liquid exists in either 2D or 1D, but perhaps one exists
cylinderland. Note that the existence of the stable dimer d
not ensure the existence of a stableN-mer for anyN.2 ~as
was shown explicitly in the 2D case29!. One scenario is tha
the ground state of the system is a gas of such3He dimers
~analogous to H2 at room temperature!. A second possibility
is that the dimers coalesce to form a liquid, analogous
liquid H2 between its triple point and its critical point. A
third scenario is that the dimers dissolve into a many-bo
liquid ground state, analogous to liquid3He in 3D. Neither
of the first two of these possibilities has been previou
found for the3He many-body system. The question of whic
phase, among the three candidates, is the actual ground
remains open.

Finally, we address a fourth problem concerned with m
ter in cylinderland—the second virial coefficient of a clas
cal gas. By analogy with well known problems in other d
mensions, we write a low density~high-T) expansion of the
1D pressureP5r2(] f /]r) , wheref is the free energy pe
particle, asP/(rkBT)'11rB(T)/2pR1••• , with

B~T!5
1

2E d2r$12exp@2bV~r !#%. ~2!

r
r-
3-3
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Here,b51/(kBT) and the integration is over the cylinder
surface. We assume the usual LJ form of interaction. T
results ~to be reported in detail elsewhere! exhibit similar
qualitative behavior to that found for the preceding two pro
lems, both of which also involve a pair interaction with a
attractive well. As in the familiar 2D and 3D contexts,B is
positive at highT due to the repulsive interactions andB
,0 at low T, where attractive effects dominate. The Boy
temperatureTB is that for whichB vanishes, meaning that~to
second order in this expansion! P for the interacting system
is the same as that of a noninteracting gas at the samer and
T. The results in Fig. 5 indicate that the Boyle temperatur
the highest for a cylinder of radiusR50.7s. In the van der
Waals theory of condensation, the critical temperature
8TB/27. In that mean field theory, therefore, the critical te
perature is highest for a cylinder of this ‘‘optimal’’ radius
While this transition does not occur in the exact theory, o
expects the virial expansion to apply at low density. Th
the data of Fig. 5 imply an onset of the effects of attraction
higher T for the cylinder than for either 1D or 2D limiting
cases.

In a separate work, Calbi37 is investigating another prob
lem in this family—the classical crystal composed of ato
on a cylindrical surface. The crystallization of the classi
gas leads to an oscillatory dependence of the energy oR
~due to the size-dependent commensuration energy!. Also
found in that problem is an enhanced binding for the crys
line state. Specifically, the ground state cylindrical crystal
such an optimized radius is about 7% more strongly bo
than is the 2D crystal~and a factor of 3 more strongly boun
than the 1D crystal!.

In summary, we have explored both classical and quan
particles confined to a cylindrical surface. In the case o

FIG. 5. Reduced Boyle temperatureT* 5kBT/e for classical
gases on a cylinder of radiusR.
c
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Coulomb interaction, which lacks a characteristic distan
the energetics of binding exhibits a monotonic trend a
function of curvature; there is an insensitivity of the cohes
to the value of the curvature, as long as it is small. In th
problems involving interactions with a favored distanc
quite distinct behavior was found: there is a particular ran
of values of R such that the binding is enhanced; this
explicable in terms of a phase space argument relevan
interactions which have well-defined potential ener
minima. We believe that this distinction between power la
interacting and finite range systems is generic and should
applicable to other geometries. For example, matter confi
to a spherical surface~small particles or pores! should have
enhanced cohesion when the diameter is;s. Other related
problems merit investigation. One is the possibility of co
densation of3He to a liquid. The factor of;3 enhancemen
of the liquid binding energy shown for cylindrical4He ~rela-
tive to binding in flatland! suggests that there is a range
radius over which the lighter isotopic liquid should also bin
A suggestive argument in support of that possibility is t
fact that the3He dimer exists over an extended range of ra
R.s/2;1.3 Å, according to Fig. 3 (h50.24 for 3He). For
bose systems in 1D and 2D, the dimer threshold coinci
with the binding threshold for the many-body bound sta
liquid. While we do not know the corresponding criterion f
self-binding in cylinderland; it seems plausible that the c
lindrical liquid 3He also exists.38–40This would be a remark-
able system to investigate since it exemplifies a novel L
tinger liquid. A primary application of these results is
carbon nanotubes, whose radius can be as small as 241

Indeed, the so-called cylindrical shell phase of He and2
corresponds to adsorption at radial distancedr;3 Å inward
from the carbon atoms.4 Thus, the pronounced effects foun
here for these gases atR;2 Å ~Figs. 2, 4! correspond to
cylindrical phases within nanotubes of radius;5 Å. Experi-
mental and other theoretical study of this size tube is wo
pursuing.
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3He dimer energy.
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