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Enhanced cohesion of matter on a cylindrical surface
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We evaluate the cohesive energigsof four systems in which particles move on a cylindrical surface, at
fixed distanceR from the axis. We find quite nonuniversal dependences,obn R. For the Coulomb binding
problem,E is a monotonically decreasing function Bf For three problems involving Lennard-Jones inter-
actions, the behavior is nonmonotonkt is larger atR=< than atR=0. The maximum binding corresponds
to R~0.70, whereo is the hard core parameter. Consequences of the enhanced binding are discussed.
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The discovery of carbon nanotubes has stimulated a rapidydrogen atom is exactly solvable in 2D, resulting in a
evolution of ideas, experiments, and understanding concermground state wave function proportional to exg2f/ay), with
ing states of matter confined to the proximity of a cylindrical binding energyE,(»)=2 Hartrees and mean separation
surface’™® Examples of such systems include electronsao/2 between the interacting chargédderea, is the Bohr
present within a nanotube and atoms or molecules movingadius. In the opposite limit of 1D, we encounter a well-
just outside or within such tubes. This paper reports unexknown logarithmic divergence oE, as R approaches
pected behavior we have found in studies of four such syszero;®~* the particle “falls to the center of the attractive
tems: a+/— pair of charges bound by the Coulomb inter- force”in 1D. Recently, Kostoet al?? have evaluateé,, for
action, a pair of atoms interacting with a Lennard-Jofiey ~ this system, using a variational method. Figure 1 depicts
interaction, an ensemble dfHe atoms, which condenses, their result for a three-parameter variational solution of the
and a low density fluid consisting of classical atoms. Weproblem(for details see Ref. 22The energetics of binding
assume that all particles move on a cylindrical surface, ofs found to exhibit amonotonictrend as a function of the
radiusR and infinite length. This has been shown to be theréduced curvatur€=a,/R. The known 1D and 2D limits
case for molecules coating the inner surface of nanotube@f E, are accurately reproduced by the variational calcula-
havingR~6 to 9 A The assumption of surface confinementtion. Note thatE, is very insensitive to the value &, as
simplifies the calculations without sacrificing the basiclong asC is small*® This weak dependence is confirmed by
physics. a perturbation theory calculatiqsee the inset of Fig.)1

For each of these four systems, considerable attention has The second problem we consider is the ground state co-
been directed previously to the investigation of two extreméiesive energyper atom of a fluid consisting of*He atoms
limits of the present problem. The limR=c, here called Whose nuclei are confined to the cylindrical surface. The
“flatland,” is that of particles moving on a plane, i.e., a two-
dimensional(2D) problem. This has been extensively pur-
sued in connection with both the 2D electron gas and mono-
layer films®~" The opposite limit,R approaching zero, is
here called “lineland,” a 1D limit. Matter in lineland has
been explored for many years as an abstract prébkem
has recently received particular attention in connection with
the possible realization of 1D phases within interstitial chan-
nels, within nanotube bundles, or grooves, on the external
surface of nanotube bundl&8:1” A logical question ad-
dressed in this paper is whether the properties of matter in
“cylinderland” evolves smoothly(or even monotonically
between these limits as the valueRfs varied. We find that
the answer is “yes” in just one of the four cases and that

intriguing behavior arises in all four cases. FIG. 1. Ground state energy of at(—) Coulomb pair of

The first problem we address is the ground state bindin@harges, constrained to lie on a cylinder, as a function of curvature
energyE,(R) of pair of charges located on the surface of aa,/R. The points are the variational results and the solid line is a fit
cylinder, interacting via Coulomb potentiale®/r wherer is  to them. The inset compares the variational and perturbation theory
the interparticle separation. The Sctlimger equation for the (PT) results. The energy is expressed in Hartree units.
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neighbor distance beyong,,. The same behavior occurs for

25F ¢ ] liquid He in 2D and 3D*He; the “nearest-neighbor” peak in

. the radial distribution function occurs at distance about 20%
. greater tham .2’

15f ] What consequences accompany the greatly enhanced

binding at this value ofR? Typically (but not alwayy

. strongly cohesive systems exhibit relatively large speeds of

osf ] sound. Here, the sound propagation spgé&lderived from

N the relation appropriate to longitudinal density fluctuations

R propagating parallel to the axis of the cylinddns?

R(A) =p?[d%(E/N)/dp?]. In this expressionM is the atomic
mass andg is the 1D density; the derivative is evaluated at
the ground state density. According to our calculations,
=230 m/s at the equilibrium densigy=0.3 A~ for the op-
timally binding radiusR=1.8 A. This value may be com-
analogous problem has been extensively investigated iBared to the values= 240, 90, and 8.3.0) m/s in 3D, 2D,
2D* for which it is relevant to superfluid films, and 1D, and 1D, respectively. We observe that the speed in cylinder-

where it has been studied for potential application to an infand at the optimal radius ignificantlyenhanced relative to
teracting interstitial flui®-*2 The problem of*He has also poth the 1D and 2D values of

received some attention in connection with endohedral ad- sjnce the cylindrical fluid is a 1D system, from the per-
sorption within nanotubebin 3D, the cohesive energy of gpective of statistical mechanics, it undergoes no phase tran-
*He is E,=7.2K. In 2D, it is 0.85 K and in 1D it sjtions at finiteT. There is, however, @=0 transition as the
is ~3 mK. What R dependence is expected f&}, on a  system evolves from a liquid-vapor coexisting ground state
cylinder? _ _ o . to a disordered fluid at nonzef with a singular heat ca-
We have studied this problem variationally, using a Japacity[proportional tos(T)]. The integrated specific heat is
strow trial wave function, i.e., a symmetrized product of two- 3 monotonic function of the binding energy. This might be
particle functions that prevent hard-core overlap of the atphservable, due to inhomogeneity in any real system, as a
oms. The pair factor in our trial wave function is of smeared out maximum in the loWspecific heat. The fluid’s
McMillan form.?® The interatomic potential assumed in the compressibility diverges as e, /(ksT)] at low T, which
calculation is the modern “Aziz” potenti&f The results of  should be observable in an adsorption isotherm. However,
this liquid state calculation appear in Fig. 2. The dependencge have thus far no definite calculations of these quantities
of E, on curvature isnot monotonic. Indeed, the binding to compare with experiments. The problem is nontrivial be-
energy is a factor 3.7 higher neRr=1.8 A than in flatland.  cause of tha =0 transition, invalidating conventional loW
The nonmonotonic dependencekf on C and the minimum expansion methods.
value atC= stand in stark contrast to the monotonically  The third problem we address is the curvature-dependent
increasingdependence oE, on C and maximum value at binding energyE,(R) of an atomic dimer on a cylinder of
C=c found for the Coulomb problem. radiusR. This is the two-body version of the liquid helium
The origin of the binding energy maximum ne&  problem just discussed, except that here we treat the general
=2 A is the minimum in the He-He interaction neaf,  case of atoms interacting with an arbitrary Lennard-Jones
=2.9 A. The He fluid has a strong binding if the geometry(LJ) interaction. One atom’s position is fixed at cylindrical
encourages the particles to have such a spacing. This is th®ordinates %, #)=(0,0) while the other moves over the
case for the cylindrical geometry, as indicated by the follow-syrface; their separation is= \ZZ+[ 2R sin(¢/2)]2. By scal-
ing argument. We introduce a function called the specifiGng distances relative to the hard-core diameteand the
?rea fundc.tiora(r)],c defined as.]tchedarela on thﬁ cylin?er’s SUFanergy relative to the well depthe(z=2/0,R=R/o¥
ace at distance from a specified point on the surface, per __ , =7 _ - - ’ ’
unit distance from this point. Letting this point be the origin, =1/o:&,=Ep/e), the Schrdinger equation becomes
we havea(r)=[d?r’8(|r'—r]). In the flatland limita(r)

0.0

FIG. 2. Ground state cohesive enelgger atom of a “He fluid
on a cylinder as a function of radius.

2 2
=2, while in the lineland limit R—0), a=2=R. In the N A ~ 12 ~6 _
cylindrical casea(r) is proportional to an elliptic integral, 77( 972 +~R2 dh? Wot[4(r )= E]Vo=0.
which exhibits a divergence at=2R. The origin of this (1)

divergence is that a particle on one side of the cylinder has a

divergent specific area at distanc®;2the sphere of this Note that the ground state solution to this equation is deter-
radius is tangent to the cylinder. As a consequence, the sysiined by the boundary conditions and the value of the di-
tem's energy is lowered when this distance is such that theensionlessie Boer quantum parametej=#%2/Mea?. A
interaction is strongly attractive. The optimal binding doeslarge value ofn implies a large zero-point energy and the
not occur precisely when the minimum in the He-He poten-absence of any bound state, while a small value yields many
tial coincides with the diameter of the cylinder, but instead atbound states. Here, we focus on a specific question: what is
~20% higher value oR. This difference arises from the the threshold value 5= »,) separating those problems for
zero-point energy of the system, which expands the nearesthich the dimer exists§< ;) from those for which it does
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We now wish to discuss the implications of our results for
spin-aligned hydrogen systemg tdnd Dj. The symbols Hl
and Dj refer, respectively, to atomic hydrogen and deute-
rium pairs interacting in th&33 " state. For these systems
the de Boer quantum parameteras values larger than the

yyes
onal s ] 2D and 1D threshold valu#s»(H1)=0.547 7,(2d) and
n(1d) , andn(D71)=0.274> 5,(2d) and n(1d). The very
020 . . large value ofy for HT [7(HT)> 7(Rop) ] implies that an
o016 . . H1 dimer certainly cannot exist in 1D, 2D, or on any cylin-
0 z /R s 4 ° drical surface. The situation forDsystem is more interest-

ing, since the O dimer does not exist in 2D and 1D, but it

FIG. 3. Threshold value of the de Boer quantum parameter fordoes exist on a cylinder for extended range of radii—from
the existence of a dimer consisting of two atoms, with an LJ inter-o/R~0.3 up too/R~1.9. This is a unique situation.
action, as a function of inverse scaled radius. Recently, the ground state properties of He dimers in con-

_ _ fined geometry were studied by Kiliet al*>3! They find a

not exist? The corresponding threshold valueppfs known — gimjlar effect on the binding energy due to the confinement.
for the limiting cases of 1D 4,=0.1788) Ref. 10 and 2D g is significantly enhanced when the width of the holding
(7,=0.269) ™ We have determined the threshold for cylin- yegion is approximately equal to the range of the pair inter-
derland by computing the ground state energy variationallygction. 3He and “He dimers within a nanotube have been
identifying 7, from the point when th'e attractive potential gidied by Vranjest al323* Their model is different from
energy becomes too weak for the dimer to be bound. Begyrs, since we constrain the atoms to move on a cylindrical
cause the calculation is variational, the computed threshold|;rface. They also find that the binding energy dependR on
7, is a lower limit to the exact value. Ouy, results agree  and exhibits nonmonotonic behavirM. Aichinger and E.
well with the known 1D and 2D limits cited above. For the Krotscheck have recently explored tiiele dimer problem
general_cyl_lndncgl case, _the threshold value is shown in Fidusing a fourth order real-space algorithm for solving local
3. Qualitatively, it exhibits the same phenomenon as wasschralinger equation That technique yields an exact ei-
seen in the’He liquid binding problem. That isp, is par- genvalue, within numerical limitations. Their results be
ticularly large when the diameter of the cylinder is such thatpublished indicate that the dimer’s binding energy is even
the interatomic interaction across the cylinder is strongly atyreater(by a factor about 2)6than is reported here for the
tractive. There is a small difference between values of thgadius that binds the dimer most strongly. The value of that
“optimal” radius R, for the two problemRR,, /o has the  gptimal radius is close to the value found in the present
value 0.7 for the dimer problem and 0.77 for thée binding  \ork.

problem. Having established that théHe dimer is so strongly
Bearing in mind the interesting behavior of the thresholdyound for radiusR~0.65, we discuss briefly the ground
7 in the cylinderland, we next address the specific problenyiate of a system of manjHe atoms. No condensetHe
of the binding energy &) of “He (7=0.18) and®He (7  |iquid exists in either 2D or 1D, but perhaps one exists in
=0.24) dimers on a cylinder. Employing the same varia-cylinderland. Note that the existence of the stable dimer does
tional approach as was used fgf, we compute the ground not ensure the existence of a stablener for anyN>2 (as
state energy for these systems as a function/&t (Fig. 4.  was shown explicitly in the 2D ca&®. One scenario is that
Not surprisingly, we find significantly enhanced binding en-the ground state of the system is a gas of stidle dimers
ergy for the*He and®He dimers within a particular range of (analogous to Kat room temperatujeA second possibility
values ofR (near 0.65). The enhanced binding in the cy- js that the dimers coalesce to form a liquid, analogous to
lindrical geometry is particularly dramatic for thiéle dimer,  |iquid H, between its triple point and its critical point. A
yielding an increase i, of 7 orders of magnitude com- third scenario is that the dimers dissolve into a many-body
pared to the 2D limit forE,, .*° liquid ground state, analogous to liquitHe in 3D. Neither
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of the first two of these possibilities has been previously
found for the®He many-body system. The question of which
phase, among the three candidates, is the actual ground state
remains open.

Finally, we address a fourth problem concerned with mat-
ter in cylinderland—the second virial coefficient of a classi-
cal gas. By analogy with well known problems in other di-
mensions, we write a low densithigh-T) expansion of the
1D pressureP=p?(df/dp) , wheref is the free energy per
particle, asP/(pkgT)~1+pB(T)/27R+ - - - , with

FIG. 4. Ground state energy dHe (circles and *He (starg
dimers on a cylinder.

1
B(T)=5 f d?r{1-ex — BV(r)1}. )
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BT Coulomb interaction, which lacks a characteristic distance,
18 f"“’% the energetics of binding exhibits a monotonic trend as a
17 M ° function of curvature; there is an insensitivity of the cohesion
i to the value of the curvature, as long as it is small. In three
T 14 problems involving interactions with a favored distance,
' ° quite distinct behavior was found: there is a particular range
o of values ofR such that the binding is enhanced; this is
10 . explicable in terms of a phase space argument relevant to
o ° . interactions which have well-defined potential energy
minima. We believe that this distinction between power law

0.7 L ' L ' ' ' L ' '
00 05 10 15 20 25 30 35 40 45 50

6/R interacting and finite range systems is generic and should be

applicable to other geometries. For example, matter confined
FIG. 5. Reduced Boyle temperatufié' =kgT/e for classical to a spherical surfacesmall particles or porgshould have
gases on a cylinder of radil& enhanced cohesion when the diameteris. Other related
problems merit investigation. One is the possibility of con-

Here, 3=1/(kgT) and the integration is over the cylinder's gensation ofHe to a liquid. The factor of-3 enhancement
surface. We assume the usual LJ form of interaction. They e jiquid binding energy shown for cylindricAHe (rela-
resu_lts(_to be rep_orted in detail elsewherexhlpn similar  tive to binding in flatlanyl suggests that there is a range of
qualitative behavior to that found for the preceding two prob- 5,5 over which the lighter isotopic liquid should also bind.
lems, _both of whlc_h also mvp_lve a pair interaction wrgh an A suggestive argument in support of that possibility is the
attractive well. As in the familiar 2D and 3D contexB,is ¢4t that the®He dimer exists over an extended range of radii
positive at highT due to the repulsive interactions ad R~ ;213 A according to Fig. 34=0.24 for 3He). For
<0 at lowT, where attractive effects dominate. The Boyle hose systems in 1D and 2D, the dimer threshold coincides
temperaturd’g is that for whichB vanishes, meaning theb \yith the binding threshold for the many-body bound state
second order in this expansioR for the interacting system jiqig. While we do not know the corresponding criterion for
is the same as that of a noninteracting gas at the gaam et _pinding in cylinderland:; it seems plausible that the cy-
T. The results in Fig. 5 indicate that the Boyle temperature iginqgrical liquid 3He also exist&®~*°This would be a remark-
the highest for a cylinder of radi8=0.70. In the van der  gpje system to investigate since it exemplifies a novel Lut-
Waals theory of cond_ensatlon, the critical temperature iginger liquid. A primary application of these results is to
8Tg/27. In that mean field theory, therefore, the critical tem-¢4rhon nanotubes, whose radius can be as small ag’2 A.
pergture_ is hlgh_e_st for a cylinder of_ this “optimal” radius. Indeed, the so-called cylindrical shell phase of He and H
While this transition does not occur in the exact theory, ON&orresponds to adsorption at radial distadce 3 A inward
expects the virial expansion to apply at low density. TheNgom the carbon atonfsThus, the pronounced effects found
the data of Fig. 5 imply an onset of the effects of attraction af,gre for these gases BR~2 A (Figs. 2, 4 correspond to
higher T for the cylinder than for either 1D or 2D limiting cylindrical phases within nanotubes of radiu$ A. Experi-

cases. . o mental and other theoretical study of this size tube is worth
In a separate work, Cafffiis investigating another prob- pursuing.

lem in this family—the classical crystal composed of atoms
on a cylindrical surface. The crystallization of the classical We are grateful to Susana Hernandez, Claire Lhuillier,
gas leads to an oscillatory dependence of the energiR on Jordi Boronat, and L. W. Bruch for helpful comments. This
(due to the size-dependent commensuration enewjigo  research has been supported by Army Research Office, the
found in that problem is an enhanced binding for the crystaPetroleum Research Fund of the American Chemical Society
line state. Specifically, the ground state cylindrical crystal ofand the National Science FoundatioitGrant No.
such an optimized radius is about 7% more strongly boundMR0121146. Milen Kostov is grateful to Air Products and
than is the 2D crystdland a factor of 3 more strongly bound Chemicals, Inc(APCI) for its support. We are grateful to
than the 1D crystal Eckhard Krotscheck for discussion of tikle binding prob-

In summary, we have explored both classical and quanturtem, especially concerning the orgin of the discrepancy in the
particles confined to a cylindrical surface. In the case of a®He dimer energy.
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