PHYSICAL REVIEW B 67, 075316 (2003

Theory of strain relaxation in heteroepitaxial systems

A. C. Schindlet M. F. Gyurel? G. D. Simms? D. D. Vvedensky, R. E. Caflisctt* C. Connell® and Erding Lud
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
2HRL Laboratories LLC, 3011 Malibu Canyon Road, Malibu, California 90265
3Department of Mathematics, University of California, Los Angeles, California 90095-1555
4California NanoSystems Institute and Department of Materials Science & Engineering,
University of California, Los Angeles, California 90095
(Received 29 August 2001; revised manuscript received 20 December 2002; published 28 February 2003

We introduce a general approach to calculating the morphological consequences of coherent strain relaxation
in heteroepitaxial thin films based on lattice statics using linear elasticity. The substrate and film are described
by a simple cubic lattice of atoms with localized interactions. The boundary conditions at concave and convex
corners that appear as a result of this construction, those along straight interfacial segments, and the governing
equations are obtained from a variational calculation applied to a discretized form of the total elastic energy.
The continuum limit of the equations and the boundary conditions along straight boundaries reproduces
standard results of elasticity theory, but the boundary conditions at corners have no such analog. Our method
enables us to calculate quantities such as the local strain energy density for any surface morphology once the
lattice misfit and the elastic constants of the constituent materials are specified. The methodology is illustrated
by examining the strain, displacement, and energies of one-dimensional strained vicinal surfaces. We discuss
the effects of epilayer thickness on the energy of various step configurations and suggest that coupling between
surface and substrate steps should affect the equilibration of the surface toward the bunched state.
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I. INTRODUCTION and three-dimensional islanft§, and their local
environment This is further complicated by the competition
The structural and compositional integrity of heteroepi-between different strain relaxation mechanisf@sg., alloy-
taxial films is central to the fabrication of all quantum het- ing, misfit dislocation formation, surface profile modula-
erostructures. The morphology of these films is determinedions), each of which has a characteristic signature in the
by a number of factors, including the manner in which strainmorphology of the substrateAdditionally, any general the-
is accommodated if the materials have different lattice coneretical approach must incorporate long-range elastic inter-
stants, the surface and interface energies of the materials, aadtions, which are best treated within a continuum frame-
any effects associated with alloying and segregation. Themork, and atomistic effects such as step-adatom interactions,
modynamic arguments based on interfacial free energies asdloying, and possibly reconstruction changes during growth.
often used to provide a classification scheme foretuilib- The theoretical description of the formation of heteroge-
rium morphology of thin films: But while such consider- neous interfaces falls into one of three broad categofigs:
ations undoubtedly play an important role in providing thethe minimization of energy functionals, including thermody-
overall driving force for the morphological evolution of thin namic potentials, of various levels of sophistication to deter-
films, they neglect a number of inherently kinetic effects.mineequilibriumatomic positions as a function of the lattice
The interplay between thermodynamics and kinetics is espemismatch®'%!! (ii) kinetic Monte Carlo simulations, both
cially germane to heteroepitaxial systems where, for exiattice-baseti’?and off lattice'® where the hopping rules are
ample, variations in growth conditionsubstrate tempera- maodified to account for the effects of strain on diffusion and
ture, flux, substrate misorientatipand annealing are used to adatom attachment and detachment at step edges(iiand
manipulate the spatial and size distributions of three<classical elasticity theory applied to the evolution of the
dimensional(3D) coherent islands that appear during thegrowth front profile of continuous film¥:'®*These studies all
Stranski-Krastanov growth of lattice mismatched semicon+equire a compromise between a realistic description of in-
ductors for quantum dot applicatiofis. teratomic interactions and the mesoscopic effects of strain
Strain relaxation in heteroepitaxial systems has been theelaxation due to lattice misfit.
subject of an abundance of theoretical studies, but there is The approach we describe in this paper is based on clas-
yet no general methodology with the versatility of the sical elasticity, but with the substrate and film composed of
Burton-Cabrera-Frank theofyrate equation$, or kinetic  an atomistic grid, as in the method of lattice stalfts-*The
Monte Carlo simulatiomswhich captures the essence of thin lattice mismatch and the difference in elastic constants be-
film evolution in the presence of lattice misfit. There are twotween the film and the substrate enter explicitly into this
main reasons for this. The rates of atomistic processes atmeory. This representation of the growing film is capable of
strained surfaces are not determined solely by the local erncluding both atomistic and continuum elastic aspects of
vironment of the atoms, as in the case of homoepitaxy, bumorphological energetics and kinetics. At the atomistic level,
may depend on nonlocal features such as the height of this includes the effect of strain on adatom diffustdrand
terrace above the initial substrate, the size and shape of twahe kineti®’ and thermodynamt&?°?! stability of islands.
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Over larger length scales, there are interactions due to sulthe extension to a 3D systefne., a two-dimensional sub-
strate distortion, which lead to a repulsive interaction be-strate is straightforward. Let,, wherek=1,2, denote the
tween island¥’?* and other surface speci&&’* While such  Cartesian components of the displacement vector. For linear
long-range effects are directly amenable to a descriptiorlasticity in an isotropic material, the components of the
within continuum elasticity with suitably chosen materials strain tensoiS and stress tensdr are given in terms of the
parameters, more localized effects can be modeled with enttisplacement vector 5§

pirical or first-principles methods, especially where a direct

connection between the atomistic and continuum formula-

tions can be establishéd Our approach can be made con- Sa=7 (Il +duk), @
sistent with atomistic models cast in a valence force field

repre_sgntation. This allows us the .flexibility. to incqrp_orate Tu=N8Sun+ 2S¢, 2)
atomistic effects where needed while remaining within the i

general framework of linear continuum elasticity. whered; =dldx,d,=dldy and\,u are the Lameconstants.

In this paper, we formulate the elasticity equations andRepeated indices imply summation from 1 to 2. For the
boundary conditions for discrete substrates and films. In conpeteroepitaxial growth of a film with lattice constamton a
trast to the situation for continuous films, where the bound-substrate with a lattice constaat, the normalized lattice
aries are smooth curvé$the boundaries of our discrete sys- mismatch is
tems are piecewise constant, and this requires a separate
treatment. Accordingly, we derive the elasticity equations = a8
and boundary conditions from a variational calculation ap- as
plied to the total elastic energy of a discretized system whic
respects the local symmetries of all points. The equation
obtained for the interior region and along straight segments 1
of the boundary lead, in the continuum limit, to the usual Su== (dup+a)), (4
equations and boundary conditions, respectively, of linear 2

elasticity. But at corners, the boundary conditions are besjynere the prime denotes quantities associated with the film.

understood in quasiatomistic terms as a constraint on th@sing Eq.(3), S’ can be expressed in terms of displacements
local displacement. We illustrate our method by calculatingiih respect to the substrate lattice positions as

the interactions between steps on one-dimensional strained
vicinal surfaces, which is relevant to the step-bunching insta- Sl =S+ Sqe. (5)
bility on such surfaces. We examine qualitatively and quan-
titatively the strain and displacement fields that arise fromAccordingly, the corresponding stress tengérfor the film
the model and compare and contrast these results to know®
results from continuum elasticity. We also examine the influ- ,
ence of the thickness of the epilayer and the differences in T=\" 84St 1’ Sa— (2N + 1) bqe. (6)
the elastic properties between the film and the substrate and . A _—
discuss the implications of these on the evolution toward the In mechamcal equilibrium the forces inside any volume
bunched state. {2 vanish,

The outline of this paper is as follows. The basic equa- V.T=0 %)
tions of linear elasticity are reviewed briefly in Sec. Il. The '
details of our model are then presented in Sec. Ill, where wand the force on the boundasf) equals the external pres-
describe our variational formulation of the discretized equasure(in the absence of external tractions which in the case of
tions and boundary conditions. The complete set of equationgacuum is zerj leading to
describing the boundary conditions are compiled in the Ap-
pendix. In Sec. IV we describe some results of our model n-T=0, (8)
including a comparison between step-step interactions in . .
continUL?m eIasticF;ty and those calculafed V\ﬁthin our model_v_vheren=(nl,n_2) is the vector normal to the surface. Addi-
We also present results obtained from the application of Ouponally, at the interface between the_ film a_nd the.substrate,
model to vicinal surfaces that are relevant to the step:[he normal component of the stress is continuous:
bunching instability on a one-dimensional strained vicinal nT=n-T' 9)
surface. In particular, we discuss the likely influence of ep- '
ilayer thickness and lattice mismatch of the substrate and . 4 continuous film, Eq<7), (8), and (9) completely

epilayer on the evolution of the film toward the bunchedg,q ity the distribution of stress within the system. For the
state. Finally, in Sec. V we summarize our results and outling,, h5se of the discussion in the next section, it is useful to
future applications of our approach. point out here that the above boundary conditions can be
derived from a variational principle applied to the total elas-
tic energy. The elastic energy dens#yof the strained sub-

The following discussion presumes that the system is twtrate is given by the tensor contractis:T. In terms of
dimensional(i.e., that the substrate is one dimensignblut = Cartesian components

()

he strain tensor for the film is given by

Il. CLASSICAL ELASTICITY
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1 ,. 1 ) which is the discrete analog of E(.2). These discrete equa-
£=5 ST=5 Mann)“+5 ul(du)"+dud] (100 tions are formally equivalent to discretizations of the classi-
cal elasticity equations. In particular, at interior points Eq.

so that the total elastic energy is (14) is a discretization of Eq(7), and at flat edges it is a
discretization of Eq.(8). At corners and at material inter-
EE:j £dx. (11) face;, howgver, thesg equations are new and do not admit a
Q continuum interpretation.

The boundary conditions that arise from performing a
riation on the discrete energy have the effect of regulariz-
ing the singularities that exist in continuum theory at, e.g.,
interior corner points. This regularization is not completely
artificial; since our discretization is at the atomic scale, it is

The force balance equations and boundary conditions foy
each point then follow from setting the variation of the elas-
tic energy with each of the displacements equal to zero:

%:0, (120  performed at the appropriate length scale. In a real material,

SUy the singularities present in continuum elasticity are, in fact,

whereu = duy . regularize.d by the atomic lattice. This regu_larizatipn_ could
be done in a more controlled fashion, entirely within our

Il MODEL framework, by using an appropriately parametrized atomistic

bond model for the energy at these singular points. This is

In this section we describe a discrete atomistic model foleyond the scope of the present work, however, and we ex-
strain, designed to agree with continuum elasticity in thosd®ect that qualitatively correct results for step equilibrium and
regions where continuum theory has a natural discretizatioynamics can be obtained with the present form of the en-
(namely, in the bulk and at straight boundayié=or our sys-  €rgy. _ o _
tem, we have used an approach to formulating the equations Our method for treating elasticity should be placed in
of elasticity, based on lattice statics, that is especially approcontext with an alternative approattt® which is based on
priate for epitaxial systems. This methodology is explainedhe use of Green’s functions. This approach makes use of the
in detail in Ref. 27. Here we outline the general structure ofanalytic expression for the half-space Green’s function that
the method; mathematical details are included in the Appendescribes the displacement at any pairin the bulk due to
dix. The general approach is not to discretize Etp) di- @ unit force acting at another poirt. Then, assuming that
rectly. Instead, we construct a discrete version of the elastithe bulk is homogeneously strained, a multipole expansion of
energy density Eq(10), and then define the total energy as athe force distribution caused by a step can be made. Multi-

sum of this energy density over lattice points plying each term in the expansion by the appropriate deriva-
tive of the Green’s function, the displacement at any point
Er=3;&.)). (13)  due to the presence of a step can be obtained as well as the

_ ) ) o force on one step due to another. This is a powerful and
Ateach point (, ) of the grid, the energy contributiaf(i,j)  appealing approach, but has several serious limitations. The
only involves terms from the nine point stendilearest and ;se of the half-space Green’s function implies not only that
next-nearest neighborsentered ati(j). The energy contri-  the epilayer is homogeneously strained, but also that the ep-
bution per site<(i,j) is written in its most general form in jjayer thickness is much greater than the step height. Further-
the Appendix, as are specific cases of interest. more, the distance between steps must be sufficiently large
Th-e principal Virt-Ue of this formulation is that it Combines that the Step interactions can be approximated by On|y a few
atomistic and continuum approaches. If the computationajerms in the multipole expansion. Finally, if the material sys-
grid is the same as the underlying atomistic lattice, then thgam is inhomogeneous, then depending on the geometry and
discrete version of the energy may be considered purely atQsjastic parameters, the Green's function approach may be
mistic. This correspondence is equivalent to imposition Ofgither difficult or impractical to implement.
the Cauchy-Born hypothesis, that the atomistic lattice dis- These restrictions cause problems if the issue to be ad-
placement equals the macroscopic elastic displacement. Thgessed is the interaction between steps on very thin epilay-
advantage of the atomistic interpretation is that it allows Users on a vicinal substrate, or the interaction between islands
to tailor the energy density to suit specific atomistic geom-on the first few epilayers on a singular surface. In many cases
etries where continuum elasticity fails to inform us as toof practical interest, heteroepitaxial layers are tunnel barriers
what discrete equations to use. In particular, we have used §; quantum wells whose thickness is often no more than a
here to derive numerical boundary conditions at the sharpeyy layers. On a vicinal surface, the presence of steps on the
corners at the top of the film, and to derive equations at thgypstrate causes the assumption of homogeneity of the epil-
film/substrate interface. S ayer strain to be violated. Even on nominally singular sur-
Using the discrete version of Eq10), the discretized faces, the epilayers can easily be thin enough to violate the
force balance laws come from minimizing the total energyassumption that the step height is much smaller than the

Et. The resulting equations are epilayer thickness. The initial nucleation of quantum dots is
of intense interest and also occurs in a regime where the

IE7 -0 (14) Green’s function is not valid. The epilayer is thin in the
au(i,j) nucleation phase and island distances may be small enough
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The atoms immediately on the lower boundary are held at
zero displacement in all of the subsequent relaxation calcu-
lations, to approximate bulk behavior.

For clarity we will examine the effects of surface stress as
a separate case from epilayer mismatch, with the knowledge
that the effects can be combined if desired. For the case of
epilayer misfit with no surface stress, there is a lattice mis-
match of 1% between substrate and epilayer with sign such
that the epilayer is under compressive strain. For the alter-
nate case of surface stress with no epilayer misfit, the bonds
between pairs of atoms on the epilayer-vacuum interface are
modified to have a lattice constant 1% larger than the bulk,
giving a compressive stress for the surface layer only. In the
latter case, the substrate and epilayer are indistinguishable,
so that the system is effectively a layer of thickness 60 with
a step on the top and the bottom held at the zero-
displacement bulk position.

Figure 2 shows th& andy components of displacement
produced by the epilayer misfit model for this particular step
configuration and Fig. 3 shows the displacements for the
surface-stress only case. In Fig. 3 the coupling of the hori-
zontal surface stress to vertical displacements is apparent.
0 10 20 30 40 The step edge breaks the planar symmetry of the surface and
allows this coupling, since the two stresses on either side of
the step produce a torque about the step edge.

Better qualitative appreciation of the results of the relax-
ation can be gained from graphing the components of the

to violate the assumptions of the multipole expansion. Ouptrain tensor. Figure 4, for the compressed epilayer, clearly
approach suffers from none of these restrictions and, assuriloWws the distinct strain fields produced by the surface step
ing that linear elasticity holds down to length scales of a few@nd the buried interface step. The lingadisplacement no
lattice spacings, as has been obser?&dpur only approxi- longer dominates the image as it did in FigbR since the
mations are in the treatment of the atomistic effects relevangtrain only contains derivatives of the displacement. Of note
very near the step edges and at the surface. Even these #l-the figure is the different “polarity” of thex andy strains

fects can be accommodated with some additional effort a8t the surface step vs. the interface step, and the structure
described in Sec. V. around each of the steps as the value of the strain component

oscillates between positive and negative values as a function
of angle. Figure 5 shows the strains produced by surface
stress only. In this case, the buried step experiences no strain,

As an illustration of our method, we now consider stepand the visible strain field is due to the surface step alone.
relaxations and step-step interactions on strained vicinal sufthe angular structure around the steftahand (c) is notice-
faces. ably different from Fig. 4, suggesting more dominant higher
multipole moments. In both Figs. 2 and 3, the lower bound-
ary of the lattice is invisible since it has the same zero value
of strain as the vacuum.

We begin by examining the behavior of the displacement Having discussed some of the qualitative features of step
and strain fields given by our model for steps on a strainedelaxations produced by our model, we now turn to a more
vicinal surface. Figure 1 shows the basic geometry that willquantitative analysis. In particular, we wish to show that the
be considered. The epilayéshown in gray consists of 40 displacements due to surface steps produced by our model
layers of material with isotropic elastic constaints1 and  are in quantitative agreement with predictions derived from
m=1 on a substratéshown in black of thickness 20, which continuum elastic theory in regimes where we expect the
also has elastic constants= u=1. The buried step on the latter to be valid. The results from continuum elastic theory
interface between substrate and epilayer is horizontally offsetre will compare to are for displacements due to an isolated
from the surface step to indicate a generic nonsymmetristep; our method, however, most naturally treats periodically
configuration. Although only one step is shown, skew-placed steps in a step train. In order to separate the effect of
periodic boundary conditions are applied so that the modehn isolated step from that of the periodic images, we perform
describes an infinite step train, not an isolated step. Tha lattice sum of periodic multipole forces, which is then used
lower boundary of the lattice necessarily also has a step, tfor evaluation of the multipole coefficients due to step dis-
be consistent with the skew-periodic boundary conditionsplacements.

FIG. 1. A vicinal surface with a single step consisting of an
epilayer of A-type atoms(shown in gray on a substrate oB-type
atoms(shown in black

IV. RESULTS AND DISCUSSION

A. Step relaxations
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FIG. 2. Displacement fields due to the step from Fig. 1 on a
(b) 0 10 20 30 40

compressively strained epilayer. The color of the vacuum area
above and below the lattice indicates the zero of the scale, and
displacements are calculated with respect to the reference lattice as FIG. 3. Displacement fields due to the step from Fig. 1 with
described in the Appendix. The bottom-most layer of atoms is fixedntrinsic surface stress in the material. The gray color in the vacuum
at zero displacement to approximate the bulk. Lighter shading repregion above and below the lattice represents the zero of the scale,
resents positive displacements and darker shading represents negath lighter shading indicating positive displacement and darker
tive displacements. Thedisplacements are shown (&) and they shading indicating negative displacement with respect to the refer-
displacementswith a different zero of the grayscalare shown in  ence lattice. The shading gradient is not to the same scale as Fig. 2,
(b). Because of the Poisson ratio of the material, there is an overaflince the absolute displacements from this surface stress effect are
increasingy displacement that visibly overwhelms the detailsyof smaller. Thex displacements are shown {g) and they displace-
displacements due to the step itself. ments are shown itb).
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FIG. 4. Components of the
strain field due to a step on a com-
pressively strained epilayer, with
the same step geometry as previ-
ous figures. In each sub-figure, the
shading of the vacuum region
0 5 10 15 20 25 30 35 (5 0 5 10 15 20 25 30 35 above the lattice represents the

@ zero of the scale, with white rep-

60 60 resenting positive values and
black representing negative val-
ues. The components shown are as

- 0 follows: (a) xx component(b) yy
component, (c) xy component,
and(d) hydrostatic strairftrace of
strain tensor.

40 40

30 30

20 20

10 10

0 0
() 0 5 10 15 20 25 30 35 (@ 0 5 10 15 20 25 30 35

The effect of a single isolated step in @morizontally sums as
infinite domain is addressed by superposition in periodic

boundary conditions. The computational domain, when o m
skew-periodic boundaries are applied, is effectively infinite, VE= 1 =m m cotar(z _ ) 16
and is populated by an infinite number of equally spaced I e x—xp+nL L L (X=%o) |, (16)

steps. The distortion fields produced by each of these steps

linearly superposes, however, and may be summed. For exgherel is the periodicity of the system. The summed dipole

ample, a one-dimensional “dipole potential” tetnof  force is found as the negative derivative of the potential:
strengthm, for an isolated step at,

o

[(X—Xo))- 17

m d a\?
l— l DO___ OO_ —
Vi X—Xa (15 fi= dxvl—ml(l_) cosed
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FIG. 5. Components of the strain field due to a step with intrinsic surface stress in the material. In each subfigure, the shading of the
vacuum region above the lattice represents the zero of the scale, with lighter shades representing positive values and darker shades
representing negative values. The components shown are as foll@wsx component,(b) yy component(c) xy component, andd)
hydrostatic strair(trace of strain tensr
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(a) Position on Terrace (atoms)

) FIG. 7. Magnitude ofx andy displacement multipole coeffi-
v Displacements on Terrace cients for first 12 multipolesn,- - - m,4 for a strained epilayer with
no surface stress.

and not on a domain containing a pole, which would require
fitting with an infinite discontinuity between left- and right-
hand sides.

The coefficientsmg, my, m,, etc., of these lattice-
summed terms are identical to the coefficients of the isolated
step continuum multipole expansion. This allows the coeffi-
cients from a fit to our model on a terrace to be compared
directly to the coefficients derived from the continuum
theory for a single step.

<
'S
[
v

<
'S

0.3954

0.39

Vertical Displacement (atoms)

0.385 7 Figure 6 shows th& andy displacements along a terrace
for the case of a uniformly compressed epilayer. Included are

0.38; : 0 : 20 : 30 : 20 fits to the functional form described above to dipole order.
(b) Position on Terrace (atoms) We also fit the data to a 12 term series and extract the cor-

responding multipole coefficients of the isolated step; these

FIG. 6. Displacements at the surface laygom Fig. 2 fora  are shown in Fig. 7. We first note that the logarithmic mono-

strained epilayer with no surface stress. Ktdisplacement¢a) and pole is dominant, and the falloff with increasing multipole

y displacementgb) are shown as a function of position from one order is rapid and uniform. The dipole coefficient, for ex-
step to the next periodic image step. The dots are the displacemer’g%ple is more than an order of magnitude smaller than the
produced by the model and the solid lines are fits to the fundior}nonop;ole coefficient. Dominance of the logarithmic mono-
described in the te.xt, up to dipole ord€Fhe first and last points pole is also evidenced by the fact that using only the mono-
are left out of the fiy pole and dipole terms results in the excellent fit shown in
Fig. 6. The simplest continuum elastic theory predicts the
existence of a monopole term only and should be valid in the
limit of the step height small compared to the distance be-
1_ tween steps in our model. That condition is reasonably well
Vo=Mo IN(x=Xo) (18) satified fo? the case shown here, hence the relativeydomi-

cannot be directly summed and instead the correspondingance of the monopole term. The existence of other multi-

All higher order multipole terms may be summed analo-
gously. The single step monopole potential term

force pole terms, though small, nevertheless shows that our model
is capturing some of the atomistic effects that are present and

1 d . mg therefore goes beyond a purely continuum description.

fo=— d_xV°:x—x0 (19 Figure 8 shows the monopole coefficiemt, for the x

component of the displacement along the surface as a func-

is summed, and then integrated to give the lattice-summetion of lattice mismatche. For eache, mg, is calculated
monopole potential from the simulation data for 16 different values of the elastic

parameters. and u. These data are compared to the theo-

retical predictionmg,=2(\+2u)/e, which can be derived
- (200 gither from continuum theof§ or from a discrete modéf:3*

The agreement between the simulation data and the analytic
These periodic functions are best examined on a single pexpression is quite good, but not exact. This is again what we
riod extending over théerrace between two step&Fig. 6),  would expect since we are in a regime in which the atomistic

Vo=mgln

i T
sm(t(x—xo)
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FIG. 8. Monopole coefficientn,, for the x component of the  E
displacement along the surface. Data is plotted as a function ofJ
lattice misfite for 128 values of elastic coefficients u, ande. L >
Values from the simulation[{l) and from theory Q) are plotted. I =40
=40u

effects captured by our discrete model are small, but not giG. 9. Geometry used for calculating two-step interaction en-
completely negligible. Thus, we have shown from this andergy. Left and right boundaries are skew periodic. Steps are moved
the preceding data that our model reproduces the expectém configurationA to configurationB in such a way that the total
continuum results in the approriate limit, but with correctionSarea remains constaftrhass is conservéd

due to the discrete nature of the model that may be important

in other regimes. In light of the above discussion, we now compare the
elastic energy due to step-step interaction obtained in our
B. Step-step interaction energy model to the predicted interaction. To calculate the total elas-

. . . tic energy as a function of step distance, we use the geometry
We now turn our attention to the interaction energy_be-shown in Fig. 9, with skew periodic boundary conditions as
tween steps produced by our model. For a general lineag, o iate for modeling an infinite step train. The two steps
elastic material W'th. a stepped surface, ther_e are _forces b&te moved by equal amounts in opposite directions to con-
tween steps even in the absence of misfit strain. In thegrye the mass of the system, thereby preventing the uncon-
Green's function approach discussed above, these forcgg, ey introduction of “background” bulk elastic energy in
separatéconceptually into two types: a repulsive “dipole the process. With the steps at each lattice position between

interaction;,” which is d.ue to the Intrinsic surfacg stress of configurationsA and B, we record the total elastic energy.
the steps, and a logarithmic repulsion between inequivalent We expect that the relevant quantities determining the

. “ 5,36 . .
steps in the form of a force “monopole®>*®which is due to qualitative behavior of the system aye/\; and /e,

the elastic distortion of the surface. where the subscripts and e are for substrate and epilayer

In a film under an exter_nally |mposeql strain, such as thabroperties, ande {s,e}. Every property that depends on lat-
derived from_ coherent_ epitaxy 0 a Iatt|ce-m|s_mat_ched SUBtice mismatche does so linearly, so that scales out as well.
strate material, there is an additional, attractive interaction- simplicity we calculate With,zﬂzl ande=1%. For

between steps due to a force “monopdi®which is loga- Si, w/AN~1.1; for Ge,u/\~1.2, andug; / pge~1.2, SO the

rithmic. The unstrained monopole force of the previous para- ' ‘. .. .
graph is fundamentally different from this strained mono_quahtatlve results should hold for that physical system and

. thers with similar scaled elastic properties. In this compu-
pole, m_that the presence or ab_sence of the_ former depenfgﬁon, the grid spacing was chosen such that each atomic
on relative step onen;atlons, wh.|le the latter is present for al attice spacing is one numerical grid point across. The system
steps. I_n th? calcula}tpns described _below, all steps face ﬂ}?as a lateral size of 40 lattice spacings, which would be
same direction, obviating any repulsive monopole. !

The forcef,. on a single step at positian,, is approxi- equivalent to a physical size of approximately 22 nm for a

; 28,33 Si/Ge system.
mated, to dipole order, By The first case we consider has an epilayer thickness of 30

) ML, large enough that we expect this case to behave as if the

ag a3
fm_ 2 (X —X ) - B 3
n n~Xm) (X Xm)
n#m

(21) epilayer were uniformly strained. The results for the total
energy as a function of step separation are shown by the
square data points in Fig. 10. The agreement between the

where«;, is determined by the elastic constants of the matedata from our model and the solid line is excellent, indicating

rials and the lattice mismatch, ang, is determined by the that our model reproduces the expected logarithmic interac-
elastic constants of the epilayer material and the intrinsi¢cion between steps on a homogeneously strained epilayer at
surface stresses. distances larger than one atom.
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71— 11— 100246 continuum theory would be expected to hétde thick epil-

- 1 ayer limit). We have also demonstrated, however, that the
. discrete nature of the model allows us to capture many ef-
1 fects that are essentially atomistic in nature. When consider-
0.0244 ing step-step interactions, we found that there is a significant
L influence of perturbations of the elastic field on the surface
\, due to buried substrate morphologies. These may well lead to
) A long relaxation times for very thin epilayers, where the ac-
140.0242 tual critical thickness depends on the migfias well as on
the elastic constants of the two involved materials. Upon

0.1578

0.15761 |/

System Elastic Energy (arbitrary units)

0~1574T'1| o 30 Monolayer Film| o0 5 Monolayer Film|"‘T increase of the epilayer thickness, we observe a decay of the
: ? b substrate influence until at epilayer heights of roughly 30-50
T Y Y S A N monolayers the eff f the initial r nfiguration
S TR T e T e T Vaoni;)haye s the effects of the initial substrate configuratio

Step Separation s (Sites) . . .
We expect this general methodology to have wide appli-

FIG. 10. Total system energy for a step moving from configu-cability to problems involving strain in epitaxial growth.
ration A (s=0) to configurationB (s=20), for both a 30 atom Here, the method was formulated for a simple cubic lattice in
thick epilayer (squares, left axjsand a 5 atom thick epilayer 2D, but it is easily extendible to noncubic lattices and 3D. In
(circles, right axis Both calculations are on a 30-layer substrate.addition, the atomistic nature of our formulation makes it
The solid line is a logarithmic fit to the thick epilayer data, and theapplicable to including surface and step edge effects, pro-
inset is the central portion of the thin epilayer data with<2@er-  vided that a suitable description of the local energy at these
tical exaggeration. sites is available. At the atomistic level, our model is an

example of a valence force field model. Valence force field

The circle data points in Fig. 10 show the total elasticmodels, such as the Keating model, have been validated for

energy for an epilayer thickness of only 5 ML. Note that thebulk elastic properties of many real materiés® valence
behavior is qualitatively different than the thick epilayer force field models accurately describing the energy of atomic

case. There is a “dip” in the energy as the surface steps pasc;‘onfigurations at surfaces and step edges are not generally
over the terrace midway between configuratighgnd B. available, but there are no fundamental obstacles to develop-

This local minimum in energy becomes more pronounced fof"d and validating such models. _ _ _
epilayers thinner than 5 monolayers. Figure 11 shows the One of the main motivations for this work is our intention
hydrostatic strains for two of the configurations whose enerf incorporating elastic effects into the level-set metiidar

gies are plotted in the preceding figure. Note that there i§€scribing the morphological evolution of epitaxial filfhs.
significant elastic interaction between the epilayer steps andis téchnique is based on the representation of the moving

subsurface features at the epilayer-substrate interface. THEOWth front(the step edggsn terms of an auxiliary func-
interaction is what leads to the local minimum in energyt'on (_the level set funptlohwmch permits a stralghtforward_
when the epilayer steps are moved with respect to the buriegP!ution of the associated Stefan problem and handles in a
steps, and is an effect not present in models assuming @tural way the topological changes associated with the
homogeneously strained epilayer. In fact, this effect wouldUcleation of islands and their coalescence. By treating the
be very difficult to capture with any Green’s function-basedX-y Variables as continuous, but thedirection as discrete,
approach. this method is ideally suited both to coupling continuous
We expect this to have considerable implications for the1€lds to island motion and to describing abrupt atomistic
dynamics of step bunching. Although only metastable Steﬁﬁects associated with the initial stages of heteroepitaxial
configurations that experience significant coupling to thedrowth, such asﬁzthe 2D-3D transition during Stranski-
substrate may be expected to slow or even completely sugsrastanov growti” The coupling of the adatom diffusion
press the step bunching phenomenon normally expected di¢ld  © |s:ﬁa3nd-boundary motion  has already ~been
vicinal surfaces even under annealing conditions. A full in-2ccomplished;’so we now turn to the effect of elasticity on

vestigation of step dynamics using this elastic model coupled?® motion of island boundaries. _ . _
to an equilibrium model for step dynamftéss in progress The new method opens up a vast field of possible appli-
will be reported on elsewhere. cations. Beginning with the most fundamental aspects of

growth, we can examine the effect of strain on adatom
hopping?* nucleation, and island stabilify,as well as inves-
V. SUMMARY AND FUTURE APPLICATIONS tigate the issue of kinetic versus equilibrium effects in the

. - . 6'47 - -
We have presented a new method to study the influence ¢f/2nd statistics>*" These factors, in twrn, impact upon the
xtent of laterdl and vertical orderintf*® of 2D and 3D

elastic interactions in strained one-dimensional systems u§ -
ing an approach based on lattice statics using linear elasticiglands' _GTOWth phenomenq on patterned substrates is also
theory. An application is the problem of step relaxations an asily within the scope of this meth.

step-step interactions on vicinal surfaces. We have examined
in detail the behavior of our model for this particular prob-
lem and found the step relaxations to be consistent with the We gratefully acknowledge discussions with Frank
predictions of continuum elastic theory in the limit where theGrosse, David Srolovitz, and Jerry Tersoff. This work was
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APPENDIX: ELASTIC ENERGY Dy f()=h""(1-T)f(i), (A2)
For a two-dimensional cubic lattice with lattice constant DO (i)=(2h) " X(T{ = T} ) (i),

and lattice coordinateis=(i,,i»), denote the reference posi-
tion asx=(xq,X,), the elastically deformed position & in which g  is the unit vector in thekth direction for k
=(X1,X;), and the displacement as=(u,,u,)=X—x. De-  =1,2. Define the bond displacematit™ at the pointi as
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d“= (i) =(d¥* ,d5") =D u(i) — eey. (A3) y=cl8=C,4, (A10)

As discussed in Sec. II, the lattice mismatch parametier ~ andC;; are the Voigt constants. The energy densAg) is
the epilayer is the relative difference between the equilibriunthe discrete analogue of the continuum energy for elasticity
lattice constant and the lattice constant imposed on the epiWith cubic symmetry. For isotropic elasticity, as in Sec. II,

ayer by the substrate. the coefficients should be chosen as
The discrete strain components at a poiate defined as
a=(\N+2u)l4,
=+ :dki ,
S= di B=ula,
Pi=(dd+dfP)/2 A4
Si'=(di'+di™) (A4) = \/a, (A1)

in which the values ok andl are 1 or 2 and the values pf

andg are+ or —. The strain componer8,, corresponds to . .

a bond in thex g, direction from the point; the component The (ljllscl:retel_ endgrgy (:]ens;](y\g) has t(;eer;mchosen to be

S corresponds to two interacting orthogonal bonds in themaxmaé/ oga;ze ; SO t fa;[j.t elenergy en h)a';a pomp

pe, andqe directions from the poin. is a quadratic function of displacementat the five point

stencil consisting of the pointand its nearest neighbors, and

the corresponding force balance equations involve only the

nine point stencil consisting of the poinand its nearest and
The elastic energy used here has a micromechanical intenext-nearest neighbors.

pretation as consisting of nearest neighbor springs, diagonal

springs, and bond bending terms. For nearest neighbor linear 2. Interfaces

springs and linearized bond bending springs, in which the

spring constants ara and b, respectively, the energy at a

point is

i.e.,a=u—N\, b=pu/2—2\, c=2\.

1. Micromechanical model

For problems in which the underlying lattice has cubic
symmetry but the material geometry includes interfaces, we
generalize the energy in EGA9) by only keeping bond in-
1 1 teractions that are consistent with cubic symmetry but not
Ennbbzi a (SP)2+ 3 b (ShhH2. imposing a symmetry constraint on the strength of the inter-
p==k=12 p==.0== (A5) actions. The resulting energy has the form

In order to retain maximal locality, we use “virtual” diagonal _ prap \2 P QPA\2 1 - PAQP
spring with spring constam, defined for example between a E p= t%: 1,2 k(S p:tz,q:t PRSI+ v S,
point (0,0) and the average of its nearest neighbors (1,0) and (A12)

(0,1), for which the energy is o . )
Each coefficientaf, as well as the lattice mismatch pa-

1 2 rametere, corresponds to a bond between two atoms; each
E" =5 cle+e)-|[u1,0+u(0,1)] / 2=u(0,0 of the coefficientg3P9 and yP9 corresponds to the interaction
of two bonds in orthogonal directions from a central point,
=c(S);+S,,+2S,,7)?8. (A6)  which defines a square “cell.” We assume that the values of

a, ande (BP9 andyP% depend only on the material type of
the two (four) atoms at the endpoints of the corresponding
EPI—c(SP.+S9. +2 92/g. A7 bond (cell).
(Siyt S%+2P9E2) A7) Consider a system consisting of two materials with elastic
The energy densitf is a combination of these four virtual parameters™, g™, y™, €™ for m=1,2. Denote a cell or bond

More generally fop= = ,g= %+ define

diagonal springs; i.e., to be “pure” if all of its vertices are of a single material type
and “mixed” otherwise. For maximal simplicity, we make
E= E = (A8) the following assumptions, which could easily be general-
=*,q== ized.

(1) For pure bondgpure cell$ in materialm, af =™ and
e=¢€", (BP9=p" and yPI=").

(2) For mixed bondgmixed cellg in a two-material sys-
tem, af=3(at+ a?) and e=%(e*+€?) [BPI=1(B 1+ B?)
E=a (Sh*+ {2B(S89)?+ ySh,STy and yP9=3(y'+ 93]

p=.k=12 p==a== (A9) (3) For a bond(cell) in which one of the vertices is in the
vacuumaf=0 (BP9=yP9=0).

Add and rearrange Eq§A5) and (A8), to obtain the result-
ing energy

in which
a=(a+c)/2=C /b 3. Force balance equations
- 11
Assumptions(1)—(3) provide an algorithm by which the
B=(b+c)/2=C444, elastic coefficients and elastic energy can be determined for
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any material configuration involving two materialse., a Eq. (A13) is a linear function olu(i’) over values of’ that
substrate and an epilayeand a vacuum. Once the enerfgy are equal to, nearest neighbors of, or next-nearest neighbors
is determined, the force balance equations at each paimt of i. The coefficients can be exactly determined as a finite

the minimization conditions difference ofE with respect tau(i) andu(i’). Then a linear
equation solver is used to findby solving Eq.(A13). This
dEldu(i)=0. (A13)  procedure does not require analytic determination of the

force balance equation, which is an advantage because the
For the quadratic energy described above, the derivative ianalysis has many different casés.
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