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Scaling of Coulomb and exchange-correlation effects with quantum dot size
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The role of many-body effects in quantum dots is of both academic and practical interest. We study the
electron-electron interaction within a simplified spherical quantum dot using the local spin-density approxima-
tion. We experiment with a variety of confining potentials~triangular, harmonic, square well, etc.! and with a
varying number of electrons (N52 to 20!. We carry out a detailed study of the scaling behavior of the
‘‘Hubbard U ’’ potential, which is a measure of the capacitive energy, with quantum dot sizeR (U;1/Rb). We
find that the scaling exponentb is '1/2 for harmonic confinement and equal to 1 for the square-well con-
finement. The dependence of the scaling exponents on the confining potential and the number of electronsN is
elucidated. We also examine the relative importance of Coulomb, exchange, and correlation terms in the
HubbardU potential and find that correlation plays a relatively more important role at a larger size. We provide
a partial explanation for the value of the exponent in the Appendix.
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I. INTRODUCTION

Quantum dots~QD! are structures in which charge carr
ers are essentially trapped in a three-dimensional poten
They are also known as ‘‘artificial atoms’’1,2 and consist of a
103–106 atoms, with system sizes in the range of 1–10 n
They are of fundamental and technical interest for next g
eration electronic devices. An important goal of today’s te
nological drive towards smaller and smaller devices is
fabricate the so-called single-electron transistor which can
operated at room temperature.3 They may also form the basi
of new generations of lasers. The emission in quantum
lasers originates from the recombination of excitonic co
plexes, so it is important to study and understand the qu
tum dot’s internal electronic structure.4

Theoretical studies of a QD involve multielectron effec
Review of earlier work in this direction maybe found in th
recent work of Jianget al.5 and Ranjanet al.6 In this work,
we investigate the behavior of the direct Coulomb and
exchange correlation with the shape of the confinement
tential and size of the quantum dot. Before we discuss
motivation behind this work, we define a few relevent term
The ‘‘Hubbard U ’’ potential is composed of a number o
terms

U5Uc1Uxc ~1.1!

and

Uxc5Ux1Ucorr , ~1.2!

whereUc is the direct Coulomb term,Ux is the exchange
andUcorr is the correlation term. Note

U5
2

N~N21!
U~N!, ~1.3!

where N is the number of electrons andU(N) could be
Uc(N), Ux(N), or Ucorr(N). U(N) is the effective potentia
energy ofN electron system whileU is the ‘‘pair’’ interac-
tion. In the local-density approximation~LDA !, all three
terms given in Eqs.~1.1! and ~1.2! are present, whereas i
0163-1829/2003/67~7!/075315~6!/$20.00 67 0753
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certain other approximations, namely, Hartree-Fock a
Harbola-Sahni~HS!,7 the correlation term is absent.

We experiment with various shapes of the confinem
potential. The model external potential we have chosen

Vext~r !5H ~V0 /Rk!r k2V0 , r<R

0, r .R.
~1.4!

Here,V0 is the height of the potential. This can be given
the conduction-band offset~valence-band offset! between the
QD and the surrounding layer for the electron~hole!. R is the
radius of the QD (2R is the width of the potential! and k
assumes positive integral values from 1 to say a very la
number. Changing the value ofk results in the change of th
shape of the potential. In particular,k51 is quasitriangular,
k52 is quasiharmonic confinement, andk>10 is
quasisquare-well confinement. Ask→`, the potential be-
comes square well. The capacitive energy is defined as

e2

C~N!
5E~N11!22E~N!1E~N21!, ~1.5!

where E(N) is the total ground-state energy ofN-electron
QD. The capacitive energy essentially tracks the HubbarU
potential except for the peaks. The HubbardU potential is
found to be equal to the difference between the ionizat
potential and electron affinity, i.e.,

e2

C~N!
5I ~N!2A~N!. ~1.6!

In chemistry, this difference is known as the chemical ha
ness. More the chemical hardness, the more stable an ato
molecule is.

The motivations behind the study of the HubbardU po-
tential and its constituent terms are both of academic as
as of practical interest. It has been reported that the Coulo
repulsion is heavily attenuated for multiple charge states
the impurity in semiconductor.8,9 It may even assume nega
tive values.10,11 In this paper, we study the electron-electro
interaction within a simplified spherical quantum dot usi
©2003 The American Physical Society15-1
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the local spin-density approximation~LSDA!. We experi-
ment with a variety of confining potentials~triangular, har-
monic, square well, etc.! for the electrons@see Eq.~1.4!#. We
carry out a detailed study of the scaling behavior of the H
bard U potential, which is a measure of the capacitive e
ergy, with quantum dot sizeR. Our main thrust is to study the
size dependence of the Coulomb and exchange correla
for two distinct and extensively used shapes of the poten
namely, harmonic (k52) and square well (k>10). We also
compare our LSDA results with LDA and the HS schem
and state the results.

II. RESULTS

In our calculations, we have treated exchange-correla
effect in its Gunnarsson-Lundqvist12 parametrized form. Our
calculations have been performed in atomic units. Unl
otherwise stated, all the results are based on LSDA calc
tions. The plot of the capacitive energy as a function of
electron numberN exhibits shell filling effects. We shall no
dwell on them since it is not the focus of the current pa
except to mention that partial filling of shells is observed
certain cases.This implies that the spherical quantum d
maybe electronically unstable and may undergo distorti
This is suggestive of a Jahn-Teller–like effect in quantum
dots. The scaling exponents reported in this section h
been extracted using the Levenburg-Marquardt proced
We investigate howU and the individual terms comprising
@see Eq.~1.1!# scale withR for different shapes of the con
finement.

To understand the scaling behavior, in Fig. 1, we plot
HubbardU potential with sizeR of the QD, for the number
of electrons,N52,5, and 18 andk52 ~quasiharmonic con-
finement!. Hubbard U potential is the average electron
electron interaction energy in a many-electron quantum
This figure reveals thatU scales as

U;
1

Rb
, ~2.1!

FIG. 1. The effective electron-electron interaction energyU, is
depicted as a function of sizeR of a QD for three different values o
the total number of electronsN and fork52 ~quasiharmonic con-
finement!. The interaction energyU;1/Rb with the exponentb
50.528, 0.567, and 0.617 forN52, 5, and 18, respectively. Notic
the weak dependence ofb on N.
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where the exponentb50.53, 0.57, and 0.62 forN52, 5,
and 18, respectively.

Figure 2 shows how the individual terms inU scale with
size. The external confining potential is quasiharmonick
52). The Coulomb term drops with size while the exchan
correlation plays a compensating role. In other words,
roles of Coulomb and exchange correlation are antitheti
For small size,Uxc becomes increasingly attractive while th
Coulomb term becomes increasingly repulsive. ForN52,
Uc.2uUxcu which is expected. As the electron occupancyN
increases, the magnitudes ofUxc and Uc become smaller.
However, the compensating nature of the two terms is
affected. A Levenburg-Marquardt least-squares fit reve
that

Uc;
1

Rg
, ~2.2!

where the exponentg50.49, 0.55, and 0.61 forN52, 5, and
18, respectively.Uxc follows a similar scaling behavior, i.e.
Uxc;21/Rd with the exponent valuesd50.45, 0.50, and
0.55 forN52, 5, and 18, respectively. Both the exponentsg
andd are'1/2 for quasiharmonic confinement.

Now for completeness of our study, we would like
investigate the scaling behavior for other shapes of the c
finement, for example, quasisquare (k510) and quasitrian-
gular (k51), etc. These results are displayed in Table I. T
effect of the confining potential on the scaling exponentb is
dramatic, whereas fork52, b;1/2, ask→`, b→1. This
latter result maybe understood in classical termsC
;Re f f). Interestingly for the quasitriangular confineme
(k51), the scaling exponent is'1/3. In the Appendix, we
attempt to explain whyUc scales as 1/AR for quasiharmonic
confinement and as 1/R for quasisquare confinement. W
note that with increasingN, b increases. This is due to th
fact that with increasingN, the effective potential become
more flat as the effective size of the quantum dot increa

FIG. 2. The individual terms inU, CoulombUc , and exchange
correlationUxc are depicted as a function of sizeR of a QD for
three different values of the total number of electrons,N and for
k52 ~quasiharmonic confinement!. The values ofN and k are the
same as in the figure. The Coulomb term scales asUc;1/Rg. The
exchange correlation scales asUxc;1/Rd. Note that the exponents
increase slightly withN.
5-2



fe
n
w
-
th
W

li
e
W

g
,

ha
rl
th

on

le

he
t

of
tum

the
si-
in

ion
ne

ns
nge
the

uare
nce
ou-

her
it.

re
ten-
er

the

ly,

for
en
-
r of
e-

he
atio

rg

a

r
-
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In other words because of the spatial extension of the ef
tive potential, electrons find more space to move and he
Coulomb interaction becomes weaker. With these results
see that the HubbardU potential actually depends on a num
ber of variables, namely, the shape of the confinement,
number of electrons, and also on size of the quantum dot.
find the following relationship between the exponentb and
and the confining parameterk:

b~k!50.92~120.78 exp@20.27k# !. ~2.3!

In Table I, we also display the exponentsg andd for the
Coulomb and exchange correlation. This establishes sca
laws for Uc and Uxc . Further, we also investigate how th
HubbardU potential depends on the number of electrons.
know that classically there should not be anyN dependence
in U. However, we do find a weak-N dependence. Assumin
that the exponentb in the scaling ofU has aN dependence
so that

b~N!;Nh ~2.4!

then

ln b;h ln N. ~2.5!

A logarithmic plot ofb as a function ofN gives the value of
h between 0.05 and 0.08 which is very small. This result
a phenomenological implication. In experiments on nea
spherical quantum dots, one may now safely assume
U—the difference in the electron affinity and the ionizati
potential, is essentially unchanged with the shell filling.

Now we come to the next important point, what is the ro
of exchange correlation in deciding the overall scaling ofU?
We have checked the scaling ofUc andUx with size of the
quantum dot fork52 ~harmonic confinement! and for N
52, 5, 18 within the HS scheme. We find that both Coulom
and exchange interaction scale as in LDA/LSDA with t
exponents almost the same in both cases. This shows tha

TABLE I. The ‘‘Hubbard U ’’ potential is found to scale as
;1/Rb. Similarly, the Coulomb and exchange-correlation ene
scale as;1/Rg and;1/Rd, respectively. The exponentsb, g, and
d depend on the shape of the potential, indexed byk @see Eq.~1.5!#.
This table lists the values ofb, g, andd for different values ofk
and forN52, 5. Note that the exponents increase from 1/3 to 1
k increases from 1 to 10.

N k b g d

1 0.386 0.355 0.325
2 0.528 0.487 0.445

2 4 0.721 0.660 0.601
8 0.862 0.784 0.710
10 0.894 0.812 0.735
1 0.393 0.381 0.351
2 0.567 0.548 0.503

5 4 0.746 0.718 0.653
8 0.884 0.846 0.762
10 0.917 0.877 0.787
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correlation plays a key role in deciding the overall scaling
U with the shape of the confinement and size of the quan
dot.

The exchange correlation becomes important when
size is large. The correlation energy is relatively more sen
tive to the size and shape of the potential. What is shown
Fig. 3 is the ratio of absolute value of exchange correlat
energy to the Coulomb energy with the size of the QD. O
can extract the following facts: For largeN ~density!, the
Coulomb interaction dominates and hence the ratiouUxcu/Uc

is small. It becomes large for a small number of electro
and varies over a wide range; thus showing that the excha
correlation becomes more pronounced. We also find that
exchange correlation is large for largek. The simplest reason
one might think of is that as the shape becomes quasisq
well, the spatial extension of the potential is more and he
electrons find more space to move. This attenuates the C
lomb interaction as the density becomes small. In ot
words, correlation effects are largest in the low-density lim
As the system size becomes larger~or the electron density
spreads out more!, a more accurate analysis would requi
the use of asymptotically correct exchange-correlation po
tial in place of LSDA. The latter is not accurate in the out
regions of a system.

The above results make it clear that correlation plays
key role in deciding the scaling ofU. To emphasize this
point, we compare the two distinct methodologies, name
the LDA/LSDA and the HS schemes for the ratiouUxcu/Uc

~LDA/LSDA ! anduUxu/Uc ~HS! with sizeR. We find that in
case of HS, the ratio is constant, in particular, it is 0.5
N52. The exchange correlation is always larger for a giv
N, R, andk in case of LDA/LSDA than the near exact ex
change in case of HS. We have also checked the behavio
exchange-only LDA which is also known as Dirac exchang
only LDA and it turns out to be smaller for a givenN, R, and
k in LDA than in HS. This is because in HS scheme, t
exchange energy is calculated exactly. Interestingly, the r

y

s

FIG. 3. The ratio of exchange correlationUxc to the Coulomb
Uc energy is plotted as a function of the quantum dot sizeR for k
52 and 10 and total number of electronsN52, 5, and 8. The ratio
is nearly constant fork52 and this is consistent with the figure. Fo
quasisquare confinement (k510), however, there is noticeable in
crease with dot sizeR.
5-3
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uUxu/Uc in both HS and LDA does not change with size a
remains constant for all value ofN. For largeN, it goes down
as well.

To see further how important a role correlation plays,
Fig. 4, we plot the ratiouUcorru/Uc against the sizeR. We
find that the ratio is always large for a givenN and for large
k. This means that for a fixed density of electrons, as
increasek, we effectively decrease the density. This mak
the correlation more pronounced. As the dot size increa
the correlation becomes significantly important. We may
derstand this by looking at the scaling ofUc andUxc for both
k52 and 10~see Table I!. The Coulomb part decreases at
faster rate as compared to the correlation, effectively mak
the ratio large for largek. This is because fork52, the
electronic charge density is confined towards the cente
the QD, whereas fork510 it is more spread out towards th
surface.

Finally, in Fig. 5, we plot the ratioUcorr /Ux against the
sizeR. Once again we find that the ratio is large for a giv
N and for largek and varies over a wide range. In this ca
also as the dot size increases, the correlation becomes
pronounced. It is interesting to note that forN55, the ex-
change energy dominates more and hence for bothk52 and

FIG. 4. The ratio of correlation energyUcorr to the Coulomb
energyUc is plotted as a function of the quantum dot sizeR for k
52 and 10 and total number of electronsN52, 5, and 8. The
correlation is more effective for few-electron quantum dots. It
creases with bothR andk.
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k510, the correlation to exchange ratio forN55 is smaller
than that forN58. We also worked out the relative differ
ence in exchange-correlation energy calculated using
LDA and LSDA as a function of the number of electron
This we show in the inset of Fig. 5. The striking feature
the increase of the relative difference where there are
paired electrons in the dot. That is, when the shell is h
filled, for the number of electronsN55, 13, 19, 27, and for
quasiharmonic confinement. The relative difference
creases from a maximum of 5% forN55 to 1% for N
527 as a function ofN. Interestingly, for quasisquare con
finement, the relative difference is also found atN51 and is
as large as 25%, whereas for quasiharmonic confinemen
is almost zero. For those values ofN other than the half-filled
shell, the relative difference is less than 1%. This we belie
maybe due to the numerical inaccuracy. This shows that
LSDA is a better approximation to the many-body exchan
energy than the LDA, particularly when the shell is ha
filled, giving rise to nonzero total-spin angular momentu
We close the discussion with the statement that the excha
correlation does play an important role in deciding the sc
ing of the HubbardU potential. However, it does not play
dramatic role and leads to negativeU as predicted by
Katayama-Yoshida and Zunger in 1985.11 It would perhaps
be interesting to examine many-body effects for an impu
in a quantum dot.

III. CONCLUSION

We reiterate that as the system size becomes larger~or the
electron density spreads out more!, a more accurate analysi
would require the use of asymptotically correct exchan
correlation potential in place of LSDA. The latter is not a
curate in the outer regions of a system. Shell filling effe
which indicate the possibility of a Jahn-Teller–like effect
quantum dots have been observed. These will be exam
further. The scaling ofU, Uc , andUxc strongly depends on
the shape of the confining potential. Exchange correlat
does play an important role in the scaling of Hubbard
potential but it does not show any anomalous behavior a
outweigh the Coulomb interaction and make the overallU
negative. In particular, correlation is more sensitive to
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-
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FIG. 5. The ratio of correlation to the ex
change energy is plotted as a function of t
quantum dot sizeR for k52 and 10 and total
number of electronsN52, 5, and 8. The correla-
tion energy is more pronounced for a small num
ber of electrons in a quantum dot. It increas
with both R and k. Interestingly, forN55, the
exchange energy dominates more and hence
bothk52 andk510, the correlation to exchang
ratio for N55 is smaller than that forN58. The
inset shows the percentage difference in t
exchange energy calculated using the LDA a
LSDA, i.e., @(Uxc)LSDA2(Uxc)LDA#3100/
(Uxc)LSDA.
5-4
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quantum dot size and the shape of the confinement. It
long been understood that electron correlation is of criti
importance in atoms, molecules, and solids and it should
be so in quantum dots. This stands justified through our
culations.
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APPENDIX

One can understand the scaling behavior of the Coulo
term Uc on the basis of following simple argument. Th
argument resembles first-order perturbation-theory analy

Harmonic confinement (k52). In the first-order
perturbation-theory sense, the Kohn-Sham orbital ma
taken to be a harmonic-oscillator type. The ground-st
wave function and density are given by

c~r !5S m* v

p D 3/4

e2m* vr 2/2, ~A1!

r~r !5S m* v

p D 3/2

e2m* vr 2
. ~A2!

Now from the relation

1

2
m* v2r 25

V0r 2

R2
,

v5A 2V0

m* R2
. ~A3!

The electron-electron interaction energy is given by

Uc5
1

2E E r~r !r~r 8!

urW2rW8u
drWdrW8 ~A4!

1

2 S m* v

p D 3E E e2m* vr 2
e2m* vr 82

urW2rW8u
r 2drdVr 82 dr8dV8,

~A5!

wheredV5sinu du df. We now make substitutions and in
troduce new dimensionless variablesz and z8 in place ofr
and r 8 such that

z25m* vr 2, ~A6!
07531
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m* v
D 3/2

z2dz5r 2dr, ~A7!

Uc5
1

2 S m* v

p D 3S 1

m* v
D 3

~m* v!1/2

3E E e2z2
e2z82

uzW2zW8u
z2dzdVz82 dz8dV8. ~A8!

Using Eq.~A3!, we can write

Uc5
1

2p3 SA2m* V0

R2 D 1/2

G, ~A9!

that is,

Uc;
1

AR
, ~A10!

whereG is the value of the integral and is a constant, giv
by

G5E e2z2
z2dzdVE

0

`E
0

pE
0

2p

3
e2z82

z82 dz8sinu8du8df8

~z21z8222zz8cosu8!1/2
. ~A11!

Square-well confinement(k>10). Once again, in a first
order perturbation-theory approximation, the Kohn-Sham
bitals are square-well–type wave function. The ground-s
wave function and density are given as

c5
Asinkinr

kinr
, ~A12!

r5
uAu2sin2kinr

kin
2 r 2

, ~A13!

where

A5
kin

A4p
FR

2 S 12
sin~2kinR!

2kinR D1
12cos~2kinR!

4kout
G21/2

,

~A14!

kin5A2m* E, kout5A2m* ~V02E!. ~A15!

Now from the definition of electron-electron interaction e
ergy @Eq. ~A4!#,
Uc5
uAu4

2 E E sin2~kinr !sin2~kinr 8!

~kinr !2~kinr 8!2urW2rW8u
drWdrW85

uAu4

2 E E sin2~kinr !sin2~kinr 8!r 2drdVr 82dr8sinu8du8df8

~kinr !2~kinr 8!2~r 21r 8222rr 8cosu8!1/2
,

~A16!
5-5
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wheredV5sinududf. Now we introduce new dimension
less variablesj andj8 such that

kinr 5j, kinr 85j8. ~A17!

Thus,

Uc5
uAu4

2

1

kin
5 E E sin2j djdVsin2j8 dj8sinu8du8df8

~j21j8222jj8cosu8!1/2

5
uAu4

2

2p

kin
5 E sin2jdjdVE sin2j8dj8I ~j!, ~A18!

where the angle integral

I ~j!5E
0

p sinu8du8

~j21j8222jj8cosu8!1/2
55 S 2

j D , j.j8

S 2

j8
D , j,j8.

Hence, the electron-electron interaction energy becomes
.J.

tt

a

h,

07531
Uc5uAu4
p

kin
5

8pE
0

`

sin2j djF1

jE0

j

sin2j8 dj8

1E
j

` sin2j8

j8
dj8G

5
8p2uAu4

kin
5

C, ~A19!

whereC is a constant and is the value of the integral. No
from Eqs.~A14!, ~A15!, and~A19!, we have

Uc5
C

2A2m* E
FR

2 S 12
sin2A2m* E R

2A2m* E R
D

1
~12cos 2A2m* E R!

4A2m* ~V02E!
G22

. ~A20!

AssumingE;1/R2 and alsoV0@E, one can write

Uc5
C1R

@C2R1C3 /AV0#2
, ~A21!

whereC1 , C2, andC3 are constants. ForV0 large enough,
the last term in the denominator of the above equation can
neglected. Therefore,

Uc;
1

R
. ~A22!
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