PHYSICAL REVIEW B 67, 075315 (2003

Scaling of Coulomb and exchange-correlation effects with quantum dot size
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The role of many-body effects in quantum dots is of both academic and practical interest. We study the
electron-electron interaction within a simplified spherical quantum dot using the local spin-density approxima-
tion. We experiment with a variety of confining potentié@isangular, harmonic, square well, étand with a
varying number of electronsN=2 to 20. We carry out a detailed study of the scaling behavior of the
“Hubbard U” potential, which is a measure of the capacitive energy, with quantum doRs{ke~ 1/RP). We
find that the scaling exponeut is ~1/2 for harmonic confinement and equal to 1 for the square-well con-
finement. The dependence of the scaling exponents on the confining potential and the number of &léstrons
elucidated. We also examine the relative importance of Coulomb, exchange, and correlation terms in the
HubbardU potential and find that correlation plays a relatively more important role at a larger size. We provide
a partial explanation for the value of the exponent in the Appendix.
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[. INTRODUCTION certain other approximations, namely, Hartree-Fock and
Harbola-Sahn{HS),’ the correlation term is absent.
Quantum dotQD) are structures in which charge carri-  We experiment with various shapes of the confinement
ers are essentially trapped in a three-dimensional potentighotential. The model external potential we have chosen is
They are also known as “artificial atoms? and consist of a ok
10*~10P atoms, with system sizes in the range of 1-10 nm. | (Vo/RH=V,, r<R
They are of fundamental and technical interest for next gen- Vex(r)= 0, r>R.

eration electronic devices. An important goal of today’s tech- ) ] ) ) )
nological drive towards smaller and smaller devices is td1€re,Vo is the height of the potential. This can be given by

fabricate the so-called single-electron transistor which can bE€ conduction-band offsétalence-band offsgbetween the
operated at room temperati@hey may also form the basis QD and the surrounding layer for the electiwole). Ris the
of new generations of lasers. The emission in quantum ddigdius of the QD (R is the width of the potentialand k
lasers originates from the recombination of excitonic com-2SSUmes positive integral values from 1 to say a very large
plexes, so it is important to study and understand the quarflumber. Changing the value kfresults in the change of the
tum dot’s internal electronic structufe. shape of the potential. In particulde=1 is quasitriangular,
Theoretical studies of a QD involve multielectron effects.k=2 i quasiharmonic confinement, an#=10 s
Review of earlier work in this direction maybe found in the quasisquare-well confinement. As—c, the potential be-
recent work of Jiangt al® and Ranjaret al® In this work, ~ comes square well. The capacitive energy is defined as

(1.4

we investigate the behavior of the direct Coulomb and the 5
exchange correlation with the shape of the confinement po- —E(N+1)—2E(N)+E(N—1), (1.5
tential and size of the quantum dot. Before we discuss the C(N)

motivation behind this work, we define a few relevent terms

The “Hubbard U” potential is composed of a number of where E(N) is the total ground-state energy bfelectron

QD. The capacitive energy essentially tracks the Hubkard

terms potential except for the peaks. The Hubb&fdootential is
U=U,+U,. (1.2 found to be equal to the difference between the ionization
potential and electron affinity, i.e.,
and

2

Uye=Uyx+Ucorr, (1.2 C(N)

where U, is the direct Coulomb terml), is the exchange,
andU.,,, is the correlation term. Note

=1(N)—A(N). (1.6

In chemistry, this difference is known as the chemical hard-
ness. More the chemical hardness, the more stable an atom or
2 molecule is.
U= mU(N), (1.3 The motivations behind the study of the Hubbaidpo-
tential and its constituent terms are both of academic as well
where N is the number of electrons and(N) could be as of practical interest. It has been reported that the Coulomb
U.(N), U,(N), orU.,(N). U(N) is the effective potential repulsion is heavily attenuated for multiple charge states of
energy ofN electron system whil&) is the “pair” interac-  the impurity in semiconductdr? It may even assume nega-
tion. In the local-density approximatiofLDA), all three tive values:®!!In this paper, we study the electron-electron
terms given in Eqgs(1.1) and(1.2) are present, whereas in interaction within a simplified spherical quantum dot using

0163-1829/2003/67)/075315%6)/$20.00 67 075315-1 ©2003 The American Physical Society



R. K. PANDEY, MANOJ K. HARBOLA, AND VIJAY A. SINGH PHYSICAL REVIEW B 67, 075315 (2003

._.
=N
hd
t

k=2 ; k=2 N=2 P |
14 F N=2 - A v N=5 ___
2. U (R)~1/R N=18 ... B
N=5 ---- + ° ¢ N2
12§ o U(R)~ /R T U2 . T *
. N=18 - @ ¢ N=5 - -
RN i L5 N=18 _._ .
N S~ =0.548
v O o . Tk L J .
RN =0.528 | R el e
08 N R S L e AR
Sl Tea L B=0567 o 5=0.545
06 F e, ~.F - B B OF. . ¥ X X
e Tl T . SN S S i
| B=0.617 T p—— el — | 035 F §=0503 N [ (VRN 3
04 [ - S MR I\;(c_l | X T = U (R)~ 1R |4
""" g X §=0.445 ad
02 1 1 1 1 1 1 _15 - 1 1 1 1 1 1
1 2 3 4 R S 6 7 8 1 2 3 4 R 5 6 7 8
FIG. 1. The effective electron-electron interaction enedyyis FIG. 2. The individual terms itJ, CoulombU,, and exchange

depicted as a function of sizeof a QD for three different values of  correlationU, . are depicted as a function of siRof a QD for

the total number of electrorld and fork=2 (quasiharmonic con- three different values of the total number of electroNsand for

finemen}. The interaction energy) ~1/R? with the exponent3 k=2 (quasiharmonic confinementThe values oN andk are the

=0.528, 0.567, and 0.617 fdt=2, 5, and 18, respectively. Notice same as in the figure. The Coulomb term scaledl as 1/R”. The

the weak dependence gfon N. exchange correlation scales g~ 1/R°. Note that the exponents
increase slightly with\.

the local spin-density approximatiof. SDA). We experi-

ment with a variety of confining potentialsriangular, har-  \yhere the exponeng=0.53, 0.57, and 0.62 foN=2, 5,
monic, square well, etcfor the electrongsee Eq(1.4)]. We  and 18, respectively.
carry out a detailed study of the scaling behavior of the Hub- Figure 2 shows how the individual terms lihscale with
bard U potential, which is a measure of the capacitive en-jze The external confining potential is quasiharmorkic (
ergy, with quantum dot sizR. Our main thrust is to study the — 2y The Coulomb term drops with size while the exchange
size dependence of the Coulomb and exchange correlatiqyrejation plays a compensating role. In other words, the
for two distinct and extensively used shapes of the potentialgles of Coulomb and exchange correlation are antithetical.
namely, harmonicK=2) and square wellk=10). We also o small size|J, . becomes increasingly attractive while the
compare our LSDA results with LDA and the HS schemecgyiomb term becomes increasingly repulsive. Kot 2,
and state the results. U.=2|U,g which is expected. As the electron occupaity
increases, the magnitudes of . and U, become smaller.
Il. RESULTS However, the compensating nature of the two terms is not

In our calculations, we have treated exchange—correlatioﬁﬁaet(:ted' A Levenburg-Marquardt least-squares fit reveals

effect in its Gunnarsson-Lundgwtéiparametrized form. Our
calculations have been performed in atomic units. Unless
otherwise stated, all the results are based on LSDA calcula- 1
tions. The plot of the capacitive energy as a function of the U~ B’ 2.2

R
electron numbeN exhibits shell filling effects. We shall not
dwell on them since it is not the focus of the current papefyhere the exponent=0.49, 0.55, and 0.61 fdd=2, 5, and
except to mention that partial filling of shells is observed in18, respectivelyU,, follows a similar scaling behavior, i.e.,
certain casesThis implies that the spherical quantum dot y, .~ —1/R’ with the exponent value$=0.45, 0.50, and

maybe electronically unstable and may undergo distortiong 55 forN=2, 5, and 18, respectively. Both the exponents
This is suggestive of a Jahn-Telidike effect in quantum  and s are ~1/2 for quasiharmonic confinement.
dots. The scaling exponents reported in this section have Now for completeness of our study, we would like to
been extracted using the Levenburg-Marquardt procedurgnvestigate the scaling behavior for other shapes of the con-
We investigate how and the individual terms comprising it finement, for example, quasisquate=(10) and quasitrian-
[see Eq(1.1)] scale withR for different shapes of the con- gylar (k=1), etc. These results are displayed in Table I. The
finement. _ S effect of the confining potential on the scaling expon@ris

To understand the scaling behavior, in Fig. 1, we plot thejramatic, whereas fok=2, B~1/2, ask—o, B—1. This
HubbardU potential with sizeR of the QD, for the n'umber latter result maybe understood in classical tern@ (
of electronsN=2,5, and 18 an&=2 (quasiharmonic con- _R_y |nterestingly for the quasitriangular confinement
finemenj. Hubbard U potential is the average electron- (k=1), the scaling exponent is 1/3. In the Appendix, we
ele_ctrpn interaction energy in a many-electron quantum dorattempt to explain why, scales as 1R for quasiharmonic
This figure reveals that scales as confinement and as R/for quasisquare confinement. We
note that with increasing), 8 increases. This is due to the
U~—, (2.1 fact that with increasing\, the effective potential becomes

RE more flat as the effective size of the quantum dot increases.
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TABLE I. The “Hubbard U” potential is found to scale as 06 . . . . . .

~1/RP. Similarly, the Coulomb and exchange-correlation energy  gss

scale as~1/R” and~ 1/R?, respectively. The exponeng vy, and I N

& depend on the shape of the potential, indexeéd [see Eq(1.5)]. i No

This table lists the values @8, y, andé for different values ok R N=8 ----

and forN=2, 5. Note that the exponents increase from 1/3 to 1 as2 o4 | N=2 --- |

k increases from 1 to 10. = k=10, N=5 —-

035 N=8 -7

N k B vy ) 03 T T
1 0.386 0.355 0.325 o
2 0.528 0.487 0.445 02 T T ]

2 4 0.721 0.660 0.601 o1s 5 3 , 5 p . !
8 0.862 0.784 0.710 R
10 0.894 0.812 0.735 FIG. 3. The ratio of exchange correlatiafn, . to the Coulomb
1 0.393 0.381 0.351 U, energy is plotted as a function of the quantum dot &er k
2 0.567 0.548 0.503 =2 and 10 and total number of electroNs-2, 5, and 8. The ratio

5 4 0.746 0.718 0.653 is nearly constant fok=2 and this is consistent with the figure. For
8 0.884 0.846 0.762 quasisquare confinemerk=10), however, there is noticeable in-
10 0.917 0.877 0.787 crease with dot siz&

correlation plays a key role in deciding the overall scaling of

I_n other wqrds because .Of the spatial extension of the effch with the shape of the confinement and size of the quantum
tive potential, electrons find more space to move and henc

Coulomb interaction becomes weaker. With these results we

see that the Hubband potential actually depends on a num- .. : . : .
ber of variables, namely, the shape of the confinement, thaize is large. The correlation energy is relatively more sensi-

number of electrons, and also on size of the quantum dot. WEVE 1O the size and shape of the potential. What is shown in

find the following relationship between the expongnand Fig. 3 is the ratio of absolute value of exchange correlation
and the confining parametér energy to the Coulomb energy with the size of the QD. One

can extract the following facts: For larde (density, the
B(k)=0.921—-0.78 exjp—0.2'Kk]). (2.3 Coulomb interaction dominates and hence the rafig|/U
is small. It becomes large for a small number of electrons
In Table I, we also display the exponentsand § for the  and varies over a wide range; thus showing that the exchange
Coulomb and exchange correlation. This establishes scalingorrelation becomes more pronounced. We also find that the
laws for U, andU,.. Further, we also investigate how the exchange correlation is large for largeThe simplest reason
HubbardU potential depends on the number of electrons. Weyne might think of is that as the shape becomes quasisquare
know that classically there should not be adylependence \yg|| the spatial extension of the potential is more and hence
in U. However, we do find a weak-dependence. Assuming glectrons find more space to move. This attenuates the Cou-
that the exponeng in the scaling olJ has aN dependence, |,mp interaction as the density becomes small. In other
so that words, correlation effects are largest in the low-density limit.
B(N)~N” (2.4) As the system size becomes larder the electron density
spreads out mojea more accurate analysis would require
then the use of asymptotically correct exchange-correlation poten-
tial in place of LSDA. The latter is not accurate in the outer
Ing~7nInN. (2.5 regions of a system.
A logarithmic plot of 8 as a function oN gives the value of The above results make it clear that correlation plays the
7 between 0.05 and 0.08 which is very small. This result ha&®€y role in deciding the scaling of. To emphasize this
a phenomenological implication. In experiments on nearlyP0int, we compare the two distinct methodologies, namely,
spherical quantum dots, one may now safely assume thi#€ LDA/LSDA and the HS schemes for the rafid,|/U
U—the difference in the electron affinity and the ionization (LDA/LSDA) and|U,|/U. (HS) with sizeR. We find that in
potential, is essentially unchanged with the shell filing. ~ case of HS, the ratio is constant, in particular, it is 0.5 for
Now we come to the next important point, what is the roleN=2. The exchange correlation is always larger for a given
of exchange correlation in deciding the overall scalingy@ N, R, andk in case of LDA/LSDA than the near exact ex-
We have checked the scaling 0f. andU, with size of the change in case of HS. We have also checked the behavior of
quantum dot fork=2 (harmonic confinemeptand for N exchange-only LDA which is also known as Dirac exchange-
=2, 5, 18 within the HS scheme. We find that both Coulombonly LDA and it turns out to be smaller for a givéh R, and
and exchange interaction scale as in LDA/LSDA with thek in LDA than in HS. This is because in HS scheme, the
exponents almost the same in both cases. This shows that tegchange energy is calculated exactly. Interestingly, the ratio

The exchange correlation becomes important when the
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0.16

k=10, the correlation to exchange ratio fdr=>5 is smaller

0.14 - E;i ------ k=2 I than that forN=8. We also worked out the relative differ-
N=8 ---— T i ence in exchange-correlation energy calculated using the
err N=2zme T 7 LDA and LSDA as a function of the number of electrons.
—y E:: - This we show in the inset of Fig. 5. The striking feature is
l%o.os e the increase of the relative difference where there are un-

paired electrons in the dot. That is, when the shell is half
filled, for the number of electrond=5, 13, 19, 27, and for
quasiharmonic confinement. The relative difference de-
creases from a maximum of 5% fdt=5 to 1% for N
=27 as a function ofN. Interestingly, for quasisquare con-
0 L L L L L ' finement, the relative difference is also found\at 1 and is

R as large as 25%, whereas for quasiharmonic confinement, it
is almost zero. For those valuesibther than the half-filled
shell, the relative difference is less than 1%. This we believe
—2 and 10 and total number of electrohs=2, 5, and 8. The maybe. due to the nume.ricallinaccuracy. This shows that the
correlation is more effective for few-electron quantum dots. It in- LSDA s a better apprOX|maF|0n to the many-body ex'change
creases with botlR andk. energy than the LDA, particularly when the shell is half
filled, giving rise to nonzero total-spin angular momentum.
We close the discussion with the statement that the exchange
correlation does play an important role in deciding the scal-
ing of the HubbardJ potential. However, it does not play a
dramatic role and leads to negativgé as predicted by
Katayama-Yoshida and Zunger in 1985t would perhaps

FIG. 4. The ratio of correlation energy.,, to the Coulomb
energyU. is plotted as a function of the quantum dot siéor k

|U,|/U. in both HS and LDA does not change with size and
remains constant for all value df For largeN, it goes down
as well.

To see further how important a role correlation plays, in
F'g' 4, we plot _thg ratidUcor|/U¢ agam;t the siz&k We be interesting to examine many-body effects for an impurity
find that the ratio is always large for a givéhand for large in a quantum dot.

k. This means that for a fixed density of electrons, as we
increasek, we effectively decrease the density. This makes
the correlation more pronounced. As the dot size increases,
the correlation becomes significantly important. We may un-
derstand this by looking at the scalingwf andU, . for both We reiterate that as the system size becomes léogehe

k=2 and 10(see Table)l The Coulomb part decreases at aelectron density spreads out mpra more accurate analysis
faster rate as compared to the correlation, effectively makingvould require the use of asymptotically correct exchange-
the ratio large for largek. This is because fok=2, the correlation potential in place of LSDA. The latter is not ac-
electronic charge density is confined towards the center ofurate in the outer regions of a system. Shell filling effects
the QD, whereas fok=10 it is more spread out towards the which indicate the possibility of a Jahn-Teller—like effect in
surface. quantum dots have been observed. These will be examined

Finally, in Fig. 5, we plot the ratidJ ., /U, against the further. The scaling otJ, U, andU,. strongly depends on
sizeR. Once again we find that the ratio is large for a giventhe shape of the confining potential. Exchange correlation
N and for largek and varies over a wide range. In this casedoes play an important role in the scaling of Hubbard U
also as the dot size increases, the correlation becomes maetential but it does not show any anomalous behavior as to
pronounced. It is interesting to note that fd=5, the ex- outweigh the Coulomb interaction and make the ovelAll
change energy dominates more and hence for ket and  negative. In particular, correlation is more sensitive to the

Ill. CONCLUSION

0.35

FIG. 5. The ratio of correlation to the ex-
change energy is plotted as a function of the
quantum dot sizeR for k=2 and 10 and total
number of electrondl=2, 5, and 8. The correla-
tion energy is more pronounced for a small num-

03

on.zs ber of electrons in a quantum dot. It increases
Tk with both R and k. Interestingly, forN=5, the
= 0 exchange energy dominates more and hence for

bothk=2 andk=10, the correlation to exchange
ratio for N=5 is smaller than that fok=8. The
inset shows the percentage difference in the
exchange energy calculated using the LDA and
LSDA, ie., [(Uxdispa—(Uxd)Loal X 100/

(ch)LSDA-

015

0.1

075315-4



SCALING OF COULOMB AND EXCHANGE-CORRELATION . .. PHYSICAL REVIEW B57, 075315 (2003

3/2
F2de=r2dr, (A7)

guantum dot size and the shape of the confinement. It has
long been understood that electron correlation is of critical

importance in atoms, molecules, and solids and it should also
be so in quantum dots. This stands justified through our cal-
culations. 1(m*w)3( 1

m* w

Ue=>

2

3
p ) (m* w)1/2

m* w
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1 [ fmrvg|?
APPENDIX UC=—( °l T, (A9)
. . 23 R?
One can understand the scaling behavior of the Coulomb
term U, on the basis of following simple argument. This that is,
argument resembles first-order perturbation-theory analysis.
Harmonic confinement(k=2). In the first-order U Ni (AL0)
perturbation-theory sense, the Kohn-Sham orbital maybe ¢ JR’
taken to be a harmonic-oscillator type. The ground-state
wave function and density are given by wherel is the value of the integral and is a constant, given
m* w 3/4 . by
l//(r):( e mer /2, (Al) 2 © (7 (27
m F=fe*552dgdnf f f
0o Jo Jo
(") (m w)alze_m*"”z (A2) o202
P . e ¢ '“d{’'sing’'de'do (A1D)

X .
2 12 __ ’ \1/2
Now from the relation ({74 "7 —2{{"cost")
Square-well confinemeiik=10). Once again, in a first-
2r2= — order perturbation-theory approximation, the Kohn-Sham or-
R? bitals are square-well-type wave function. The ground-state
wave function and density are given as

- 2Vo (A3) Asink;,r
"N rre y=——" (A12)

N| -
3

A

S

kinr !
The electron-electron interaction energy is given by
|A|2sirPki,r (AL3)
rp(r’ =
ot [ M e
where
1/m*w e m wrze—m wr'?
2( ) f f E r2drdQr'?dr'dQ’, az Kin [5( _sin(2ka)) . 1—008(2ka)}”2
r A5) Jaz|2 2kioR Koyt '
(A14)
whered() =sin#dfd¢. We now make substitutions and in-
troduce new dimensionless variablgsind ¢’ in place ofr kin=V2M*E,  kou=V2m*(Vo—E). (Al5)
andr’ such that . . .
Now from the definition of electron-electron interaction en-
P=m* wr?, (A6)  ergy[Eg. (A4)],

IAI“” Si?(kinD)SiP(Kin ) 2 o, IAI“” SirP(kinl ) Sin(Kipr /) r?drdQr"2dr’sin6'd¢’d¢’
(

(Kint)2(kinr )2 —r" | KinF)2(Kinr)2(r2+r'2—2rr'cosg’)?
(A16)
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whered(Q) =sindéd¢$. Now we introduce new dimension-

. T * 1¢
less variableg and ¢’ such that Uc:|A|4—587Tf sirfédé EJ’ Sinté’ dé’
; 0
|
Knl=&  Kinr'=¢. (A17) +f“ sin’¢ dg’]
¢ &
Thus, 82| Al*
= =—C, (A19)
Kk
n
|A|4 sirt¢ dédQsirPe’ dé'sing’ do’dg’ whereC is a constant and is the value of the integral. Now
U= z f f from Eqgs.(A14), (A15), and(A19), we have
2 k (§2+ §/2_2§§/COSG/)1/2
4y U C R sin2y2m*E R)
A = — -
| 2' snzgdgdﬂf SIPE de’1(€), (A18) ¢ 2\2m*E| 2 2Vy2m*ER

In

, (1-cos 22m*ER)| ?
4\2m* (Vo—E)

AssumingE~ 1/R? and alsoVy>E, one can write

(A20)

where the angle integral

C,R

’ UC: ’
m sing’de’ ) ¢ [CoR+C3/\V,]?
|(§)=f

2 12 ; 1 whereC,, C,, andCjy are constants. Fov large enough,
0 (§°+&'°—2¢¢'cost’) (E) oE<g. the last term in the denominator of the above equation can be
&' neglected. Therefore,

(A21)

—
| N

1
Hence, the electron-electron interaction energy becomes Ue R’ (A22)
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