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We extend the real-space renormalization gréR@) approach to the study of the energy level statistics at
the integer quantum HalQH) transition. Previously it was demonstrated that the RG approach reproduces the
critical distribution of thepowertransmission coefficients, i.e., two-terminal conductanBgé), with very
high accuracy. The RG flow dP(G) at energies away from the transition yielded the value of the critical
exponenty, that agreed with most accurate large-size lattice simulations. To obtain the information about the
level statistics from the RG approach, we analyze the evolution of the distributiphasesof the amplitude
transmission coefficient upon a step of the RG transformation. From the fixed point of this transformation we
extract the critical level spacing distributighSD). This distribution is close, but distinctively different from
the earlier large-scale simulations. We find that away from the transition the LSD crosses over toward the
Poisson distribution. Studying the change of the LSD around the QH transition, we check that it indeed obeys
scaling behavior. This enables us to use the alternative approach to extracting the critical exponent, based on
the LSD, and to findv=2.37+£0.02 very close to the value established in the literature. This provides addi-
tional evidence for the surprising fact that a small RG unit, containing only five nodes, accurately captures
most of the correlations responsible for the localization-delocalization transition.
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I. INTRODUCTION soning of Ref. 1 applies. Numerical studies have established
a Poissonian tail of the LS. It was also demonstrat&t
It was realized long ago that, alongside the change in théhat the procedure for extracting the localization length ex-
behavior of the eigenfunctions, a localization-delocalizationponent from the finite-size corrections yields a value close to
transition manifests itself in the statistics of the energy lev-yr=2.35 found from large-size simulations of the wave
els. In particular, as the energy is swept across the mobilitjunctions?*~2’
edge, the shape of the level spacing distributi$D) Recently, a semianalytical description of the integer quan-
crosses over from the Wigner-Dyson distribution, corre-tum Hall transition, based on the extension of the scaling
sponding to the appropriate universality class, to the Poissoideas for the classical percolatfénto the Chalker-
distribution. Coddington(CC) model of the quantum percolatiéhwas
Moreover, finite-size corrections to the critical LSD ex- deve|ope(f_0r3lThe key idea of this description, a rea|_space_
actly at the mobility edge allow one to determine the value ofrenormalization group approa¢RG), is the following. Each
the correlation length exponehtthus avoiding an actual RrG step corresponds to a doubling of the system size. The
analysis of the spatial extent of the wave functions. For this transformation relates the conductadisribution of the
reason, the energy level statistics constitutes an alternative 10, at the next step to the conductance distribution at the
the MacKinnon-Kramér® and_transmission-matiX ap- previous step. Théixed pointof this transformation yields

proaches to the numerical study of localization, . . the distribution of the conductance (G) of a macroscopic
Another reason why a large number of numerical simula-

tions of the LSD at the transitiofr 2> were carried out during sample at the quantum Hall transition. Thisiversaldistri-

the past decade is the controversy that existed over the IarggEJtlon describes the mesoscopic properties of a fully cqher—
spacing tail of the critcal LSD. A conclusive ent qua_ntufr}n Hall samp_le. Analogously to the classical
demonstratiol? 32! that this tail is Poissonian, i.e., that Percolatiori® the correlation length exponent was ex-
there is no repulsion between the levels with spacings mucHacted from the RG procedtfeusing the fact that a slight
implying that repulsion is partially preserved, required a veryP«(G), drives the system to the insulator upon renormaliza-
high accuracy of the simulatiot$?* The bulk of numerical tion. Then the rate of the shift of the distribution maximum
work on the level statistics at the transition was carried outletermines the value of. Remarkably, bottP(G) and the

for three-dimensional systefiid” for which there exists a critical exponent obtained within the RG appro¥cfi*agree
mobility edge separating localized and extended states. Imery well with the “exact” results of the large-scale
two dimensions all the states are localized in the absence simulations?>27-35-37

a magnetic field. In the presence of a magnetic field, The goal of the present paper is twofold. First, we extend
localization-delocalization transitions in two dimensionsthe RG approach to the level statistics at the transition in
(quantum Hall transitionsare infinitely sharp. Still the rea- order to subject its validity to yet another test. Second, we
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apply the method analogous to the finite-size-corrections
analysis to extract from the LSD obtained within the RG
approach. This method yields=2.37+0.02, which is even
closer to the most precise large-scale simulations result
=2.35+0.03 (Ref. 25 than the valuer=2.39+0.01 in-
ferred from the conductance distributidfiThe latter result is
by no means trivial. Indeed, the original RG transformatfon
related the conductances, i.e., thbsolute valuesof the
transmission coefficients of the original and the doubled
samples, while theohasesof the transmission coefficients
were assumed random and uncorrelated. In contrast, the level
statistics at the transition corresponds to the fixed point in the
distribution of these phases. Therefore, the success O,f thg RG FIG. 1. Chalker-Coddington network on a square lattice consist-
approach for conductances does not guarantee that it will bgg of nodeg(circles and links(arrows. The RG unit used for Eq.
equally accuratguantitativelyfor the level statistics. (1) combines five node&ull circles) by neglecting some connec-
Within both RG transformations, for the magnitudes andtivity (dashed circles ®4, ..., ®, are the phases acquired by an
for the phases of the transmission coefficients, an initial deelectron along the loops as indicated by the arroWs, ... W,
viation from the critical distribution drives the system to- represent wave function amplitudes, and the thin dashed lines illus-
wards an insulator with zero transmission and Poissoniaf{3t® t_he boundary conditions used for the computation of level
LSD. Thus the procedures of the extractionzofrom both statistics.
transformations are technically different, but conceptually Il. MODEL AND RG METHOD FOR THE LSD
similar. In fact, the shape of the critical LSD, obtained from

fzreg:ia?ep2ir;ﬁ:t'ioih?&iﬂéﬁ}eﬁ?g?&ﬁicﬂe;zgo;z Eg?y the A de;ailed o_Iescription of the _RG approach to the conduc-
i : _ tance distribution can be found in Refs. 30—32. It is based on
of LSD very close to the Gaussian unitary random matrixihe RG unit shown in Fig. 1. The unit is a fragment of the CC
ensemble(GUE).* However, the RG flow of the LSD to- network consisting of five nodes. Each nddis character-
ward the insulator appears to be robust. ized by the transmission coefficient which is an amplitude
The paper is organized as follows. First, in Sec. Il weto deflect an incoming electron along the link to the left.
review the real-space RG approdfi2and adjust it to the Analogously, the reflection coefficiem=(1—t7)"? is the
computation of the energy levels and the LSD. In Sec. I1l wedmplitude to deflect the incoming electron to the right. Dou-
present our numerical results for the LSD. The finite-size?!iN9 Of the sample size corresponds to the replacement of

: . . the RG unit by a single node. The RG transformation ex-
scaling (FSS analysis of the obtained LSD at the quantumpresses the transmission coefficient of this effective ndde,

Hall (QH) transition is reported in Sec. IV. Concluding re- through the transmission coefficients of the five constituting
marks are presented in Sec. V. nodes®

A. RG approach to the conductance distribution

| tats(roraree! 2= 1) +tote! (Pt PI(r rorse T P1— 1) + ty(totse' T3+ tyt,e' )

(3= 1ol 48 %2)(r3—rrge' 1)+ (t3—ttse'4) (13— ty1,€'3)

t/

‘ . (1)

Here ®; are the phases accumulated along the closed loogsansmission coefficieif= G, which has the meaning of the
(see Fig. 1L Within the RG approach to the conductancetwo-terminal conductance, is symmetric with respecto
distribution, information about electron energy is incorpo-=3. In other words, the RG transformation respects the du-
rated only into the values df. The energy dependence of ality between transmission and reflection. The critical distri-
phases®;, is irrelevant; they are assumed to be completelybution P(G) found in Refs. 30 and 32 agrees very well with
random. Due to this randomness, the transmission coeffihe results of direct large-scale simulations.

cients,t;, for a given energy, are also randomly distributed

with a distribution functionP(t). Then transformatior{l)

allows, upon averaging oveb;, to generate the next-step B. RG approach to the LSD

distribution P(t"). Therefore, within the RG scheme, a de-  Universal features of the energy level statistics in a mac-
localized state corresponds to the fixed poR(t), of the  roscopic fully coherent sample at the quantum Hall transition
RG transformation. Due to the symmetry of the RG unit, it iscomplement the universality in the conductance distribution.
obvious that the critical distributiorP(t?) of the power The prime characteristics of the level statistics is the LSD—
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the distribution of the spacings between neighboring energgients is negligibly small. A closed RG unit in Fig. 1 contains
levels. In order to adjust the RG approach to the calculatiorten links, and, thus, it is described by ten amplitudes. These
of the LSD, it is necessary to “close” the sample at each RGamplitudes are related by ten equati@twso at each node
step in order to discretize the energy levels. One of the posEach link is characterized by an individual phase. On the
sible variants of such a closing is shown in Fig. 1 with other hand, it is obvious that the energy levels are deter-
dashed lines. mined only by the phases along the loops. One possible way
For a given closed RG unit with a fixed settpfvalues at  to derive the system, in which individual phases combine
the nodes, the positions of the energy levels are determinddto ®; is to exclude from the original system of ten equa-
by the energy dependences(E) of the four phases along tions all amplitudes except the “boundary” amplitudds
the loops. These phases change-by within a very narrow  (see Fig. 1 This procedure is similar to the derivation of Eq.
energy interval, inversely proportional to the sample size(1). The system of equations for the remaining four ampli-
Within this interval the change of the transmission coeffi-tudes takes the form

(rira—titoty)e 1 (tirp+tptgry)e ' totsrge ' torarse 1 v, v,
—tyrar e 2 rorgrse %2 —(tars+tstsr)e P2 (tuts—tarars)e @2 v, Rz
~tytyrge 04 tarorae” %4 (rars—tatats)e P4 —(tgra+tatyrs)e” ' V3 =e Vs |

—(tary+tatgro)e '™ —(titp—tararp)e s tsr orge '3 rorarse s v, Wy

)

where the parametas should be set zero. Then the energy ~ With ®;(E) given by Eq.(3) and fixed values of;, the
levels,E, of the closed RG unit are the energies for which, statistics of energy levels determined by the matrix equation
with phasesb;(E)=®;(Ey), one of the four eigenvalues of (2) is obtained by averaging over the random initial phases
the matrix in the left-hand side of E(R) is equal to 1. If we  ®,;. In particular, each realization d#; yields three level
keep w in the right-hand side of Eq(2), then the above spacings which are then used to construct a smooth LSD. We
condition can be reformulated agE,) =0. Thus the calcu- now outline the RG procedure for the LSD. The slopg#
lation of the energy levels reduces to a diagonalization of thé&qg. (3) determine the level spacings at the first step. They are
4X 4 matrix. randomly distributed with a distribution functid®y(s). Di-

The crucial step now is the choice of the dependenceagonalization of the matrix in Eq2) with subsequent aver-
®;(E). If each loop in Fig. 1 is viewed as a closed equipo-aging over realizations yields the LSB,(s), at the second
tential as it is the case for the first step of the RGstep. Then the key element of the RG procedure, as applied
proceduré® then ®(E) is a true magnetic phase, which to the level statistics, is using,(s) as adistribution of
changes linearly with energy with a slope governed by theslopesin Eq. (3). This leads to the next-step LSD, and so on.
actual potential profile, which, in turn, determines the drift It is instructive to compare our procedure of calculating
velocity. Thus we have the energy levels with an approach adopted in large-scale

simulations within the CC modéf:**This approach is based
E on the unitary network operatdy.*® For a single RG unit
D (E)=dg;+2m—, (3)  this operator acts analogously to the matrix in the left-hand
' Sj side of Eq.(2). However, within the approach of Refs. 14
and 39, the energy dependence of phaBes the elements
where a random par®,; is uniformly distributed within  of the matrix was neglecte@nly the random contributions
[0,27r], and 27/s; is a random slope. Strictly speaking, the ®,; were kep}. Then, instead of the energy levels,, di-
dependencgEq. (3)] applies only for the first RG step. At agonalization of the matrikEq. (2)] yielded a set of eigen-
each following steppn>1, ®;(E) is a complicated function values, exp,). The numbersw, were namedjuasiener-
of E which carries information about all energy scales atgies and it is the statistics of these quasienergies that was
previous steps. However, in the spirit of the RG approachstudied in Ref. 39. A comparison of the two procedures for a
we assume tha®;(E) can still be linearized within a rel- single RG unit is illustrated in Fig. 2. Figure 2 shows the
evant energy interval. The conventional RG approach sugdependence of the four quasienergigs on the energyE
gests that different scales in theal space can be decoupled. calculated for two single sample RG units, withchosen
Linearization of Eq.(3) implies a similar decoupling in the from the critical distributionP (t). The energy dependence
energyspace. In the case of phases, a “justification” of suchof the phases; was chosen from LSD of the GUE accord-
a decoupling is that at each following RG step, the relevaning to Eqg.(3). It is seen that the dependence$éE) range
energy scale, that is the mean level spacing, reduces by feom remarkably linear and almost parallgfig. 2(a)] to
factor of 4. strongly nonlineafFig. 2(b)].
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®. . . ensemble.

Y N N ] Although P(s) exhibits the expected features, namely,
P e @, N level repulsion for smallk and a long tail at larges, the
3L TN N ‘ overall shape oP(s) differs noticeably from the GUE. In
0 0.1 0.2 the previous large-size lattice simulatioh®’ the obtained

E critical LSD was much closer to the GUE th&x(s) in Fig.

FIG. 2. Energy dependence of the quasieigenenergifes two 3. This fact, however, does not reflect on the accuracy of the
sample configurations. Instead of using the quasispectrum obtaindd® @pproach. Indeed, as demonstrated recently, the critical
from w,(E=0)(O) we calculate the real eigenenergies according toLSD—although  being system size independent—
(E,)=0(0). Different line styles distinguish different,(E). we ~ Nevertheless depends on the geometry of thei_)saf‘ﬁlﬂiesl
emphasize that the observed behavior varies from sample to sampgh the specific choice of boundary conditidig> The sen-

between remarkably lineds) and strongly nonlineab). sitivity to the boundary conditions does not affect the asymp-

totics of the critical distribution, but rather manifests itself in

the shape of the “body” of the LSD. Recall now that the

boundary conditions which we have imposed to calculate the

A. LSD at the QH transition energy levelgdashed lines in Fig.)lare nonperiodic

As a first step of the RG procedure for the calculation of There IS anot_her posslbl_llty fo assess the _cr|t|cal_ LSD,
namely, by iterating the distribution ofuasienergiesin Fig.

the crl_tlcal LSD we chose foPy(s) _the d|str|but|on_ COITE" 3 \we show the result of this procedure. It appears that the
sponding to the GUE random matrix ensemble, since previ-

ous simulation®®indicated that the LSD at the transition is |c>U/inNg distr:ibﬁltion s almclns"dentical t? iC(S)'fThis ob-
. . servation is highly nontrivial, since, as follows from Fig. 2,
close to the GUE. According t&(s), we picks; and set

L . -l . there is no simple relation between the energies and quasien-
(I?i’ 1=1 L 4 as in Eq(3). For the tran§m|s§|orj cqefﬁ- ergies. Moreover, if instead of the line&r dependence of
cientst;, i=1,...,5 we use thdixed-point distribution @, we choose another functional form. sa
P (t),*! obtained previously? I S8y,

From the solutions of Eq(2) corresponding taw;(E,) e
=0 a new LSDP,(s’) is constructed using the “unfolded” _ B
energy level spacings;,=(En+1—En)/A, wherem=1,2, (I)](E)—CI>0J+2arcswEs. Zp), @
and 3,E,.1>E, and the mean spacind=(E,—E;)/3.
Due to the “unfolding™? with A, the average spacing is set where the integep insures thatE/s; —2p| <1, then, the RG
to one for each sample and in each RG iteration step werocedure would yield a LSD which is markedly different
superimpose spacing data 0ka20° RG units. The resulting  (within the “body”) from P(s). This is illustrated in Fig. 4.
LSD is discretized in bins with largest width 0.01. In the  Both procedures, using quasienergies instead of real ener-
following iteration step we repeat the procedure udhgas  gies(as in Ref. 39, and linearization of the energy depen-
initial distribution. We assume that the iteration process haslence of phasdss in Eq.(3)] are not rigorous. Linearization
converged when the mean-square deviation of distributiotis dictated by the RG concept. The coincidence of the results
P.(s) deviates by less than 10 from its predecessor of the two procedures indicates that the concept of quasien-

III. NUMERICAL RESULTS

|
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FIG. 6. The larges tail of P (s) compared with fits according to
. the predictions of Ref. Xlines). For clarity errors are shown in
gnergy dependence of the phaéqs The form ofP (s) is clearly upper direction and fos/A=1.5,2.0,2.5, and 3.0 only. Fa&/A
influenced by the actual choice df;(E). Hence the bulk of the ~2.4 onlv every fifth data point is drawn by a svmbol
distribution is nonuniversal. The inset illustrates examples of the " y Y P yasy '

two different functionsd;(E) as in Eqs(3) and(4).

FIG. 4. Critical distributionsP(s) for a linear and an arcsin

. . The right form of the larges tail of P(s) is Poissonian,
ergies, namely, that they obey the same statistics as real eB'(s)ocexp(—bs) 1 Eor the Anderson model in three dimen-
ergies, is equivalent to the RG. ¢ )

sions, unambiguous confirmation of this prediction in nu-
merical simulations became possible only when very high
B. Small and large s behavior numerical accuracy had been achieve® This is because

As mentioned above, the general shape of the critical LSy <(S) @ssumes the Poissonian asymptotics only at large
is not universal. However, the smail behavior of P(s) enoughs=3A. For the quantum Hall transition, a linear be-

must be the same as for the unitary random matrix ensembl8aVior of InP(s) with a slope corresponding to the value
namely P(s)=s?. This is because delocalization at the _bw4.1 has been found in Ref. 19 from thg analysis of _the
quantum Hall transition implies the level repulsibff Ear-  interval 2<s/A<4. Our data, as shown in Fig. 6, has a high
lier large-scale simulations of the critical LSDRefs. —accuracy only fors/A=<2.5. For such ars, the distribution
11,12,14,17-22,38, and BSatisfied this general require- P.(s) does not yet reach its largetail. Thus, the value of
ment. The same holds also for our result, as can be seen Rframeteb extracted from this limited interval is somewhat
Fig. 5. The given error bars of our numerical data are stan@mPiguous. That is, we obtaln=5.442 fors/A €[1.5,2.9
dard deviations computed from a statistical average of 10§ndb=6.803 fors/Ae[2.0,2.3. _
fixed point distributions each obtained for different random Summarizing, the accuracy of the RG approach, applied
sets oft,’s and s within the RG unit. In general, within t© the level statistics, is insufficient to discern the only non-
the RG approach] the asymptotics oP(s) is most natural. trivial feature of the critical LSD, i.e., the universal Poisso-
This is because the levels are found from diagonalization ofian asymptotics. However, the scaling analysis of LSD

the 4x4 unitary matrix with absolute values of elements C/€@rly reveals the universal features of the quantum Hall
widely distributed between 0 and 1. transition as we demonstrate in Sec. IV.

IV. SCALING RESULTS FOR THE LSD
A. Finite-size scaling at the QH transition

The critical exponenty, of the quantum Hall transition
governs the divergence of the correlation lengthas a func-
tion of the arbitrary control parameteg, i.e.,

£(20)*|2o—2d ", (5

where z. is the critical value. The values aof calculated
using different numerical methods, e.g:=2.35+0.032°
2.4+0.2%" and 2.5- 0.5 (Ref. 29 agree with each other. The
RG approach for the conductance distribution also yields a
rather accurate value=2.39+0.0132 In Sec. Il we intro-
FIG. 5. Critical P,(s) for small s in agreement with the pre- duced a complimentary RG approach to the distribution of
dicteds? behavior. Due to the log-log plot errors are shown in thethe energy levels at the transition. It can be expected on
upper direction only. general grounds, that the LSD obtained from the RG ap-

s/A
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proach obeys scaling at small enougyr-z.. However, it is 14|
by now means obvious, whether the valuesvoéxtracted e 2= 40.1
from different variants of the RG approach are consistent. 12r -

In order to extractr from the LSD we employ the one- 1.0 k —-—- Poisson
parameter-scaling analysis. This analysis is based on the res- ‘\\
caling of a quantityx(N;{z})—depending ortexternal sys- g 08 T A
tem parameter$z;} and the system sizBl—onto a single 06 | )
curve by using a scaling functidin ou . |

“~. |
(N2 = ) ®) | NG
a(N{z})=f| ——=|. | WS T
&.({zi}) %5 05 1o 15 20 25

Since Eq(5), as indicated by ", holds only in the limit of

infinite system size, we now use the scaling assumption to FIG. 7. RG of the LSD used for the computation of The

extrapolate to N— o from the finite-size results of the com- dotted lines corresponds to the first nine RG iterations with an ini-

putations. Oncé and &, are known, the value of can be tial distributionP shifted to complete transmissiory& 0.1) while

then inferred. the long-dashed lines represent results for a shift toward complete

In the original formulation of the RG appro&@h’t was reflection (zo=—Q.1). Wit_hin the_ RQ procedure the LSD moves

demonstrated that there is a natural parametrization of th@way from the fixed point as indicated by the arrows. sk

transmission coefficients i.e., t=(e*+ 1)71/2_ For such a %1_.4_ the curve_s Cross a@ the same point—a feature we exploit when

parametrizationz can be identified with a dimensionless deriving a scaling quantity from the LSD.

electron energy. The quantum Hall transition occursz at

=0, which corresponds to the center of the Landau band. s o ) ) o

The universal conductance distribution at the transitionWith 1(8)=/oP(s")ds’. The integration limit is chosen as

PL(G), corresponds to the distributiorQ.(z)= P (e Sp=1.4 which approximates the common crossing goarit

+1)"1]/4 cosR(z2) of parameterz, which is symmetric @l LSD curves, as can be seen in Fig. 7.

with respect taz=0 and has a shape close to a Gaus¥an. _ThusP(so) is independent of the distan¢®,—z| to the

The RG procedure for the conductance distribution con€fitical point and the system siZ8. We note thatN is di-

verges and yield§ ,(z) only if the initial distribution is an  "ectly related to the RG stepby N=2". The double inte-

even function ofz. This suggests choosing as a control pa_'gratlon ina, is numerically advantageous since flluctuat|o.ns

rameter in EqQ(6), zo, the position of the maximum of the N P(s) are smoothed. We now apply the finite-size-scaling

functionQ(z). Then the meaning o is the electron energy aPProach from Eq(6):

measured from the center of the Landau band. The fact that

the quantum Hall transition is infinitely sharp implies that,

for any z,#0, the RG procedure drives the initial distribu- al,P(N,Zo):f<—§w(Zo)

tion Q(z—zy) toward an insulator, either with complete

transmission of the network nodé®r z,>0) or with com-  Since «, (N, z,) is analytical for finiteN, one can expand

plete reflection of the nodeg$or z,<0). the scaling functionf at the critical point. The first order
approximation yields

. 9

B. Scaling for ap and ¢ "

In principle, we are free to choose, for the finite-size @(N.Z9)~ a(N. ;) + 8|20~ 2N, (10
analysis, any characteristic quantity(N;zo) constructed \yherea is a dimensionless coefficient. For our calculation
from the LSD which has a systematic dependence on syste(f}e se a higher order expansion proposed by Slevin and
size N for z,#0 while being constant at the transiti@@  ohsyukis® In Ref. 50 the functiori was expanded twice, first,
=0. Because of the large number of possiblej, terms of the Chebyshev polynomials of ordér, and,
choices®*31%474%we restrict ourselves to two quantities secong. in Taylor series with terr,— 7| in the power0,
which are obtained by integration of the LSD and have alhjs procedure allows one to describe the deviations from
ready been successfully used in Refs. 8 and 49, namely, |inearity in |z,—z,| at the transition. In addition, in Ref. 50

the contributions from an irrelevant scaling variable which

[ leads to a shift of the transition for small system sizes were
ap— fo P(s)ds (") taken into account. In our case, in contrast to the Anderson

model of localization, the transition poigg=0 is known.
Therefore, we can neglect the influence of irrelevant vari-
ables. In order to obtain the functional form ffthe fitting
parameters, including, are evaluated by a nonlinear least-
o =£jsol(s)ds (8) square f?) minimization. In Fig. 8 we show the resulting fit
s ’ for ap and a, at the transition.
0J0 P I

and, second,
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FIG. 8. Behavior ofy, and ap at the QH transition as results of Log(E./N)
the RG of the LSD. Data are shown for RG iterations1, ...,9 FIG. 9. Finite-si i lting f et of
corresponding to effective system sizNs=2"=2, ...,512. Full - 9. Finite-size scaling curves resulting from jrefit of our

ta shown in Fig. 8. Different symbols correspond to different
effective system sized=2". The data points collapse onto a single
curve indicating the validity of the scaling approach.

lines indicate the functional dependence according to the FSS usi
the x2 minimization with©®,=2 and©®,=3.

The fits are chosen in such a way that the total number of ]
parameters is kept at a minimal value, while the fit agrees C. Test of consistency
well with the numerical datat The corresponding scaling Finally we address the question, how the actual form of
curves are displayed in Fig. 9. In the plots the two branchesghe distributionQ(z) affects the results for LSD and the
corresponding to complete reflectiony0) and complete scaling analysis. Recall that in the above calculations we
transmission £,>0) can be clearly distinguished. In order used, at each step of the RG procedure, the distrib Qi)
to estimate the error of fitting procedure we compare thelerived from the critical conductance distributidh(G).
results forv obtained by different order®, and O, of the  The functionP,(G) is shown in Fig. 1Q(insed with a full
expansion, system sizék and regions around the transition. line. In order to understand the importance of the fact that
A part of our over 100 fit results together with the standardP(G) is almost flat, we have repeated our calculations
deviation of the fit are given in Table I. The value ofis  choosing forP(G) a relatively narrow Gaussian distribution
calculated as the average of all individual fits where the reP(G)=Pg,,{G) at each RG step. This distribution is shown
sulting error ofy was smaller than 0.02. The error is then with a dashed line in Fig. 10insed. The obtained LSD is
determined as the standard deviation of the contributing valpresented in Fig. 10. Obviously, it agrees much worse with
ues. By this method we assure that our result is not influthe GUE, which can be considered as a reference point, than
enced by local minima of the nonlinear fit. So we considerthe LSD computed using the true(G). Our data fore,
v=2.37+0.02 as a reliable value for the exponent of thecalculated forP(G)=Pg,,{G) is plotted in Fig. 11.
localization length at the QH transition obtained from the RG  The curves for small system sizBisexhibit strong devia-
approach to LSD. This is in excellent agreement with tions, i.e., there is initially no common crossing point, while
=2.35+0.03 (Ref. 25, 2.4+0.2 (Ref. 27, 2.5+ 0.5 (Ref.  for largeN a behavior similar to Fig. 8 is observed. There-
29), and 2.3%0.01 (Ref. 32, calculated previously. In ad- fore, smallN data are neglected in the scaling analysis. The
dition to @p and «;, we tested also a parameter-free scalingy? fits for «, and ap are carried out usingz,
quantity [5s?P(s)ds,*’ where the whole distributioR(s) is e[ —0.05,0.03 and N=16-512. They yield the values,
taken into account. Here, due to the influence of the large=2.43+0.02 andvp=2.46+0.03, which are also less accu-
stail a less reliable value=2.33+0.05 was obtained. rate thanv calculated with the criticalP .(G). Overall, Figs.
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TABLE |. Part of fit results forv obtained fromea, and ap for 0.33
different system sizel, intervals around the transition, ordef, 02 vée4
and O, of the fitting procedure. o4 >128
°8 +256
N [Zomin+Zomad o, 0, v 216 =512
@p 0.32
2-512 [9.93,10.07 3 2 2.336-0.010 °
2—256 [9.93,10.07 2 3 2.412:0.013
4-512 [9.95,10.0% 3 1 2.325:0.014
2—-512 [9.95,10.0% 2 1 2.402:0.014 .
2—256 [9.95,10.0% 2 2 2.360-0.016 031 ¢ I o i
16—-512 [9.95,10.0% 2 3 2.385-0.018 . . . %o
2-128 [9.93,10.07 1 3 2.384-0.019 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
4-512 [9.93,10.07 2 1 2.4710.019 Z
i FIG. 11. Behavior ok, computed for initial distribution® .,
2-512 [9.93,10.07 2 2 2.383-0.010 different from the critical distributions, as shown in Fig. 10. Data
2_512 [9.93,10.07 2 3 2.388-0.010 are plotte_d for RG iterations=1, . . . ,9corresponding to effective
2_512 [9.93,10.07 3 1 2 346-0.012 system sizedl= ?”= 2,.. .,512.. Cuwe; for smath do r.10t cross at
8- 512 [9.93.,10.07 5 3 2 376-0.012 the common pomlzo=0. Full I|ne§ indicate _th_e _funptlona_l depen-
' dence according to the FSS using th& minimization with O,
2-512 [9.95,10.0% 2 3 2.368-0.014 =2 and0,=2.
2-128 [9.93,10.07 2 3 2.3770.016
16—512 [9.95,10.0% 2 1 2.367-0.016 the other hand, the two-channel network model with inter-
2—256 [9.93,10.07 3 3 2.372:0.018 channel mixing, that models spin-orbit interaction, exhibits a

localization-delocalization transitiGhthat is also in accord
with the scaling theory of localizatioh. However, the ver-

10 and 11 illustrate the consistency of the RG approaches fafion of the network model that has been most widely studied,
the conduction distribution and for the level statistics, in theis the chiral version, i.e., the CC moc?él,describing the
sense, that the best fixed point distribution of the level spacelectron motion in a disordered system in a strong magnetic
ings corresponds to the fixed point of the conductance distrifield limit. Within the CC model, the scattering matrix at the
bution. node is parametrized by a single number, e.g., the transmis-
sion coefficientt. On the qualitative level, the CC model
yields a transparent explanation why delocalization occurs
only at a single energy, for whictf=1/2. On the quantita-
Network models introduced in Ref. 52 turned out to be ative level, in addition to the exponent, more delicate char-
powerful tool to study the Anderson localization. Without a acteristics of the critical wave functions were extracted from
magnetic field, the propagation of electron waves along eacthe numerical analysis of the CC modép’
link of the network is allowed in both directions. In two The fact that the RG approach, within which the correla-
dimensions the transmission coefficient of the network isions between different scales are neglected, describes the
zero for all parameters of the scattering matrix at the nddles, results of the large-scale simulations of the CC model so
illustrating the complete localization of electronic states. Onaccurately, indicates that only a few spatial correlations
within each scale are responsible for the critical characteris-
tics of the quantum Hall transition. More precisely, the struc-
ture of the eigenstates of a macroscopic sample at the tran-
sition can be predicted from the analysis of a single RG unit
consisting of only five nodes. Earlier we have demonstrated
this fact for the conductance distributidhln the present
paper this statement is reinforced by the study of the level
statistics at the transition, which is a complimentéy the
conductance distributiorcharacteristics of the localization.

V. CONCLUSION
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