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Renormalization group approach to energy level statistics at the integer quantum Hall transition
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We extend the real-space renormalization group~RG! approach to the study of the energy level statistics at
the integer quantum Hall~QH! transition. Previously it was demonstrated that the RG approach reproduces the
critical distribution of thepower transmission coefficients, i.e., two-terminal conductances,Pc(G), with very
high accuracy. The RG flow ofP(G) at energies away from the transition yielded the value of the critical
exponent,n, that agreed with most accurate large-size lattice simulations. To obtain the information about the
level statistics from the RG approach, we analyze the evolution of the distribution ofphasesof the amplitude
transmission coefficient upon a step of the RG transformation. From the fixed point of this transformation we
extract the critical level spacing distribution~LSD!. This distribution is close, but distinctively different from
the earlier large-scale simulations. We find that away from the transition the LSD crosses over toward the
Poisson distribution. Studying the change of the LSD around the QH transition, we check that it indeed obeys
scaling behavior. This enables us to use the alternative approach to extracting the critical exponent, based on
the LSD, and to findn52.3760.02 very close to the value established in the literature. This provides addi-
tional evidence for the surprising fact that a small RG unit, containing only five nodes, accurately captures
most of the correlations responsible for the localization-delocalization transition.

DOI: 10.1103/PhysRevB.67.075307 PACS number~s!: 73.43.Nq, 64.60.Ak
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I. INTRODUCTION

It was realized long ago that, alongside the change in
behavior of the eigenfunctions, a localization-delocalizat
transition manifests itself in the statistics of the energy l
els. In particular, as the energy is swept across the mob
edge, the shape of the level spacing distribution~LSD!
crosses over from the Wigner-Dyson distribution, cor
sponding to the appropriate universality class, to the Pois
distribution.

Moreover, finite-size corrections to the critical LSD e
actly at the mobility edge allow one to determine the value
the correlation length exponent,1 thus avoiding an actua
analysis of the spatial extent of the wave functions. For t
reason, the energy level statistics constitutes an alternativ
the MacKinnon-Kramer2–5 and transmission-matrix6,7 ap-
proaches to the numerical study of localization.

Another reason why a large number of numerical simu
tions of the LSD at the transition8–22were carried out during
the past decade is the controversy that existed over the la
spacing tail of the critical LSD. A conclusive
demonstration12,13,21 that this tail is Poissonian, i.e., tha
there is no repulsion between the levels with spacings m
larger than the mean value,1 rather than super-Poissonian,23

implying that repulsion is partially preserved, required a ve
high accuracy of the simulations.13,21 The bulk of numerical
work on the level statistics at the transition was carried
for three-dimensional systems8–14 for which there exists a
mobility edge separating localized and extended states
two dimensions all the states are localized in the absenc
a magnetic field. In the presence of a magnetic fie
localization-delocalization transitions in two dimensio
~quantum Hall transitions! are infinitely sharp. Still the rea
0163-1829/2003/67~7!/075307~9!/$20.00 67 0753
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soning of Ref. 1 applies. Numerical studies have establis
a Poissonian tail of the LSD.19 It was also demonstrated19

that the procedure for extracting the localization length
ponent from the finite-size corrections yields a value close
n52.35 found from large-size simulations of the wa
functions.24–27

Recently, a semianalytical description of the integer qu
tum Hall transition, based on the extension of the scal
ideas for the classical percolation28 to the Chalker-
Coddington~CC! model of the quantum percolation,29 was
developed.30,31The key idea of this description, a real-spac
renormalization group approach~RG!, is the following. Each
RG step corresponds to a doubling of the system size.
RG transformation relates the conductancedistributionof the
sample at the next step to the conductance distribution a
previous step. Thefixed pointof this transformation yields
the distribution of the conductance,Pc(G) of a macroscopic
sample at the quantum Hall transition. Thisuniversaldistri-
bution describes the mesoscopic properties of a fully coh
ent quantum Hall sample. Analogously to the classi
percolation,28 the correlation length exponentn was ex-
tracted from the RG procedure32 using the fact that a sligh
shift of the initial distribution with respect to the fixed poin
Pc(G), drives the system to the insulator upon renormali
tion. Then the rate of the shift of the distribution maximu
determines the value ofn. Remarkably, bothPc(G) and the
critical exponent obtained within the RG approach32–34agree
very well with the ‘‘exact’’ results of the large-scal
simulations.25,27,35–37

The goal of the present paper is twofold. First, we exte
the RG approach to the level statistics at the transition
order to subject its validity to yet another test. Second,
©2003 The American Physical Society07-1
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apply the method analogous to the finite-size-correcti
analysis to extractn from the LSD obtained within the RG
approach. This method yieldsn52.3760.02, which is even
closer to the most precise large-scale simulations resun
52.3560.03 ~Ref. 25! than the valuen52.3960.01 in-
ferred from the conductance distribution.32 The latter result is
by no means trivial. Indeed, the original RG transformatio32

related the conductances, i.e., theabsolute valuesof the
transmission coefficients of the original and the doub
samples, while thephasesof the transmission coefficient
were assumed random and uncorrelated. In contrast, the
statistics at the transition corresponds to the fixed point in
distribution of these phases. Therefore, the success of the
approach for conductances does not guarantee that it wi
equally accuratequantitativelyfor the level statistics.

Within both RG transformations, for the magnitudes a
for the phases of the transmission coefficients, an initial
viation from the critical distribution drives the system t
wards an insulator with zero transmission and Poisson
LSD. Thus the procedures of the extraction ofn from both
transformations are technically different, but conceptua
similar. In fact, the shape of the critical LSD, obtained fro
the RG approach, shows systematic deviations from
large-scale simulation results17–22,38,39which yield the body
of LSD very close to the Gaussian unitary random ma
ensemble~GUE!.40 However, the RG flow of the LSD to
ward the insulator appears to be robust.

The paper is organized as follows. First, in Sec. II w
review the real-space RG approach30–32 and adjust it to the
computation of the energy levels and the LSD. In Sec. III
present our numerical results for the LSD. The finite-s
scaling~FSS! analysis of the obtained LSD at the quantu
Hall ~QH! transition is reported in Sec. IV. Concluding r
marks are presented in Sec. V.
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II. MODEL AND RG METHOD FOR THE LSD

A. RG approach to the conductance distribution

A detailed description of the RG approach to the cond
tance distribution can be found in Refs. 30–32. It is based
the RG unit shown in Fig. 1. The unit is a fragment of the C
network consisting of five nodes. Each nodei is character-
ized by the transmission coefficientt i , which is an amplitude
to deflect an incoming electron along the link to the le
Analogously, the reflection coefficientr i5(12t i

2)1/2 is the
amplitude to deflect the incoming electron to the right. Do
bling of the sample size corresponds to the replacemen
the RG unit by a single node. The RG transformation e
presses the transmission coefficient of this effective nodet8,
through the transmission coefficients of the five constitut
nodes:30

FIG. 1. Chalker-Coddington network on a square lattice cons
ing of nodes~circles! and links~arrows!. The RG unit used for Eq.
~1! combines five nodes~full circles! by neglecting some connec
tivity ~dashed circles!. F1 , . . . ,F4 are the phases acquired by a
electron along the loops as indicated by the arrows.C1 , . . . ,C4

represent wave function amplitudes, and the thin dashed lines i
trate the boundary conditions used for the computation of le
statistics.
t85U t1t5~r 2r 3r 4eiF221!1t2t4ei (F31F4)~r 1r 3r 5e2 iF121!1t3~ t2t5eiF31t1t4eiF4!

~r 32r 2r 4eiF2!~r 32r 1r 5eiF1!1~ t32t4t5eiF4!~ t32t1t2eiF3!
U . ~1!
e

du-
tri-
th

ac-
ion
on.
—

HereF j are the phases accumulated along the closed lo
~see Fig. 1!. Within the RG approach to the conductan
distribution, information about electron energy is incorp
rated only into the values oft i . The energy dependence o
phases,F j , is irrelevant; they are assumed to be complet
random. Due to this randomness, the transmission co
cients,t i , for a given energy, are also randomly distribut
with a distribution functionP(t). Then transformation~1!
allows, upon averaging overF j , to generate the next-ste
distribution P(t8). Therefore, within the RG scheme, a d
localized state corresponds to the fixed point,Pc(t), of the
RG transformation. Due to the symmetry of the RG unit, it
obvious that the critical distributionPc(t

2) of the power
ps

-

y
fi-

transmission coefficientt25G, which has the meaning of th
two-terminal conductance, is symmetric with respect tot2

5 1
2 . In other words, the RG transformation respects the

ality between transmission and reflection. The critical dis
butionPc(G) found in Refs. 30 and 32 agrees very well wi
the results of direct large-scale simulations.

B. RG approach to the LSD

Universal features of the energy level statistics in a m
roscopic fully coherent sample at the quantum Hall transit
complement the universality in the conductance distributi
The prime characteristics of the level statistics is the LSD
7-2
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the distribution of the spacings between neighboring ene
levels. In order to adjust the RG approach to the calcula
of the LSD, it is necessary to ‘‘close’’ the sample at each R
step in order to discretize the energy levels. One of the p
sible variants of such a closing is shown in Fig. 1 w
dashed lines.

For a given closed RG unit with a fixed set oft i-values at
the nodes, the positions of the energy levels are determ
by the energy dependencesF j (E) of the four phases along
the loops. These phases change by;p within a very narrow
energy interval, inversely proportional to the sample si
Within this interval the change of the transmission coe
gy
h
f

th

nc
o
G
h
th
rif

e
t

a
ch
-
u

d.

ch
an
by

07530
y
n

s-

ed

.
-

cients is negligibly small. A closed RG unit in Fig. 1 contai
ten links, and, thus, it is described by ten amplitudes. Th
amplitudes are related by ten equations~two at each node!.
Each link is characterized by an individual phase. On
other hand, it is obvious that the energy levels are de
mined only by the phases along the loops. One possible
to derive the system, in which individual phases comb
into F j is to exclude from the original system of ten equ
tions all amplitudes except the ‘‘boundary’’ amplitudesC j
~see Fig. 1!. This procedure is similar to the derivation of E
~1!. The system of equations for the remaining four amp
tudes takes the form
S ~r 1r 22t1t2t3!e2 iF1 ~ t1r 21t2t3r 1!e2 iF1 t2t5r 3e2 iF1 t2r 3r 5e2 iF1

2t1r 3r 4e2 iF2 r 1r 3r 4e2 iF2 2~ t4r 51t3t5r 4!e2 iF2 ~ t4t52t3r 4r 5!e2 iF2

2t1t4r 3e2 iF4 t4r 1r 3e2 iF4 ~r 4r 52t3t4t5!e2 iF4 2~ t5r 41t3t4r 5!e2 iF4

2~ t2r 11t1t3r 2!e2 iF3 2~ t1t22t3r 1r 2!e2 iF3 t5r 2r 3e2 iF3 r 2r 3r 5e2 iF3

D S C1

C2

C3

C4

D 5eivS C1

C2

C3

C4
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where the parameterv should be set zero. Then the ener
levels,Ek , of the closed RG unit are the energies for whic
with phasesF j (E)5F j (Ek), one of the four eigenvalues o
the matrix in the left-hand side of Eq.~2! is equal to 1. If we
keep v in the right-hand side of Eq.~2!, then the above
condition can be reformulated asv(Ek)50. Thus the calcu-
lation of the energy levels reduces to a diagonalization of
434 matrix.

The crucial step now is the choice of the depende
F j (E). If each loop in Fig. 1 is viewed as a closed equip
tential as it is the case for the first step of the R
procedure,29 then F j (E) is a true magnetic phase, whic
changes linearly with energy with a slope governed by
actual potential profile, which, in turn, determines the d
velocity. Thus we have

F j~E!5F0,j12p
E

sj
, ~3!

where a random partF0,j is uniformly distributed within
@0,2p#, and 2p/sj is a random slope. Strictly speaking, th
dependence@Eq. ~3!# applies only for the first RG step. A
each following step,n.1, F j (E) is a complicated function
of E which carries information about all energy scales
previous steps. However, in the spirit of the RG approa
we assume thatF j (E) can still be linearized within a rel
evant energy interval. The conventional RG approach s
gests that different scales in thereal space can be decouple
Linearization of Eq.~3! implies a similar decoupling in the
energyspace. In the case of phases, a ‘‘justification’’ of su
a decoupling is that at each following RG step, the relev
energy scale, that is the mean level spacing, reduces
factor of 4.
,

e

e
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e
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t
,
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t
a

With F j (E) given by Eq.~3! and fixed values oft i , the
statistics of energy levels determined by the matrix equa
~2! is obtained by averaging over the random initial pha
F0,j . In particular, each realization ofF0,j yields three level
spacings which are then used to construct a smooth LSD.
now outline the RG procedure for the LSD. The slopessj in
Eq. ~3! determine the level spacings at the first step. They
randomly distributed with a distribution functionP0(s). Di-
agonalization of the matrix in Eq.~2! with subsequent aver
aging over realizations yields the LSD,P1(s), at the second
step. Then the key element of the RG procedure, as app
to the level statistics, is usingP1(s) as a distribution of
slopesin Eq. ~3!. This leads to the next-step LSD, and so o

It is instructive to compare our procedure of calculati
the energy levels with an approach adopted in large-s
simulations within the CC model.14,39This approach is base
on the unitary network operatorU.39 For a single RG unit
this operator acts analogously to the matrix in the left-ha
side of Eq.~2!. However, within the approach of Refs. 1
and 39, the energy dependence of phasesF j in the elements
of the matrix was neglected~only the random contributions
F0,j were kept!. Then, instead of the energy levels,Ek , di-
agonalization of the matrix@Eq. ~2!# yielded a set of eigen-
values, exp(ivk). The numbersvk were namedquasiener-
gies, and it is the statistics of these quasienergies that
studied in Ref. 39. A comparison of the two procedures fo
single RG unit is illustrated in Fig. 2. Figure 2 shows t
dependence of the four quasienergiesvk on the energyE
calculated for two single sample RG units, witht i chosen
from the critical distributionP c(t). The energy dependenc
of the phasesF j was chosen from LSD of the GUE accord
ing to Eq. ~3!. It is seen that the dependencesv(E) range
from remarkably linear and almost parallel@Fig. 2~a!# to
strongly nonlinear@Fig. 2~b!#.
7-3
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III. NUMERICAL RESULTS

A. LSD at the QH transition

As a first step of the RG procedure for the calculation
the critical LSD we chose forP0(s) the distribution corre-
sponding to the GUE random matrix ensemble, since pr
ous simulations19,39indicated that the LSD at the transition
close to the GUE. According toP0(s), we pick sj and set
F j , j 51, . . . ,4 as in Eq.~3!. For the transmission coeffi
cients t i , i 51, . . . ,5 we use thefixed-point distribution
P c(t),

41 obtained previously.32

From the solutions of Eq.~2! corresponding tov j (Ek)
50 a new LSDP1(s8) is constructed using the ‘‘unfolded
energy level spacingssm8 5(Em112Em)/D, wherem51,2,
and 3, Em11.Em and the mean spacingD5(E42E1)/3.
Due to the ‘‘unfolding’’42 with D, the average spacing is s
to one for each sample and in each RG iteration step
superimpose spacing data of 23106 RG units. The resulting
LSD is discretized in bins with largest width 0.01. In th
following iteration step we repeat the procedure usingP1 as
initial distribution. We assume that the iteration process
converged when the mean-square deviation of distribu
Pn(s) deviates by less than 1024 from its predecesso

FIG. 2. Energy dependence of the quasieigenenergiesv for two
sample configurations. Instead of using the quasispectrum obta
from v l(E50)(s) we calculate the real eigenenergies according
v(Ek)50(h). Different line styles distinguish differentv l(E). We
emphasize that the observed behavior varies from sample to sa
between remarkably linear~a! and strongly nonlinear~b!.
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Pn21(s). The RG iteration process converges rather quic
after only 2-3 RG steps. The resulting LSD,Pc(s), is shown
in Fig. 3 together with an LSD for the unitary random matr
ensemble.

Although Pc(s) exhibits the expected features, name
level repulsion for smalls and a long tail at larges, the
overall shape ofPc(s) differs noticeably from the GUE. In
the previous large-size lattice simulations19,39 the obtained
critical LSD was much closer to the GUE thanPc(s) in Fig.
3. This fact, however, does not reflect on the accuracy of
RG approach. Indeed, as demonstrated recently, the cri
LSD—although being system size independen
nevertheless depends on the geometry of the samples43 and
on the specific choice of boundary conditions.44,45 The sen-
sitivity to the boundary conditions does not affect the asym
totics of the critical distribution, but rather manifests itself
the shape of the ‘‘body’’ of the LSD. Recall now that th
boundary conditions which we have imposed to calculate
energy levels~dashed lines in Fig. 1! arenonperiodic.

There is another possibility to assess the critical LS
namely, by iterating the distribution ofquasienergies. In Fig.
3 we show the result of this procedure. It appears that
resulting distribution is almostidentical to Pc(s). This ob-
servation is highly nontrivial, since, as follows from Fig.
there is no simple relation between the energies and quas
ergies. Moreover, if instead of the linearE dependence of
F j , we choose another functional form, say,

F j~E!5F0,j12arcsinS E

sj
22pD , ~4!

where the integerp insures thatuE/sj22pu<1, then, the RG
procedure would yield a LSD which is markedly differe
~within the ‘‘body’’ ! from Pc(s). This is illustrated in Fig. 4.

Both procedures, using quasienergies instead of real e
gies ~as in Ref. 39!, and linearization of the energy depe
dence of phases@as in Eq.~3!# are not rigorous. Linearization
is dictated by the RG concept. The coincidence of the res
of the two procedures indicates that the concept of quas

ed
o

ple

FIG. 3. Critical distributionsPc(s) obtained from the spectrum
of v l(E50) and from the RG approach using the real eigenen
gies Ek in comparison to the LSD for the GUE. As in all othe
graphsP(s) is shown in units of the mean level spacingD.
7-4
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ergies, namely, that they obey the same statistics as rea
ergies, is equivalent to the RG.

B. Small and larges behavior

As mentioned above, the general shape of the critical L
is not universal. However, the smalls behavior of Pc(s)
must be the same as for the unitary random matrix ensem
namely Pc(s)}s2. This is because delocalization at th
quantum Hall transition implies the level repulsion.1,46 Ear-
lier large-scale simulations of the critical LSD~Refs.
11,12,14,17–22,38, and 39! satisfied this general require
ment. The same holds also for our result, as can be see
Fig. 5. The given error bars of our numerical data are st
dard deviations computed from a statistical average of
fixed point distributions each obtained for different rando
sets oft i ’s and F j ’s within the RG unit. In general, within
the RG approach, thes2 asymptotics ofP(s) is most natural.
This is because the levels are found from diagonalization
the 434 unitary matrix with absolute values of elemen
widely distributed between 0 and 1.

FIG. 4. Critical distributionsPc(s) for a linear and an arcsin
energy dependence of the phasesF j . The form ofP c(s) is clearly
influenced by the actual choice ofF j (E). Hence the bulk of the
distribution is nonuniversal. The inset illustrates examples of
two different functionsF j (E) as in Eqs.~3! and ~4!.

FIG. 5. Critical Pc(s) for small s in agreement with the pre
dicteds2 behavior. Due to the log-log plot errors are shown in t
upper direction only.
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n-

D

le,

in
-
0

f

The right form of the large-s tail of P(s) is Poissonian,
Pc(s)}exp(2bs).1 For the Anderson model in three dimen
sions, unambiguous confirmation of this prediction in n
merical simulations became possible only when very h
numerical accuracy had been achieved.12,13 This is because
Pc(s) assumes the Poissonian asymptotics only at la
enoughs*3D. For the quantum Hall transition, a linear b
havior of lnPc(s) with a slope corresponding to the valu
b'4.1 has been found in Ref. 19 from the analysis of
interval 2,s/D,4. Our data, as shown in Fig. 6, has a hi
accuracy only fors/D&2.5. For such ans, the distribution
Pc(s) does not yet reach its large-s tail. Thus, the value of
parameterb extracted from this limited interval is somewh
ambiguous. That is, we obtainb55.442 fors/DP@1.5,2.0#
andb56.803 fors/DP@2.0,2.5#.

Summarizing, the accuracy of the RG approach, app
to the level statistics, is insufficient to discern the only no
trivial feature of the critical LSD, i.e., the universal Poiss
nian asymptotics. However, the scaling analysis of LS
clearly reveals the universal features of the quantum H
transition as we demonstrate in Sec. IV.

IV. SCALING RESULTS FOR THE LSD

A. Finite-size scaling at the QH transition

The critical exponent,n, of the quantum Hall transition
governs the divergence of the correlation lengthj` as a func-
tion of the arbitrary control parameterz0, i.e.,

j`~z0!}uz02zcu2n, ~5!

where zc is the critical value. The values ofn calculated
using different numerical methods, e.g.,n52.3560.03,25

2.460.2,27 and 2.560.5 ~Ref. 29! agree with each other. Th
RG approach for the conductance distribution also yield
rather accurate valuen52.3960.01.32 In Sec. II we intro-
duced a complimentary RG approach to the distribution
the energy levels at the transition. It can be expected
general grounds, that the LSD obtained from the RG

e

FIG. 6. The larges tail of Pc(s) compared with fits according to
the predictions of Ref. 1~lines!. For clarity errors are shown in
upper direction and fors/D51.5,2.0,2.5, and 3.0 only. Fors/D
,2.4, only every fifth data point is drawn by a symbol.
7-5
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proach obeys scaling at small enoughz02zc . However, it is
by now means obvious, whether the values ofn extracted
from different variants of the RG approach are consisten

In order to extractn from the LSD we employ the one
parameter-scaling analysis. This analysis is based on the
caling of a quantitya(N;$zi%)—depending on~external! sys-
tem parameters$zi% and the system sizeN—onto a single
curve by using a scaling functionf:

a~N;$zi%!5 f S N

j`~$zi%! D . ~6!

Since Eq.~5!, as indicated by ‘‘̀ ’’, holds only in the limit of
infinite system size, we now use the scaling assumption
extrapolatef to N→` from the finite-size results of the com
putations. Oncef and j` are known, the value ofn can be
then inferred.

In the original formulation of the RG approach30 it was
demonstrated that there is a natural parametrization of
transmission coefficientst, i.e., t5(ez11)21/2. For such a
parametrization,z can be identified with a dimensionles
electron energy. The quantum Hall transition occurs az
50, which corresponds to the center of the Landau ba
The universal conductance distribution at the transiti
Pc(G), corresponds to the distributionQc(z)5Pc@(ez

11)21#/4 cosh2(z/2) of parameterz, which is symmetric
with respect toz50 and has a shape close to a Gaussia32

The RG procedure for the conductance distribution c
verges and yieldsQ c(z) only if the initial distribution is an
even function ofz. This suggests choosing as a control p
rameter in Eq.~6!, z0, the position of the maximum of the
functionQ(z). Then the meaning ofz0 is the electron energy
measured from the center of the Landau band. The fact
the quantum Hall transition is infinitely sharp implies tha
for any z0Þ0, the RG procedure drives the initial distribu
tion Q(z2z0) toward an insulator, either with complet
transmission of the network nodes~for z0.0) or with com-
plete reflection of the nodes~for z0,0).

B. Scaling for aP and a I

In principle, we are free to choose, for the finite-si
analysis, any characteristic quantitya(N;z0) constructed
from the LSD which has a systematic dependence on sys
size N for z0Þ0 while being constant at the transitionz0
50. Because of the large number of possib
choices1,8,13,19,47,48we restrict ourselves to two quantitie
which are obtained by integration of the LSD and have
ready been successfully used in Refs. 8 and 49, namely

aP5E
0

s0
P~s!ds ~7!

and, second,

a I5
1

s0
E

0

s0
I ~s!ds, ~8!
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with I (s)5*0
sP(s8)ds8. The integration limit is chosen a

s051.4 which approximates the common crossing point8 of
all LSD curves, as can be seen in Fig. 7.

ThusP(s0) is independent of the distanceuz02zcu to the
critical point and the system sizeN. We note thatN is di-
rectly related to the RG stepn by N52n. The double inte-
gration ina I is numerically advantageous since fluctuatio
in P(s) are smoothed. We now apply the finite-size-scali
approach from Eq.~6!:

a I,P~N,z0!5 f S N

j`~z0! D . ~9!

Sincea I,P(N,z0) is analytical for finiteN, one can expand
the scaling functionf at the critical point. The first orde
approximation yields

a~N,z0!'a~N,zc!1auz02zcuN1/n, ~10!

wherea is a dimensionless coefficient. For our calculati
we use a higher order expansion proposed by Slevin
Ohtsuki.50 In Ref. 50 the functionf was expanded twice, first
in terms of the Chebyshev polynomials of orderOn and,
second, in Taylor series with termsuz02zcu in the powerOz .
This procedure allows one to describe the deviations fr
linearity in uz02zcu at the transition. In addition, in Ref. 50
the contributions from an irrelevant scaling variable whi
leads to a shift of the transition for small system sizes w
taken into account. In our case, in contrast to the Ander
model of localization, the transition pointz050 is known.

Therefore, we can neglect the influence of irrelevant va
ables. In order to obtain the functional form off, the fitting
parameters, includingn, are evaluated by a nonlinear leas
square (x2) minimization. In Fig. 8 we show the resulting fi
for aP anda I at the transition.

FIG. 7. RG of the LSD used for the computation ofn. The
dotted lines corresponds to the first nine RG iterations with an
tial distributionP0 shifted to complete transmission (z050.1) while
the long-dashed lines represent results for a shift toward comp
reflection (z0520.1). Within the RG procedure the LSD move
away from the fixed point as indicated by the arrows. Ats/D
'1.4 the curves cross at the same point—a feature we exploit w
deriving a scaling quantity from the LSD.
7-6
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The fits are chosen in such a way that the total numbe
parameters is kept at a minimal value, while the fit agr
well with the numerical data.51 The corresponding scalin
curves are displayed in Fig. 9. In the plots the two branc
corresponding to complete reflection (z0,0) and complete
transmission (z0.0) can be clearly distinguished. In orde
to estimate the error of fitting procedure we compare
results forn obtained by different ordersOn andOz of the
expansion, system sizesN, and regions around the transitio
A part of our over 100 fit results together with the standa
deviation of the fit are given in Table I. The value ofn is
calculated as the average of all individual fits where the
sulting error ofn was smaller than 0.02. The error is the
determined as the standard deviation of the contributing
ues. By this method we assure that our result is not in
enced by local minima of the nonlinear fit. So we consid
n52.3760.02 as a reliable value for the exponent of t
localization length at the QH transition obtained from the R
approach to LSD. This is in excellent agreement withn
52.3560.03 ~Ref. 25!, 2.460.2 ~Ref. 27!, 2.560.5 ~Ref.
29!, and 2.3960.01 ~Ref. 32!, calculated previously. In ad
dition to aP anda I , we tested also a parameter-free scal
quantity*0

`s2P(s)ds,47 where the whole distributionP(s) is
taken into account. Here, due to the influence of the la
s-tail a less reliable valuen52.3360.05 was obtained.

FIG. 8. Behavior ofa I andaP at the QH transition as results o
the RG of the LSD. Data are shown for RG iterationsn51, . . . ,9
corresponding to effective system sizesN52n52, . . .,512. Full
lines indicate the functional dependence according to the FSS u
the x2 minimization withOn52 andOz53.
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C. Test of consistency

Finally we address the question, how the actual form
the distributionQ(z) affects the results for LSD and th
scaling analysis. Recall that in the above calculations
used, at each step of the RG procedure, the distributionQ(z)
derived from the critical conductance distributionPc(G).
The functionPc(G) is shown in Fig. 10~inset! with a full
line. In order to understand the importance of the fact t
Pc(G) is almost flat, we have repeated our calculatio
choosing forP(G) a relatively narrow Gaussian distributio
P(G)[PGauß(G) at each RG step. This distribution is show
with a dashed line in Fig. 10~inset!. The obtained LSD is
presented in Fig. 10. Obviously, it agrees much worse w
the GUE, which can be considered as a reference point,
the LSD computed using the trueP c(G). Our data fora I
calculated forP(G)5PGauß(G) is plotted in Fig. 11.

The curves for small system sizesN exhibit strong devia-
tions, i.e., there is initially no common crossing point, wh
for large N a behavior similar to Fig. 8 is observed. Ther
fore, smallN data are neglected in the scaling analysis. T
x2 fits for a I and aP are carried out usingz0
P@20.05,0.05# and N516–512. They yield the valuesn I
52.4360.02 andnP52.4660.03, which are also less accu
rate thann calculated with the criticalP c(G). Overall, Figs.

ng

FIG. 9. Finite-size scaling curves resulting from thex2 fit of our
data shown in Fig. 8. Different symbols correspond to differe
effective system sizesN52n. The data points collapse onto a sing
curve indicating the validity of the scaling approach.
7-7
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10 and 11 illustrate the consistency of the RG approaches
the conduction distribution and for the level statistics, in t
sense, that the best fixed point distribution of the level sp
ings corresponds to the fixed point of the conductance di
bution.

V. CONCLUSION

Network models introduced in Ref. 52 turned out to be
powerful tool to study the Anderson localization. Without
magnetic field, the propagation of electron waves along e
link of the network is allowed in both directions. In tw
dimensions the transmission coefficient of the network
zero for all parameters of the scattering matrix at the node53

illustrating the complete localization of electronic states.

TABLE I. Part of fit results forn obtained froma I andaP for
different system sizesN, intervals around the transition, ordersOn

andOz of the fitting procedure.

N @z0min,z0max# On Oz n
aP

22512 @9.93,10.07# 3 2 2.33660.010
22256 @9.93,10.07# 2 3 2.41260.013
42512 @9.95,10.05# 3 1 2.32560.014
22512 @9.95,10.05# 2 1 2.40260.014
22256 @9.95,10.05# 2 2 2.36060.016
162512 @9.95,10.05# 2 3 2.38560.018
22128 @9.93,10.07# 1 3 2.38460.019
42512 @9.93,10.07# 2 1 2.47160.019

a I

22512 @9.93,10.07# 2 2 2.38360.010
22512 @9.93,10.07# 2 3 2.38860.010
22512 @9.93,10.07# 3 1 2.34660.012
82512 @9.93,10.07# 2 3 2.37660.012
22512 @9.95,10.05# 2 3 2.36860.014
22128 @9.93,10.07# 2 3 2.37760.016
162512 @9.95,10.05# 2 1 2.36760.016
22256 @9.93,10.07# 3 3 2.37260.018

FIG. 10. Comparison of the LSDsPc(s) andPGauß(s) obtained
from the corresponding conductance distributions shown in the
set.
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the other hand, the two-channel network model with int
channel mixing, that models spin-orbit interaction, exhibit
localization-delocalization transition54 that is also in accord
with the scaling theory of localization.55 However, the ver-
sion of the network model that has been most widely stud
is the chiral version, i.e., the CC model,29 describing the
electron motion in a disordered system in a strong magn
field limit. Within the CC model, the scattering matrix at th
node is parametrized by a single number, e.g., the trans
sion coefficientt. On the qualitative level, the CC mode
yields a transparent explanation why delocalization occ
only at a single energy, for whicht251/2. On the quantita-
tive level, in addition to the exponent,n, more delicate char-
acteristics of the critical wave functions were extracted fro
the numerical analysis of the CC model.56,57

The fact that the RG approach, within which the corre
tions between different scales are neglected, describes
results of the large-scale simulations of the CC model
accurately, indicates that only a few spatial correlatio
within each scale are responsible for the critical characte
tics of the quantum Hall transition. More precisely, the stru
ture of the eigenstates of a macroscopic sample at the t
sition can be predicted from the analysis of a single RG u
consisting of only five nodes. Earlier we have demonstra
this fact for the conductance distribution.32 In the present
paper this statement is reinforced by the study of the le
statistics at the transition, which is a complimentary~to the
conductance distribution! characteristics of the localization
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FIG. 11. Behavior ofa I computed for initial distributionsPGauß

different from the critical distributions, as shown in Fig. 10. Da
are plotted for RG iterationsn51, . . . ,9corresponding to effective
system sizesN52n52, . . .,512. Curves for smalln do not cross at
the common pointz050. Full lines indicate the functional depen
dence according to the FSS using thex2 minimization with On

52 andOz52.
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