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Analytic expressions for linear optical susceptibilities of conjugated polymers
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Analytic expressions for the complex long-axis linear optical susceptibilityof parallel, noninteracting
trans-polyacetylene and polpara-phenyleng chains are obtained in terms of the band §gmnd ther-band
width E,. The fact that the susceptibility expressions show identical dependence on the par&yetai&,
leads the way to a general expression for the long-axis linear optical susceptibility of conjugated polymers
valid for photon energies around the band gap. The susceptibility expressions include damping and are ob-
tained in the free-carrier dipole approximation using an analytic tight-binding derivation based on @arbon
electrons only. In addition to the long-axis susceptibilities, the complex short-axis suscepfihilitgnd
off-diagonal susceptibility,, of trans-polyacetylene and the imaginary part of the short-axis susceptibility of
poly(para-phenyleng are also derived.
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. INTRODUCTION drawn substantial interest over the yekt$'~2*The obtained
results, however, have been less exhaustive than in the case
Due to the vast technological potentialities of conjugatedof polyacetylene, and, in particular, no analytic expression
polymers, a lot of research effort has been invested in thi§r the various susceptibilities associated with gpéra-
area within the last few decades. One of the pioneering efPhenyleng has to our knowledge ever been derived. Such
forts leading to an overall interest in organic materials waghalytic expressions would increase the understanding of the
the 1963 reporting of electroluminescence from organicoptical properties of polpara-phenyleng and might ulti-
semiconductor$.Following the 1977 report of metal-sized mately serve to improve the application of p@sra
conductivities in doped polyacetyleAe, substantial part of Phenyleng e.g., in connection with PLED, photovoltaic, or
that interest was devoted to conjugated polymers. As for adPhotodetecting devices.
tual applications, polymer light emitting diodé®LED’s) The purpose of this paper is first to derive analytic closed-
showing attractive device characteristics have now beefPrm expressions including damping for the complex linear
produced® These PLED’s owe their technological success tooptical  susceptibilities  of infinite, parallel trans
the following characteristics of conjugated polynfecharge ~ polyacetylene and pofpara-phenylengchains, respectively.
transport ability, high-efficiency electroluminescence in theFor trans-polyacetylene the complete susceptibility tensor is
visible with emission wavelength tunable by chemical modi-calculated, and for polpara-phenyleng the complex long-
fication, and the simple processing techniques common to a@ixis susceptibility and the imaginary part of the short-axis
plastics. Furthermore, the fast response times characteristi¢isceptibility are calculated. Second, the purpose is to obtain
of organic materials in general make the use of conjugatethrough comparison a general expression for the complex
po]ymers appea”ng in connection with photodetecﬁon_ Iong-axis linear optical SUSCGptib”ity applicable to all Conju-
Being the simplest of all conjugated polymers, the elecgated polymers. The inclusion of damping, the calculations
tronic, optical, and structural properties of polyacetylenefor poly(para-phenyleng and the comparison of the long-
[(CH),] have been thoroughly investigated over theaxis susceptibilities of an acetylene- and a phenyl-based
years®~1® Since information about optical properties such asPolymer make the present results more general than the pre-
index of refraction, absorption, etc., can be derived from the/ious results in this field:>*°
susceptibility tensory, the derivation of optical properties  Throughout this paper, all excitonic and polaronic effects
typ|ca||y amounts to Ca]cu]a’[ing Components of either thedreé d?sregarded. These important extensions will be consid-
susceptibility tensor or the closely related dielectric tesor €red in future work.
Pioneering the field of calculating the optical properties of

conjugated polymers, Cojaet al® derived an analytic ex- Il. THEORY
pression for the long-axis optical susceptibility of polyene _ _
chains, such asans-polyacetylene. Later, Baeriswgt al’ In this paper the conjugated polymers are treated as planar

found an analytic expression for the imaginary part of themolecules lying in thexy plane. In such conjugated poly-

dielectric tensor oftrans-polyacetylene, and Neumann and mers three of the four valence electrons of the carbon atoms

von Balt2® found an analytic expression for the real andform sp*-hybridized bonds and the fourth electron forms a

imaginary parts of the long-axis dielectric functiontodins delocalizedw orbital with 2p, symmetry. As the excitation

polyacetylene. In all three cases the treated chains were pagnergy is smaller for ther electrons than for thep? elec-

allel and infinite, and damping was not included. trons, thesr electrons will be the main contributors to the
As another promising conjugated polyntémvhich, e.g., low-photon-energy part of the susceptibility. Furthermore,

was the first polymer used in PLED’s showing blue emissiorsince, due to symmetry, the orbitals couple to otherr

at room temperaturf 2% poly(para-phenyleng has also orbitals only, therr electrons can be treated seperately.
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A. Band structure

<m |X_ qu+erqr |m, ,>:0
The 7-band states are characterized by a band number q 2 q
and a crystal wave numbérand are therefore writtejrk). due t ¢ dth
In a tight-binding treatment, the states are expanded in the ue to symmetry and thus
atomic 2p, orbitals, yielding
e (mdxH|np)= 2 (mgx/m'q’)(m’'q’[H|np)
. m'.q’
rk)=— ro(k)e*"np),
| > \/N nvpzzlvl p( ) | p> qu+ erqr Pt ’ !
=X ————(mdm’'g’)(m'q’|H|np)
- mlvq/ 2

k= mu, UE{O,]., Ce N_l}, (1) =qu<mq|7‘l|np>, (6a)

wherel is the lattice constantnp) is the 2p, orbital cen- (Mg Hx|np)=Xpp(md H|np). (6b)

tered at thepth carbon atom in theth unit cell, N is the ) . .

number of unit cells, an® is the number of atomic sites in Inserting Eqs(6) into Eq. (5) one obtains

the unit cell. Inserting Eq(1) into the energy eigenvalue

equation d)év(k):
HIrk)=E(k)|rk) 2

and applying the atomic orbitgmg| from the left yields

_— * ik(n—m)l
Ecr(ON g Ca (0 (10€

X (Xnp— Xmg){mMa/H|np)

. - *(k k iknl
S, ek (malH|np)— E(K(mdnp)Irg(k)=0. (3 B0 iy CaWsllOe
n.p

Equation(2) is thus seen to be equivalent tgpa p matrix X (Xnp~Xoq){ 00 H[nP), @
eigenvalue problem. In this paper wave function overlap willwhere it has been used that in the periodic boundary condi-
be disregarded ((mdnp)=6mndpq) and only Hamilton tion regime, allN unit cells are identical.
matrix elementsmg|H|np) between nearest neighbors will
be considered. 2. Short-axis electric dipole matrix element
d?, (k) is obtained by replacing with y in Eq. (7).
B. Electric dipole matrix element

The x andy components of the electric dipole matrix el- C. Linear Susceptibility
ement between valence and conduction bandmd ¢ are Sinced?,=0 in our model, the linear susceptibility tensor
given by is given by
d}, = —e(ck|x|vk), (43 Yoo Xey O
di, = —e(cklylvk), (4b) x(®)=| Xyx Xyy O], (8)
0 0O O

wheree>0 is the elementary charge. As linear combinations
of 2p, orbitals all valence- and conduction-band stdtds where, for this case of real electric dipole matrix elements,

and|ck) are odd functions irz. ThusdZ,=0. the components are given by
1. Long-axis electric dipole matrix element 2 il E¢, (k)dk
| ’ e | a0 = —— > [ dtod 10 e K
Using Eg.(2) the long-axis electric dipole matrix element mEoA To J -7l Eﬁv(k)—ﬁzﬂ2
can be written 9
(ck|(Hx—xH)|vk) where g, is the vacuum permittivity andA is the cross-
dy,(k)=—e sectional area of the polymer. The complex frequetity

Eo(k)—Ey(K) = w+ivy contains the photon frequeney and the damping

parametery.

—e .
_ * ik(n—m)l
B (N o0 Ca (05008

Ill. trans-POLYACETYLENE

X{mq(Hx—xH)|np), 5 . .
(md( )Inp) ® Acetylene, GH,, can polymerize ascis- or trans

where E.,=E.—E,. The matrix elemen{mqgxH|np) is  polyacetylene withrans-polyacetylene being the thermody-
found by inserting the completeness relat@n,plnm(np namically most stable configuratibrand the focus of this
|=1 betweerx andH and using the fact that for,q being  paper. TheranspolyacetylengPA) chain is shown in Fig. 1
the x coordinate of atomrfi,q), one has with the bond lengths obtained from Ref. 14.
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I, =1.1844

FIG. 1. Thetranspolyacetylene chain. The coordinates, )
indicate carbon atorp in thenth unit cell. The bonding lengths are
1=1.377 A andll’'=1.434 A.

A. Band structure

Fortrans-polyacetylene Eq.3) corresponds to the follow-
ing matrix eigenvalue problem:

where 8 and B’ are the Hamilton matrix elements alofig
andll’, respectively, and where the energy of a carbpp 2
orbital is chosen as the zero point of the energy
({np|H|np)=0). Nontrivial solutions to Eq(10) are found
for

—E(k)
B+elkgr

efikIB/_’_B
—E(K)

0
0

ry(k)
r(k)

) , (10

~E(k) e Mp'+p
p+ekp  —Ek) |70 (1)
corresponding to
E.(k)=+VB?+B'%+2BB" cogkl), (123
E,(k)=—B%+B'?+2BB' cogkl). (12b)

The m-electron band structure is shown in Fig. 2. Inserting

E(k)

FIG. 2. Thew-electron band structure dfanspolyacetylene.
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E.(k) andE,(k) into Eqg.(10) and solving for the eigenvec-

tor r(k) one obtains

1 1

c(k)= V2 v(k)= V2 W:L
wl’ ' e Mgt
2 2

(13

B. Electric dipole matrix element
1. Long-axis electric dipole matrix element

Inserting Eqg.(13) into Eg. (7), summing over nearest
neighbors, and making the approximatigr=1/2 yields

0= 0 3, ctug(eni+(p-als]
X(0q|H|np)
_ 1 1 ¢ aikl —ikl
—mi[“—'l)ﬂ (e W* +e W)
—118(W*+W)]

B (E)[('_'W'z—llﬁzﬂl—2I1>,8',8cos(k|>]

—el
EZ,(K)

(B'2=?). (14)

In connection with Eq(14) it should be noted tharans
polyacetylene is degenerate in the sense that Fig. 1 might just
as well have been flipped 180° about thexis. This would
lead to the transformation8— B’ and thus to a change of
sign in Eq.(14).

Introducing the band gap

ar
Eg:Ecz;(T) :2|,8_,3,| (15
and thewr-band width
Eo=E.,(0)=2|B+p8'|, (16)
Eq. (14) yields
elEyE,
d* (k)= —>—. 1

A plot of |d¥,(k)|? is shown in Fig. 3.

075206-3



THOMAS BASTHOLM LYNGE AND THOMAS GARM PEDERSEN

|deu (B)I? [e*A]

80

0
[ T T T v T T

-1.0 0.5 0.0 0.5

7k [7]

PHYSICAL REVIEW B57, 075206 (2003

Xzz,Pa
354
304
25+
20+
| ’
154 X "
1 X
10 4
5
0 T T T T - Fw [CV]
4 2 3
54
-1oﬂ

FIG. 4. The real parf’ and imaginary park” of the long-axis
linear susceptibility oftranspolyacetylene forEg=1.9 eV, Eg

FIG. 3. The absolute square of the long-axis electric dipole ma=12.8 eV, y=0.2 eV, andA=15.5 A2

trix element oftrans-polyacetylene.

2. Short-axis electric dipole matrix element

One obtains
—e .
d4,(0= g5 n%q ¢t (kv (ke [(p—a)l5]
X(0g|H|np)

2el,

I
= S22+ B+ 28 Beoskl)]=
EZ,(K) 2

(18)

C. Linear susceptibility
1. Long-axis linear susceptibility

Inserting Eq.(17) into Eq. (9) one has

(o) |2e2E§E3F/I 1 1 dk
Xxx,pAl @)= AmeoA Jo Egv(k) Egv(k)—ﬁzﬂz )
(19
Since
dk 2 Ec,
dEc, | J(88B')*~(E;,—4p°~4B'?)?
2 Eco
= (20)

T EL-E)E-E)

Eq. (19) can be written as the following integral ovEg, :

le?ESE (Eo 1
XXX PA(w): f 2 2
’ 2meoA Jg, EZ (EZ,—h%Q2)
dE,

. V(EZ,—ED(ES—EZ) ey

Evaluating Eq.(21) as shown in the Appendix, one obtains
the following result for the long-axis linear susceptibility of
trans-polyacetylene:

le? E3

2meoA Egh202

2
Eg
E2_ ﬁzﬂz
9

Xxx,PA(w) =

E;—E5 E;—Ej
2_3202’ 2
E;-4%0%" E]

X1I

-9 0 =g 0 , (22)

2 7 2
Eg Eg

whereIl(n,k) is the complete elliptic integral of the third
kind. We have adopted theaTHEMATICA definition of ellip-

tic integrals(see the Appendijxwhich covers complex argu-
ments, and we have US®RTHEMATICA to evaluate the ex-
pressions. It has been verified by numerical integration that
Egs.(22) and(21) are in agreement.

The result of Eq(22) is the equivalent of Eq4.4) in Ref.

16 with the present result generalized to include damping,
however.

Plots in the vicinity of the band gap of the real part
Xxxpa(®) and imaginary partyy, pa(w) of Eq. (22) are
shown in Fig. 4. The band gdg, and thew-band widthE,
are set to their experimental valdéfg:1.9 eV andE
=12.8 eV corresponding toB=-3.7eV and B’
=—2.7 eV. The damping parameteris by fit to the experi-
mental curves of Ref. 13 chosenfag=0.2 eV. According
to Ref. 8 the cross sectional areatodinspolyacetylene is
A=15.5 A2, In addition to the shown resonance around the
band gapE, there is a weak resonance arougglalso.

Approximate susceptibility expressiofor iw<Ey, EQ.
(21) can be approximated as

|e2E§E0foc 1 dE,,

w)= ’
Xxx,PA( ) 2meA E, E(Z:U(Egu_ﬁzﬂz) \/E(Z:U_Eg
(23

leading to
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Xxz,pa

.10

FIG. 5. A comparison of Eqg24) and(22) with parameters as
in Fig. 4.

(hQ
|e2EoE2 arcs"{E_g) 1

W)= - —.
Ko A0 | RONEL 1707 B2
(29)

As an evaluation of this approximation, Fig. 5 shows a plot

of Eq. (24) together with a plot of Eq(22). The approxima-
tion is seen to be excellent in the vicinity of the band gap.
Notice that comparison of Eq§22) and(24) yields

( E2- Ej Eg—Eg) Eq VEZ-7202 ,{m)
) =_ arcsin —/,
E;—-7202" E] Eo 2O Eq
fiw<E,, (258
Eg—E§ Eg—E5| _Eg (250
S = Eo’

Effective mass approximatiomn the effective mass ap-
proximation (EMA) the band structure is given by the fol-
lowing parabolic expansion in the vicinity of the band gap:

2k12 T
ECU(k)ZEg+ W, k =k—|—, (26)
where i is the reduced mass given by
h? h? g
=——=4——2_=0.06m,, (27)
a dZECU(k)| 12 E2-E2 0
gz k=l

wherem,=9.109x 10 3! kg is the electron rest mass.
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FIG. 6. The absolute square of the long-axis momentum matrix

element oftrans-polyacetylene together with the constant used in

the CMMEA.
A (K)= — o (ck|(Hx—xH)|vk
cy( )_ECU(k)<C ( X—X )U>
eh? (oK 92 92 0k
= ——(ckl| —x—x—
2mEq,(K) "\ ox2” ax2) "
B —iefh kﬁa = —ieh X
= MoEay(0 M T 3x 120 = moE L iy Peo

(28)

In the constant-momentum matrix element approximation
(CMMEA) one assumes thaf, (k) is constant and equal to
its value at the band gap:

T
i mOECU ( T)
- eh

a
ot to=ri| 7]

FIG. 7. The CMMEAY together with the ordinary linear sus-

Writing the electric dipole matrix element in terms of the ceptibility y of transpolyacetylene for Eg=1.9 eV, E,

momentum matrix elemerg, (k) one has

=12.8 eV,iy=0.2 eV, andA=15.5 &
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From Fig. 6, which shows a plot ¢p%,(k)|? together with
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Figure 7 shows a plot of the CMMEA linear susceptibility

|p%, (/1) it can be seen that the CMMEA is significant in y,, pa(@) together with x,, pa(®). Inspection of Fig. 7

this case.

shows thaly,y pa(w) approaches zero faster th]é;gkp alw).

As shown in the Appendix the CMMEA linear suscepti- This is due to the fact that in the CMMEA, the factor

bility Xxxpa(®) is obtained as

’;(xx,PA(a’)

e’l2\2u ES

1

1

2

= + — ,
16he0A 7202 JEgz+hQ  VE,—2Q  \E,

1/E2,(k)~1/4%w? in the electric dipole matrix element is
treated as a constant. A&tw=2.9 eV, e.g., the CMMEA-
induced error is close to 50%.

Zero-band-gap limitThe polyacetylene chain is distorted
in the sense thdt #11’ and correspondinglB+# B8’. As can
be seen from Eq.15), this distortion causes the introduction
of a band gapE, in the band structure, makingans
polyacetylene a semiconductor. This section treats the more

(30)  or less hypothetical case of an undistorted and thus metallic
trans-polyacetylene chain.
in agreement with Ref. 24. In the limit E;— 0, Eq.(22) yields
_ E, L -
- —dx
le? Ej 1 12072 1 o
lim X ‘pA(w): lim f _f
Eg—0 XX 2me oA hZQZEgﬁo 0 E3 E3 0 E3 3
1- ——x2| \[/ (1-x))| 1+—x? 1+ —x* | N1-x2
i 7202 EZ Eq i
[ E2 E2 E2 1
— ( 4 xz) dx -
le? E] ~E, (1 E3 E3 1 (1 E3 dx
= lim f 5 32 5 Y 5 32
2meoA 11202 0| 24%Q%) -1 E] ES 2Eo) -1/ EZ 1-x2
— +x 1-— 2x2 1-x2 — X
L Eo hQ Eo i
le?  E,
=- : (31
2'7780A ﬁZQZ
|
since » pe? -
W)= —
Xxx 8092< m*>
2
5o
ES wherep=2/Al is the m-electron density and where

(32

hZ
all dzEv(k)
dk?

(m*) =

2w —arll

dk

where §(x) is the Dirac delta function. A plot of the linear

susceptibility of trans-polyacetylene in the zero-band-gap
limit is shown in Fig. 8. The present result is thus well be-

B 47h?
Eol?

(34)

haved in the metallic limit, which is in contrast to the

CMMEA case.

At this point it may be noted that Eq31) is in accor-
dance with the Drude theory of met&lsccording to which

is an effective mass resulting from an average over all va-
lence states.
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Xzz,pa,Eg—0

1400
'
12004 \ X
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FIG. 8. The real parfy’ and imaginary parl” of the linear
susceptibility of trans-polyacetylene in the limitE;—0 for Eg
=12.8 eV,Ay=0.2 eV, andA=15.5 &,

2. Short-axis linear susceptibility
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FIG. 10. The real parly’ and imaginary parfy” of the off-
diagonal linear susceptibility oftrans-polyacetylene for Eg
=1.9eV,E,=12.8 eV,%y=0.2 eV, andA=15.5 A2,

As shown in the Appendix the following result is obtained Where the different signs apply to the two degenerate states

for the short-axis linear susceptibility tins-polyacetylene:
h2Q?
9

2 2 2 2
Eg—EO) +F( E2-E3
2 EZ
g

212¢? 1
Xyy.pal®)= Tl A E_g

E;—ES
E2_ hZQZ !
9

(35

whereF (k) is the complete elliptic integral of the first kind.
A plot of xyy pa(w) is shown in Fig. 9.

3. Off-diagonal linear susceptibility
One obtains
Xxy,PA(w):ny,PA(w)
*1,62  Eg - E;—Ej
- meoA E2-£202 | EZ- #7202

E2- Eg)
— .
Eg

(36)

Xyy,pa

0.6
0.5
04
0.3

0.2 1

0.1 X

0.0 —_ — r
0 1 2 3 4

rfiw [eV]
5

FIG. 9. The real par’ and imaginary parg” of the short-axis
linear susceptibility oftrans-polyacetylene forE,=1.9 eV, E,
=12.8 eV,Ay=0.2 eV, andA=15.5 A%,

mentioned in the comment following E¢L4) with the plus
sign applying to the configuration of Fig. 1. A plot of
Xxy,pa(®) is shown in Fig. 10. Notice that the following
relation applie%

(37

X”xy,PA( w)==* \/X”xx,PA( w)XHyy,PA( o).

IV. POLY (para-PHENYLENE)

The polypara-phenyleng (PPB chain, (GH4),, Iis
shown in Fig. 11. The structure parameters are from Ref. 22.
Note that the adjacent benzene rings in a PPP chain are
twisted approximately 26° with respect to each ofien
the present paper, however, this torsion is disregarded, and
the PPP chain is treated as a planar molecule withrbitals
coupling to others orbitals only, since this assumption sim-
plifies the derivations considerably.

A. Band structure

Disregarding wave function overlaps, using the same
value B8 for all Hamilton matrix elements, and including
nearest-neighbor elements only one obtains

1=4.264

FIG. 11. The polyparaphenyleng chain. The coordinates
(n,p) indicate a carbon atomin the nth unit cell. Bonding lengths
are 1;=1.407 A, 1,=1.388 A, andl;=1.465 A and angles are
£(123)=121°, £ (612)=118".
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[—Ek) B 0o e 0 B (02—1)e K42
B —E(K) B 0 0 0 0%-3p
0 B -EK B 0 0 1+e ™
ikl 0*-3
e’ 0 B —E(k) B 0
92_ 24+ efikl
0 0 B —E(k) B - 1 —_—
ro(k)= 5 0%-3p : (42)
B 0 0 0 B —E(k) 1
- - 2 —ikl
p“—2+e
ri(k) ——
0 0°—3¢
ro(k) 0 14 ikl
ra(k) 0 2_3
x - 39 ©
r4(k) 0 where
0
rs(k) E(k)
0 o0=—. (43
re(k) |8l
Equation(42) shows that
Since thexz plane is a plane of symmetry of the PPP chain, C1=—vq, Cy=U,, Cz=—v3. (44)
a complete set of eigenstates can be constructed consisting of
functions that are of definite parity im. The 6X6 matrix 2. Eigenstates of odd parity

eigenvalue problem of E¢38) can therefore be decomposed
into two smaller eigenvalue problems concerning eigenstates
of either even or odd parity ig. r,=r,=0, r,=—rg, Tr3=—I5, (45)

In this case one has the eigenvector components

and thus the following matrix eigenvalue problem:

~E() B 0
B —EK :(0)_ (46)

1. Eigenstates of even parity

In the case of eigenstates of even parity one has the un-
known eigenvector components

(rz(k)
rs(k)

Equation(46) has the two nontrivial solutions

rl, I’2=I’5, r3=r51 r41 (39) E(k)=i|ﬁ|’ (47)

with corresponding eigenvectors
leading to the following matrix eigenvalue problem:

0
" 1
— —1
E(k) 28 0 e "B ryk 0 1| -1
B -Ek B 0 (k) 0 k=3 4 | (483
0 A W (O) 1
ep 0 26 —EK |\, 0 _1
(40)
0
Equation(40) has the following four nontrivial solutions: 1
1
- 1
Uo(k)=§ 0 (48b)
Kl
E(k)=+|8|\/3*V8co >/ (42) -1
-1
with corresponding eigenvectors The m-electron band structure is shown in Fig. 12.
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E(k) [18]]

FIG. 12. Them-electron band structure of pdfyara-phenyleng
with the bands numbered from 1 to 6.

B. Electric dipole matrix element
1. Long-axis electric dipole matrix element

Making the approximation

£ (123)= £ (612)=120°, (499
l1=1,=153=1/3=1.42 A, (49b
Eq. (7) yields
e|,8|| ( ) Vo Ug U1
X — x| _ —ikl, ~« 4 ”% * =
dg, (k) 3E,, Ci| —vqse” '+ 5 +2 +c3 5 +v;
v v .
+C§(—v2+24 +cj —23—254—01(3'“)
v v
+C§(—ve+24 +cg —21+05) : (50

Inspection of Eq(50) shows thatd}, (k) is zero for transi-

tions between states of different parfyFurthermore, a
more careful inspection shows ttdit (k) is also zero for the
transitions 1-5 and 2—6. The only transitions contributing
to the susceptibility are thus

16, 25, 3-4, (51)

where 1-6 and 2—5 are even-even transitions ane-3l is
an odd-odd transition.

Even-even transitionsdUsing Egs.(39) and (44) in Eq.
(50) one obtains

—e|p|l 1+cogkl) —el@i-3

X —
Gevied =3 ei-30, 24 2

_Ec(k)
SNV

Plots of|d§,(k)|? and|d%,(k)|? are shown in Figs. 13 and 14,
respectively.

(52
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|d§1(k)[* [e*A]

-1.0

FIG. 13. The absolute square of the long-axis electric dipole
matrix element of the 46 transition in polypara-phenyleng

Odd-odd transitionsUsing Eqgs.(498) in Eq. (50) one ob-
tains

elp|l el

3E, 6°

diy 00(K)= (53

2. Short-axis electric dipole matrix element

They part of Eq.(7) yields

J3e| gl

6E.,

d¥, (k)= [cI(—vatve)+Ch(vy)+C5(vy)

+ci(—vstvs)+Cs(—vg)+C5(—vy)], (54
which shows that the contributing transitions are

1—4, 2—-4, 3—5, 3—6, (55)

where -4, 2—4 and 3-5, 3—6 are even-odd and odd-
even transitions, respectively.

|dg2(K)|? [e2A]

-1.0 0.5 05

ok 7]

FIG. 14. The absolute square of the long-axis electric dipole
matrix element of the 2:5 transition in polypara-phenyleng
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Xzx,PPP

40

304

204

10+ X' ‘ X”

() . 1t — hw [eV]
1 2 5 6

10

FIG. 16. The real pary’ and imaginary park” of the long-axis
linear susceptibility of polgpara-phenyleng for E,=2.9 eV, fiy

FIG. 15. The absolute square of the short-axis electric dipole=0.03 eV, andA=21.5 A%,

matrix element of pol§para-phenyleng The solid line shows
line  showsgd},(k)|?

|d%,(k)|?=|d¥(k)|? and the dashed
=[dy(K)|?.

Even-odd transitionsinserting Eq.(48a into Eq. (54)
and using Eq(42) yields

92,32|2
|, oo(K)[2= lvi—v4l?
cv.o€ 12E2,

_epA2 (e, T D%(05-2¢0,~1)
12E2, —80,

&1 (e, +D)%(ei-2¢,~1)
96 —0,(1-0,)?
e?? +1)? +1)2

_ , (e tD? (e, +1)?] (50

96 Qv(gv_l)z QU

Odd-even transitionsinserting Eq.(48b) into Eq. (54)
yields

62ﬂ2| 2
12EZ,

*

|—c]

|dZ, eolK)|?= —c3l?

e?| (1-0,)? ) (1-0.)?

=— . (5
96 Qc Qc(1+9c)2 ( 7)

Figure 15 shows plots di?, (k)|2.

C. Linear susceptibility

1. Long-axis linear susceptibility
Inserting Eqs(52) and (53) into Eq. (9) yields

_ ezlﬁllsz/I ei-3\" e
XXX,PPP(U))_727780A 0 Qé 4B293—h292

(95_3) @s

ef | 4p’ei-1%Q?
e’l 2B

9e0A 4821202

(58)

Introducing the normalized band gag and the normal-
ized mr-band widthg

0,=Ey/|B|=2V3- 8, (593
00=Eo/|B|=2V3+8, (59b)

and evaluating according to the Appendix, one obtains the
following for the long-axis linear susceptibility of pdlyara-
phenyleng

le? E; | #202 [E;—Ej
Xxx,PPP(w):47TSOAEgﬁZQZ oF2 E2 )
ﬁZQZZ
(Eg‘s—eo) H( E2-E3 ES—ES)
E;-7202 | EZ-4%02" E}

o E;—E5 E;—Ej
A =
g9 g

le? 2|

9e0A 4824202’

(60)

which can be approximated using Eg&5). Plots of
X' xx.ppp(®) and x"yy ppp(w) are shown in Fig. 16. The
band gap is set to its experimental vaftief Eg=29 eV
corresponding t@=—3.5 eV andE;=16.9 eV, and by a fit
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to the experimental curves of Ref. 13 the damping parameter 2. Short-axis linear susceptibility

vy is chosen agiy=0.03 eV. The cross-sectional ared'is

A=21.5 A?. Comparison of Fig. 16 with Ref. 13 shows that ~As shown in the Appendix one obtains the following ap-
the experimental dc susceptibility,, ppp(0) is approxi- prqximative expreslsi'o.n for the imaginary part of the short-
mately 9 whereas E60) yields x;, ppp(0)=3.9. axis linear susceptibility of polpara-phenyleng

) _ el a-2pP-20-27 [ 1] 4(p|-r0) Ej-Es  Eg S
X yy'PPP(w)_37TgOA Z(1+Z) _Q [E2 |B|_hQ)2] Eé_4(|ﬁ|_hg)2’ E2
~ |Bl—hQ _A(Blh0)? ( E2-E3 Eg—Eg)
W\/E§—4(|B|—h9)2\/E§—4(IBI—ﬁﬂ)z EJES-4(|8l+h0)%] \EZ-4(|+5Q)?" E2

_W (18| + Q) VES+4(] B +50)?
VEG—4(| B+ 1 Q) E5—4(| Bl +1.0)?]2

( Qg

7 for ﬁw<|,8| 1+

i
|8l

o
2

Qg
2

1+

> (61)

<fo<|p|

for |,8|(1+— QO)
Qo

1+,

for fiw>|p|
\

Figure 17 shows a plot of E¢61) together with a numerical el E,E,
evaluation of Eq.(A12). The approximation made in Eq. dey pa=" 92
(A13) is thus seen to be reasonable. The resonance shown in Ec
Fig. 17 lies ath o~|B|(1+ 04/2)=4.95 eV and corresponds
to the 2—4 and 3—5 transitions. Another resonance lies at el E2 — 1282 —el E2 _3E E,
hw=~|B|(1+0,/2)=11.95 eV and corresponds to the 1 X ppp= e = v g

vy 24 E2 24 Egv

—4 and 3—6 transitions. cv

: (629

E
V. COMPARISON ) £z ho<E,. (62b)

A significant advantage of the analytic expressi¢R®)
and (60) [in contrast to Eqs(21) and (58)] is that certain
similarities are readily identified. Hence, comparison of Egs.
(22) and (60) shows that théey andE, dependences of the 2074
II function parameters are identical. Furthermore, for photon | 1
energies well below By, the factors preceding thd inte-
grals are approximately identical. The differences between o.os-
the two expressions are a factor of 2 and two additional
terms in the PPP expression. As for the additional term con- **]
taining theF integral, the preceding factor is approximately g3
zero forhi w<<3E,, and the odd-transition contribution is sig-
nificant for photon energies in the vicinity of| 2|=7 eV 0.02+
only. The factor of 2 in favor of PA has the following origin. ]
According to Egs(12) and(41) the cosine arguments of the
PA and PPP expressions f&i(k) are kl andkl/2, respec- 0.00 : :
tively, giving a factor of 2 in favor of PPP in the expression ~ *° 48
for the density of statesk/dE. Furthermore, comparison of  F|G. 17. The solid line shows a numerical evaluation of Eq.
Egs.(17) and(52) yields a factor of 4 in favor of PAin the (A12) and the dashed line shows the approximated result of Eq.
expressions fofd%,|?: (61).

!
X yy,prp

. , — fiw [eV]
55 60

@
©
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VI. SUMMARY AND CONCLUSION one has the following for Eq21):

In this paper we have found the linear susceptibility ten-
sor of trans-polyacetylene and the long-axis linear suscepti-
bility and the imaginary part of the short-axis linear suscep-y,, pa(®)
tibility of poly (para-phenyleng Even though the structures
of these two conjugated polymers are widely different, re- 1 1 1 1
markably similar results have been obtained. Hence, the :SJ 77 . 72 22,22 2212 22 7 25
present work suggests that for photon energies around the 0 aXx By ax+Eg—h707 ya'xi(a®-a’x’)
band gap, the long-axis linear optical susceptibility of a gen-

2
eral conjugated polymer can be written as y amx dx
2 2y,2
o2 ES £2 VEg+a“x
_ g
XXX’CP(w)_KWSOA Egﬁzﬂz Eg_ﬁZQZ SJ‘l 1 1
2 g2 g2 g2 o a2 a1+ E2- 5202

E -720%" E} dx

X
\/(1—x2)(E§+a2x2)

- E;—E5 ES—Ej
e e
9

9 1 1
hQ=ho+ify, (63 sjl E;h?02-4%0%  EZh%0°
wherey is the damping parameter and whéig, Eq, A, |, Eg/o a? , a® ,
and K are material-dependent constants. The band Eap 1+ 2 a2% 1+ - X
and thew-band widthE, characterize the band structure, the Eg—7"Q Eg
cross-sectional are@ and the lattice constamtcharacterize 1
the size of the unit cell, an& is given by the density of
. : o . X dx. (A2)

states and the size of the long-axis electric dipole matrix 22
element. (1-x2)| 1+ —x2

It is hoped that the distinct way in which E@3) depends S

on the above-mentioned parameters serves to clarify the in-

fluence of these parameters on the optical properties of con-

jugated polymers. . . o
In our future work we intend to generalize the presentEquat}on(AZ) is a sum of .two complete elliptic integrals of

results to include excitonic and polaronic effects. This is exthe third kind,II(n,k), defined by

pected to result in a substantial improvement of the model.

1 1
H(n,k)zj dx, (A3)
ACKNOWLEDGMENTS 0 (1—nx®)J(1—x?)(1—kx%)
Financial support from the Danish Technical Science
Council STVF, talent Grant No. 56-00-0290, is gratefully ;4 Eq.(A2) can thus be written
acknowledged.
APPENDIX IS a2 a2
Long-axis linear susceptibility of polyacetylene Xxxpal @) = Egﬁzﬂz_ Egh4Q4H N ES_ £20)2 " E_S
Introducing the shorthand notation
> I1 @ A4
a’=Eg—Ey, (Ala) E3n202 E;' E (A9
E2 —E2
x2=—"—3, (Alb)  With a andSwritten in full one obtains Eq(22).
IezEgEé CMMEA linear susceptibility of polyacetylene
" 2mepA’ (Alo) Inserting Egs(26), (28), and(29) into Eq.(9) one obtains
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~ e2|2ngw 1 dk’
Xxx 0))—47780A 0 . +ﬁ2k12 c 72K'2)\ 2 2202
9" 2u 9" 2u
e2|2\/2ME3F 1 1 dx ( hzk’z)
f— —_— X:
87Tﬁ80A 0 Eg+X (Eg+x)2_h292 \/; 2/*“

1/\x 11\ 21x

X+Eg+hQ) | X+E;—hQ) x+Eg

e?12\2uE3 Jw

= dx,
167h e AL20?

0

which integrates to Eq30).

Short-axis linear susceptibility of polyacetylene
Inserting Eq.(18) into Eq.(9) and using the shorthand in Eq#\1a) and (A1b) one obtains

2122 Jl 1 VE;+a%x?

)= dx
Xyypal®) meglAJo E;—#7202+ax? Ji-x2
fl 1 Ej+a?x? ( 215¢?
= X =
0 EZ-#20%+a%x? \/(1—x2)(Eé+a2x2) meolA

Eq 1 1 1
=S f dx
E2-#%202J0 a® 2
’ 1+ ——x2 2 2
1202 (1—x9)| 1+—x

Ej—1 E2
a2
1+ 2l-1
S (1 1 E2—42072
+—f dx
Eg 0 az ) \/ a2
I+ ——— X 1-x%)| 1+ —x?
ES_hZQZ ( ) ES
= a2 az) S ( a2 a2 a2
= — —— |+ — —— | —T11| - - —
2_ 2202 2 32202 2 2 2 202 2
E—#2Q E;—#720% E;) By EJ E;—72Q%  Ej

whereF is the complete elliptic integral of the first kind:

Fk—fl ! d
=], (1)) (1—k®) X

Writing Eq. (A6) in full one obtains Eq(35).

Off-diagonal linear susceptibility of polyacetylene
Inserting Eqs(17) and(18) into Eq.(9) and using Eqs(Ala) and(Alb) one has

IzezEgEofl dx

w)= w)= ,
Xxy,PA( ) ny,PA( ) 0 (Eg—ﬁZQZ-FaZXZ)\/(1—X2)(Es+azxz)

mEQA

leading to Eq.(36).

Long-axis linear susceptibility of poly(para-phenyleng

Evaluation of the first two terms in E¢58) yields
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2 2
B2 | 5[ e6-3 26 dk 5 [05-3 os dk
Xxx,ee(w):72 A f > 2 2 .2 Zd_d96+f 2 20242 2d_d95
TEoA| Jed2\ 5 | 4B°es—H(0° 0Cs ¢ o5 | 4B7es—hT070es
05— 3) —04d0s
eofz 4p%0%- 202 V(04— 03)(— 024+ 02)
( -3 05d0s
egfz ap 292 V(04— 03)(— 024+ 02)
g0/2 0%2-3\2 de e’ Bll
2.2 3202 2 2 2 T 18me A’ (A9)
egfz ¢ | 4p20%~120% \[(03—40)(—02+40?) mEQ
Introducing
=(e§—0d)B*=E5—ES, (A10a)
b?= 5%~ h202=E; - /%02, (A10b)
4 2_ 52
2 92 929, (A100)
QO_Qg
one obtains
e 1 (2x%2—1)2 dx
Xxxedl @) =648 Sf
XX, € 0(a2x2+E§)(a2X2+b2) \/(1_X2)(a2x2+E2)
, 8.2 2 ) a2 2
b2+ — E2+—
256 8|°S 1 2 g dx
a‘gy Jo a? a2 a2
bAE;—bH)| 1+ —x?| EX(b?—E))| 1+ —x? (1-x))| 1+ —x2
b2 E2 E2
9 g
, a2 2 , 8.2 2
b+ — Eg+ —
256 8|°S a’ 2 a® a’ 9 2 a’? a?
piapvel L e Riewsraprntl] e tiner) Rt ety B £ (A1)
a’E, E2) Db2El-b?) b> EZ) EXb*-E) E2 E

Use of the relation 5+ Eg)/2=3EyE4 and inclusion of the odd-odd contribution leads to E&f)

Short-axis linear susceptibility of poly(para-phenyleng
Inserting Eqs(56) and (57) into Eqg. (9) one obtains

1

002( (1-0%)?—2(1-0)?
ny,PPP(w):SL ( P(1r0r—

o2 e(1+e)

ede 4% Bl

2002 32 2 2 2 S 3me Al (A12)
0?J(e5—40*)(—eg+4e?) Teo

In the limit of zero damping, the imaginary part of the factof A%(1+ ¢)?—#2Q?] is proportional to a5 function with
argumentB?(1+ 0)?—#2w?. Assuming that the slowly varying part is constant during differentiation one therefore has the
following for the imaginary part of EqA12):

ede

. 8(1—22)2—2(1—2)2| J’Qo/z 1
Hoveees 202 (5 -40%)(~3+40))]

z(1+2) g2 BA(1+0)%— 1
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( Qg Oy
> for Aw<|p| 1+?
ho—|p Qg o
z= T for || 1+7 <hw<|p] 1+7 (A13)
Qo Qo
|2 for how>|g| 1+7 ,
where Im indicates the imaginary part. Using EG510a), (A10c¢), and
d.=2|B|+24Q, (A14)
the integral in Eq(A13) can be written
fl 1 dx 1 Jl 1 1 dx
0 (2|8]+ Va?x?+E))?—4n202 J1-x> 4QJo|d_+\a®P+E] d,+\a?x®+E;[V1-X2
1 d? - a’ a2> T d_
Q| EyES-d?) | -EZ+d2’ E}) 2 Ja?+Ej-d®Ej-d®
d? H( a? a2) T d;(E2+d?)
Eo(EZ—-d}) \—E3+di’ Ei) 2 Ja?+Ej-di(Ej—d?)¥?)

Writing Eq. (A15) in full one obtains Eq(61).

(A15)
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