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Analytic expressions for linear optical susceptibilities of conjugated polymers
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Analytic expressions for the complex long-axis linear optical susceptibilityxxx of parallel, noninteracting
trans-polyacetylene and poly~para-phenylene! chains are obtained in terms of the band gapEg and thep-band
width E0. The fact that the susceptibility expressions show identical dependence on the parametersEg andE0

leads the way to a general expression for the long-axis linear optical susceptibility of conjugated polymers
valid for photon energies around the band gap. The susceptibility expressions include damping and are ob-
tained in the free-carrier dipole approximation using an analytic tight-binding derivation based on carbonp
electrons only. In addition to the long-axis susceptibilities, the complex short-axis susceptibilityxyy and
off-diagonal susceptibilityxxy of trans-polyacetylene and the imaginary part of the short-axis susceptibility of
poly~para-phenylene! are also derived.
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I. INTRODUCTION

Due to the vast technological potentialities of conjuga
polymers, a lot of research effort has been invested in
area within the last few decades. One of the pioneering
forts leading to an overall interest in organic materials w
the 1963 reporting of electroluminescence from orga
semiconductors.1 Following the 1977 report of metal-size
conductivities in doped polyacetylene,2 a substantial part o
that interest was devoted to conjugated polymers. As for
tual applications, polymer light emitting diodes~PLED’s!
showing attractive device characteristics have now b
produced.3 These PLED’s owe their technological success
the following characteristics of conjugated polymers4: charge
transport ability, high-efficiency electroluminescence in t
visible with emission wavelength tunable by chemical mo
fication, and the simple processing techniques common to
plastics. Furthermore, the fast response times characte
of organic materials in general make the use of conjuga
polymers appealing in connection with photodetection.5

Being the simplest of all conjugated polymers, the el
tronic, optical, and structural properties of polyacetyle
@(CH)x# have been thoroughly investigated over t
years.6–16 Since information about optical properties such
index of refraction, absorption, etc., can be derived from
susceptibility tensorxJ, the derivation of optical propertie
typically amounts to calculating components of either
susceptibility tensor or the closely related dielectric tenso«J.
Pioneering the field of calculating the optical properties
conjugated polymers, Cojanet al.6 derived an analytic ex-
pression for the long-axis optical susceptibility of polye
chains, such astrans-polyacetylene. Later, Baeriswylet al.9

found an analytic expression for the imaginary part of
dielectric tensor oftrans-polyacetylene, and Neumann an
von Baltz16 found an analytic expression for the real a
imaginary parts of the long-axis dielectric function oftrans-
polyacetylene. In all three cases the treated chains were
allel and infinite, and damping was not included.

As another promising conjugated polymer,17 which, e.g.,
was the first polymer used in PLED’s showing blue emiss
at room temperature,18–20 poly~para-phenylene! has also
0163-1829/2003/67~7!/075206~15!/$20.00 67 0752
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drawn substantial interest over the years.13,21–23The obtained
results, however, have been less exhaustive than in the
of polyacetylene, and, in particular, no analytic express
for the various susceptibilities associated with poly~para-
phenylene! has to our knowledge ever been derived. Su
analytic expressions would increase the understanding o
optical properties of poly~para-phenylene! and might ulti-
mately serve to improve the application of poly~para-
phenylene!, e.g., in connection with PLED, photovoltaic, o
photodetecting devices.

The purpose of this paper is first to derive analytic clos
form expressions including damping for the complex line
optical susceptibilities of infinite, parallel trans-
polyacetylene and poly~para-phenylene! chains, respectively
For trans-polyacetylene the complete susceptibility tensor
calculated, and for poly~para-phenylene! the complex long-
axis susceptibility and the imaginary part of the short-a
susceptibility are calculated. Second, the purpose is to ob
through comparison a general expression for the comp
long-axis linear optical susceptibility applicable to all conj
gated polymers. The inclusion of damping, the calculatio
for poly~para-phenylene!, and the comparison of the long
axis susceptibilities of an acetylene- and a phenyl-ba
polymer make the present results more general than the
vious results in this field.6,9,16

Throughout this paper, all excitonic and polaronic effe
are disregarded. These important extensions will be con
ered in future work.

II. THEORY

In this paper the conjugated polymers are treated as pl
molecules lying in thexy plane. In such conjugated poly
mers three of the four valence electrons of the carbon at
form sp2-hybridized bonds and the fourth electron forms
delocalizedp orbital with 2pz symmetry. As the excitation
energy is smaller for thep electrons than for thesp2 elec-
trons, thep electrons will be the main contributors to th
low-photon-energy part of the susceptibility. Furthermo
since, due to symmetry, thep orbitals couple to otherp
orbitals only, thep electrons can be treated seperately.
©2003 The American Physical Society06-1
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A. Band structure

The p-band states are characterized by a band numbr
and a crystal wave numberk and are therefore writtenurk&.
In a tight-binding treatment, thep states are expanded in th
atomic 2pz orbitals, yielding

urk&5
1

AN
(

n,p51,1

N,P

r p~k!eiknlunp&,

k5
2p

Nl
u, uP$0,1, . . . ,N21%, ~1!

where l is the lattice constant,unp& is the 2pz orbital cen-
tered at thepth carbon atom in thenth unit cell, N is the
number of unit cells, andP is the number of atomic sites i
the unit cell. Inserting Eq.~1! into the energy eigenvalu
equation

Hurk&5Er~k!urk& ~2!

and applying the atomic orbital^mqu from the left yields

(
n,p

eiknl@^mquHunp&2Er~k!^mqunp&#r p~k!50. ~3!

Equation~2! is thus seen to be equivalent to ap3p matrix
eigenvalue problem. In this paper wave function overlap w
be disregarded26 (^mqunp&5dmndpq) and only Hamilton
matrix elementŝmquHunp& between nearest neighbors w
be considered.

B. Electric dipole matrix element

The x andy components of the electric dipole matrix e
ement between valence and conduction bandsv and c are
given by

dcv
x 52e^ckuxuvk&, ~4a!

dcv
y 52e^ckuyuvk&, ~4b!

wheree.0 is the elementary charge. As linear combinatio
of 2pz orbitals all valence- and conduction-band statesuvk&
and uck& are odd functions inz. Thusdcv

z 50.

1. Long-axis electric dipole matrix element

Using Eq.~2! the long-axis electric dipole matrix eleme
can be written

dcv
x ~k!52e

^cku~Hx2xH!uvk&
Ec~k!2Ev~k!

5
2e

Ecv~k!N (
n,p,m,q

cq* ~k!vp~k!eik(n2m) l

3^mqu~Hx2xH!unp&, ~5!

where Ecv5Ec2Ev . The matrix element̂ mquxHunp& is
found by inserting the completeness relation(n,punp&^np
u51 betweenx andH and using the fact that forxmq being
the x coordinate of atom (m,q), one has
07520
r

ll

s

^mqux2
xmq1xm8q8

2
um8q8&50

due to symmetry and thus

^mquxHunp&5 (
m8,q8

^mquxum8q8&^m8q8uHunp&

5 (
m8,q8

xmq1xm8q8
2

^mqum8q8&^m8q8uHunp&

5xmq̂ mquHunp&, ~6a!

^mquHxunp&5xnp^mquHunp&. ~6b!

Inserting Eqs.~6! into Eq. ~5! one obtains

dcv
x ~k!5

2e

Ecv~k!N (
n,p,m,q

cq* ~k!vp~k!eik(n2m) l

3~xnp2xmq!^mquHunp&

5
2e

Ecv~k! (
n,p,q

cq* ~k!vp~k!eiknl

3~xnp2x0q!^0quHunp&, ~7!

where it has been used that in the periodic boundary co
tion regime, allN unit cells are identical.

2. Short-axis electric dipole matrix element

dcv
y (k) is obtained by replacingx with y in Eq. ~7!.

C. Linear Susceptibility

Sincedcv
z 50 in our model, the linear susceptibility tenso

is given by

xJ~v!5F xxx xxy 0

xyx xyy 0

0 0 0
G , ~8!

where, for this case of real electric dipole matrix elemen
the components are given by

xab~v!5
2

p«0A (
c,v

E
2p/ l

p/ l

dcv
a ~k!dcv

b ~k!
Ecv~k!dk

Ecv
2 ~k!2\2V2

,

~9!

where «0 is the vacuum permittivity andA is the cross-
sectional area of the polymer. The complex frequencyV
5v1 ig contains the photon frequencyv and the damping
parameterg.

III. trans-POLYACETYLENE

Acetylene, C2H2, can polymerize ascis- or trans-
polyacetylene withtrans-polyacetylene being the thermody
namically most stable configuration8 and the focus of this
paper. Thetrans-polyacetylene~PA! chain is shown in Fig. 1
with the bond lengths obtained from Ref. 14.
6-2
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A. Band structure

For trans-polyacetylene Eq.~3! corresponds to the follow
ing matrix eigenvalue problem:

F 2E~k! e2 iklb81b

b1eiklb8 2E~k! G S r 1~k!

r 2~k!
D 5S 0

0D , ~10!

whereb andb8 are the Hamilton matrix elements alongl l
and l l 8, respectively, and where the energy of a carbon 2pz
orbital is chosen as the zero point of the ener
(^npuHunp&[0). Nontrivial solutions to Eq.~10! are found
for

U 2E~k! e2 iklb81b

b1eiklb8 2E~k! U50, ~11!

corresponding to

Ec~k!51Ab21b8212bb8 cos~kl !, ~12a!

Ev~k!52Ab21b8212bb8 cos~kl !. ~12b!

The p-electron band structure is shown in Fig. 2. Inserti

FIG. 1. Thetrans-polyacetylene chain. The coordinates (n,p)
indicate carbon atomp in thenth unit cell. The bonding lengths ar
ll51.377 Å andll851.434 Å.

FIG. 2. Thep-electron band structure oftrans-polyacetylene.
07520
y

Ec(k) andEv(k) into Eq. ~10! and solving for the eigenvec
tor rW(k) one obtains

cW~k!5S 1

A2

W

A2

D , vW ~k!5S 1

A2

2
W

A2

D , W5
Ec

e2 iklb81b
.

~13!

B. Electric dipole matrix element

1. Long-axis electric dipole matrix element

Inserting Eq.~13! into Eq. ~7!, summing over neares
neighbors, and making the approximationl 15 l /2 yields

dcv
x ~k!5

2e

Ecv~k! (
n,p,q

cq* ~k!vp~k!eiknl@nl1~p2q!l 1#

3^0quHunp&

5
2e

Ecv~k!

1

2
@~ l 2 l 1!b8~eiklW* 1e2 iklW!

2 l 1b~W* 1W!#

5
22e

Ecv
2 ~k!

@~ l 2 l 1!b822 l 1b21~ l 22l 1!b8b cos~kl !#

.
2el

Ecv
2 ~k!

~b822b2!. ~14!

In connection with Eq.~14! it should be noted thattrans-
polyacetylene is degenerate in the sense that Fig. 1 might
as well have been flipped 180° about they axis. This would
lead to the transformationsb→b8 and thus to a change o
sign in Eq.~14!.

Introducing the band gap

Eg5EcvS p

l D52ub2b8u ~15!

and thep-band width

E05Ecv~0!52ub1b8u, ~16!

Eq. ~14! yields

dcv
x ~k!5

elEgE0

4Ecv
2 ~k!

. ~17!

A plot of udcv
x (k)u2 is shown in Fig. 3.
6-3
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2. Short-axis electric dipole matrix element

One obtains

dcv
y ~k!5

2e

Ecv~k! (
n,p,q

cq* ~k!vp~k!eiknl@~p2q!l 2#

3^0quHunp&

5
2el2

Ecv
2 ~k!

@b821b212b8b cos~kl !#5
el2
2

.

~18!

C. Linear susceptibility

1. Long-axis linear susceptibility

Inserting Eq.~17! into Eq. ~9! one has

xxx,PA~v!5
l 2e2Eg

2E0
2

4p«0A E
0

p/ l 1

Ecv
3 ~k!

S 1

Ecv
2 ~k!2\2V2D dk.

~19!

Since

dk

dEcv
52

2

l

Ecv

A~8bb8!22~Ecv
2 24b224b82!2

52
2

l

Ecv

A~Ecv
2 2Eg

2!~E0
22Ecv

2 !
, ~20!

Eq. ~19! can be written as the following integral overEcv :

xxx,PA~v!5
le2Eg

2E0
2

2p«0A E
Eg

E0 1

Ecv
2 ~Ecv

2 2\2V2!

3
dEcv

A~Ecv
2 2Eg

2!~E0
22Ecv

2 !
. ~21!

FIG. 3. The absolute square of the long-axis electric dipole m
trix element oftrans-polyacetylene.
07520
Evaluating Eq.~21! as shown in the Appendix, one obtain
the following result for the long-axis linear susceptibility o
trans-polyacetylene:

xxx,PA~v!5
le2

2p«0A

E0
2

Eg\2V2 F Eg
2

Eg
22\2V2

3PS Eg
22E0

2

Eg
22\2V2

,
Eg

22E0
2

Eg
2 D

2PS Eg
22E0

2

Eg
2

,
Eg

22E0
2

Eg
2 D G , ~22!

whereP(n,k) is the complete elliptic integral of the third
kind. We have adopted theMATHEMATICA definition of ellip-
tic integrals~see the Appendix!, which covers complex argu
ments, and we have usedMATHEMATICA to evaluate the ex-
pressions. It has been verified by numerical integration t
Eqs.~22! and ~21! are in agreement.

The result of Eq.~22! is the equivalent of Eq.~4.4! in Ref.
16 with the present result generalized to include dampi
however.

Plots in the vicinity of the band gap of the real pa
xxx,PA8 (v) and imaginary partxxx,PA9 (v) of Eq. ~22! are
shown in Fig. 4. The band gapEg and thep-band widthE0
are set to their experimental values13 Eg51.9 eV andE0
512.8 eV corresponding to b523.7 eV and b8
522.7 eV. The damping parameterg is by fit to the experi-
mental curves of Ref. 13 chosen as\g50.2 eV. According
to Ref. 8 the cross sectional area oftrans-polyacetylene is
A515.5 Å2. In addition to the shown resonance around t
band gapEg there is a weak resonance aroundE0 also.

Approximate susceptibility expression. For \v!E0, Eq.
~21! can be approximated as

xxx,PA~v!.
le2Eg

2E0

2p«0A E
Eg

` 1

Ecv
2 ~Ecv

2 2\2V2!

dEcv

AEcv
2 2Eg

2
,

~23!

leading to

-

FIG. 4. The real partx8 and imaginary partx9 of the long-axis
linear susceptibility of trans-polyacetylene forEg51.9 eV, E0

512.8 eV,\g50.2 eV, andA515.5 Å2.
6-4
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ANALYTIC EXPRESSIONS FOR LINEAR OPTICAL . . . PHYSICAL REVIEW B 67, 075206 ~2003!
xxx,PA~v!.
le2E0Eg

2

2p«0A\2V2
F arcsinS \V

Eg
D

\VAEg
22\2V2

2
1

Eg
2
G .

~24!

As an evaluation of this approximation, Fig. 5 shows a p
of Eq. ~24! together with a plot of Eq.~22!. The approxima-
tion is seen to be excellent in the vicinity of the band ga

Notice that comparison of Eqs.~22! and ~24! yields

PS Eg
22E0

2

Eg
22\2V2

,
Eg

22E0
2

Eg
2 D .

Eg

E0

AEg
22\2V2

\V
arcsinS \V

Eg
D ,

\v!E0 , ~25a!

PS Eg
22E0

2

Eg
2

,
Eg

22E0
2

Eg
2 D .

Eg

E0
. ~25b!

Effective mass approximation. In the effective mass ap
proximation ~EMA! the band structure is given by the fo
lowing parabolic expansion in the vicinity of the band ga

Ecv~k!5Eg1
\2k82

2m
, k85k2

p

l
, ~26!

wherem is the reduced mass given by

m[
\2

d2Ecv~k!

dk2
uk5p/ l

54
\2

l 2

Eg

E0
22Eg

2
.0.06m0 , ~27!

wherem059.109310231 kg is the electron rest mass.
Writing the electric dipole matrix element in terms of th

momentum matrix elementpcv
x (k) one has

FIG. 5. A comparison of Eqs.~24! and ~22! with parameters as
in Fig. 4.
07520
t

dcv
x ~k!5

2e

Ecv~k!
^cku~Hx2xH!uvk&

5
e\2

2m0Ecv~k!
^ckuS ]2

]x2
x2x

]2

]x2D uvk&

5
2 ie\

m0Ecv~k!
^cku

\

i

]

]x
uvk&5

2 ie\

m0Ecv~k!
pcv

x ~k!.

~28!

In the constant-momentum matrix element approximat
~CMMEA! one assumes thatpcv

x (k) is constant and equal to
its value at the band gap:

pcv
x ~k!.pcv

x S p

l D5

im0EcvS p

l D
e\

dcv
x S p

l D5 i
m0l

4\
E0 .

~29!

FIG. 6. The absolute square of the long-axis momentum ma
element oftrans-polyacetylene together with the constant used
the CMMEA.

FIG. 7. The CMMEAx̃ together with the ordinary linear sus
ceptibility x of trans-polyacetylene for Eg51.9 eV, E0

512.8 eV,\g50.2 eV, andA515.5 Å2.
6-5
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From Fig. 6, which shows a plot ofupcv
x (k)u2 together with

upcv
x (p/ l )u2, it can be seen that the CMMEA is significant

this case.
As shown in the Appendix the CMMEA linear suscep

bility x̃xx,PA(v) is obtained as

x̃xx,PA~v!

5
e2l 2A2m

16\«0A

E0
2

\2V2 F 1

AEg1\V
1

1

AEg2\V
2

2

AEg
G ,

~30!

in agreement with Ref. 24.
r
p
e
e

07520
Figure 7 shows a plot of the CMMEA linear susceptibili
x̃xx,PA(v) together with xxx,PA(v). Inspection of Fig. 7
shows thatxxx,PA(v) approaches zero faster thanx̃xx,PA(v).
This is due to the fact that in the CMMEA, the facto
1/Ecv

2 (k);1/\2v2 in the electric dipole matrix element i
treated as a constant. At\v52.9 eV, e.g., the CMMEA-
induced error is close to 50%.

Zero-band-gap limit. The polyacetylene chain is distorte
in the sense thatl l Þ l l 8 and correspondinglybÞb8. As can
be seen from Eq.~15!, this distortion causes the introductio
of a band gapEg in the band structure, makingtrans-
polyacetylene a semiconductor. This section treats the m
or less hypothetical case of an undistorted and thus met
trans-polyacetylene chain.

In the limit Eg→0, Eq. ~22! yields
lim
Eg→0

xxx,PA~v!5
le2

2p«0A

E0
2

\2V2
lim

Eg→0F E
0

1

2
Eg

\2V2
dx

S 12
E0

2

\2V2
x2DA~12x2!S 11

E0
2

Eg
2

x2D
2E

0

1

1

Eg

dx

S 11
E0

2

Eg
2

x2D 3/2

A12x2G
5

le2

2p«0A

E0
2

\2V2
lim

Eg→0F 2E0

2\2V2
E

21

1

Eg
2

E0
2

S Eg
2

E0
2

1x2D 3/2

S Eg
2

E0
2

1x2D dx

S 12
E0

2

\2V2
x2DA12x2

2
1

2E0
E

21

1

Eg
2

E0
2

S Eg
2

E0
2

1x2D 3/2

dx

A12x2G
52

le2

2p«0A

E0

\2V2
, ~31!
va-
since

lim
Eg→0

Eg
2

E0
2

S Eg
2

E0
2

1x2D 3/252d~x!, ~32!

whered(x) is the Dirac delta function. A plot of the linea
susceptibility of trans-polyacetylene in the zero-band-ga
limit is shown in Fig. 8. The present result is thus well b
haved in the metallic limit, which is in contrast to th
CMMEA case.

At this point it may be noted that Eq.~31! is in accor-
dance with the Drude theory of metals25 according to which
-

xxx~v!52
re2

«0V2^m* &
, ~33!

wherer52/Al is thep-electron density and where

^m* &5
\2

l

2pE2p/ l

p/ l d2Ev~k!

dk2
dk

FEv52
E0

2
cosS kl

2 D G

5
4p\2

E0l 2
~34!

is an effective mass resulting from an average over all
lence states.
6-6
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2. Short-axis linear susceptibility

As shown in the Appendix the following result is obtaine
for the short-axis linear susceptibility oftrans-polyacetylene:

xyy,PA~v!5
2l 2

2e2

p«0lA

1

Eg
F \2V2

Eg
22\2V2

3PS Eg
22E0

2

Eg
22\2V2

,
Eg

22E0
2

Eg
2 D 1FS Eg

22E0
2

Eg
2 D G ,

~35!

whereF(k) is the complete elliptic integral of the first kind
A plot of xyy,PA(v) is shown in Fig. 9.

3. Off-diagonal linear susceptibility

One obtains

xxy,PA~v!5xyx,PA~v!

5
6 l 2e2

p«0A

E0

Eg
22\2V2

PS Eg
22E0

2

Eg
22\2V2

,
Eg

22E0
2

Eg
2 D ,

~36!

FIG. 8. The real partx8 and imaginary partx9 of the linear
susceptibility of trans-polyacetylene in the limitEg→0 for E0

512.8 eV,\g50.2 eV, andA515.5 Å2.

FIG. 9. The real partx8 and imaginary partx9 of the short-axis
linear susceptibility of trans-polyacetylene forEg51.9 eV, E0

512.8 eV,\g50.2 eV, andA515.5 Å2.
07520
where the different signs apply to the two degenerate st
mentioned in the comment following Eq.~14! with the plus
sign applying to the configuration of Fig. 1. A plot o
xxy,PA(v) is shown in Fig. 10. Notice that the following
relation applies9:

x9xy,PA~v!56Ax9xx,PA~v!x9yy,PA~v!. ~37!

IV. POLY „para-PHENYLENE …

The poly~para-phenylene! ~PPP! chain, (C6H4)n , is
shown in Fig. 11. The structure parameters are from Ref.
Note that the adjacent benzene rings in a PPP chain
twisted approximately 26° with respect to each other.22 In
the present paper, however, this torsion is disregarded,
the PPP chain is treated as a planar molecule withp orbitals
coupling to otherp orbitals only, since this assumption sim
plifies the derivations considerably.

A. Band structure

Disregarding wave function overlaps, using the sa
value b for all Hamilton matrix elements, and includin
nearest-neighbor elements only one obtains

FIG. 11. The poly~para-phenylene! chain. The coordinates
(n,p) indicate a carbon atomp in thenth unit cell. Bonding lengths
are l 151.407 Å, l 251.388 Å, and l 351.465 Å and angles are
/(123)5121°, /(612)5118°.

FIG. 10. The real partx8 and imaginary partx9 of the off-
diagonal linear susceptibility oftrans-polyacetylene for Eg

51.9 eV, E0512.8 eV,\g50.2 eV, andA515.5 Å2.
6-7
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3
2E~k! b 0 e2 iklb 0 b

b 2E~k! b 0 0 0

0 b 2E~k! b 0 0

eiklb 0 b 2E~k! b 0

0 0 0 b 2E~k! b

b 0 0 0 b 2E~k!
4

3S r 1~k!

r 2~k!

r 3~k!

r 4~k!

r 5~k!

r 6~k!

D 5S 0

0

0

0

0

0

D . ~38!

Since thexz plane is a plane of symmetry of the PPP cha
a complete set of eigenstates can be constructed consisti
functions that are of definite parity iny. The 636 matrix
eigenvalue problem of Eq.~38! can therefore be decompose
into two smaller eigenvalue problems concerning eigenst
of either even or odd parity iny.

1. Eigenstates of even parity

In the case of eigenstates of even parity one has the
known eigenvector components

r 1 , r 25r 6 , r 35r 5 , r 4 , ~39!

leading to the following matrix eigenvalue problem:

F 2E~k! 2b 0 e2 iklb

b 2E~k! b 0

0 b 2E~k! b

eiklb 0 2b 2E~k!
G S r 1~k!

r 2~k!

r 3~k!

r 4~k!

D 5S 0

0

0

0

D .

~40!

Equation~40! has the following four nontrivial solutions:

E~k!56ubuA36A8 cosS kl

2 D , ~41!

with corresponding eigenvectors
07520
,
of

es

n-

rWe~k!5
1

2

¨

~%221!e2 ikl12

%323%

11e2 ikl

%223

%2221e2 ikl

%323%

1

%2221e2 ikl

%323%

11e2 ikl

%223

©
, ~42!

where

%5
E~k!

ubu
. ~43!

Equation~42! shows that

c152v1 , c25v2 , c352v3 . ~44!

2. Eigenstates of odd parity

In this case one has the eigenvector components

r 15r 450, r 252r 6 , r 352r 5 , ~45!

and thus the following matrix eigenvalue problem:

F2E~k! b

b 2E~k!G S r 2~k!

r 3~k!
D 5S 0

0D . ~46!

Equation~46! has the two nontrivial solutions

E~k!56ubu, ~47!

with corresponding eigenvectors

cWo~k!5
1

2 S 0

1

21

0

1

21

D , ~48a!

vW o~k!5
1

2S 0

1

1

0

21

21

D . ~48b!

The p-electron band structure is shown in Fig. 12.
6-8
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B. Electric dipole matrix element

1. Long-axis electric dipole matrix element

Making the approximation

/~123!./~612!.120°, ~49a!

l 1. l 2. l 3. l /351.42 Å, ~49b!

Eq. ~7! yields

dcv
x ~k!5

eubu l
3Ecv

Fc1* S 2v4e2 ikl1
v2

2
1

v6

2 D1c2* S 2
v1

2
1v3D

1c3* S 2v21
v4

2 D1c4* S 2
v3

2
2

v5

2
1v1eikl D

1c5* S 2v61
v4

2 D1c6* S 2
v1

2
1v5D G . ~50!

Inspection of Eq.~50! shows thatdcv
x (k) is zero for transi-

tions between states of different parity.27 Furthermore, a
more careful inspection shows thatdcv

x (k) is also zero for the
transitions 1→5 and 2→6. The only transitions contributing
to the susceptibility are thus

1→6, 2→5, 3→4, ~51!

where 1→6 and 2→5 are even-even transitions and 3→4 is
an odd-odd transition.

Even-even transitions. Using Eqs.~39! and ~44! in Eq.
~50! one obtains

dcv,ee
x ~k!5

2eubu l
3Ecv

11cos~kl !

%c
323%c

5
2el

24

%c
223

%c
2

,

%c5
Ec~k!

ubu
. ~52!

Plots ofud61
x (k)u2 andud52

x (k)u2 are shown in Figs. 13 and 14
respectively.

FIG. 12. Thep-electron band structure of poly~para-phenylene!
with the bands numbered from 1 to 6.
07520
Odd-odd transitions. Using Eqs.~48! in Eq. ~50! one ob-
tains

dcv,oo
x ~k!5

eubu l
3Ecv

5
el

6
. ~53!

2. Short-axis electric dipole matrix element

The y part of Eq.~7! yields

dcv
y ~k!5

A3eubu l
6Ecv

@c1* ~2v21v6!1c2* ~v1!1c3* ~v4!

1c4* ~2v31v5!1c5* ~2v4!1c6* ~2v1!#, ~54!

which shows that the contributing transitions are

1→4, 2→4, 3→5, 3→6, ~55!

where 1→4, 2→4 and 3→5, 3→6 are even-odd and odd
even transitions, respectively.

FIG. 13. The absolute square of the long-axis electric dip
matrix element of the 1→6 transition in poly~para-phenylene!.

FIG. 14. The absolute square of the long-axis electric dip
matrix element of the 2→5 transition in poly~para-phenylene!.
6-9
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Even-odd transitions. Inserting Eq.~48a! into Eq. ~54!
and using Eq.~42! yields

udcv,oe
y ~k!u25

e2b2l 2

12Ecv
2

uv12v4u2

5
e2b2l 2

12Ecv
2

~%v11!2~%v
222%v21!

28%v

5
e2l 2

96

~%v11!2~%v
222%v21!

2%v~12%v!2

5
e2l 2

96 F2
~%v11!2

%v~%v21!2
2

~%v11!2

%v
G . ~56!

Odd-even transitions. Inserting Eq.~48b! into Eq. ~54!
yields

udcv,eo
y ~k!u25

e2b2l 2

12Ecv
2

u2c1* 2c4* u2

5
e2l 2

96 F ~12%c!
2

%c
22

~12%c!
2

%c~11%c!
2G . ~57!

Figure 15 shows plots ofudcv
y (k)u2.

C. Linear susceptibility

1. Long-axis linear susceptibility

Inserting Eqs.~52! and ~53! into Eq. ~9! yields

FIG. 15. The absolute square of the short-axis electric dip
matrix element of poly~para-phenylene!. The solid line shows
ud41

y (k)u25ud63
y (k)u2 and the dashed line showsud42

y (k)u2

5ud53
y (k)u2.
07520
xxx,PPP~v!5
e2ubu l 2

72p«0AE0

p/ lF S %6
223

%6
2 D 2

%6

4b2%6
22\2V2

1S %5
223

%5
2 D 2

%5

4b2%5
22\2V2Gdk

1
e2l

9«0A

2ubu

4b22\2V2
. ~58!

Introducing the normalized band gap%g and the normal-
ized p-band width%0

%g5Eg /ubu52A32A8, ~59a!

%05E0 /ubu52A31A8, ~59b!

and evaluating according to the Appendix, one obtains
following for the long-axis linear susceptibility of poly~para-
phenylene!:

xxx,PPP~v!5
le2

4p«0A

E0
2

Eg\2V2
F \2V2

9E0
2

FS Eg
22E0

2

Eg
2 D

1

S Eg2
\2V2

3E0
D 2

Eg
22\2V2

PS Eg
22E0

2

Eg
22\2V2

,
Eg

22E0
2

Eg
2 D

2PS Eg
22E0

2

Eg
2

,
Eg

22E0
2

Eg
2 D G

1
le2

9«0A

2ubu

4b22\2V2
, ~60!

which can be approximated using Eqs.~25!. Plots of
x8xx,PPP(v) and x9xx,PPP(v) are shown in Fig. 16. The
band gap is set to its experimental value13 of Eg52.9 eV
corresponding tob523.5 eV andE0516.9 eV, and by a fit

le

FIG. 16. The real partx8 and imaginary partx9 of the long-axis
linear susceptibility of poly~para-phenylene! for Eg52.9 eV, \g
50.03 eV, andA521.5 Å2.
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to the experimental curves of Ref. 13 the damping param
g is chosen as\g50.03 eV. The cross-sectional area is21

A521.5 Å2. Comparison of Fig. 16 with Ref. 13 shows th
the experimental dc susceptibilityxxx,PPP8 (0) is approxi-
mately 9 whereas Eq.~60! yields xxx,PPP8 (0).3.9.
l
.
n

s
a
1

qs
e
to

ee
na
o
ly
-

.
e

n
f

07520
er 2. Short-axis linear susceptibility

As shown in the Appendix one obtains the following a
proximative expression for the imaginary part of the sho
axis linear susceptibility of poly~para-phenylene!:
x9yy,PPP~v!.
e2ubu l
3p«0A

~12z2!222~12z!2

z~11z!
Im H 1

\V F 4~ ubu2\V!2

Eg@Eg
224~ ubu2\V!2#

PS Eg
22E0

2

Eg
224~ ubu2\V!2

,
Eg

22E0
2

Eg
2 D

2p
ubu2\V

AE0
224~ ubu2\V!2AEg

224~ ubu2\V!2
2

4~ ubu1\V!2

Eg@Eg
224~ ubu1\V!2#

PS Eg
22E0

2

Eg
224~ ubu1\V!2

,
Eg

22E0
2

Eg
2 D

2p
~ ubu1\V!AEg

214~ ubu1\V!2

AE0
224~ ubu1\V!2@Eg

224~ ubu1\V!2#3/2G J ,

z55
%g

2
for \v,ubuS 11

%g

2 D ,

\v2ubu
ubu

for ubuS 11
%g

2 D<\v<ubuS 11
%0

2 D ,

%0

2
for \v.ubuS 11

%0

2 D .

~61!
q.
Eq.
Figure 17 shows a plot of Eq.~61! together with a numerica
evaluation of Eq.~A12!. The approximation made in Eq
~A13! is thus seen to be reasonable. The resonance show
Fig. 17 lies at\v'ubu(11%g/2).4.95 eV and correspond
to the 2→4 and 3→5 transitions. Another resonance lies
\v'ubu(11%0/2).11.95 eV and corresponds to the
→4 and 3→6 transitions.

V. COMPARISON

A significant advantage of the analytic expressions~22!
and ~60! @in contrast to Eqs.~21! and ~58!# is that certain
similarities are readily identified. Hence, comparison of E
~22! and ~60! shows that theEg andE0 dependences of th
P function parameters are identical. Furthermore, for pho
energies well below 3E0, the factors preceding theP inte-
grals are approximately identical. The differences betw
the two expressions are a factor of 2 and two additio
terms in the PPP expression. As for the additional term c
taining theF integral, the preceding factor is approximate
zero for\v!3E0, and the odd-transition contribution is sig
nificant for photon energies in the vicinity of 2ubu57 eV
only. The factor of 2 in favor of PA has the following origin
According to Eqs.~12! and~41! the cosine arguments of th
PA and PPP expressions forE(k) are kl and kl/2, respec-
tively, giving a factor of 2 in favor of PPP in the expressio
for the density of statesdk/dE. Furthermore, comparison o
Eqs.~17! and ~52! yields a factor of 4 in favor of PA in the
expressions forudcv

x u2:
in

t

.

n

n
l

n-

dcv,PA
x 5

el

4

EgE0

Ecv
2

, ~62a!

dcv,PPP
x 5

2el

24

Ecv
2 212b2

Ecv
2

5
2el

24

Ecv
2 23EgE0

Ecv
2

.
el

8

EgE0

Ecv
2

, \v!E0 . ~62b!

FIG. 17. The solid line shows a numerical evaluation of E
~A12! and the dashed line shows the approximated result of
~61!.
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VI. SUMMARY AND CONCLUSION

In this paper we have found the linear susceptibility te
sor of trans-polyacetylene and the long-axis linear suscep
bility and the imaginary part of the short-axis linear susc
tibility of poly ~para-phenylene!. Even though the structure
of these two conjugated polymers are widely different,
markably similar results have been obtained. Hence,
present work suggests that for photon energies around
band gap, the long-axis linear optical susceptibility of a g
eral conjugated polymer can be written as

xxx,CP~v!5K
le2

p«0A

E0
2

Eg\2V2 F Eg
2

Eg
22\2V2

3PS Eg
22E0

2

Eg
22\2V2

,
Eg

22E0
2

Eg
2 D

2PS Eg
22E0

2

Eg
2

,
Eg

22E0
2

Eg
2 D G ,

\V5\v1 i\g, ~63!

whereg is the damping parameter and whereEg , E0 , A, l,
and K are material-dependent constants. The band gapEg
and thep-band widthE0 characterize the band structure, t
cross-sectional areaA and the lattice constantl characterize
the size of the unit cell, andK is given by the density of
states and the size of the long-axis electric dipole ma
element.

It is hoped that the distinct way in which Eq.~63! depends
on the above-mentioned parameters serves to clarify the
fluence of these parameters on the optical properties of
jugated polymers.

In our future work we intend to generalize the prese
results to include excitonic and polaronic effects. This is
pected to result in a substantial improvement of the mod
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APPENDIX

Long-axis linear susceptibility of polyacetylene

Introducing the shorthand notation

a25E0
22Eg

2 , ~A1a!

x25
Ecv

2 2Eg
2

E0
22Eg

2
, ~A1b!

S5
le2E0

2Eg
2

2p«0A
, ~A1c!
07520
-
-
-

-
e
he
-

x

n-
n-

t
-
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e

one has the following for Eq.~21!:

xxx,PA~v!

5SE
0

1 1

a2x21Eg
2

1

a2x21Eg
22\2V2

1

Aa2x2~a22a2x2!

3
a2x

AEg
21a2x2

dx

5SE
0

1 1

a2x21Eg
2

1

a2x21Eg
22\2V2

3
dx

A~12x2!~Eg
21a2x2!

5
S

Eg
E

0

1S 1

Eg
2\2V22\4V4

11
a2

Eg
22\2V2

x2

2

1

Eg
2\2V2

11
a2

Eg
2

x2
D

3
1

A~12x2!S 11
a2

Eg
2

x2D
dx. ~A2!

Equation~A2! is a sum of two complete elliptic integrals o
the third kind,P(n,k), defined by

P~n,k![E
0

1 1

~12nx2!A~12x2!~12kx2!
dx, ~A3!

and Eq.~A2! can thus be written

xxx,PA~v!5
S

Eg
3\2V22Eg\4V4

PS 2
a2

Eg
22\2V2

,2
a2

Eg
2D

2
S

Eg
3\2V2

PS 2
a2

Eg
2

,2
a2

Eg
2D . ~A4!

With a andS written in full one obtains Eq.~22!.

CMMEA linear susceptibility of polyacetylene

Inserting Eqs.~26!, ~28!, and~29! into Eq.~9! one obtains
6-12



x̃xx~v!5
e2l 2E0

2 E` 1
2 2

dk8
2 2 2
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4p«0A 0
Eg1

\ k8

2m S Eg1
\ k8

2m D 2\2V2

5
e2l 2A2mE0

2

8p\«0A E
0

` 1

Eg1x

1

~Eg1x!22\2V2

dx

Ax
S x5

\2k82

2m D
5

e2l 2A2mE0
2

16p\«0A\2V2E0

`F 1/Ax

x1Eg1\V
1

1/Ax

x1Eg2\V
2

2/Ax

x1Eg
Gdx, ~A5!

which integrates to Eq.~30!.

Short-axis linear susceptibility of polyacetylene

Inserting Eq.~18! into Eq. ~9! and using the shorthand in Eqs.~A1a! and ~A1b! one obtains

xyy,PA~v!5
2l 2

2e2

p«0lA
E

0

1 1

Eg
22\2V21a2x2

AEg
21a2x2

A12x2
dx

5SE
0

1 1

Eg
22\2V21a2x2

Eg
21a2x2

A~12x2!~Eg
21a2x2!

dx S S5
2l 2

2e2

p«0lA
D

5S
Eg

Eg
22\2V2

E
0

1 1

11
a2

Eg
22\2V2

x2

1

A~12x2!S 11
a2

Eg
2

x2D
dx

1
S

Eg
E

0

1 1

11
a2

Eg
22\2V2

x2

S 11
a2

Eg
22\2V2

x2D 21

A~12x2!S 11
a2

Eg
2

x2D
dx

5S
Eg

Eg
22\2V2

PS 2
a2

Eg
22\2V2

,2
a2

Eg
2D 1

S

Eg
FFS 2

a2

Eg
2D 2PS 2

a2

Eg
22\2V2

,2
a2

Eg
2D G , ~A6!

whereF is the complete elliptic integral of the first kind:

F~k![E
0

1 1

A~12x2!~12kx2!
dx. ~A7!

Writing Eq. ~A6! in full one obtains Eq.~35!.

Off-diagonal linear susceptibility of polyacetylene

Inserting Eqs.~17! and ~18! into Eq. ~9! and using Eqs.~A1a! and ~A1b! one has

xxy,PA~v!5xyx,PA~v!5
l 2e2EgE0

p«0A E
0

1 dx

~Eg
22\2V21a2x2!A~12x2!~Eg

21a2x2!
, ~A8!

leading to Eq.~36!.

Long-axis linear susceptibility of poly„para-phenylene…

Evaluation of the first two terms in Eq.~58! yields
075206-13
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xxx,ee~v!5
e2ubu l 2

72p«0A F E
%0/2

A3 S %6
223

%6
2 D 2

%6

4b2%6
22\2V2

dk

d%6

d%61E
%g/2

A3 S %5
223

%5
2 D 2

%5

4b2%5
22\2V2

dk

d%5

d%5G
5SF E

%0/2

A3 S %6
223

%6
2 D 2

%6

4b2%6
22\2V2

2%6d%6

A~%0
2/42%6

2!~2%g
2/41%6

2!

1E
%g/2

A3 S %5
223

%5
2 D 2

%5

4b2%5
22\2V2

%5d%5

A~%0
2/42%5

2!~2%g
2/41%5

2!
G

54SE
%g/2

%0/2S %223

%
D 2 1

4b2%22\2V2

d%

A~%0
224%2!~2%g

214%2!
, S5

e2ubu l

18p«0A
. ~A9!

Introducing

a25~%0
22%g

2!b25E0
22Eg

2 , ~A10a!

b25%g
2b22\2V25Eg

22\2V2, ~A10b!

x25
4%22%g

2

%0
22%g

2
, ~A10c!

one obtains

xxx,ee~v!564ubu3SE
0

1 ~2x221!2

~a2x21Eg
2!~a2x21b2!

dx

A~12x2!~a2x21Eg
2!

5
256ubu3S

a4Eg

E
0

1F 11

S b21
a2

2
D 2

b2~Eg
22b2!S 11

a2

b2
x2D 1

S Eg
21

a2

2
D 2

Eg
2~b22Eg

2!S 11
a2

Eg
2

x2D G dx

A~12x2!S 11
a2

Eg
2

x2D
5

256ubu3S

a4Eg

F FS 2
a2

Eg
2D 1

S b21
a2

2
D 2

b2~Eg
22b2!

PS 2
a2

b2
,2

a2

Eg
2D 1

S Eg
21

a2

2
D 2

Eg
2~b22Eg

2!
PS 2

a2

Eg
2

,2
a2

Eg
2D G . ~A11!

Use of the relation (E0
21Eg

2)/253E0Eg and inclusion of the odd-odd contribution leads to Eq.~60!.

Short-axis linear susceptibility of poly„para-phenylene…

Inserting Eqs.~56! and ~57! into Eq. ~9! one obtains

xyy,PPP~v!5SE
%g/2

%0/2S ~12%2!222~12% !2

%~11% ! D 1

b2~11% !22\2V2

%d%

A~%0
224%2!~2%g

214%2!
, S5

4e2ubu l
3p«0A

. ~A12!

In the limit of zero damping, the imaginary part of the factor 1/@b2(11%)22\2V2# is proportional to ad function with
argumentb2(11%)22\2v2. Assuming that the slowly varying part is constant during differentiation one therefore ha
following for the imaginary part of Eq.~A12!:

x9yy,PPP.S
~12z2!222~12z!2

z~11z!
ImH E

%g/2

%0/2 1

b2~11% !22\2V2

%d%

A~%0
224%2!~2%g

214%2!
J ,
075206-14



z5

%g

2
for \v,ubuS 11

%g

2 D
\v2ubu

ubu
for ubuS 11

%g

2 D<\v<ubuS 11
%0

2 D ~A13!

ANALYTIC EXPRESSIONS FOR LINEAR OPTICAL . . . PHYSICAL REVIEW B 67, 075206 ~2003!
5 %0

2
for \v.ubuS 11

%0

2 D ,

where Im indicates the imaginary part. Using Eqs.~A10a!, ~A10c!, and

d652ubu62\V, ~A14!

the integral in Eq.~A13! can be written

E
0

1 1

~2ubu1Aa2x21Eg
2!224\2V2

dx

A12x2
5

1

4\VE
0

1F 1

d21Aa2x21Eg
2

2
1

d11Aa2x21Eg
2G dx

A12x2

5
1

4\V F d2
2

Eg~Eg
22d2

2 !
PS a2

2Eg
21d2

2
,2

a2

Eg
2D 2

p

2

d2

Aa21Eg
22d2

2 AEg
22d2

2

2
d1

2

Eg~Eg
22d1

2 !
PS a2

2Eg
21d1

2
,2

a2

Eg
2D 2

p

2

d1~Eg
21d1

2 !

Aa21Eg
22d1

2 ~Eg
22d1

2 !3/2G .

~A15!

Writing Eq. ~A15! in full one obtains Eq.~61!.
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