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Improving the convergence of defect calculations in supercells: Anab initio study
of the neutral silicon vacancy
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We present a systematic methodology for the accurate calculation of defect structures in supercells, which
we illustrate with a study of the neutral vacancy in silicon. This is a prototypical defect which has been studied
extensively usingab initio methods, yet remarkably there is still no consensus about the energy or structure of
this defect, or even whether the nearest-neighbor atoms relax inwards or outwards. In this paper, we show that
the differences between previous calculations can be attributed to supercell convergence errors, and we dem-
onstrate how to systematically reduce each such source of error. The various sources of scatter in previous
theoretical studies are discussed and a different effect, that of supercell symmetry, is identified. It is shown that
a consistent treatment of this effect is crucial in understanding the systematic effects of increasing the supercell
size. This work therefore also presents the best convergedab initio study of the neutral silicon vacancy to date.
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I. INTRODUCTION

There has been much interest over the past ten yea
the calculation of the properties of defects in solids. Vario
theoretical techniques can be used, but two of the most c
mon areab initio electronic structure calculations of the d
fect in either a periodic supercell or a cluster. Both of the
techniques have advantages and disadvantages. Pe
boundary conditions are a natural representation of a cry
but the introduction of a defect into the supercell results
the calculation of a periodic array of defects and not an i
lated defect. A cluster calculation might therefore seem m
appropriate, but this introduces different problems due
finite-size effects and the possibility of interaction betwe
the defect and the surface of the cluster. In this paper, we
focus exclusively on the periodic supercell technique.

There are various technical problems that must be o
come before a supercell calculation becomes an accurate
resentation of an isolated defect in bulk material. Many
these are already known, but not all are widely apprecia
It is the aim of this paper to synthesize ‘‘best practice’’ into
systematic approach to the study of defects in periodic
percells and show how best to overcome all these proble
As an example of this methodology, we shall consider
neutral vacancy in silicon, which is perhaps the simplest
ample of a point defect in a crystal. It is certainly one th
has been often studied experimentally and theoretica
However, whilst the experimental picture is reasonably cle
there are some properties of the defect, such as its l
volume, which cannot be extracted from experimental d
and for which reliable theoretical values would be very mu
welcomed. Unfortunately, there is some confusion about
results of theoretical studies, which has prevented defini
statements being made about these properties. Recent
has achieved some degree of consensus, but there is still
of scatter in the results which is not well understood. T
aim of this work is to show how a systematic approach to
0163-1829/2003/67~7!/075204~11!/$20.00 67 0752
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study of defects can explain the origin of the scatter in ear
works on the neutral silicon vacancy, although the appro
can obviously be applied to the study of any defect. By
ducing all the systematic errors to an acceptable level us
this methodology, we therefore provide the most highly co
vergedab initio study of the neutral silicon vacancy to dat

We shall perform all our calculations using densit
functional theory~DFT! ~see Ref. 1 for a review!, but the
general features of our methodology will be applicable
any ab initio simulation technique that uses periodic sup
cells. In this particular case, we used plane-wa
pseudopotential-based DFT, which has been shown in m
previous studies to be a reliable technique for calculat
many structural properties—typically agreeing with expe
ment to at least 1% accuracy~see Ref. 2 for a review of
total-energy calculations using this technique!.

More accurate treatments of the electronic structure ex
such as quantum Monte Carlo~QMC! ~see Ref. 3 for a re-
view!, but these are much more expensive to apply and
not yet routinely used for such calculations. One reason
this is that whilst QMC is currently ‘‘state of the art’’ in
terms of its accuracy in calculating the electronic structure
is unable to calculate forces and is therefore not a pract
methodology for structure determination. There is theref
still a role for DFT calculations to determine structural pro
erties, as well as being a source of trial input wave functio
to QMC calculations at the optimal structure.

Ultimately, the results obtained will be limited by the a
proximations inherent in theab initio technique used. In the
case of the neutral silicon vacancy calculation detai
herein, this will include effects due to the choice of pseud
potential, choice of exchange-correlation functional, and
neglect of zero-point motion and thermal effects. However
these systematic effects are to be quantified, it is impor
that they are not obscured by random noise arising fr
other sources of error that can be removed, such as the
ous kinds of supercell convergence error that are discusse
©2003 The American Physical Society04-1
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this paper. One simple way to estimate these effects wo
be to compare the DFT and QMC energies at the same de
structure~e.g., the DFT optimal structure!. However, the su-
percell convergence errors discussed herein will still aff
the QMC calculation, and so need to be understood
minimized before the comparison of two differentab initio
methodologies becomes meaningful. The aim of this pape
to show how to systematically reduce the different super
convergence errors independent of theab initio methodology
chosen.

This paper is structured as follows: in Sec. II, we w
review what is already known about the vacancy in silico
in Sec. III we will explain the key features of our methodo
ogy in some detail, illustrated with the neutral silicon v
cancy calculation. We will report our results for the neut
silicon vacancy in Sec. IV, and will briefly summarize in Se
V.

II. REVIEW

The vacancy in silicon is a technologically important d
fect, as it is known to play an important role in both se
diffusion and impurity diffusion, and hence it is essential
have a detailed understanding of both the electronic
ionic structure of the defect. The vacancy also occurs i
variety of charge states, conventionally referred to asV21,
V1, V0, V2, andV22. It is known that this system show
the negative-Ueffect, that is,V21 spontaneously convert
directly toV0. For simplicity, this theoretical work will only
focus on the neutral vacancy,V0, although in some experi
mental techniques it is the charged vacancies that are a
ally studied.

A. Experimental studies

The experimental studies have been reviewed
Watkins.4 In summary, electron-paramagnetic-resonan
studies can be used to give the symmetry and spatial di
bution of the highest unpaired localized electron state. T
has shown that the symmetry of the single neutral vaca
V0 is D2d .5 This is understood to be due to the four dangli
bonds, created by the removal of a silicon atom from a p
fect lattice, hybridizing with each other to form two ne
levels. These are theA1 singlet which lies deep in the bul
valence bands and theT2 triplet which lies in the energy gap
The neutral vacancy has only one of the gap states occup
which results in a Jahn-Teller distortion, with the ionic rela
ation lowering theTd-point symmetry of the perfect lattice t
that observed in the experiments.

Electron-nuclear double resonance has also been use
study the charged vacancies,6,7 which in general have lowe
symmetry than the neutral vacancy considered here. D
level transient spectroscopy has also been used to give in
mation about the ionization levels associated with cha
state changes.8–11 Positron lifetime measurements have a
given information about the defect volume associated w
charge state changes.12,13 However, none of these technique
gives information on the defect volume or formation ener
of the V0 state. This has led to some confusion, with so
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theoretical studies claiming an outwards relaxation of
atoms surrounding the vacancy, and others an inwards re
ation.

B. Theoretical studies

There have been numerous theoretical studies of the
con vacancy using different theoretical techniques. For
ample, Green’s-function calculations14–16 predicted an out-
wards relaxation of the vacancy, whilst more rece
tight-binding17,18 andab initio studies19–25have proposed an
inwards relaxation. Recentab initio cluster calculations26

have suggested an inwards-relaxedD2d symmetry structure,
whereas successiveab initio supercell calculations using dif
ferent supercell sizes~from 32 to 216 atoms! and different
special k-point sampling techniques have yielded a bro
spread of formation energies~from 2.6 eV to 4.6 eV! and
symmetries~including D2d , C3v , C2v , andT2d), including
some outwards relaxations~although the majority favor in-
wards relaxation!. In particular, Puskaet al.25 thoroughly re-
viewed the previous theoretical studies and also performe
sequence ofab initio supercell calculations using differen
system sizes and sampling techniques. They found a l
spread in possible answers, which they attributed to the
ergy dispersion of the vacancy-induced deep levels, be
therefore particularly sensitive to details of the Brilloui
zone sampling scheme used.

Three key quantities of interest are the following:
~1! The vacancy formation energy, which for a neutr

vacancy in a supercell is defined as

EV5EN212S N21

N DEN , ~1!

whereEN is the total energy of the defect-freeN atom su-
percell, etc.

~2! The symmetry of the defect.
~3! The volume of the defect~actually the tetrahedron

formed by the positions of the four atomsr1 , . . . ,r4 sur-
rounding the vacancy!,

V5
1

6
u~r42r1!•~r22r1!3~r32r1!u. ~2!

III. METHOD

As an illustration of the methodology, we perform wh
we believe to be the best convergedab initio calculation of
the neutral silicon vacancy yet undertaken. As discusse
Sec. II, this is not the first time such a calculation has be
attempted. However, there has been a lot of scatter in
theoretical calculations, even within the same paper in so
instances. We seek to explain the origin of this scatter, an
so doing, produce a definitive answer for the neutral silic
vacancy formation energy and the structure of the lattice
laxation around the vacancy. Our calculations are perform
with the CASTEP @Ref. 27# code using the Perdew-Wan
~PW91! @Ref. 28# generalized gradient approximation~GGA!
for the exchange-correlation functional~which has been
shown in many previous defect studies to result in ve
4-2
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IMPROVING THE CONVERGENCE OF DEFECT . . . PHYSICAL REVIEW B 67, 075204 ~2003!
accurate structures! with a plane-wave basis set. We use
Vanderbilt ultrasoft pseudopotential29 for silicon which has
been widely used and tested previously, e.g., it gives
cubic lattice constant as 5.440 Å which compares very
vorably to the experimental value of 5.429 Å (10.2%). For
simplicity, we have therefore fixed the lattice constants at
value of the experimental lattice constant in all calculatio

As a measure of the reliability of theab initio scheme
used, we repeated certain calculations using the sameCASTEP

code but with three different exchange-correlati
functionals—the PW91 GGA as mentioned above, and a
the Ceperley-Alder30 local-density approximation~LDA ! and
the Perdew-Burke-Ernzerhof~PBE! ~Ref. 31! GGA. The
same calculations were also repeated with an older no
conserving pseudopotential32–34for silicon that has been par
of the standardCASTEP distribution for many years and ha
been widely tested.

In the following sections, we will describe our methodo
ogy and illustrate it with the neutral silicon vacancy calcu
tion for definiteness. Most of what follows can be applied
any supercell calculation, but where there are parts of
discussion which are specific to silicon, these will be clea
highlighted.

Note that it is an often overlooked fact that, as we shall
relaxing the atoms around the defect using forces deri
from an ab initio calculation, we must ensure that theab
initio calculation is fully convergedbeforewe start to con-
sider any atomic relaxation. That is, we must separately c
verge the electronic structure at fixed atomic positions,
fore we can have any confidence in the forces on the at
being correct. Only then is it appropriate to attempt to co
verge the atomic relaxation around the defect.

A. Basis-set size convergence

It is well known that the variational principle ensures th
the total ground-state energy of a system will monotonica
decrease as the size of the basis set is increased. With
basis sets, it is difficult to systematically improve the qual
of the basis set, however, with a plane-wave basis set as
here~which is often used with supercell calculations! this is
not a problem. We can associate an energy with each pl
wave basis function (ufg&;eig•r, whereg is a reciprocal-
space lattice vector!, and so by using all possible basis fun
tions up to some maximum energyEcut we may characterize
the size of the plane-wave basis set used. Therefore, the
set may be systematically improved by simply increas
Ecut with a corresponding decrease in the total energy of
system. It is a feature of plane-wave basis sets that typic
very large basis-set sizes are required to achieve a reaso
tolerance for the convergence of the total energy of a syst
e.g., 1 meV/atom. Therefore, the pseudopotential appr
mation29,32–34is invariably used which enables us to redu
the number of electrons in the problem, and also to red
the size of the basis set used without affecting the accu
of the treatment of the electrons outside the core of the
oms.

It is also well known that whilst the total energy of
given system might converge slowly with increasing bas
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set size, the energy difference between two similar system
much more rapidly convergent due to the cancellation
systematic errors. This is often used to discriminate betw
two competing atomic arrangements with the same atom
the same supercell. However, in this work, we shall consi
not the energy difference, but the defect formation ener
Note that the variational principle does not apply to su
formation energies, and so we are no longer guarant
monotonic convergence, although this is often seen in p
tice. We therefore start the calculation by converging
unrelaxed defect formation energy as a function of basis
size, for a reasonably small system. Everything else is k
fixed, e.g., supercell size, sampling of reciprocal space
the Brillouin-zone integration, pseudopotentials, etc. In
case of the silicon vacancy, we use the vacancy forma
energy as defined in Eq.~1!. This necessitates calculating th
total energy of the vacancy-free system (N atoms!, and the
vacancy system (N21 atoms! which we shall perform with
all atoms fixed at the perfect lattice coordinates. We sh
then use the same cutoff energy~basis-set size! for all sub-
sequent calculations unless otherwise noted.

For the neutral silicon vacancy, we compare the 16-silic
atom supercell with the 15-atom supercell with vacancy.
atoms are kept at the crystal positions with no relaxati
The Brillouin-zone integration is performed using a 232
32 Monkhorst-Pack~MP! grid. For this initial part of the
calculation, we work with a vacancy formation energy co
vergence tolerance of 0.01 eV and it is readily shown t
with the ultrasoft pseudopotential used, this correspond
Ecut;120 eV.

B. Brillouin-zone integration convergence

We perform the Brillouin-zone integration using th
method of specialk points. Due to the localized nature of
defect in a~potentially large! supercell, it is important to
have a fully converged integration here. This is the basis
the explanation for the difficulty of the calculation as give
by Puskaet al.25 If we use the simplest Monkhorst-Pac
sampling scheme,35

k5
2p

a S qx

2qx
max

,
qy

2qy
max

,
qz

2qz
maxD ~3!

with

qx5H 0,62, . . . ,6~qx
max21!, qx

maxodd

61,63, . . . ,6~qx
max21!, qx

maxeven,

etc., then we may easily converge the defect formation
ergy, at fixed basis-set size and system size, as a functio
the density of sample points in reciprocal space.

In order to maximize the separation of the defect from
periodic image, we choose supercells that have the s
nearest-neighbor defect-defect distances and sample
formly in each direction in reciprocal space, and soqx

max

5qy
max5qz

max5q. We may therefore systematically improv
the convergence of the Brillouin-zone integration by simp
increasingq. The basic number of special points in the grid
4-3
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M. I. J. PROBERT AND M. C. PAYNE PHYSICAL REVIEW B67, 075204 ~2003!
thenq3. In order to minimize the number of special points
a given value ofq we apply the symmetry operations of th
supercell~not the point-group symmetry of the defect-fre
crystal lattice!, and therefore work with a weighted set
symmetrized points. The reduction in the number of poi
depends on the symmetry of the supercell and the value oq.

However, this will in general lead to very slow conve
gence, with marked oscillations in both the total energy a
the defect energy asq is increased. This gives rise to th
popular belief that ‘‘oddq grids are less efficient than th
corresponding evenq11 grid.’’ However, this is a failure of
the implementation of the grid, not the general Monkhor
Pack method. This can be seen by calculating the radiu
exact integration in reciprocal space for different values oq
for some of the most common supercells—simple cubic~sc!,
body-centered cubic~bcc!, and face-centered cubic~fcc! as
seen in Table I. For an ideally efficient sampling scheme,
integration should be exact out to a radius given byR5q,
but it can be seen from Table I that this is only achieved
all q for the simple-cubic supercell, and for even-valuedq for
the face-centered cubic supercell.

This flaw was overcome in the basic Monkhorst-Pa
scheme by the possible inclusion of a rigid offsetk0 of the
sampling grid from the origin of reciprocal space. This offs
is often ignored, but is essential to achieve the full efficien
of the scheme. The use of the optimal offset for a giv
supercell symmetry and value ofq removes the oscillations
in the total energy and consequently accelerates the con
gence of the Brillouin-zone integration. A comprehensive
of these optimal offsets was derived by Moreno and Sole36

TABLE I. Effect of increasing the Monkhorst-Pack grid param
eterq on the number of symmetrized points in the grid (Ns) and the
~squared! radius of exact integration (R2) in units of reciprocal-
lattice vectors, for three different supercell symmetries.

Monkhorst-Pack Simple cubic
Body-centered

cubic
Face-centered

cubic

q Ns R2 Ns R2 Ns R2

1 1 1.0 1 0.75 1 0.5
2 1 4.0 2 3.0 2 4.0
3 4 9.0 4 6.75 4 4.5
4 4 16.0 6 12.0 10 16.0
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~and independently by M.I.J.P.! but the significance of their
work has not been widely appreciated. For completeness
optimal offsets for the supercells considered in this work
shown in Table II.

We find that the use of a Monkhorst-Pack grid with t
optimal offset is more widely applicable and technically s
perior to other schemes proposed, such as Ref. 37. Using
approach it is now possible to approach convergence of
Brillouin-zone integration in a consistent manner for a
value ofq required. Note, that for certain supercells, such
body-centered cubic, the use of offsets is beneficial for
values ofq, whereas for others, such as face-centered cu
it is only beneficial for odd-valuedq.

When comparing the quality of the Brillouin-zone inte
gration for two different sized or different shaped systems
is not the value ofq or the number of special points tha
should be compared, but rather the density of symme
unfolded special points in reciprocal space. Note that t
comparison will be simplest for two different systems if
each case the sampling scheme is equally efficient~e.g., R
5q). Therefore, we recommend the use of offsets at
stages in this methodology when calculating the converge
of the electronic structure.

Therefore, for the neutral silicon vacancy, we conver
the Brillouin-zone sampling using the~16/15!-atom fcc su-
percells andEcut5120 eV. As shown in Table II, there is n
advantage in using offsets with even-q grids and fcc super-
cells but there is a difference for odd-q grids. We therefore
perform the odd-q grid calculations twice, once with an
once without offsets, and the results of increasingq on the
vacancy formation energy, both with and without offsets,
shown in Fig. 1. There is clearly a dramatic improvement
q51 where using an offset shifts the sampling away fro
the G point, but it may not appear too dramatic for oth
values ofq ~although it may be hard to see from the figure,
fact the convergence ofq53 with respect toq54 is signifi-
cantly improved from20.061 eV to 20.005 eV). More-
over, Table II suggests that the benefits of using offsets
be most marked with bcc supercells. Therefore, for illust
tion, we also repeat the Brillouin-zone convergence calcu
tion with the ~32/31!-atom bcc supercells andEcut
5120 eV, again both with and without offsets. The resu
are shown as the insert to Fig. 1, and show a marked
provement in convergence with offsets. If we again appl
r

c

TABLE II. Effect of optimal offsetk0 on maximizing the efficiency of the Brillouin-zone integration fo
three different supercell symmetries with increasing values of the Monkhorst-Pack grid parameterq. The
number of symmetrized points in the grid (Ns) and the~squared! radius of exact integration (R2) in units of
reciprocal-lattice vectors is given for each optimal offset.

Monkhorst-Pack Simple cubic Body-centered cubic Face-centered cubi

q k0 Ns R2 k0 Ns R2 k0 Ns R2

1 ( 1
4 , 1

4 , 1
4 ) 1 4.0 (0,1

4 , 1
2 ) 1 2.0 (0,1

2 , 1
2 ) 1 1.0

2 ( 1
8 , 1

8 , 1
8 ) 3 16.0 ( 1

4 , 1
4 , 1

4 ) 2 4.0 (0,0,0) 2 4.0

3 ( 1
4 ,0,12 ) 8 18.0 ( 1

2 , 1
2 , 1

2 ) 5 9.0 ( 1
2 , 1

2 , 1
2 ) 6 9.0

4 ( 1
16, 1

16 , 1
16) 20 64.0 ( 1

8 , 1
8 , 1

8 ) 8 16.0 (0,0,0) 10 16.0
4-4
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IMPROVING THE CONVERGENCE OF DEFECT . . . PHYSICAL REVIEW B 67, 075204 ~2003!
vacancy formation energy convergence tolerance of 0.01
it can be seen that this corresponds to a Brillouin-zone s
pling density of<0.033 Å21. This was therefore used a
our sampling density in all subsequent calculations.

C. Supercell finite-size convergence

Having fully converged the electronic structure calcu
tion for the unrelaxed defect in a given size system, we
proceed to converge the effects of the finite-size superc
This is the key difference between the supercell and the c
ter approaches. With a cluster, we need to minimize the
teraction between the defect and the surface of the clu
but here, with a supercell, we need to minimize the inter
tion between the defect and its own periodic images. He
the requirement to converge the supercell size. For insu
ciently large supercells, there will be an appreciable over
between the defect and its own images, resulting in an e
in the overall charge density of the system, and hence
total energy and the forces on the atoms. The obvious s
tion to this is to repeat the defect formation energy calcu
tion in different sized supercells, using an equivalent siz
basis set~e.g., same plane-wave cutoff energy! and same
Brillouin-zone sampling density.

For the neutral silicon vacancy therefore, we conside
all possible sc, bcc, and fcc supercells with between 2
256 atoms in the vacancy-free system. The actual valueq
used and the corresponding sampling density are sum
rized in Table III. The unrelaxed vacancy formation ener
at full Brillouin-zone sampling convergence, for each diffe
ent supercell is plotted in Fig. 2~a! as a function of the num
ber of atoms in the corresponding vacancy-free system. T
is a common way of presenting such information, yet t
figure appears confusing, with no obvious trend apparen
the convergence of the vacancy formation energy with s
tem size. However, separating the different points accord
to the supercell symmetry suggests that there may be a tr
but that this is not the best way to present such data. Th

FIG. 1. Convergence of unrelaxed vacancy formation ene
with respect to Brillouin-zone sampling, for~16/15!-atom system at
Ecut5120 eV. The inset shows the corresponding convergence
the ~32/31!-atom system.
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because if we simply order the different possible superc
in terms of the total number of atoms~or equivalently, the
defect-image distance!, we will be misled as thedefect den-
sity will be changing in a nonmonotonic manner. Instea
Fig. 2~b! plots the vacancy formation energy against the
fect density, which clearly separates out the different sup
cell symmetries. This now eliminates the apparent scatte
Fig. 2~a! and instead three clear monotonic trends are e
dent, one for each supercell symmetry. These trends all
pear to converge to the same value,.4.40 eV, in the limit of
infinite supercell size~defect density is equal to 0! as would
be expected. This therefore explains a common source o
scatter seen between and within the different theoretical s
ies of the silicon vacancy to date. This effect will obvious
also apply to any other supercell defect study.

What then is the origin of the different rates of conve
gence of the defect formation energy for different symme
supercells? A simple tight-binding model of nearest-neigh
interactions@with hopping matrix elementg(a), wherea is
the separation of nearest neighbors# is given in many stan-
dard texts, e.g., Ref. 38. In this generic model, a band will
formed with a characteristic bandwidth of 12g for sc super-
cells, and 16g for bcc or fcc supercells with the same defe
separation. This can be attributed to the effects of geom
as well as the different number of nearest neighbors in
different supercells. It might therefore be expected that
supercells were to be preferred in general for defect calc
tions as they have the least defect-defect interaction~smallest
bandwidth! at a given defect separation.

Indeed, some evidence for this is seen in Fig. 2~b!, where
it can be seen that sc supercells are converging at a faste
than fcc ones. Indeed, it appears that the~64/63!-atom sc
supercell gives a comparable representation of an isol
unrelaxed vacancy to the~250/249!-atom fcc supercell,
which can be attributed in part to the number of neare
neighbor defects. However, this model does not explain w
~for the neutral silicon vacancy! the ~32/31!-atom bcc super-
cell gives an even better representation~i.e., the energy is
closer to the zero-density limit! than either the~64/63!-atom

TABLE III. List of all supercells considered with correspondin
supercell symmetry. Also listed is the converged value ofq
~Monkhorst-Pack grid parameter! used in the calculation, the
Monkhorst-Pack grid offsetk0 used, and the correspondin
Brillouin-zone ~BZ! sampling density.

N Symmetry q k0 BZ density (Å21)

2 fcc 8 (0,0,0) 0.040
8 sc 6 (0,0,0) 0.031
16 fcc 4 (0,0,0) 0.040
32 bcc 4 ( 1

8 , 1
8 , 1

8 ) 0.033

54 fcc 3 ( 1
2 , 1

2 , 1
2 ) 0.036

64 sc 3 (0,0,0) 0.031
128 fcc 2 (0,0,0) 0.040
216 sc 2 (0,0,0) 0.031
250 fcc 2 (0,0,0) 0.032
256 bcc 2 ( 1

4 , 1
4 , 1

4 ) 0.033
y

or
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sc supercell or the~250/249!-atom fcc supercell, which im-
plies that this simple tight-binding model is of limited us
fulness.

There must therefore be a further consequence of the
percell symmetry that has not been considered so far. Th

FIG. 2. Variation of unrelaxed defect formation energy at co
stant basis-set size and Brillouin-zone sampling.~a! shows the
variation with system size, and~b! shows the variation with density
The different symmetry supercells are clearly separated in~b!.
07520
u-
is

that the defect-defect interaction will have the directional
of the supercell which may or may not be commensur
with the underlying crystal symmetry. This causes a per
bation in the electronic charge density that is another fin
size effect which must vanish in the limit of a sufficient
large supercell. A rigorous analysis of this would involv
calculating the density-density response function~see, e.g.,
Ref. 39!. However, the effect becomes apparent if we sim
plot the charge-density difference between the unrelaxed
cancy and vacancy-free systems.

For the case of the neutral silicon vacancy, such plots
shown for the~216/215!-atom sc supercell in Fig. 3, th
~250/249!-atom fcc supercell in Fig. 4, and the~256/255!-
atom bcc supercells in Fig. 5. In the sc supercell we see
there is a localized charge-density difference around the
cancy, and then a longer-ranged component which spans
supercell that is clearly aligned with thê100& directions.
Similarly, in the fcc supercell the long-ranged componen
along thê 110& directions and in the bcc supercell it is alon
the ^111& directions. The normal silicon-silicon bonds are
^111& directions which then explains why the bcc supercel
superior for silicon defects—the spurious charge moveme
caused by the finite supercell size effect are commensu
with the underlying charge density of the system and he
make little difference to the total energy. This is not the ca
in the fcc and sc supercells where it can be seen that t
have been spurious charge movements in the interstitia
gions where the charge density is naturally lower, wh
therefore has a more significant effect. This clearly sho
that it is not sufficient to simply increase the size of t
system to get a ‘‘better’’ answer, which contributes to t
confusion in some earlier studies of the silicon vacancy. T
directionality effect of the supercell symmetry will also a
ply in general to any other defect system, although the
tailed considerations will, of course, vary.

Unfortunately, there are only two bcc supercells in t
range 2–256 atoms~32 and 256 as in Table III!, which would
therefore seem to limit our ability to make judgments abo
the efficacy of bcc supercells for silicon defects. As a furth
test, the calculation of the unrelaxed neutral silicon vaca
was then repeated for the next bcc supercell, which co
sponds to 864 atoms with a defect density of 0.000 058 Å23.
Again, the same basis-set cutoff, Brillouin-zone sampl
density and offset were used. The corresponding unrela

-

ells.
FIG. 3. ~Color online! Charge-density difference isosurface atr50.002 eV/Å3 between the unrelaxed 216- and 215-atom sc superc
Leftmost figure is viewed along the@001# direction, central figure is along the@011# direction, and rightmost figure is along the@111#
direction.
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FIG. 4. ~Color online! Charge density difference iso-surface atr50.002 eV/Å3 between the unrelaxed 250- and 249-atom fcc superc
Leftmost figure is viewed along the@001# direction, central figure is along the@011# direction, and rightmost figure is along the@111#
direction.
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defect formation energy was 4.358 eV. This confirmed
prediction about the infinite supercell size limit, and sho
that the 256-atom bcc supercell has converged~to better than
0.002 eV! the electronic structure of the unrelaxed neut
silicon vacancy with respect to finite supercell size.

In the case of charged defects, the effects of the finite-
supercell will be even more marked due to the long-ran
nature of the Coulomb interaction. Specialized ene
correction schemes have been introduced@e.g.,
Makov-Payne40#, which accelerate the convergence of t
total energy with increasing supercell size.

D. Hellmann-Feynman forces convergence

Having finally fully converged all the necessary factors
the unrelaxed defect formation energy, we can now be c
fident that we have an accurate representation of the gro
state electronic wave function. We may now use
Hellmann-Feynman theorem to calculate the forces on
atoms and hence start to relax the defect. However, it m
be noted that we converged the basis-set size using an en
difference calculation. The variational principle assures
that the ground-state energy is correct to second-order e
in the ground-state wave function, but the forces will only
correct to first-order errors. Also, as noted previously,
energy difference will converge more rapidly than the to
energy.

The advantage of using the defect formation energy cr
rion in the early stages of this methodology is that it p
07520
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duces a smaller basis set which makes the other~unrelaxed
structure! convergence calculations rapid. This can produ
significant savings, as to be sure of convergence it is o
necessary to go to one size of calculation beyond tha
which convergence first appears, as, for example, when c
verging the finite-size supercell effect in the neutral silic
vacancy where an 864-atom bcc supercell was evaluate

In order to produce accurate forces therefore, it is nec
sary to converge the basis-set size with respect to the fo
and so we choose the rms force of the unrelaxed defect s
ture as a simple scalar parameter to converge. This additi
convergence is especially important for defect calculatio
as it is often found that the energy surface around a defe
very flat, and so particularly prone to errors in the forces d
to the use of underconverged basis sets. This sort of e
can be easily detected by monitoring the direction of
forces on each atom surrounding the defect as the basi
size is increased. Any tendency for this direction to chan
significantly is a clear warning that there are serious syst
atic errors in the forces due to basis-set incompleteness

An example calculation for the case of the neutral silic
vacancy in the~32/31!-atom bcc supercell is shown in Fig. 6
where it can be seen that whilst from an energy calculatio
appears thatEcut5120 eV and q52 is reasonably con-
verged, this is not sufficient for the forces. Applying a crit
rion that the rms force must be converged to 0.005 eV
~which is often used as the convergence tolerance in h
quality ab initio structural relaxations!, we see thatEcut
ells.
FIG. 5. ~Color online! Charge-density difference isosurface atr50.002 eV/Å3 between the unrelaxed 256- and 255-atom bcc superc
Leftmost figure is viewed along the@001# direction, central figure is along the@011# direction, and rightmost figure is along the@111#
direction.
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M. I. J. PROBERT AND M. C. PAYNE PHYSICAL REVIEW B67, 075204 ~2003!
5160 eV must be used, and that a Brillouin-zone sampl
of q54 ~corresponding to a density of 0.033 Å21) must be
used.

E. Atomic relaxation convergence

Finally, we are now ready to relax the atomic structu
around the defect, using the forces derived from the syst
atically convergedab initio calculation. We move the atom
according to some minimization algorithm, and stop wh
we have simultaneously satisfied the various relaxation
teria to prescribed tolerances: For example convergenc
the total energy, the rms force, and the rms displacemen
the atoms between successive iterations. If we had bee
multaneously optimizing the lattice parameters usingab ini-
tio stresses, then it would be appropriate to also check
convergence of the stress on the supercell.

Note that we are often starting the atomic relaxation fr
a state of relatively high symmetry. It may therefore be n
essary to perturb each atom by a small amount from
symmetry sites at the start of the calculation in order to
sure that symmetry breaking is possible in the relaxat
process. Also, because of the possibility of local minima
the structure minimization, the calculation should be
started several times from different initial arrangements
atoms around the defect~e.g., random symmetry-breakin
displacements, directed relaxation inwards, directed re
ation outwards, etc.! in order to be sure that the minimize
structure found is indeed the global minimum.

Note that proving that any particular minimum found
indeed the global minimum is a difficult matter. More a

FIG. 6. Variation of rms force in 31-atom silicon cell with re
spect to basis-set size at two different Brillouin-zone sampling d
sities, corresponding to different values of the Monkhorst-Pack g
parameterq. The inset figure shows the corresponding difference
the total energy for the two different values ofq. This clearly shows
that whilst it might appear that the total energy is adequately c
verged atEcut5120 eV andq52, this is not sufficient for the
forces. In all subsequent relaxation calculations, a Brillouin-zo
sampling density equivalent to that corresponding toq54 in this
calculation, andEcut5160 eV was used.
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vanced techniques, such as simulated annealing41 or ab initio
molecular dynamics,42 are better adapted to exploring th
energy surface but at much increased computational cos
practice, if several independent starting configurations
converge to the same answer, then that is usually sufficien
have a reasonable amount of confidence that the struc
found is ~a close approximation to! the global minimum.

There is also a popular belief that it is more efficient
relax a structure using a small basis set to get an approxim
structure and then to increase the size of the basis set
there is no further change, than to use a sufficiently la
basis set throughout. The neutral vacancy in silicon is
counterexample to that belief. If the defect structure is
laxed using too small a basis set~e.g.,Ecut5120 eV), then
the systematic errors in the forces cause the vacancy to r
outwards. This outwards relaxation is remarkably robu
with respect to different perturbations of the surrounding
oms prior to starting the relaxation, including gross inwar
and outwards distortions, and the final state is also loc
stable with respect to subsequent increases in the basi
size proving that it is a local minimum. However, if th
vacancy is relaxed using a larger basis set (Ecut>160 eV) at
all times, then the resulting relaxation isinwards which il-
lustrates the importance of monitoring the direction of t
forces on the unrelaxed atoms surrounding the defect as
basis-set size is increased, as suggested above. This inw
relaxation is also robust with respect to a range of differ
starting configurations, and the final minimized structure
lower in energy than the outwards-relaxed structure at
same basis-set size.

This might appear confusing at first, as the local potent
energy surface around each atom should be quadratic
silicon at low temperatures is a harmonic crystal to a go
approximation—hence the equilibrium geometry ought to
reasonably insensitive to the detail of the calculation. Ho
ever, this result implies that changing the basis-set size~i.e.,
reducing the systematic errors in the forces! causes a signifi-
cant change in the gradient of the potential-energy surf
around the unrelaxed defect, i.e., the forces as seen in Fi
So it is actually the boundaries of the different basins
attraction for the relaxation minimizer which are bein
moved.

This therefore explains another common source of
scatter seen between the different theoretical studies of
neutral silicon vacancy to date, and shows that the only w
to relax the defect reliably is to use the larger basis-set siz
all stages in the relaxation to reduce the systematic error
the forces, and to check that the resulting configurat
found is the global and not just a local minimum.

When comparing the energetics of two different stru
tures, it should be borne in mind that experiments are usu
conducted at finite temperature, whereas energy minim
tion strategies usually correspond to zero temperature. T
means that a true comparison should be based upon
energies and not just total energies. The entropy differenc
the free energy difference between the structures can be
tained by various techniques, such as thermodynamic i
gration using constrained molecular dynamics~e.g., see Ref.
43 for details!. Another complication that arises with finit
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IMPROVING THE CONVERGENCE OF DEFECT . . . PHYSICAL REVIEW B 67, 075204 ~2003!
temperature is that the presence of nearby local minima
produce significant temperature dependencies in many ph
cal properties, whereupon it then becomes important to kn
the location of these other minima and the saddle po
separating them from the global minimum.

F. Defect structure convergence

However, even at this stage, there is still one more c
vergence criterion to meet. The atomic relaxation around
defect may be quite long ranged, and the pattern of re
ations must be contained within the supercell. That is, if
consider successive shells of atoms around the defect~i.e., all
those atoms at a common distance from the defect in
unrelaxed structure!, then there should be negligible rela
ation for atoms beyond a certain distance from the def
and certainly before the largest shell allowed by the perio
boundary conditions~i.e., half the defect-image separation!.

One way to provide an upper bound on the relaxat
energy is to perform the atomic relaxation calculation
stages, that is, in the first calculation to only relax tho
atoms in the first shell around the defect, and then in suc
sive calculations to increase the number of shells allowe
relax, up to the largest allowed shell. Each successive ca
lation will then provide an improved estimate of the rela
ation energy, and allow a simple determination as to whe
or not the relaxation has been properly contained within
finite-size supercell. This approach is known as ‘‘relaxat
under a constant strain field’’ and is useful for calculating
upper bound on the relaxation energy in a small system,
has the disadvantage that it might result in the system b
trained into a local minima which is not the global minimum
Therefore, the best approach is to calculate the relaxa
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energy without any constraints—in which case, if the sup
cell is large enough, there will be negligible relaxation of t
largest allowed shells. It is standard practice for relaxat
calculations to be repeated for different random perturbati
of the atom coordinates, to ensure that the same minim
structure is reached each time.

As a cross-check that the supercell is large enough,
that spurious symmetry effects~e.g., force cancellation in
certain directions! have not caused a misleading conclusio
the strain on the supercell should be evaluated, and the
ume allowed to relax as appropriate. However, in a fix
volume calculation, there will often be a uniform breathin
mode expansion or contraction of the further-out shells as
underlying lattice accommodates the local relaxation aro
the defect. This effect will tend to increase the apparent s
of the relaxation and cause a volume relaxation that may
be warranted. Therefore, to assess convergence of the d
structure, we consider the relative displacement of succes
shells of atoms between the relaxed and unrelaxed de
systems in a fixed volume calculation~as in Ref. 17! and
check that this is converged~to some appropriate tolerance!
before the largest allowed shell allowed by the period
boundary conditions~i.e., half the defect-image separation!.

If it is found that the relaxation is not contained with
this largest allowed shell, then the supercell must be
creased in size and the above procedure repeated until th
no longer the case. Only then can it be claimed that
calculation is representative of an isolated defect. Of cou
this might result in supercell sizes that are impracticable w
current computer resources. It has long been recognized
the best way to improve supercell calculations is to us
larger supercell, and for a long time the largest super
practical for studying the neutral silicon vacancy was s
ding the
of atoms
defect has
o equal,
y of
FIG. 7. Relaxation of vacancy using a quasi-Newton minimizer. The six distances between the four silicon atoms surroun
vacancy are shown. This clearly shows the change in symmetry around the defect, with the initial and final states of the first shell
around the vacancy shown. The atoms are numbered as in the sketches. In the initial state, all bond lengths are equal and the
Td-point symmetry, whereas in the final relaxed state of the first shell of atoms, there are four equal, longer bond lengths, and tw
shorter bond lengths, which therefore corresponds toD2d-point symmetry. Also shown in the inset is the convergence of the total energ
the system as the relaxation proceeds. The relaxation lowers the energy of the system by 1.186 eV.
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pected to be too small. However, one of the conclusions
this study is that the best way to improve a calculation is
just to increase the supercell size, but to do so in an ap
priate manner bearing in mind the interaction of the super
symmetry with the defect.

For the neutral silicon vacancy we have therefore es
lished the necessary parameters to achieve an accurat
ergy surface, and so only now do we relax the vacancy in
255-atom bcc supercell, without using any symmetrization
the electronic parameters~wave function, charge density
forces, etc.! at any stage. This is necessary to ensure that
symmetry in the relaxed structure is spontaneous and
imposed from the initial conditions. Tight convergence tol
ances are imposed, namely, that at convergence the rms
be less than 0.001 eV/Å, the rms displacement be less
0.0001 Å per iteration, and that the energy difference
iteration be less than 0.000 01 eV/atom. The results of su
calculation are shown in Fig. 7. This calculation is also
peated for different random perturbations of the atoms in
first shell surrounding the vacancy, to ensure that the s
minimum structure is reached each time. To test that
atomic relaxation is contained within the supercell, we c
culate the relative displacements of the successive shel
atoms surrounding the vacancy as shown in Fig. 8. From
we can see that shells 9–11 are essentially unchanged~where
shell 12 is the halfway point in the supercell!, and so we
conclude that the ionic relaxation is fully contained with
the finite size of the supercell.

IV. RESULTS

We now summarize our results for the neutral silicon v
cancy.

It was found that when converging the electronic struct
of the unrelaxed vacancy, bcc supercells gave superior fin
size supercell convergence, and a~256/255!-atom bcc super-
cell was required to get satisfactory convergence which
confirmed against an~864/863!-atom calculation. Remark
ably, the~32/31!-atom bcc supercell gave an unrelaxed v

FIG. 8. Convergence of the ionic relaxation of successive sh
of atoms across the supercell.
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cancy formation energy that was closer to the infinite sup
cell size limit than that of the~250/249!-fcc supercell
calculation. This is attributable to the interaction of superc
symmetry and the symmetry of the underlying silicon lattic

As a measure of the reliability of theab initio scheme
used, we repeated the calculation of the unrelaxed vaca
formation energy in the~32/31!-atom bcc supercell using dif
ferent exchange-correlation functionals and different pseu
potentials. The results are summarized in Table IV. It h
been found many times before that there is a general
dency for LDA-DFT calculations to overbind, and GGA
DFT calculations to underbind. Hence, we conclude tha
worst-case error estimate for ourab initio scheme is
60.02 eV, but a more likely error estimate is60.01 eV. It
can also be seen that the systematic convergence studi
presented above, such as the Brillouin-zone sampling,
make a more significant change than changing the excha
correlation functional at a given set of parameters~e.g., go-
ing from q52 to q54 reduces the formation energy b
;0.08 eV). Of course, as noted in Sec. I, a more thorou
comparison would be between DFT and QMC calculatio
but at present there are no available QMC data to comp
against.

The 255-atom bcc supercell was then used to relax
defect structure, and it was demonstrated that this relaxa
was fully contained within the supercell. This relaxation r
duced the total energy of the system by 1.186 eV and fr
the observed bond lengths of the four atoms in the first s
surrounding the vacancy, we can see that the final rela
structure has spontaneously achieved theD2d-point symme-
try, with a final volume@as given by Eq.~2!# that is reduced
from the unrelaxed vacancy by227%. The relaxed defec
formation energy is therefore estimated as 3.1760.01 eV
~where the error estimate is that due to theab initio scheme
used—the convergence error estimate is an order of ma
tude smaller!. The final parameters used in the calculati
and the final result for the structure of the defect are sum
rized in Table V.

V. CONCLUSIONS

We have presented a systematic methodology for the
curate calculation of defect structures in supercells. Vari
potential pitfalls have been highlighted, and it has been de
onstrated how to systematically reduce each source of e
in the various convergence parameters, to better than
inherent accuracy of theab initio method used.

As an example of the methodology, the single neutral

TABLE IV. The unrelaxed vacancy formation energy for th
~32/31!-atom bcc supercell, with different exchange-correlati
functionals and pseudopotentials.

Scheme Ev unrelaxed~eV!

LDA PW91 PBE

Ultrasoft, MPq52 4.068 4.106 4.113
Ultrasoft, MPq54 3.995 4.018 4.025
Norm conserving, MPq54 4.016 4.040 4.051

ls
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cancy in silicon has been treated. This has been extens
studied in the past, but with many different answers p
sented in the literature. The various sources of scatte
previous results have been discussed, such as problems
too small a basis-set size leading to a spurious outwards
laxation as seen in the earlier studies, and problems ca

TABLE V. Final parameters for the fully converged calculatio
of the neutral silicon vacancy.

Quantity Value

Number of atoms 256
Symmetry of supercell bcc
Basis-set size 160 eV
Brillouin-zone sampling density 0.033 Å21

Vacancy formation energy~unrelaxed! 4.36 eV
Vacancy formation energy~relaxed! 3.17 eV
Symmetry of defect~unrelaxed! Td
Symmetry of defect~relaxed! D2d
Volume of defect~unrelaxed! 6.671 Å3

Volume of defect~relaxed! 4.874 Å3
n

e

l-

an

,

t-

nd
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by underconvergence of the Brillouin-zone sampling lead
to inaccurate forces in some more recent studies. The us
offset grids has been shown to be very useful in accelera
the convergence of the Brillouin zone sampling. A differe
effect, that of supercell symmetry, has been identified, an
consistent treatment of this has been shown to be crucia
understanding the systematic effects of increasing the su
cell size. This has resulted in great difficulty in the past w
identifying the convergence trends with increasing super
size, and it is shown herein that the best systematic wa
treat this effect is to consider the defect density for ea
different supercell symmetry separately. Therefore it is
lieved that this work presents the best converged calcula
of the silicon vacancy to date.
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