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We present a systematic methodology for the accurate calculation of defect structures in supercells, which
we illustrate with a study of the neutral vacancy in silicon. This is a prototypical defect which has been studied
extensively usingb initio methods, yet remarkably there is still no consensus about the energy or structure of
this defect, or even whether the nearest-neighbor atoms relax inwards or outwards. In this paper, we show that
the differences between previous calculations can be attributed to supercell convergence errors, and we dem-
onstrate how to systematically reduce each such source of error. The various sources of scatter in previous
theoretical studies are discussed and a different effect, that of supercell symmetry, is identified. It is shown that
a consistent treatment of this effect is crucial in understanding the systematic effects of increasing the supercell
size. This work therefore also presents the best convexfgewitio study of the neutral silicon vacancy to date.
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[. INTRODUCTION study of defects can explain the origin of the scatter in earlier
works on the neutral silicon vacancy, although the approach
There has been much interest over the past ten years oan obviously be applied to the study of any defect. By re-
the calculation of the properties of defects in solids. Variousducing all the systematic errors to an acceptable level using
theoretical techniques can be used, but two of the most conthis methodology, we therefore provide the most highly con-
mon areab initio electronic structure calculations of the de- vergedab initio study of the neutral silicon vacancy to date.
fect in either a periodic supercell or a cluster. Both of these We shall perform all our calculations using density-
techniques have advantages and disadvantages. Periodimctional theory(DFT) (see Ref. 1 for a reviejy but the
boundary conditions are a natural representation of a crystafjeneral features of our methodology will be applicable to
but the introduction of a defect into the supercell results inany ab initio simulation technique that uses periodic super-
the calculation of a periodic array of defects and not an iso€ells. In this particular case, we used plane-wave
lated defect. A cluster calculation might therefore seem mor@seudopotential-based DFT, which has been shown in many
appropriate, but this introduces different problems due tgrevious studies to be a reliable technique for calculating
finite-size effects and the possibility of interaction betweenmany structural properties—typically agreeing with experi-
the defect and the surface of the cluster. In this paper, we wilnent to at least 1% accuradgee Ref. 2 for a review of
focus exclusively on the periodic supercell technique. total-energy calculations using this technigue
There are various technical problems that must be over- More accurate treatments of the electronic structure exist,
come before a supercell calculation becomes an accurate repuch as quantum Monte Carl@MC) (see Ref. 3 for a re-
resentation of an isolated defect in bulk material. Many ofview), but these are much more expensive to apply and are
these are already known, but not all are widely appreciatechot yet routinely used for such calculations. One reason for
It is the aim of this paper to synthesize “best practice” into athis is that whilst QMC is currently “state of the art” in
systematic approach to the study of defects in periodic suterms of its accuracy in calculating the electronic structure, it
percells and show how best to overcome all these problemss unable to calculate forces and is therefore not a practical
As an example of this methodology, we shall consider thanethodology for structure determination. There is therefore
neutral vacancy in silicon, which is perhaps the simplest exstill a role for DFT calculations to determine structural prop-
ample of a point defect in a crystal. It is certainly one thaterties, as well as being a source of trial input wave functions
has been often studied experimentally and theoreticalljto QMC calculations at the optimal structure.
However, whilst the experimental picture is reasonably clear, Ultimately, the results obtained will be limited by the ap-
there are some properties of the defect, such as its loc@roximations inherent in thab initio technique used. In the
volume, which cannot be extracted from experimental dataxase of the neutral silicon vacancy calculation detailed
and for which reliable theoretical values would be very muchherein, this will include effects due to the choice of pseudo-
welcomed. Unfortunately, there is some confusion about th@otential, choice of exchange-correlation functional, and the
results of theoretical studies, which has prevented definitiveeglect of zero-point motion and thermal effects. However, if
statements being made about these properties. Recent wdtiese systematic effects are to be quantified, it is important
has achieved some degree of consensus, but there is still a btat they are not obscured by random noise arising from
of scatter in the results which is not well understood. Theother sources of error that can be removed, such as the vari-
aim of this work is to show how a systematic approach to theous kinds of supercell convergence error that are discussed in
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this paper. One simple way to estimate these effects woultheoretical studies claiming an outwards relaxation of the

be to compare the DFT and QMC energies at the same defeatoms surrounding the vacancy, and others an inwards relax-
structure(e.g., the DFT optimal structureHowever, the su- ation.

percell convergence errors discussed herein will still affect

the QMC calculation, and so need to be understood and B. Theoretical studies

minimized before the comparison of two differeatt initio There have been numerous theoretical studies of the sili-
methodologies becomes meaningful. The aim of this paper is . . . )

to show how to systematically reduce the different superceIFOn vacancy using different theoretical technigues. For ex-

'S- i i =16 ; .
convergence errors independent of #ieinitio methodology ample, Greeng function calculatioffs prc_ad|cted an out
chosen. wards relaxation of the vacancy, whilst more recent

This paper is structured as follows: in Sec. I, we will f[ight-binding”'lg_andab initio stl_Jd_i_e§9‘25have proposfedﬁgan
review what is already known about the vacancy in silicon,':Wards rela>t<aé|on. .Rece(;ab 'P'fég cluster ctalcu:atlot
in Sec. Il we will explain the key features of our methodol- ave suggested an inwards-reia sk Symmetry structure,
ogy in some detail, illustrated with the neutral silicon va- whereas successia initio supercell calculations using dif-
cancy calculation. We will report our results for the neutral férent supercell sizefirom 32 to 216 atomsand different

. : g L special k-point sampling techniques have yielded a broad
\S/I|I00n vacancy in Sec. IV, and will briefly summarize in Sec'spread of formation energidrom 2.6 eV to 4.6 ey and

symmetriegincluding Dog, C3,, C,,, andT,y), including
some outwards relaxationalthough the majority favor in-
Il. REVIEW wards relaxation In particular, Puskat al?® thoroughly re-
viewed the previous theoretical studies and also performed a
sequence ofb initio supercell calculations using different
system sizes and sampling techniques. They found a large
pread in possible answers, which they attributed to the en-
rgy dispersion of the vacancy-induced deep levels, being
fherefore particularly sensitive to details of the Brillouin-
zone sampling scheme used.
Three key quantities of interest are the following:
(1) The vacancy formation energy, which for a neutral
vacancy in a supercell is defined as

The vacancy in silicon is a technologically important de-
fect, as it is known to play an important role in both self-
diffusion and impurity diffusion, and hence it is essential to
have a detailed understanding of both the electronic an
ionic structure of the defect. The vacancy also occurs in
variety of charge states, conventionally referred tovas,
V*, VO V7, andV?. It is known that this system shows
the negative-Ueffect, that is,V?* spontaneously converts
directly toV°. For simplicity, this theoretical work will only
focus on the neutral vacancy?, although in some experi-
mental techniques it is the charged vacancies that are actu- N—1

ally studied. Ev=En-1— (T En, (1)

whereEy is the total energy of the defect-fré¢ atom su-
percell, etc.

The experimental studies have been reviewed by (2) The symmetry of the defect.
Watkins? In summary, electron-paramagnetic-resonance (3) The volume of the defectactually the tetrahedron
studies can be used to give the symmetry and spatial distrfermed by the positions of the four atoms, ... ,r, sur-
bution of the highest unpaired localized electron state. Thisounding the vacangy
has shown that the symmetry of the single neutral vacancy

A. Experimental studies

V0 is D,q4.° This is understood to be due to the four dangling 1 _ _ _

bonds, created by the removal of a silicon atom from a per- V= 6|(r4 r)*(rz=ry) X (rg=ry)]. 2)
fect lattice, hybridizing with each other to form two new

levels. These are th&, singlet which lies deep in the bulk IIl. METHOD

valence bands and tfe triplet which lies in the energy gap.
The neutral vacancy has only one of the gap states occupied, As an illustration of the methodology, we perform what
which results in a Jahn-Teller distortion, with the ionic relax-we believe to be the best convergeld initio calculation of
ation lowering theT 4-point symmetry of the perfect lattice to the neutral silicon vacancy yet undertaken. As discussed in
that observed in the experiments. Sec. Il, this is not the first time such a calculation has been
Electron-nuclear double resonance has also been used attempted. However, there has been a lot of scatter in the
study the charged vacanci&Swhich in general have lower theoretical calculations, even within the same paper in some
symmetry than the neutral vacancy considered here. Dedpstances. We seek to explain the origin of this scatter, and in
level transient spectroscopy has also been used to give infoso doing, produce a definitive answer for the neutral silicon
mation about the ionization levels associated with chargeacancy formation energy and the structure of the lattice re-
state change:'! Positron lifetime measurements have alsolaxation around the vacancy. Our calculations are performed
given information about the defect volume associated withwith the casTeP [Ref. 27] code using the Perdew-Wang
charge state chang&s®However, none of these techniques (PW91) [Ref. 28 generalized gradient approximati6BGA)
gives information on the defect volume or formation energyfor the exchange-correlation functionéivhich has been
of the VO state. This has led to some confusion, with someshown in many previous defect studies to result in very
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accurate structurgwith a plane-wave basis set. We use aset size, the energy difference between two similar systems is
Vanderbilt ultrasoft pseudopotenfialfor silicon which has much more rapidly convergent due to the cancellation of
been widely used and tested previously, e.g., it gives theystematic errors. This is often used to discriminate between
cubic lattice constant as 5.440 A which compares very fatwo competing atomic arrangements with the same atoms in
vorably to the experimental value of 5.429 A 0.2%). For  the same supercell. However, in this work, we shall consider
simplicity, we have therefore fixed the lattice constants at thenot the energy difference, but the defect formation energy.
value of the experimental lattice constant in all calculationsNote that the variational principle does not apply to such

As a measure of the reliability of thab initio scheme formation energies, and so we are no longer guaranteed
used, we repeated certain calculations using the saxgeEP  monotonic convergence, although this is often seen in prac-
code but with three different exchange-correlationtice. We therefore start the calculation by converging the
functionals—the PW91 GGA as mentioned above, and alsonrelaxed defect formation energy as a function of basis-set
the Ceperley-Aldef local-density approximatiofLDA) and  size, for a reasonably small system. Everything else is kept
the Perdew-Burke-ErnzerhafPBE) (Ref. 31) GGA. The fixed, e.g., supercell size, sampling of reciprocal space for
same calculations were also repeated with an older nornthe Brillouin-zone integration, pseudopotentials, etc. In the
conserving pseudopotentiai®#for silicon that has been part case of the silicon vacancy, we use the vacancy formation
of the standaracAsTEP distribution for many years and has energy as defined in E¢l). This necessitates calculating the
been widely tested. total energy of the vacancy-free systei &tomg, and the

In the following sections, we will describe our methodol- vacancy systemN—1 atom$ which we shall perform with
ogy and illustrate it with the neutral silicon vacancy calcula-all atoms fixed at the perfect lattice coordinates. We shall
tion for definiteness. Most of what follows can be applied tothen use the same cutoff enerhasis-set sizefor all sub-
any supercell calculation, but where there are parts of theequent calculations unless otherwise noted.
discussion which are specific to silicon, these will be clearly For the neutral silicon vacancy, we compare the 16-silicon
highlighted. atom supercell with the 15-atom supercell with vacancy. All

Note that it is an often overlooked fact that, as we shall beatoms are kept at the crystal positions with no relaxation.
relaxing the atoms around the defect using forces derivedhe Brillouin-zone integration is performed using &2
from an ab initio calculation, we must ensure that thb X2 Monkhorst-PacKMP) grid. For this initial part of the
initio calculation is fully convergedbeforewe start to con- calculation, we work with a vacancy formation energy con-
sider any atomic relaxation. That is, we must separately convergence tolerance of 0.01 eV and it is readily shown that
verge the electronic structure at fixed atomic positions, bewith the ultrasoft pseudopotential used, this corresponds to
fore we can have any confidence in the forces on the atomi, ;~ 120 eV.
being correct. Only then is it appropriate to attempt to con-
verge the atomic relaxation around the defect. B. Brillouin-zone integration convergence

We perform the Brillouin-zone integration using the
A. Basis-set size convergence method of speciak points. Due to the localized nature of a
defect in a(potentially large supercell, it is important to

theltti;ste;l;lzllokl?r?c\i,\-lgtgt]eatet:;;glsr(l)a;t;)gslsferrlgC\;\ﬁ:;anfgr?g{srfiégﬁ;have a fully ponverged ir}tggration here. This is the ba;is of
decrease as the size of the basis set is increased. With so the explanation for the difficulty of the calculation as given

; > e S : . : : Puskaet al?® If we use the simplest Monkhorst-Pack
basis sets, it is difficult to systematically improve the quality ;

: . - . sgmpling schem&

of the basis set, however, with a plane-wave basis set as use
here(which is often used with supercell calculatigrikis is
not a problem. We can associate an energy with each plane- -
wave basis function|gg)~€'9", whereg is a reciprocal- a
space lattice vectgrand so by using all possible basis func-
tions up to some maximum energy,,; we may characterize
the size of the plane-wave basis set used. Therefore, the basis
set may be systematically improved by simply increasing
E..t With a corresponding decrease in the total energy of the
system. It is a feature of plane-wave basis sets that typically
very large basis-set sizes are required to achieve a reasonal§fé-, then we may easily converge the defect formation en-
tolerance for the convergence of the total energy of a systen€rgy, at fixed basis-set size and system size, as a function of
e.g., 1 meV/atom. Therefore, the pseudopotential approxithe density of sample points in reciprocal space.
matior?gvsz_34is invariab|y used which enables us to reduce In Ol’del’ to maXimize the Separation Of the defect from ItS
the number of electrons in the problem, and also to reducgeriodic image, we choose supercells that have the same
the size of the basis set used without affecting the accuracyearest-neighbor defect-defect distances and sample uni-
of the treatment of the electrons outside the core of the aformly in each direction in reciprocal space, and gp™
oms. =gy “=0q; “*=q. We may therefore systematically improve

It is also well known that whilst the total energy of a the convergence of the Brillouin-zone integration by simply
given system might converge slowly with increasing basisincreasingy. The basic number of special points in the grid is

2
K= 77( [*}% Ay d: 3)

Zq)r;nax’zqymax' quax

z

with

0,£2,...,2(qy*-1), qy*odd
Pl 21,23, 2 (@M¥1), gMeven,
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TABLE I. Effect of increasing the Monkhorst-Pack grid param- (and independently by M.l.J)Fout the significance of their
eterg on the number of symmetrized points in the gridif and the  \work has not been widely appreciated. For completeness, the
(squaredl radius of exact integrationRf) in units of reciprocal-  gptimal offsets for the supercells considered in this work are
lattice vectors, for three different supercell symmetries. shown in Table 11

We find that the use of a Monkhorst-Pack grid with the
optimal offset is more widely applicable and technically su-

Body-centered Face-centered

Monkhorst-Pack _Simple cubic cubic cubic perior to other schemes proposed, such as Ref. 37. Using this
q N R? N R? N R? approach it is now possible to approach convergence of the
1 1 1.0 1 0.75 1 0.5 Brillouin-zone integration in a consistent manner for any
2 1 4.0 2 3.0 2 4.0 value ofq required. Note, that for certain supercells, such as
3 4 9.0 4 6.75 4 4.5 body-centered cubic, the use of offsets is beneficial for all
4 4 16.0 6 12.0 10 16.0 values ofg, whereas for others, such as face-centered cubic,

it is only beneficial for odd-valued.

When comparing the quality of the Brillouin-zone inte-
theng®. In order to minimize the number of special points atgration for two different sized or different shaped systems, it
a given value ofj we apply the symmetry operations of the is not the value ofg or the number of special points that
supercell(not the point-group symmetry of the defect-free should be compared, but rather the density of symmetry-
crystal lattice, and therefore work with a weighted set of unfolded special points in reciprocal space. Note that this
symmetrized points. The reduction in the number of pointscomparison will be simplest for two different systems if in
depends on the symmetry of the supercell and the valge of €ach case the sampling scheme is equally effidierg., R

However, this will in general lead to very slow conver- =q). Therefore, we recommend the use of offsets at all
gence, with marked oscillations in both the total energy andtages in this methodology when calculating the convergence
the defect energy ag is increased. This gives rise to the of the electronic structure.
popular belief that “oddq grids are less efficient than the  Therefore, for the neutral silicon vacancy, we converge
corresponding eveq+ 1 grid.” However, this is a failure of the Brillouin-zone sampling using th@6/15-atom fcc su-
the implementation of the grid, not the general Monkhorst-percells ande.,,= 120 eV. As shown in Table II, there is no
Pack method. This can be seen by calculating the radius @fdvantage in using offsets with evgngrids and fcc super-
exact integration in reciprocal space for different valueg of cells but there is a difference for odggrids. We therefore
for some of the most common supercells—simple cébi;, ~ perform the oddy grid calculations twice, once with and
body-centered cubi¢bcg), and face-centered cubifcc) as  once without offsets, and the results of increasingn the
seen in Table I. For an ideally efficient sampling scheme, thevacancy formation energy, both with and without offsets, are
integration should be exact out to a radius givenRyyq, shown in Fig. 1. There is clearly a dramatic improvement for
but it can be seen from Table | that this is only achieved forq=1 where using an offset shifts the sampling away from
all g for the simple-cubic supercell, and for even-valggdr ~ the I' point, but it may not appear too dramatic for other
the face-centered cubic supercell. values ofg (although it may be hard to see from the figure, in

This flaw was overcome in the basic Monkhorst-Packfact the convergence af=3 with respect taj=4 is signifi-
scheme by the possible inclusion of a rigid offggtof the  cantly improved from—0.061 eV to —0.005 eV). More-
sampling grid from the origin of reciprocal space. This offsetover, Table Il suggests that the benefits of using offsets will
is often ignored, but is essential to achieve the full efficiencybe most marked with bcc supercells. Therefore, for illustra-
of the scheme. The use of the optimal offset for a givertion, we also repeat the Brillouin-zone convergence calcula-
supercell symmetry and value gfremoves the oscillations tion with the (32/3)-atom bcc supercells andE.;
in the total energy and consequently accelerates the conver120 eV, again both with and without offsets. The results
gence of the Brillouin-zone integration. A comprehensive seaire shown as the insert to Fig. 1, and show a marked im-
of these optimal offsets was derived by Moreno and Sbler provement in convergence with offsets. If we again apply a

TABLE II. Effect of optimal offsetk, on maximizing the efficiency of the Brillouin-zone integration for
three different supercell symmetries with increasing values of the Monkhorst-Pack grid pargmiEber
number of symmetrized points in the gritl) and the(squaredi radius of exact integratiorR?) in units of
reciprocal-lattice vectors is given for each optimal offset.

Monkhorst-Pack Simple cubic Body-centered cubic Face-centered cubic
q Ko N, R? Ko N R? Ko N R?
! oo 40 opn 1 20 03y 110
2 (%,%’%) 3 16.0 (%,%,‘l‘) 2 4.0 (0,0,0) 2 4.0
3 Godh 8 180 iy 5 90 iy 6 00
4 (&, 20 640 (L1 8 16.0 (0,0,0) 10 16.0
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4.00 y y TABLE IlIl. List of all supercells considered with corresponding
0 16(15) atoms without offsets supercell symmetry. Also listed is the converged value qof
AR B 16(15) atoms with _ offsets (Monkhorst-Pack grid paramejeused in the calculation, the
300 e . Monkhorst-Pack grid offsetk, used, and the corresponding
/ Brillouin-zone (BZ) sampling density.
/s : :
- S . N Symmetr K BZ density (At
S ool / P S /_,2 g e | Y| y 49 0 y (A7)
& / / 2 fcc 8  (0,00) 0.040
s 35
Vs / 32(31) atoms 8 e 6 (0,0,0) 0.031
ool // 20 5/' | 16 fcc 4 (0,0,0) 0.040
N 32 bcc 4 % , % % 0.033
4 25 I E— 54 fec 3 (11l 0.036
000 ) ) 64 sc 3 (0,0,0) 0.031
T 2 3 4
Monkhorst_Pack q 128 fcc 2 (0,0,0) 0.040
216 sc 2 (0,0,0) 0.031
FIG. 1. Convergence of unrelaxed vacancy formation energy250 fcc 2 (0,0,0) 0.032
with respect to Brillouin-zone sampling, f¢t6/15-atom system at 256 bce 2 (% % %) 0.033

E..t=120 eV. The inset shows the corresponding convergence for
the (32/3)-atom system.

because if we simply order the different possible supercells

vacancy formation energy convergence tolerance of 0.01 eVh terms of the total number of atonisr equivalently, the
it can be seen that this corresponds to a Brillouin-zone sandefect-image distangewe will be misled as thelefect den-
pling density of<0.033 A~1. This was therefore used as sity will be changing in a nonmonotonic manner. Instead,
our sampling density in all subsequent calculations. Fig. 2(b) plots the vacancy formation energy against the de-
fect density, which clearly separates out the different super-
cell symmetries. This now eliminates the apparent scatter in
Fig. 2@ and instead three clear monotonic trends are evi-

Having fully converged the electronic structure calcula-dent, one for each supercell symmetry. These trends all ap-
tion for the unrelaxed defect in a given size system, we capear to converge to the same valee4.40 eV, in the limit of
proceed to converge the effects of the finite-size supercelinfinite supercell sizédefect density is equal to) &s would
This is the key difference between the supercell and the clugie expected. This therefore explains a common source of the
ter approaches. With a cluster, we need to minimize the inscatter seen between and within the different theoretical stud-
teraction between the defect and the surface of the clusteies of the silicon vacancy to date. This effect will obviously
but here, with a supercell, we need to minimize the interacalso apply to any other supercell defect study.
tion between the defect and its own periodic images. Hence What then is the origin of the different rates of conver-
the requirement to converge the supercell size. For insuffigence of the defect formation energy for different symmetry
ciently large supercells, there will be an appreciable overlagupercells? A simple tight-binding model of nearest-neighbor
between the defect and its own images, resulting in an errdnteraction{with hopping matrix elemeny(a), wherea is
in the overall charge density of the system, and hence ththe separation of nearest neighdois given in many stan-
total energy and the forces on the atoms. The obvious solwdard texts, e.g., Ref. 38. In this generic model, a band will be
tion to this is to repeat the defect formation energy calculaformed with a characteristic bandwidth of t2or sc super-
tion in different sized supercells, using an equivalent sizedells, and 1§ for bcc or fcc supercells with the same defect
basis set(e.g., same plane-wave cutoff energgnd same separation. This can be attributed to the effects of geometry
Brillouin-zone sampling density. as well as the different number of nearest neighbors in the

For the neutral silicon vacancy therefore, we consideredlifferent supercells. It might therefore be expected that sc
all possible sc, bcc, and fcc supercells with between 2 andupercells were to be preferred in general for defect calcula-
256 atoms in the vacancy-free system. The actual valuwg of tions as they have the least defect-defect interad¢somallest
used and the corresponding sampling density are summé&andwidth) at a given defect separation.
rized in Table Ill. The unrelaxed vacancy formation energy, Indeed, some evidence for this is seen in Fidp) 2where
at full Brillouin-zone sampling convergence, for each differ- it can be seen that sc supercells are converging at a faster rate
ent supercell is plotted in Fig(& as a function of the num- than fcc ones. Indeed, it appears that {6d/63-atom sc
ber of atoms in the corresponding vacancy-free system. Thisupercell gives a comparable representation of an isolated
is a common way of presenting such information, yet thisunrelaxed vacancy to thé€250/249-atom fcc supercell,
figure appears confusing, with no obvious trend apparent invhich can be attributed in part to the number of nearest-
the convergence of the vacancy formation energy with sysneighbor defects. However, this model does not explain why
tem size. However, separating the different points accordingfor the neutral silicon vacangyhe (32/31)-atom bcc super-
to the supercell symmetry suggests that there may be a trencell gives an even better representatioe., the energy is
but that this is not the best way to present such data. This isloser to the zero-density limithan either the€64/63-atom

C. Supercell finite-size convergence
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FIG. 2. Variation of unrelaxed defect formation energy at con-
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that the defect-defect interaction will have the directionality
of the supercell which may or may not be commensurate
with the underlying crystal symmetry. This causes a pertur-
bation in the electronic charge density that is another finite-
size effect which must vanish in the limit of a sufficiently
large supercell. A rigorous analysis of this would involve
calculating the density-density response functisee, e.g.,
Ref. 39. However, the effect becomes apparent if we simply
plot the charge-density difference between the unrelaxed va-
cancy and vacancy-free systems.

For the case of the neutral silicon vacancy, such plots are
shown for the(216/215-atom sc supercell in Fig. 3, the
(250/249-atom fcc supercell in Fig. 4, and tH256/255-
atom bcc supercells in Fig. 5. In the sc supercell we see that
there is a localized charge-density difference around the va-
cancy, and then a longer-ranged component which spans the
supercell that is clearly aligned with tH@00 directions.
Similarly, in the fcc supercell the long-ranged component is
along the(110 directions and in the bcc supercell it is along
the (111) directions. The normal silicon-silicon bonds are in
(112 directions which then explains why the bcc supercell is
superior for silicon defects—the spurious charge movements
caused by the finite supercell size effect are commensurate
with the underlying charge density of the system and hence
make little difference to the total energy. This is not the case
in the fcc and sc supercells where it can be seen that there
have been spurious charge movements in the interstitial re-
gions where the charge density is naturally lower, which
therefore has a more significant effect. This clearly shows
that it is not sufficient to simply increase the size of the
system to get a “better” answer, which contributes to the
confusion in some earlier studies of the silicon vacancy. The
directionality effect of the supercell symmetry will also ap-
ply in general to any other defect system, although the de-
tailed considerations will, of course, vary.

Unfortunately, there are only two bcc supercells in the
range 2—256 atom@2 and 256 as in Table )Iwhich would
therefore seem to limit our ability to make judgments about
the efficacy of bcc supercells for silicon defects. As a further
test, the calculation of the unrelaxed neutral silicon vacancy

plies that this simple tight-binding model is of limited use- was then repeated for the next bcc supercell, which corre-

fulness.

sponds to 864 atoms with a defect density of 0.000 058.A

There must therefore be a further consequence of the sitgain, the same basis-set cutoff, Brillouin-zone sampling
percell symmetry that has not been considered so far. This density and offset were used. The corresponding unrelaxed

(

e

%

‘@
i .

FIG. 3. (Color onling Charge-density difference isosurfacepat 0.002 eV/A between the unrelaxed 216- and 215-atom sc supercells.
Leftmost figure is viewed along th®01] direction, central figure is along tH®11] direction, and rightmost figure is along th&11]

direction.
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FIG. 4. (Color online Charge density difference iso-surfaceat0.002 eV/A between the unrelaxed 250- and 249-atom fcc supercells.

Leftmost figure is viewed along th®01] direction, central figure is along tH®11] direction, and rightmost figure is along th&11]
direction.

defect formation energy was 4.358 eV. This confirmed theduces a smaller basis set which makes the oftwerelaxed
prediction about the infinite supercell size limit, and showsstructure convergence calculations rapid. This can produce
that the 256-atom bcc supercell has convergedbetter than — significant savings, as to be sure of convergence it is often
0.002 eV the electronic structure of the unrelaxed neutralnecessary to go to one size of calculation beyond that at
silicon vacancy with respect to finite supercell size. which convergence first appears, as, for example, when con-
In the case of charged defects, the effects of the finite-sizgerging the finite-size supercell effect in the neutral silicon
supercell will be even more marked due to the long-rangeqacancy where an 864-atom bcc supercell was evaluated.
nature of the Coulomb interaction. Specialized energy |n order to produce accurate forces therefore, it is neces-
correction  schemes have been introducefe.g.,  gary to converge the basis-set size with respect to the forces
Makov-PaynéO_], V.Vh'Ch a_ccelerate the convergence of theéand so we choose the rms force of the unrelaxed defect struc-
total energy with increasing supercell size. ture as a simple scalar parameter to converge. This additional
convergence is especially important for defect calculations,
as it is often found that the energy surface around a defect is
Having finally fully converged all the necessary factors invery flat, and so particularly prone to errors in the forces due
the unrelaxed defect formation energy, we can now be corito the use of underconverged basis sets. This sort of effect
fident that we have an accurate representation of the grourtin be easily detected by monitoring the direction of the
state electronic wave function. We may now use theforces on each atom surrounding the defect as the basis-set
Hellmann-Feynman theorem to calculate the forces on thsize is increased. Any tendency for this direction to change
atoms and hence start to relax the defect. However, it mustignificantly is a clear warning that there are serious system-
be noted that we converged the basis-set size using an energgjc errors in the forces due to basis-set incompleteness.
difference calculation. The variational principle assures us An example calculation for the case of the neutral silicon
that the ground-state energy is correct to second-order errowacancy in theé32/31)-atom bcc supercell is shown in Fig. 6,
in the ground-state wave function, but the forces will only bewhere it can be seen that whilst from an energy calculation it
correct to first-order errors. Also, as noted previously, amappears thatt. ;=120 eV andq=2 is reasonably con-
energy difference will converge more rapidly than the totalverged, this is not sufficient for the forces. Applying a crite-
energy. rion that the rms force must be converged to 0.005 eV/A
The advantage of using the defect formation energy criteéwhich is often used as the convergence tolerance in high
rion in the early stages of this methodology is that it pro-quality ab initio structural relaxations we see thatE.

D. Hellmann-Feynman forces convergence

FIG. 5. (Color onling Charge-density difference isosurfaceat0.002 eV/A between the unrelaxed 256- and 255-atom bcc supercells.

Leftmost figure is viewed along th®01] direction, central figure is along tH®11] direction, and rightmost figure is along th&11]
direction.
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03 - - - vanced techniques, such as simulated anneé&lorgb initio

10 T y y molecular dynamic&® are better adapted to exploring the
energy surface but at much increased computational cost. In
practice, if several independent starting configurations all
converge to the same answer, then that is usually sufficient to
have a reasonable amount of confidence that the structure
found is(a close approximation jdhe global minimum.

There is also a popular belief that it is more efficient to
relax a structure using a small basis set to get an approximate
structure and then to increase the size of the basis set until
there is no further change, than to use a sufficiently large
basis set throughout. The neutral vacancy in silicon is a
counterexample to that belief. If the defect structure is re-
laxed using too small a basis getg.,E.,;=120 eV), then
. . the systematic errors in the forces cause the vacancy to relax
0 50 100 150 200 outwards This outwards relaxation is remarkably robust

Ecut (eV) with respect to different perturbations of the surrounding at-
oms prior to starting the relaxation, including gross inwards

FIG. 6. Variation of rms force in 31-atom silicon cell with re- d ds di . d the final is also | I
spect to basis-set size at two different Brillouin-zone sampling den@N outwards distortions, and the final state Is also locally

sities, corresponding to different values of the Monkhorst-Pack grift@Ple with respect to subsequent increases in the basis-set
parameter;. The inset figure shows the corresponding difference inSiZ€ Proving that it is a local minimum. However, if the
the total energy for the two different values®fThis clearly shows ~vacancy is relaxed using a larger basis $&{,(=160 eV) at
that whilst it might appear that the total energy is adequately conall times, then the resulting relaxation iiswards which il-
verged atE,=120 eV andgq=2, this is not sufficient for the lustrates the importance of monitoring the direction of the
forces. In all subsequent relaxation calculations, a Brillouin-zongforces on the unrelaxed atoms surrounding the defect as the
sampling density equivalent to that correspondingjte4 in this  basis-set size is increased, as suggested above. This inwards
calculation, ancE.,= 160 eV was used. relaxation is also robust with respect to a range of different
starting configurations, and the final minimized structure is
=160 eV must be used, and that a Brillouin-zone samplindower in energy than the outwards-relaxed structure at the

of q=4 (corresponding to a density of 0.033°A) must be Same basis-set size. _ . _
used. This might appear confusing at first, as the local potential-

energy surface around each atom should be quadratic, as
silicon at low temperatures is a harmonic crystal to a good
approximation—hence the equilibrium geometry ought to be

Finally, we are now ready to relax the atomic structurereasonably insensitive to the detail of the calculation. How-
around the defect, using the forces derived from the systenever, this result implies that changing the basis-set @ieg
atically convergedab initio calculation. We move the atoms reducing the systematic errors in the forceauses a signifi-
according to some minimization algorithm, and stop whencant change in the gradient of the potential-energy surface
we have simultaneously satisfied the various relaxation criaround the unrelaxed defect, i.e., the forces as seen in Fig. 6.
teria to prescribed tolerances: For example convergence &o it is actually the boundaries of the different basins of
the total energy, the rms force, and the rms displacement dittraction for the relaxation minimizer which are being
the atoms between successive iterations. If we had been sihoved.

025

E(qm2)-E(qmd) (oV)

02

Frms (eV/A)

0.1

E. Atomic relaxation convergence

multaneously optimizing the lattice parameters usabgni- This therefore explains another common source of the
tio stresses, then it would be appropriate to also check foscatter seen between the different theoretical studies of the
convergence of the stress on the supercell. neutral silicon vacancy to date, and shows that the only way

Note that we are often starting the atomic relaxation fromto relax the defect reliably is to use the larger basis-set size at
a state of relatively high symmetry. It may therefore be necall stages in the relaxation to reduce the systematic errors in
essary to perturb each atom by a small amount from théhe forces, and to check that the resulting configuration
symmetry sites at the start of the calculation in order to enfound is the global and not just a local minimum.
sure that symmetry breaking is possible in the relaxation When comparing the energetics of two different struc-
process. Also, because of the possibility of local minima intures, it should be borne in mind that experiments are usually
the structure minimization, the calculation should be re-conducted at finite temperature, whereas energy minimiza-
started several times from different initial arrangements ofion strategies usually correspond to zero temperature. This
atoms around the defe¢e.g., random symmetry-breaking means that a true comparison should be based upon free-
displacements, directed relaxation inwards, directed relaxenergies and not just total energies. The entropy difference or
ation outwards, etg.in order to be sure that the minimized the free energy difference between the structures can be ob-
structure found is indeed the global minimum. tained by various techniques, such as thermodynamic inte-

Note that proving that any particular minimum found is gration using constrained molecular dynamiey., see Ref.
indeed the global minimum is a difficult matter. More ad- 43 for detail$. Another complication that arises with finite
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temperature is that the presence of nearby local minima wilenergy without any constraints—in which case, if the super-
produce significant temperature dependencies in many phystell is large enough, there will be negligible relaxation of the
cal properties, whereupon it then becomes important to knovargest allowed shells. It is standard practice for relaxation
the location of these other minima and the saddle pointgalculations to be repeated for different random perturbations
separating them from the global minimum. of the atom coordinates, to ensure that the same minimum
structure is reached each time.

As a cross-check that the supercell is large enough, and

that spurious symmetry effeci&.g., force cancellation in
However, even at this stage, there is still one more coneertain directionshave not caused a misleading conclusion,

vergence criterion to meet. The atomic relaxation around théhe strain on the supercell should be evaluated, and the vol-
defect may be quite long ranged, and the pattern of relaxume allowed to relax as appropriate. However, in a fixed
ations must be contained within the supercell. That is, if wevolume calculation, there will often be a uniform breathing-
consider successive shells of atoms around the défectall ~mode expansion or contraction of the further-out shells as the
those atoms at a common distance from the defect in thanderlying lattice accommodates the local relaxation around
unrelaxed structuje then there should be negligible relax- the defect. This effect will tend to increase the apparent size
ation for atoms beyond a certain distance from the defectf the relaxation and cause a volume relaxation that may not
and certainly before the largest shell allowed by the periodide warranted. Therefore, to assess convergence of the defect
boundary conditiongi.e., half the defect-image separation structure, we consider the relative displacement of successive
One way to provide an upper bound on the relaxatiorshells of atoms between the relaxed and unrelaxed defect
energy is to perform the atomic relaxation calculation insystems in a fixed volume calculatidas in Ref. 17 and
stages, that is, in the first calculation to only relax thosecheck that this is converggtb some appropriate tolerance
atoms in the first shell around the defect, and then in succedefore the largest allowed shell allowed by the periodic
sive calculations to increase the number of shells allowed tboundary conditionsi.e., half the defect-image separation
relax, up to the largest allowed shell. Each successive calcu- If it is found that the relaxation is not contained within
lation will then provide an improved estimate of the relax-this largest allowed shell, then the supercell must be in-
ation energy, and allow a simple determination as to whethetreased in size and the above procedure repeated until this is
or not the relaxation has been properly contained within theno longer the case. Only then can it be claimed that the
finite-size supercell. This approach is known as “relaxationcalculation is representative of an isolated defect. Of course,
under a constant strain field” and is useful for calculating anthis might result in supercell sizes that are impracticable with
upper bound on the relaxation energy in a small system, buturrent computer resources. It has long been recognized that
has the disadvantage that it might result in the system beinthe best way to improve supercell calculations is to use a
trained into a local minima which is not the global minimum. larger supercell, and for a long time the largest supercell
Therefore, the best approach is to calculate the relaxatiopractical for studying the neutral silicon vacancy was sus-

F. Defect structure convergence
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FIG. 7. Relaxation of vacancy using a quasi-Newton minimizer. The six distances between the four silicon atoms surrounding the
vacancy are shown. This clearly shows the change in symmetry around the defect, with the initial and final states of the first shell of atoms
around the vacancy shown. The atoms are numbered as in the sketches. In the initial state, all bond lengths are equal and the defect has
T4-point symmetry, whereas in the final relaxed state of the first shell of atoms, there are four equal, longer bond lengths, and two equal,

shorter bond lengths, which therefore correspond3 4gpoint symmetry. Also shown in the inset is the convergence of the total energy of
the system as the relaxation proceeds. The relaxation lowers the energy of the system by 1.186 eV.
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or S |:| |:| . — [l ==l
|:| cancy formation energy that was closer to the infinite super-
cell size limit than that of the(250/249-fcc supercell
calculation. This is attributable to the interaction of supercell
o4 , , , , , symmetry and the symmetry of the underlying silicon lattice.
0 2 4 6 8 10 12 As a measure of the reliability of thab initio scheme
shell number .
used, we repeated the calculation of the unrelaxed vacancy
FIG. 8. Convergence of the ionic relaxation of successive shell§ormation energy in thé32/31)-atom bcc supercell using dif-
of atoms across the supercell. ferent exchange-correlation functionals and different pseudo-
potentials. The results are summarized in Table IV. It has
pected to be too small. However, one of the conclusions obeen found many times before that there is a general ten-
this study is that the best way to improve a calculation is notlency for LDA-DFT calculations to overbind, and GGA-
just to increase the supercell size, but to do so in an apprdFT calculations to underbind. Hence, we conclude that a
priate manner bearing in mind the interaction of the supercelvorst-case error estimate for ouab initio scheme is
symmetry with the defect. +0.02 eV, but a more likely error estimate 1s0.01 eV. It
For the neutral silicon vacancy we have therefore estabean also be seen that the systematic convergence studies as
lished the necessary parameters to achieve an accurate gmesented above, such as the Brillouin-zone sampling, can
ergy surface, and so only now do we relax the vacancy in thenake a more significant change than changing the exchange-
255-atom bcc supercell, without using any symmetrization oftorrelation functional at a given set of paramet@sg., go-
the electronic parametergvave function, charge density, ing from q=2 to q=4 reduces the formation energy by
forces, etg.at any stage. This is necessary to ensure that any 0.08 eV). Of course, as noted in Sec. |, a more thorough
symmetry in the relaxed structure is spontaneous and naiomparison would be between DFT and QMC calculations,
imposed from the initial conditions. Tight convergence toler-but at present there are no available QMC data to compare
ances are imposed, namely, that at convergence the rms foragainst.
be less than 0.001 eV/A, the rms displacement be less than The 255-atom bcc supercell was then used to relax the
0.0001 A per iteration, and that the energy difference pedefect structure, and it was demonstrated that this relaxation
iteration be less than 0.000 01 eV/atom. The results of suchwas fully contained within the supercell. This relaxation re-
calculation are shown in Fig. 7. This calculation is also re-duced the total energy of the system by 1.186 eV and from
peated for different random perturbations of the atoms in théhe observed bond lengths of the four atoms in the first shell
first shell surrounding the vacancy, to ensure that the samsurrounding the vacancy, we can see that the final relaxed
minimum structure is reached each time. To test that thetructure has spontaneously achievedBhg-point symme-
atomic relaxation is contained within the supercell, we cal-try, with a final volume as given by Eq(2)] that is reduced
culate the relative displacements of the successive shells éfom the unrelaxed vacancy by 27%. The relaxed defect
atoms surrounding the vacancy as shown in Fig. 8. From thiformation energy is therefore estimated as 3:0M01 eV
we can see that shells 9—-11 are essentially unchaiwgeete  (where the error estimate is that due to #i®initio scheme
shell 12 is the halfway point in the supergeland so we used—the convergence error estimate is an order of magni-
conclude that the ionic relaxation is fully contained within tude smallex. The final parameters used in the calculation
the finite size of the supercell. and the final result for the structure of the defect are summa-
rized in Table V.

0.2 —— T T T T TABLE IV. The unrelaxed vacancy formation energy for the
(32/3)-atom bcc supercell, with different exchange-correlation
z functionals and pseudopotentials.
g Scheme E, unrelaxed(eV)
§ o1 | . LDA PW91 PBE
3 Ultrasoft, MPq=2 4068 4106  4.113
° Ultrasoft, MPq=4 3.995 4.018 4.025
2 |:| Norm conserving, MRj=4 4.016 4.040 4.051
o

IV. RESULTS

. . V. CONCLUSIONS
We now summarize our results for the neutral silicon va-

cancy. We have presented a systematic methodology for the ac-
It was found that when converging the electronic structurecurate calculation of defect structures in supercells. Various

of the unrelaxed vacancy, bcc supercells gave superior finitgpotential pitfalls have been highlighted, and it has been dem-

size supercell convergence, an&6/255-atom bcc super- onstrated how to systematically reduce each source of error

cell was required to get satisfactory convergence which wai the various convergence parameters, to better than the

confirmed against ari864/863-atom calculation. Remark- inherent accuracy of thab initio method used.

ably, the(32/31)-atom bcc supercell gave an unrelaxed va- As an example of the methodology, the single neutral va-
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TABLE V. Final parameters for the fully converged calculation by underconvergence of the Brillouin-zone sampling leading
of the neutral silicon vacancy. to inaccurate forces in some more recent studies. The use of
offset grids has been shown to be very useful in accelerating

Quantity Value the convergence of the Brillouin zone sampling. A different
Number of atoms 256 effect, that of supercell symmetry, has been identified, and a
Symmetry of supercell bee consistent treatment of this has been shown to be crucial in
Basis-set size 160 eV understanding the systematic effects of increasing the super-
Brillouin-zone sampling density 0.033 A4 cell size. This has resulted in great difficulty in the past with
Vacancy formation energfunrelaxed 4.36 eV identifying the convergence trends with increasing supercell
\S/a‘;?;?t’rfoglf‘gg;’e”cgj:ﬁggfgxed 3'11_7 eV size, and it is shown herein that the best systematic way to
Simmetry); of defectrelaxed D;d treat this effect is to consider the defect density f.or. each
volume of defectiunrelaxed 6.671 A different supercell symmetry separately. Therefore it is be-
Volume of defect(relaxed 4.874 R lieved that this work presents the best converged calculation

of the silicon vacancy to date.
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