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Optical excitations in a one-dimensional Mott insulator
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The density-matrix renormalization-grodpMRG) method is used to investigate optical excitations in the
Mott insulating phase of a one-dimensional extended Hubbard model. The linear optical conductivity is cal-
culated using the dynamical DMRG method and the nature of the lowest optically excited states is investigated
using a symmetrized DMRG approach. The numerical calculations agree perfectly with field-theoretical pre-
dictions for a small Mott gap and analytical results for a large Mott gap obtained with a strong-coupling
analysis. It is shown that four types of optical excitations exist in this Mott insulator: pairs of unbound charge
excitations, excitons, excitonic strings, and charge-density-wem\W) droplets. Each type of excitation
dominates the low-energy optical spectrum in some region of the interaction parameter space and corresponds
to distinct spectral features: a continuum starting at the Mott(gapound charge excitationsa single peak
or several isolated peaks below the Mott dagcitons and excitonic strings, respectivelsind a continuum
below the Mott gagCDW droplets.
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l. INTRODUCTION bard modet* (V=0,U>0) the ground state is known ex-

In recent years, various quasi-one-dimensional materialsgctly to be a Mott insulatér and the optical conductivity has
such as conjugated polymérd, organic charge-transfer been calculatedf. In principle, the optical properties of the
salts®>* Cu oxides? and Ni halide$ have been extensively Mott insulating phase are also known fof>0 at weak
studied because of their unusual optical properties and theffoupling®*® and at strong coupling™*" but the range of
potential application in modern optical technology. In firstvalidity of these results is not clea priori. Results for
approximation these materials can be described as on#étermediate coupling and close to the Mott phase boundary
dimensional strongly correlated electron systems with halfU~2V are scarce and the absence of finite-size-effect analy-
filled bands. The electron-electron interaction drives such &is often hinders their interpretatioh®-22
system into a Mott insulating ground stafeand dominates In this paper | present an accurate and comprehensive
low-energy excitations. Therefore, the optical properties ofnvestigation of the linear optical conductivity; (w) and the
one-dimensional Mott insulators are currently a topic ofexcited states contributing t@;(w) in the Mott insulating
great interest. phase of the one-dimensional extended Hubbard model at

Despite many theoretical studies, our knowledge of thesdalf filling. An efficient symmetrized DMRGRef. 29 and
systems is still fragmentary because of the difficulties assothe recently developed dynamical DMRGDMRG) (Refs.
ciated with the investigation of strongly correlated systems11,2]) are used to calculate the optically excited states and
For many years, numerical exact diagonalization of smalthe linear optical conductivityr;(w) on large lattices. The
systems was the only method providing reliable informationcomparison of numerical results foro(w) with
on excited states in correlated electron systeffifkecently, field-theoreticd**® and strong-coupling predictions con-
however, the linear optical conductivity and exciton proper-firms both the great accuracy of DDMRG and the wide va-
ties of one-dimensional Mott insulators have been calculatetidity range of both analytical methods. | have found that
analytically for an infinite system in the limit of a small Mott four types of excitations determine the optical properties in
gap’~t3and of a large Mott gap>~*® Moreover, recent de- the Moitt insulating phase: pairs of unbound charge excita-
velopments of the density-matrix renormalization grouptions, excitons, excitonic strings, and charge-density-wave
(DMRG) method®? allows one to calculate excited states (CDW) droplets. | will show that each type of excitations
and dynamical response functions numerically in large sysdominate the low-energy spectrum in a particular region of
tems and with an accuracy comparable to exact diagonalithe parameter spacdJ(V) and exhibits a distinct optical
zations?? spectrumo ().

A paradigm of a one-dimensional Mott insulator is the The model, the linear optical conductivity; (w), and the
extended Hubbard model with hopping integrabn-site re-  relevant symmetries are introduced in detail in the next sec-
pulsion U, and nearest-neighbor repulsidhat half filling.  tion. In Sec. Ill the numerical methods are briefly presented,
Although this model has been widely studied, its propertieghen the estimation of DMRG truncation errors and finite-
are still poorly understood in the thermodynamic limit. It is size effects are discussed. In Sec. IV | describe the four
knowr?? that the system is a Mott insulator in a large regiondifferent types of excitations which contribute to the linear
of the parameter spacdJ(V) which is physically relevant optical conductivity and the corresponding optical spectra in
for the Coulomb repulsion between electrong>Vv=0). the various interaction regimes from the limit of a large Mott
The precise ground-state phase diagram has only recently lgap to the limit of a small Mott gap. The final section con-
determined using DMR&? In the special case of the Hub- tains the conclusion.
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Il. MODEL

. laet o . ~
J= T 2 (CI-',—U'C|+1,0'_C|++1,0'C|,0')1 (4)

The one-dimensional extended Hubbard model is defined i

by the Hamiltonian

~ where —e is the charge of an electron. | sate=7%=1
H=—t> (& 81110781 1,810) throughout, and=1 is used in figures showing the optical
Lo conductivity, which means that;(w) is given in units of
e?a/h andw in units of t/4.
+V2 (A= 1) (41— 1). We note that the current operator is invariant under the
! spin-flip transformation but antisymmetric under charge con-
(1)  jugation and spatial reflection. Therefore, if the ground state
|0) belongs to the symmetry subspaégE(Ag,Pc,Ps),

1

+UZ (ﬁm_E

~ 1
n|’l_§

It describes electrons with spim=1,| which can hop be- | ited stat belonaing to th : b
tween neighboring sites. Heﬁq‘éf(,, ¢, , are creation and an- only excited statesn) belonging to the symmetry subspace

nihilation operators for electrons with spin at sitel, A, , B, =(By,—Pc,Ps) contribute to the optical conductivity.

=¢/,& , are the corresponding density operators, and According to selection rules, the matrix elemd®J|n)
=, ;+f, . The hopping integrat>0 gives rise to a a vgnlshes if|n) belpngs to another symmetry subspace. In
single-electron band of widtht4 The Coulomb repulsion is thiS paper, the excitation enery, — E, of the lowest eigen-
mimicked by a local Hubbard interactidd, and a nearest- state with a nonzero matrix eleme(®|J|n) is called the
neighbor interactiol. The physically relevant parameter re- optical gapE ;.

gime isU>V=0. The number of electrons equals the num-

ber of lattice sitedN (half-filled band. This system is in a

Mott insulating phase fov <V (U)~U/2 (Ref. 22. Precise ll. NUMERICAL METHODS

values of the Mott phase boundawy(U) are given in Ref.

23 DMRG (Refs. 19,20 is known to be a very accurate

method for one-dimensional quantum systems with short-

Note that the chemlcal po_te_:ntlal |s_c_hosen In §UCh a Wa¥ange interactions such as the extended Hubbard Hamil-
that the Hamiltonian(1l) explicitly exhibits a particle-hole tonian (1). In this work | use three different DMRG tech-

symmetry. This Hamiltonian hgs two qthgr discrete ?ymr_ne'niques to calculate ground states, excited states, and dynamic
tries which are useful for optical excitation calculations: a

7 . . response functions. All three techniques are based on the
spin-flip symmetry and a spatial reflection symmetry

(through the lattice centgrTherefore, each eigenstate has aflnlte system DMRG algorithm.

ll-defined parit der ch Lgati 41 d First, the usual ground-state DMRG method is used to
well-defined parity under charge conjugatid?.€ =1) an calculate the ground staf@) for a fixed numbeN, of elec-
spin flip (Ps=*1), and belongs to one of the two irreduc-

ol tationd B of di ional latti trons of each spiw. This method provides the ground-state
Ible representations, or 5, of a one-dimensional latlice energyEq(N;,N|) and allows us to calculate ground-state
reflection symmetry group.

Spectroscopy with electromagnetic radiation is a commorfXPectation valuegd|O|0) for various operator®, such as
experimental probe of solid-state matersThe linear static correlation functions. Th@lott) gapE,, in the single-

(one-photoh optical absorption is proportional to the real particle density of states of a Mott insulator can also be ob-
part o4 (w) of the optical conductivity. Fom+0, () is tained using _thls approach. At half fillingN(=N/2) the
related to the imaginary part of the current-current correlaMOtt 9ap is simply given by

tion function by

Im{x(w)} o En=2[Eo(N;+1N))~Eg(N; ,N))] (5

o1(w)= w

because of the charge-conjugation symmetry.
Second, a symmetrized DMR@ef. 29 technique is
> used to calculate the lowest eigenstdtgsin the B, sym-

For =0 the current-current correlation function is given by

A 1 n
J J

3 _ metry sector. This method yields not only the eigenenergies
Eo—-H+Aw+in

E, of the lowest optically excited statdg particular, the
. optical gapE,,), but also allow us to compute expectation
1 [(013[n)|?

— 3) values(n|O|n) and thus to analyze the nature of these states.

Na < hiw—(Ey—Eg)+in’ To optimize the DMRG program performance, my imple-
. . . . mentation of the charge-conjugation and spin-flip symme-
whereais the Iat:uce spacing. Herf) is theAground state of yies differs from the or?ginal ifjega presented ipn Re]g Zg. This
the HamiltonianH, |n) are excited states ¢, andE,, E, is explained in detail in the Appendix.

are their I’eSpeCtive eigenenergies. Althoug:hOJr is infini- Fina”y’ the dynamica| DMRG methéﬂzj-is used to com-
tesimal, a finite value may be used to broaden the resonancggte the optical conductivit§2) convolved with a Lorentzian

at hw=E,—E, and to reduce finite-size effectd. is the  distribution of width »>0. Comparisons with exact results
current operator have shown that DDMRG is a very reliable numerical
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method, which yields spectra with an accuracy comparable
to exact diagonalizations but for much larger systéhts?! a) CAP (i) (1) CT) CT) (1) ﬁ (1) CI)
All DMRG methods have a truncation error which is re-

duced by increasing the numberof density-matrix eigen-
states keptfor more details, see Refs. 19 and)2@ryingm

allows one to compute physical quantiti@scluding spectra

for different truncation errors and thus to obtain error esti- b) q; (i) (1) CT)(T) d) d) 4)
mates on these quantities. | have systematically used this

procedure to estimate the precision of my numerical calcula-

tions and adjusted the maximal numlmeof density-matrix

states to reach a desired accuracy. The largest number of

density-matrix eigenstates used in this workns: 1000. For o) 4> <i> CPCF <i> (1)
all numerical results presented in this paper DMRG trunca-

tion errors are negligible.

All numerical calculations have been performed on lat- FIG. 1. Schematic representation ¢d) an unbound holon-
tices with an even numbeX of sites using open boundary doublon pair,(b) an exciton, andc) a biexciton in the strong-
conditions. As we are interested in the properties of theoupling limit U—2V>t.

Hamiltonian(1) in the thermodynamic limit, numerical cal-

culations have always been carried out for several systerprohibited and there is exactly one electron on each site.
sizesN in order to investigate finite-size effects. The largestElementary charge excitations can be represented as an
system size used here l¢=512. If necessary, the results empty site(holon in the lower Hubbard banar a doubly
have been extrapolated to the infinite system limit-c. To  occupied site(doublon in the upper Hubbard bandrhe
evaluate finite-size effects in a continuous spectrum one ha®inimal energy required to create a holon or a doublon is
to compute it for different sizes while keepingN = const?> ~ Ey/2=U/2—0O(t)>t. Optical excitations always consist of

In this work yN=12.& is used. For all numerical results an equal number of holons and doublons to conserve the
presented in this paper finite-size effe¢tscluding chain-  total charge. The ionicity of excited states is defined as the
end effects are negligible unless discussed explicitly. For change in the number of doubly occupied sites with respect
spectra this means that finite-size effects are completely hido the ground state

den by the broadening. More precisely, DDMRG results . ~

for finite N=12.8/ are not distinguishable from the corre- In=(n|Ng|n)—(0[Ng4|0}, (6)
sponding infinite-system spectra convolved with a Lorentz-

ian distribution of widthy (see the discussion in Ref. g1~ WhereNg=X,, ;A and|0),[n) denote the ground state and
excited states, respectively. Thligjs a measure of the num-

ber of doublons(or equivalently of holonscreated by an
IV. RESULTS excitation. Depending on the strength of the nearest-neighbor

. . : . interaction parametey, the low-energy optical excitations
To facilitate the comparison with analytical results, the . i

. . . o . . ) are made of a single doublon-holon pali€ 1) or are col-
discussion of optical excitations in the Mott insulating phasqective excitations of several such paits£1). Note that
is divided in three subsections: the limit of a large Mott gap,. paily j n

the regime of finite Mott gaps, and the limit of a small Mott IS aIso_ equal to the derivative of the_ excitation en_eli:;y
gap. Note, however, that the Mott g&y, just fixes the en- Eo with respect th because theAderlvatlve of. an eigenen-
ergy scale: the minimal energy required to create a charg'@Y En=(n|H[n) is equal to(n|Ng|n) according to the
excitation isEy/2 but optical excitations do not differ quali- Hellmann-Feynman theorem. _
tatively asE,, varies if everything else is kept constant. Inall ~ Single holon-doublon pairFor V<U/3+O(t), optical
cases, there is spin-charge separation and the spin sector&¥citations consist of a single holon-doublon pair and the
gapless. Elementary excitations in the charge sector are spifPtical properties, which can be calculated exattly, de-
less bosons in the lower and upper Hubbard bands. Optic&end only on the paramete¥sandt. For 0<V<=2t, holon
excitations are always made of an even numbe2) of and doubllon are mdepgndent. Asch.ematlc representation of
elementary excitations with opposite chargés preserve thls state is _shown in Fig. 1. This pair of free charge excita-
charge neutrality The different types of optical excitations tONS gives rise to a continuous band in the optical spectrum
and optical spectra found in the modd) result from the ~¢1(w). The band starts at the Mott g&,=U — 4t and has
residual interactiongessentially the nonlocal part of the @ width of &. As there is no optical excitation with a lower

Coulomb repulsion, her¥) between the elementary charge €nergy thargy , the Mott gap is also the optical gafy-
excitations. The optical spectra foY=0 andV=2t are shown in Fig. 2

with a broadeningn/t=0.1. At the conductivity threshold
o o1(w) vanishes asyw—Ey for V<2t but diverges as
A. Limit of a large Mott gap 1/\Jw—E,, in the special cas¥=2t. The optical conductiv-
In the strong-coupling limitU>t, the properties of the ity also has a small peak at=U —V with 1 % of thespec-
model (1) in the Mott insulating phase can be described us+ral weight!® This peak is visible inside the band fot=0
ing simple concepts. In the ground state double occupation isndV=2t in Fig. 2. It corresponds to a bound state made of
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12 T - - - - figure, the DDMRG spectra are indistinguishable from the
i analytical results for an infinite systeth®(For an expanded

view showing small deviations, see Fig. 1 of Ref.)1Bhis

] perfect agreement confirms the validity of the strong-

coupling calculations done in Ref. 14. Moreover, it confirms

once more that DDMRG can accurately reproduce infinite-

. system optical spectra.

Collective excitationsAs we have just seen, the creation
energy of an excited state with ionicity,=1 is eitherU
—0O(t) for an unbound holon-doublon pair oU-—V
—O(t?/V) for an exciton. Once a first excitation has been
created, however, the creation of a second holon-doublon

FIG. 2. Reduced optical conductiviyo;(w) in the limit of a  pair bound to the first excitation requires only an enedyy
large Mott gap U>1) calculated with DDMRG for three different —2V. Therefore, wherv becomes large enough, the lowest
values ofV using 7/t=0.1 (N=128 sites. optical excitations are bound states . excitons, called

. . o excitonic stringS2A biexciton (Ney=2) is shown in Fig.
d|sperS|onI§ss ch.arge_ excitatidhand can be seen as a lo- 1 a5 an illustratior(see also Ref.)Q
calized exciton with sizg=1. The excitation energy of Be€Xciton string is

For V>2t, there is also a continuous band startingwat
=Ey=U—4t due to independent holon-doublon pairs, but E(Nexd =U—V+ (Ngye— 1)(U—2V)—O(t?/V). (9)
the lowest optical excitation is now an excit@re., a bound . o
holon-doublon pajr with an energy wex=Eqp=U—V Here the correction of ordef/V corresponds to the k_metlc
—4t2/V (Ref. 14. The term—4t%/V is the kinetic energy €nergy _Iowerlng due to the cent_er—of-mass motion. An
lowering due to the exciton center-of-mass motion. Therelexc€XCiton string (i,>2) appears in the low-energy exci-
fore, in the strong-coupling limity>t) the exciton binding tation spectrum, around or below the on&gf=U — 4t of
energy is Eb:EM_Eopt:V_4t+4t2/V (V>2t). This the band of free holons and doublonsEifn.,) <Ey or
binding energy significantly differs from the incorrect result
E,=V ofte_n reported in the Iitera_lt_ur?@,which |s (approxi- V= Nexc— 1 U+0(t). (10)
mately valid only under the additional conditiod>t. In 2Nexc—1
the optical spectrunor;(w) the exciton generates an isolated
6 peak atwe, below the band onset. F&f=>t, an exciton is
essentially the nearest-neighbor holon-doublon pair shown i
Fig. 1. This is exactly the state generated by the curren .
operator(4) applied to the ground state with one electron on@Ppears in the low-energy sp_ectrum_ as _sooWasZt as
each site. Thus the spectral weight is concentrated in th iscussed above. AS alk,¢exciton string Is made Ofey .
excitonic peak forvst. This strong excitonic peak is al- oublons and holons bound together, it is a neutral excita-

ready clearly visible forV=5t in Fig. 2. For finite V/t tion, its ioniCity iS| = Neyc, and its length is Be,c— 1 in units
however, there is a finite probability of finding holon 'and of the lattice constant. Excitonic strings have been observed

doublon at a distancex>1. This probability can be calcu- in the non_linearoptical spectrum of qua_lsi—one—dimensional

lated exactly? neutrgl mixed-stack qharge-trqnsfer SO|IdS. a}nd are known to
contribute to thenonlinear optical conductivity of models

C(M)=C(1— e ™ (7)  such as the extended Hubbard mo@Bl>*" Naively, one

) o does not expect excitonic strings witkr ne, =2 to contrib-

with k=2 In(V/2t) and a normalization constat The ex- e to thelinear optical spectrumo,(w). In the limit U/t

Thus, the biexciton becomes a low-energy excitation\for
=U/3 and longer excitonic stringsng,=3) for largerV.
he casen.,.=1 corresponds to the usual exciton, which

citon size(the average holon-doublon distanée then >t the current operato(4) creates at most one holon-
2 doublon pair and thus in E¢3) the matrix elementén|J|0)
EV>2t)= ——— (8)  between an excited stata) and the ground stat) must

Ve—4t vanish if the ionicity(6) is larger than 1. Yet, we will see in

and decreases asincreases. Correspondingly, one observedN® Next section that excitonic strings witg,=2 are visible

a progressive transfer of spectral weight from the band abov the linear optical conductivity of the extended Hubbard
Ey to the excitonic peak abg,=U—V—4t%/V asV in- model for large but finite couplingd/t andV/t. The reason
X

creases. Note that, as fgr<2t, there is a small peak corre- S that for any finitet there are quantum charge fluctuations
sponding to a localized exciton at=U—V in the optical (virtual holon-doublon paipsin all eigenstates of the Hamil-
conductivity. This peak lies in the band faf<4t but is tonlan (1) which leads to small but finite matrix elements
situated between the band and the strong excitonic peak féf|J|0) even if the average ionicity, of an excitation|n)
V>4t. In Fig. 2 it can be seen for=>5t as a small bump at €xceeds 1,
the foot of the strong peak.

Figure 2 shows optical spectra calculated with the (n|3|0>~(
DDMRG method on a 128-site lattice. On the scale of this

(lnfl)
u—zv) . (11)
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Thus, forV=U/3>t the low-energy optical spectrum con- ' ' ' ' '
sists of a strong excitonic peak ab=Eq=U-V
—O(t%/V) followed by several [Ng=2,3,...<(U
—V)/(U—2V)] weaker isolated peaks with exponentially
decreasing spectral weight at~E i+ (N~ 1) (U—2V).
All these peaks appears belgor abouj the onset of a weak
continuum due to free holons and doublonsvat E,, .

As long asU—2V>t, excitonic strings retain a well-
defined size represented by an integer numhgs because - -
the kinetic energy lowering-t due to size fluctuations is 00 01 02 03 04 05
much smaller than the energy ces{U — 2V) per exciton in VU
the string. Close to the phase boundaty~{2V) between
the CDW ground state and the Mott insulatof? however,
size fluctuations become advantageous. Thus,Uer2V
=<t low-energy excitationgof the Mott insulator are CDW
droplets, which can be understood as superpositions of exci-

FIG. 3. Mott gapEy, (upper ling and optical gagEy, (lower
line) versusV for U/t=40 (dot-dashej] 6 (solid), and 2(dashed
ForU=2t, Eg,=Ey .

tonic strings of every size =U/3, excitonic strings foV=U/3>t but U—-2V=t, and
CDW droplets forU —2V=t. We will see that these excita-
|44y =C1|Neye= 1)+ Co| Neye=2) + C3Neye=3) + - - - tions are also found in the optical spectrum of the extended

(12 Hubbard model for finite interaction strengths and Mott gaps.

with a broad distribution of coefficients, (2,|c,|?=1). _ N
For U—2V—0" the distribution becomes flat, i.dg,|*>— B. Regime of finite Mott gaps

const. (For comparison, ame,cexciton string can be de-  For finite coupling parameters and V the low-energy
scribed by the above state wifle,|>~1 for n=n,. and  optical properties of the extended Hubbard madglcan be
|cal><1 for n#ng,..) CDW droplets in the Mott insulating calculated using the ground-state and symmetrized DMRG
phase are the analogue to the SDW droplets in the CDWhethods presented in Sec. IlI. Figure 3 shows the Mott gap
insulator discussed by HirséA.As excitonic strings, these Euw and the optical gafE,, as a function ofV for three
CDW droplets are neutral excitations, but one can generaliz@alues ofU. Both gaps increase monotonically with but

the concept to CDW droplets carrying chardese below.  decrease with increasing nearest-neighbor interadtiét?’
The average sizecpy of a CDW droplet is related to its For all values ofU the optical gap equals the Mott géim

ionicity by rcpw=21=23ji|c;|* Its excitation energy is the thermodynamic limjtas long asv<2t but for largerV,
Eopt bECOMes smaller thaly, . This suggests that for all
I'cow >0 the low-energy excitations are unbound ¥6=2t and

E(rCDw):U_V+

(U=2V)=st 13 hound forv>2t as in theUst limit, 1425 Obviously, the

condition V>2t can be realized only for relatively strong

wheres>0 and —st represents the kinetic energy lowering coupling (U=4t) because the Mott insulating phase exists
due to droplet size fluctuations and center-of-mass motiognly for V up to V.~U/2. The Mott gaps in Fig. 3 are
(s=4 for U—2V—0"). Contrary to excitonic strings, the initially almost constant a¥ increases then diminish signifi-
ionicity | of a CDW droplet is not a integer number but can cantly close to the phase boundafy. This agrees with the
take any value=1. Therefore, fold —2V<t there is a band  strong-coupling analysis in the previous section, which sug-
of CDW droplet excitations starting &t—V—st. Moreover,  gests that,, is essentially independent &f for V,— Vs>t
the matrix elemen(n|3|0) for a CDW droplet|n) is essen- but is reduced by quantity:t asV approaches the critical
tially given by the overlag, with the single exciton state in value V.. Note that on the critical line between the CDW
Eq. (12). Thus in this regime one expects that the CDWand Mott insulating phases, both gaps vanish b 3t
droplets give rise to a band in the optical spectrogfw) while the Mott gap clearly remains finite for stronger cou-
starting atw=Eg,=U—V—st. This band lies below the pling (U=4t).
Mott gapEy, . It should be noted that the Mott gap is deter-  To determine the nature of the low-energy optical excita-
mined by the excitation energy of unbound holons and doutions | have calculated their ionicit{). Figure 4 shows the
blons Eyy,~U—4t as long asU—-2V>t. For U—-2V=t, ionicity |, of the first optically excited statéhe 1B, statg
however, CDW droplets carrying a chargiee [a CDW drop-  as a function ofV for three values olJ. In the half-filled
let (12) bound to an extra holon or doublphave a lower Hubbard model{{=0) I, increases monotonically from 0 at
energy than a bare holon or doublon and reduce the gap fay =0 to 1 forU — o, reflecting the increasingly ionic nature
charge excitationg5) to Ey,=U—s't with s'~8 for V  of the elementary charge excitations in the lower and upper
—U/2. Hubbard bands. The ionicity increases slowly withand

In summary, in the limit of a large Mott gapJet) there  remains below or close to 1 for most couplingd,V),
are four distinct regimes corresponding to four types of exawhich confirms that the corresponding optical excitations are
citations in the low-energy optical spectrum: independentnade of a single pair of elementary charge excitations. In the
charge excitations foV=2t, excitons forV>2t but V  regimeU=~2V>4t, however, one observes a rapid but con-

2
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FIG. 4. lonicity |, of the first optically excited state @) as a FIG. 6. Reduced optical conductivigio,(w) for U=40t and
function of V for three different values df). four different values ofV calculated using DDMRG withz/t

=0.4 (N=32 sites.
tinuous increase of; to values larger than 2 ag—V,
~U/2. This shows that the lowest optical excitation has be{see Eqs(2) and (3)] with the system sizé\. For V<2t |
come a CDW droplet. Looking at higher optical excitations,have found that the spectral weight of low-lying excitations
one finds the same qualitative behavior of the ionicity as a/anishes foN— o, which is expected for states belonging to
function of U andV. Additionally, one observes the forma- 5 continuum.(As there is an infinite number of states in a

tion of excitonic string with integer=ne,=2. ccontinuous band, the spectral weight of each state must go to
To determine whether the pair of elementary charge excis asN— o, so that the total weight in any finite frequency

tations form boundexcitor} or unbound states, one can qal- interval remains finite. For V>2t (but outside the CDW
culate the average distance between both excitations using %?oplet regimg | have found that the optical weight; of
1

exciton correlation functiori?****For V<2t | have found he 1B, state tends to a finite value in the thermodynamic
that this average distance always diverges with increasing . ~_Y. . .
g Y 9 mit. This corresponds to a peak(with total weight=W,)

system sizeN. This result definitively confirms that in this . th tical : ted f it
regime an optical excitation is a pair of independent chargén € optical spectrum as expected for an exciton or an ex-

excitations, in agreement with the strong-coupling analysisc'tomc string. In the CDW droplet regime, finite-size effects

For V>2t, the average distance tends to a finite value fOIbeco_me large and pomplex an.d, In most cases, it hqs not been
N— as expected for an exciton. The exciton sizdeter- possible to determine the scaling of the spectral weigihts

mined with this procedure is shown in Fig. 5 as a function of nOrptlcaI tispfct)r(ait'l'zenat;g\ﬁ arnaliyns1ls ihf?rms ma'ft low-

V for two finite values ofU. The exciton size in the limit SeT9Y optical exciialions in the regime o € Motl gaps
. . . are identical to those found in the limit of a large Mott gap

U>t, Eq. (8), is also plotted for comparison. The size . . .

. i ; . and can be interpreted using the simple theory developed for

increases and diverges ¥gends to 2, showing the unbind- the strona-counling limit in Sec. IV A. Turning next to the

ing of the exciton alV=2t. Note that forU =40 the sizes g Ping ) ' g

: . : tical spectrum | have calculated (w) for various param-
measured with the exciton correlation funcfidic**agree P :
perfectly with Eq.(8). eters 40=U=3t and U/2=V=0 using the DDMRG

One can gain some knowledge about the nature of Optir_’nethod. I have found that the optical spectra of systems with

cally excited states by looking at the scaling of their spectralz"ffm'lte Mott gap closely resemble those observed in the limit
weight of a large Mott gap.

As a first example, the optical conductivity;(w) is
7 |(n|3]0)? shown in Fig. 6 forU=40t and several values df repre-
"“Na E—E. (14 senting the four different regimes: free charge excitations
n =0 (V=0), excitons ¥=5t), excitonic strings Y= 16t), and
CDW droplets ¥=19.9%). For V=0 there is a single con-
tinuous band starting ab=E,,=Ey=36.14. At the band
edges the optical conductivity vanishes és—E,, as dis-
cussed in Ref. 11.
For V=5t a strong excitonicé peak appears abeyc
= Eqp=34.39 below the Mott gajE )y, =36.13. The exciton
has a siz&€~1.2 in perfect agreement with E(B). There is
also a weak continuous band of free charge excitations above
Ewm . which is only visible as a high-frequency tail of the
0 L L L . exciton peak in Fig. 6. The gap between the excitonic peak
and the band is not visible in Fig. 6 because of the large
broadeningn/t=0.4 used here, but it can be checked with a
FIG. 5. Exciton size as a function dfor U=4a (circles and  scaling analysis fom—0 (N—) as discussed in Ref. 21.
U=8t (squares The solid line is theU>t result, Eq.(8). The  The only qualitative difference between the present result for
dashed line is just a guide for the eyes. U=40t and the corresponding result in the linet (see

10

Vi
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3 . : 3 ! ductivity wo,(w) for U=40 and
g : g : (a) V=16t and(b) V=19.9% cal-
C] I ] I culated using DDMRG withz/t
107 ' 1072 ' =0.4 (N=32 siteg. Vertical lines
I I indicate the Mott gajE,, .
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Fig. 1 in Ref. 13 is the absence of the weak peak associated=6t presented in Ref. 27 but the optical spectrum in the
with a localized exciton atw=U —V. Nevertheless, this regimeU=2V is not interpreted correctly in that work.

weak peak is not an artifact of the strong-coupling limit be- As a second example and to illustrate the finite-size-
cause its existence has been confirmed in the Hubbard modstaling analysis | have carried out for dynamical spectra, |
(V=0) down toU=4t (Ref. 11. The finite spectral weight discuss the optical conductivity;(w) for U=8t. Figure 8
carried by the localized exciton originates from a ground-shows the evolution of the optical conductivity for increasing
state dimer-dimer correlation of the spin degrees ofnearest-neighbor repulsidn ForV=t andV=2t, the spec-
freedom®* In the strong-coupling limit  —2V>t) of the  trum contains a single continuous band due to free charge
extended Hubbard modél), the effective exchange cou- excitations starting aE,,=Ey=4.6% and 4.58, respec-
pling between nearest-neighbor spins depends on the occtively. For V=3t the spectrum consists of a strong peak
pation of the neighboring sites W#0. Thus the effective corresponding to an exciton of siZe=3.2 and energyweyc
spin Hamiltonian is not the one-dimensional Heisenberg=E,,~=3.8@, and of a weak band above the Mott g&p
model, in general. Only foW=0 or in the limitU>V, the ~ =4.1a. This band is visible in Fig. 8 as the high-frequency
effective spin Hamiltonian reduces to the Heisenberg modetail of the excitonic peak. Fov = 4t, CDW droplets of vary-
with a constant exchange couplidg=4t*/U. In this case, ing sizes dominate the optical spectrum. For instance, the
the ground state has the relevant spin dimer-dimer correlarg - state is a droplet of sizeqpy=5.6 with an excitation
tions and the localized exciton carried a finite optical Welghtenergy Eop=1.53 lower than the Mott gapEy,=2.22.

as explained in detail in Ref. 14. For finittandV, however, - thore'is no intermediate regime with well-defined excitonic
the spin dimer-dimer correlation is presumably destroyed b%trings for this value ofJ.

the fluctuations of the spin exchange coupling and thus the
optical weight of the localized exciton vanishes.

For V=16t the conditionV=U/3 is satisfied and exci-
tonic strings appear in the optical spectrum below or aroun
the Mott gap E,,=35.58. As seen in Fig. 6, most of
the spectral weight is concentrated in the exciton of gize
=1.0 at wey=Eqp=23.53~U—V. The biexciton atw
=32.35~2U -3V is barely visible in Fig. 6. The optical
conductivity o, (w) is again shown in Fig. (& on a loga-
rithmic scale. The isolated peaks associated with both exc
tations are now clearly visible. The measured ioni¢gy is
I=1.1 andl =2.2 for the exciton and the biexciton, respec-
tively. In Fig. 7(a) the remnant of the continuous band of free

The precise shape af;(w) cannot be determined from
the sole results shown in Fig. 8 because of the finite resolu-
ion and system size useg/t=12.8N=0.1. To determine

he properties ofr;(w) with maximal resolution §—0) in

the thermodynamic limitl— o), one can perform a scaling
analysis withyN=const. as explained in Ref. 2lHere |
have usedyN=12.&.) The scaling analysis of the optical
conductivity o1 (w) calculated with DDMRG always vyields
results which are qualitatively and quantitatively consistent
With the properties of low-lying optical excitations deter-
mined using the ground state and symmetrized DMRG meth-

charge excitations and the triexcitéat w~3U —5V=40t) ' ' ' ' '
are also visible in the intervab=36—44t above the Mott 24
gap. 20 f
For V=19.9%~U/2 the optical conductivity spectrum is =16 |
radically different. The excitonic strings collapse into a band §; 1ol
of CDW droplets with varying sizes. For instance, thg,1 e
state is a droplet of sizécpy=28.9 with an energyE, 08 1
~15.5%. These CDW droplets give rise to a broad band in 04
the optical conductivity spectrum shown in Fig. 6. The onset 0.0
of this band is well below the Mott gaipy, = 30.83. On the 0 12
logarithmic scale of Fig. (b), one sees that, in this particular
case, the entire optical weight seems to be bely (for FIG. 8. Optical conductivityr,(w) for U= 8t and four different

7n—0). The appearance of a band below the Mott gap is als@alues of V calculated with DDMRG usingsp/t=0.1 (N=128
visible in the current-current correlations for=12t andV sites.
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FIG. 9. Scaling analysis of the maximum in DDMRG optical speotféw) for U= 28t and three different values &f (7N=12.8). (a)
Positionw 5, 0f the maximum(open symbolsas a function of the inverse system size. Lines are linear fits to these data. Solid symbols show
the optical gap£&, calculated with symmetrized DMRG fot—o0. ForV=3t, the Mott gapE,, is indicated by a triangle. Far/t=1 and
2, Ey=Eqp. (b) Maximum of o4 (w) as a function ofp/t. Lines are fits to the numerical data: the dashed line correspongs tothe
dot-dashed ta;~ Y2 and the solid line is a linear fit iny.

ods. For instancer;(w) vanishes for alko<E,y and there ~are qualitatively similar to those calculated in the limit of a

is a continuous band fan=Ey or a 6 peak atw=Eyin  1arge Mott gap(Sec. IV A, Refs. 13, 14
the limit 7~ 1/N—0. (i) For V=2t (that is the only possible case for=<4t),

The scaling analysis of the conductivity maximum,y independent charge excitations'give' riseto a continuoqs band
= o1 (wmay) in DDMRG spectra is illustrated in Fig. 9 for the Starting at the Mott gajy , which is equal to the optical
same interaction parameters as in Fig. 8. Nort, wy, 9P The band width is typically-8t. For V<2t, o;(w)
tends to a value (5.1p larger than the optical gafp vanishes smoothly at the 'thresholﬂopt, typically as
=4.67 calculated with symmetrized DMRG foi— [see V@~ Eope ALV=2t, 0(w) diverges as Yo —Eqp for o
Fig. Aa@)] while o . tends to a finite value fop—0 [see Egpt—>0 . .

Fig. Ab)]. Moreover, the derivative of,(w) has a maxi- (i) Forv=>2t butU=>2Vv+0(t) andv<U/3+O(t) (this
mum that diverges as {# for 7—0 atw=E,y. These fea- is poss.|ble.only folu=4t), the optical spectrum consists of
tures correspond to a continuum that vanishegas Eqyat &0 €xcitonics peak below the Mott gap and a band due to
the conductivity threshold and goes through a maximum jusf'€€ charge excitations abofzg, . Most of the optical weight
above the optical gap @ a,~1.1E,, (see Ref. 2L ForvV 'S in the excitonic peak fov= 3t. o

=2t, wmatends to the same value as the optical Bag for peg:l ?nlfthue 'E) \I/vagr?ef;yoi?)zgz ;th)wga';g:% ?:)rlnbgus'[ SP'
N—o [see Fig. @a)] and o4 diverges as 4z for —0 - .

[see Fig. ®)]. These features correspond to a continuum>2v+(?(t)' They generate |s.o|.ateﬂpeake below the MOtt
that diverges as Yw—Egy at the conductivity threshofh, ~ 92P Ew in the optical conduchtwl(_w) with a separau_on
[Note that for all values ofJ investigatedo;(w) displays between p_eaks do~U—-2V. The f|rs_t peak Is an exciton
this divergence a¥/ = 2t.] Therefore, the features of the op- and contains most of the epectrel we!ght. A very weak band
tical spectrum forV=2t are similar to those found in the due_ to free charge excitations still exists abdig.
strong-coupling limit. FOV=3t, wqay tends forN—x to é'V)D(\:II\?S?_] to th?ﬂboundzr%% UD/\ZNt()jetween ctjhe .MOtt
the same value as the optical gag,; (which is smaller than ﬁ]ne Igw-engr asessectri)n?eaends Q'ivce: fise tgog?foagn&gn?ée
the Mot gap in the thermodynamic limiisee Fig. @] and cludin shargy egkstartin bel%w the gap for charge exci-
omaxdiverges as 3 for —0 [see Fig. ®)]. These features tationsg(S) PP 9 gap 9
correspond to & peak atw=Eq,. Moreover,o;(w) van- '
ishes betweelk,,; and Ey, but remains finite abov&y, in

the limit ~1/N—0. Therefore, in the thermodynamic limit

the spectrum foV =23t (shown in Fig. 8 forN=128 site$ In the limit of a small Mott gap [E\,<t) the coherence
consists of an excitonié peak separated from the band of length ~4t/E,, becomes very large and it is not possible to
independent charge excitations as in the strong-couplingarry out numerical simulations on lattices large enough (
limit. In the CDW droplet regimei.e., close to the critical > 4t/E,,) to determine the optical spectrum with confidence.
line Vc~U/2 separating Mott and CDW phagédite-size  Fortunately, in this limit field-theoretical methods provide
effects are more complicated and larger than in the othegeneric results for the low-energy optical spectrum of a one-
regimes. As a consequence, M4t it has not been pos- dimensional Mott insulatdr 2 Field-theoretical results are
sible to perform a conclusive analysis with the largest systenapplicable to lattice models such as Efj) for gaps up to
sizes (\=256) available. It seems that the low-energy specE,,<t, which makes possible a direct quantitative compari-
trum contains a8 peak atE,, and a band starting immedi- son of field theory and DDMRG calculatiofs?>?*

ately aboveE,;, both due to CDW droplets. In the field-theoretical approach, elementary charge exci-

In summary, | have found that the optical properties for alltations are holonsin the lower Hubbard bandand antiho-
finite Mott gaps(i.e., for allU>0, V=0 in the Mott phase lons (in the upper Hubbard banhdOptical excitations are

C. Limit of a small Mott gap
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TABLE I. Mott gapEy, , optical gapE,, ionicity I, of the first 30 F i i i
optically excited state B, , and the corresponding field-theory in- P
teraction parameteg? (see texk for several values of) andV in 251
the small gap regim&,, /t=0.6—-0.7. 20t

&
Ut Vit Ew/t  Egylt I B2 R ‘
\

3 0 0.631 0.628 0.574 1 10 E ._f_lx\\
35 1.4 0664 0662 0784 0.61 051 S R
4 1.9 0.628 0.627 1.11 0.52 0.00.‘5";—"'{’35 1f0 1f5 50
4.15 2 0.645 0.642 1.20 1/2 o
4.5 2.25 0.638 0.611 154 (0.449
5 257 0.605 0.524 2.22  (0.400 FIG. 10. Optical conductivityr;(w) calculated with DDMRG
6 3.115 0.643 0.445 400 (0.327 using »/t=0.1 (N=128 site3 for U=3t,V=0 (dasheg U

=6t,V=3.155 (solid).

made of a equal number of holons and antiholons. Assumingendent charge excitations and excitons in the field theory
that the low-energy excitations consist of one holon-and in the lattice modéll) coincide:8%=1/2 corresponds to
antiholon pair, the optical conductivity is V=2t.
FT L For V=2t (corresponding tg3°=1/2) one can find pa-

o1 (0) =ASy(w/By), 19 rameters so that|T(w) perfectly fits the numerical data over
where Sg(x) is a known function depending on the field- a wide frequency range. For instance, in Fig. 11 no differ-
theory interaction parameter<g8=<1, andA is a unknown ence is visible between the DDMRG spectrum for
constant which sets the conductivity scale. Strictly speaking=4.1% and V=2t and the fitted field-theoretical spectrum
this result is exact only fow<2E,, and 82>1/3 but it has  up to w=2t~3Ey . ForV>2t, however, discrepancies be-
been found by comparison with DMRG results that correcitween DDMRG and field-theory results appear and grow
tions for w>2E,, are usually negligiblé>*® For g2=1/2,  progressively stronger asincreases. It is no longer possible
o '(w) describes a single continuous band startinggs  to find parameterg andA to reproduce the DDMRG spectra
=Ey, which is due to independent holons and antiholonsover a significant frequency range abaveE. Insteads
The optical conductivity vanishes smoothly d&—E,, for ~ andAare set by the optical gap and the total spectral weight.
B8%>1/2 and diverges as mfor B2=1/2 at the con-  This yields the values o shown in parenthesis in Table .
ductivity threshold. For 1/8 B2<1/2, there is a5 peak at AS an example, one see in Fig. 11 that the field-theoretical
w=Eqp<Ey in addition of the band starting at=E, . The spectrum differs significantly from the DDMRG result for
8 peak is due to a bound holon-antiholon paikciton. For ~U=6t andV=3.113, although optical gap, Mott gap, and
B?<1/3 additional excitons and excitonic stringsade of tofal spectral weight are identical for both spectra. The
several holon-antiholon pajrappear in the spectrum. There- PPMRG result shows that there is substantial optical weight
fore, field-theoretical predictions for the optical conductivity POth atEqp=0.443 and above the Mott gafy =0.643
of a one-dimensional Mott insulator are qualitatively similar While, according to field theor¥; for a ratio Egu/Ey~0.7
to what we have found in the extended Hubbard madgl the optical conductivity should be dominated by an excitonic
using a strong-coupling analysis and DDMRG simulations.

The field-theory parameteisy,, 8, and A must be esti- 50 F P ' "
mated numerically by comparison with DMRG results be- i
cause one does not know their relations to the lattice model 40 1

parameterd),V,t. | have first determined several couplings
(U,V) which yield approximately the same Mott g&p, /t
~0.6—0.7. These couplings are listed in Table | with the
corresponding Mott and optical gaps calculated using the
ground-state and symmetrized DMRG methods. Then | have
calculated the optical conductivity;(w) for these param- E , ,
eters using DDMRG. Some results are shown in Fig. 10. 0.0 05 1.0 1.5 2.0
Note the progressive displacement of spectral weight to ®

lower energy as/ increases although the Mott gap remains FIG. 11. Comparison of optical spectra calculated with
almost constantsee Table)l To determine the parametgés  ppyrc (N=128 siteg and field theory Kl=¢) for 7/t=0.1. The
andA one can now compare the field-theoretical spectra withyashed line is the DDMRG result fad = 6t andV=23.15%. The
the DDMRG data.[o}'(w) has to be convolved with a dotted line is the corresponding field-theoretical resufi? (
Lorentzian distribution of appropriate width to make a =0.327F,,=0.643). The DDMRG spectrum foru=4.1%,V
direct comparisoi’] This procedure yields the paramefg% =2t and the field-theoretical spectrum 8= 1/2, E,, = 0.645 are
listed in Table I. As expected the boundaries between indegiven by the solid line.
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system result from the residual interactions between these

2@ s e
cDW &°Q\®’/ e elementary excitations.
0& /f, ’f For V=<2t the low-energy optical excitations are made of
AP o o
< Y #25xcitonic strings two unbound el'ementary chgrge exmtgtlons. They give rise
= S to a single continuous band in the optical spectrum, starting
- excitons

at the Mott gafE , which thus equals the optical g&p,;.

2F e —————— The optical conductivity vanishes smoothly d& — Eopt at
free charge carriers the thresholdE,,;, except forV=2t, where it diverges as
0 0 "1 1No—Eqy For V>2t (=U=4t) but V<U/3+0O(t) and

un U—2V=t, the lowest optical excitation is an excit¢amneu-
tral excitation made of two bound elementary charge excita-
FIG. 12. Schematic representation of the different regions in theions) at an ener(‘;]yzopt lower than the Mott gafkE,,. This
(U,V) parameter space where a particular optical excitation domiexciton gives rise to an isolatedl peak in the optical con-
nates the I_ow-_energy optical spectrum of the Mott insulating phaseductivity atw= Eopt- Furthermore, one still finds a continu-
The solid line is the boundary between the CDW and Mott phasesOus band starting at the Mott gaB, due to free charge
excitations. ForV>U/3+O(t) and V>2t but U-2V=t
peak at w=Eqy with very little weight in the holon- (=uU=12) the low-energy optical excitations are excitonic
antiholon band above the Mott gﬁ.}w and in the exciton- Strings Consisting Ohexc>1 excitons with energ)E(nexp)
exciton continuum above~1.7E gy~ 1.1t. ~Egptt (Nexe—1)(U—2V). The spectrum consists of sev-
This disagreement between field theory and DDMRG re«,4 isolateds peaks atw=E(ng)<Ey . In this regime one

sults is nlothdue go a fai:lure ofrelithc:r Irgetrtlod in thg ‘E;([C)K;I)Sgstill observes a very weak band of free charge excitations
regime. t has een shown that field t eory an tarting atkEy, in the spectrum. Finally, close to the CDW
calculations for excitons agree very well in the extende hase boundan{— 2V=t) for V> 2t the low-energy exci-

Hu%tl)ard _m?r(]jetl \t"r’]ith fntlaé(tgrr:earest-neighbr(])r repuléﬁ)mtr;]et thtations are CDW droplets and give rise to a broad band start-
problem is that the field-theory approach assumes tha fﬁg below the Mott gaEy, .

low-energy optical excitations are made of two elementary As long as optical excitations are made of a pair of
chargehexcnatm_)r_ns. In the extended Hubbard m_c()ﬁ_)elhow- (bound orgunbouﬁ)delementary charge excitatiortse, Ft)he
ever, the conditionss,y <4t a_nd V=2t are satisfied only excitation ionicity isl=<1), the optical spectra calculated
c!os_e to the phase boundayy=U/2, where low-energy ex- numerically with DDMRG agree perfectly with the analyti-
mtajuor.ls are CD\.N droplets magle pf. many elementary charggal results obtained with a strong-coupling analysis or with
excitations. For instance, the ionicity of th] state be-  fje|q theoretical methods. This agreement confirms the accu-
comes significantly larger than 1 &sincreases abovetZ;s racy and the power of the DDMRG method for calculating
seen in Table I. Therefore, the field-theory approach is nofynamical spectra in the thermodynamic limit. It also con-
applicable to the lattice model) with V>2t even in the  firms the wide range of validity of both analytical ap-
limit of a small Mott gap. Moreover, the extended HUbbardproaches.

model (1) cannot describe a Mott insulator with a small gap™  gome results presented here suggest further investiga-
and an exciton in the optical spectrum for any parameiers ons. First, in the extended Hubbard mod#) no exciton

andV. exists in the regime of a small Mott gajg(;<t), which is
relevant for some real materials such as conjugated
polymers®? It is believed that an electron-electron interac-
tion with a longer rang€*>8or a lattice dimerizatiof? can

| have investigated the line&one-photon optical excita- lead to the formation of excitons in systems with small gaps.
tions of a one-dimensional Mott insulator, the half-filled ex- However, the precise nature of the optical excitations in such
tended Hubbard model, using DMRG methods. Four types ofystems has been questioridéd:he approach used here for
optically excited states have been found: pairs of fre®  the extended Hubbard model enables us to determine the
bound charge excitation, excitons, excitonic strings, andoptical properties of these systems reliably and to confirm
CDW droplets. Correspondingly, there are four different re-the presence of excitori$.Second, excitonic strings appear
gimes in the model parameter spatkY) depending on the in the linear optical conductivity spectrum for strong inter-
nature of the low-energy optical excitations. They are showraction U,V>t because of the weak hybridization of exci-
in the schematic “phase diagram” of Fig. 12. Note that only tonic strings with different sizes,,.. Experimentally, exci-
the V=2t line separating the regime of free excitations fromtonic strings have been observed in then-linear optical
that of bound excitations represents a sharp transition. Thabsorption only* It would be desirable to check if excitonic
other dashed lines represent smooth crossover from one retrings can be found in the linear optical absorption of ma-
gime to another. In each regime one observes optical specttarials which are believed to be large-gap one-dimensional
with distinct features. In all cases, optical excitations areMott insulators such as Cu oxides and Ni halid€s! Last,
made of an even number of elementary excitations carryinghere is a clear boundary between free and bound excitations
opposite charges in the lower and upper Hubbard bands. Thie the low-energy optical spectrum¥t=2t. As discussed in
different types of excitations and optical spectra found in thisRef. 23 the nature of the low-energy charge excitation seems

V. CONCLUSION
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to be correlated with the order of the transition from the Mottmatrices uses much less memory and is also much fster.
insulating phase to the CDW insulating phase. It is likely thatProjecting this representation onto a symmetry subspace
the tricritical point where the transition changes from con-slows down the program considerably. Therefore, instead of
tinuous to first order is located precisely on the Ive 2t. a projection, | use an exact diagonalization technique
This suggests the existence of a hidden symmetry in thehift the chosen symmetry subspace to lower energy.

charge sector of the extended Hubbard médleatV =2t. It Let P, and P be the charge-conjugation and spin-flip
would be interesting to investigate this feature further. operators for the full lattice with eigenvalués=+1 and
P.==*1. As P, and P, commute with the Hamiltonia#,

| gratefully acknowledge helpful discussions with R. Bur-
sill, F. Essler, and S. Pleutin and | thank F. Gebhard for his H' =H—\P.— NP (A1)
support and many stimulating conversations.
has the same eigenstatesrabut its eigenvalues are shifted,
APPENDIX E.=E,*\.*\s, Where the signs: are given by the eigen-

In the original implementation of the charge-conjugationState paritied®, and P. It is obvious that the lowest eigen-

and spin-flip symmetries for DMRG calculatioffsan ex- ~ states of H' lies in the symmetry subspace witR,
plicit matrix representation of the superblock Hamiltonian is =Xc/|A¢| andPs=Xs/[\g provided|x | and|\{ are large
built. This matrix can be projected onto a symmetry subspacgnough. Therefore, one can simply apply the usual ground-
with chosen paritie®, and P, which allows one to com- state DMRG approach to the Hamiltoni&i with appropri-
pute eigenstates of this symmetry and reduces the computate values o\, and \¢ to obtain the lowest eigenstates in
memory and CPU time required. In an efficient implementa-any symmetry sector. A similar approach has already been
tion of DMRG, however, an explicit representation of the used to shift states with high total spggto higher energy in
superblock Hamiltonian should not be constructatileast a DMRG calculatiort® Using the method proposed recently
for quasi-one-dimensional systems with only short-range infor including a non-abelian symmetry group in a DMRG
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