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Optical excitations in a one-dimensional Mott insulator

Eric Jeckelmann
Fachbereich Physik, Philipps-Universita¨t, D-35032 Marburg, Germany

~Received 26 August 2002; published 14 February 2003!

The density-matrix renormalization-group~DMRG! method is used to investigate optical excitations in the
Mott insulating phase of a one-dimensional extended Hubbard model. The linear optical conductivity is cal-
culated using the dynamical DMRG method and the nature of the lowest optically excited states is investigated
using a symmetrized DMRG approach. The numerical calculations agree perfectly with field-theoretical pre-
dictions for a small Mott gap and analytical results for a large Mott gap obtained with a strong-coupling
analysis. It is shown that four types of optical excitations exist in this Mott insulator: pairs of unbound charge
excitations, excitons, excitonic strings, and charge-density-wave~CDW! droplets. Each type of excitation
dominates the low-energy optical spectrum in some region of the interaction parameter space and corresponds
to distinct spectral features: a continuum starting at the Mott gap~unbound charge excitations!, a single peak
or several isolated peaks below the Mott gap~excitons and excitonic strings, respectively!, and a continuum
below the Mott gap~CDW droplets!.

DOI: 10.1103/PhysRevB.67.075106 PACS number~s!: 71.10.Fd, 71.35.Cc, 78.20.Bh
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I. INTRODUCTION

In recent years, various quasi-one-dimensional mater
such as conjugated polymers,1,2 organic charge-transfe
salts,3,4 Cu oxides,5 and Ni halides,6 have been extensivel
studied because of their unusual optical properties and t
potential application in modern optical technology. In fir
approximation these materials can be described as
dimensional strongly correlated electron systems with h
filled bands. The electron-electron interaction drives suc
system into a Mott insulating ground state7,8 and dominates
low-energy excitations. Therefore, the optical properties
one-dimensional Mott insulators are currently a topic
great interest.

Despite many theoretical studies, our knowledge of th
systems is still fragmentary because of the difficulties as
ciated with the investigation of strongly correlated system
For many years, numerical exact diagonalization of sm
systems was the only method providing reliable informat
on excited states in correlated electron systems.9,10 Recently,
however, the linear optical conductivity and exciton prop
ties of one-dimensional Mott insulators have been calcula
analytically for an infinite system in the limit of a small Mo
gap11–13 and of a large Mott gap.13–18 Moreover, recent de-
velopments of the density-matrix renormalization gro
~DMRG! method19,20 allows one to calculate excited stat
and dynamical response functions numerically in large s
tems and with an accuracy comparable to exact diagon
zations.11,21

A paradigm of a one-dimensional Mott insulator is t
extended Hubbard model with hopping integralt, on-site re-
pulsion U, and nearest-neighbor repulsionV at half filling.
Although this model has been widely studied, its propert
are still poorly understood in the thermodynamic limit. It
known22 that the system is a Mott insulator in a large regi
of the parameter space (U,V) which is physically relevant
for the Coulomb repulsion between electrons (U.V>0).
The precise ground-state phase diagram has only recent
determined using DMRG.23 In the special case of the Hub
0163-1829/2003/67~7!/075106~12!/$20.00 67 0751
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bard model24 (V50,U.0) the ground state is known ex
actly to be a Mott insulator25 and the optical conductivity ha
been calculated.11 In principle, the optical properties of th
Mott insulating phase are also known forV.0 at weak
coupling12,13 and at strong coupling,13–17 but the range of
validity of these results is not cleara priori. Results for
intermediate coupling and close to the Mott phase bound
U'2V are scarce and the absence of finite-size-effect an
sis often hinders their interpretation.16,26–28

In this paper I present an accurate and comprehen
investigation of the linear optical conductivitys1(v) and the
excited states contributing tos1(v) in the Mott insulating
phase of the one-dimensional extended Hubbard mode
half filling. An efficient symmetrized DMRG~Ref. 29! and
the recently developed dynamical DMRG~DDMRG! ~Refs.
11,21! are used to calculate the optically excited states
the linear optical conductivitys1(v) on large lattices. The
comparison of numerical results fors1(v) with
field-theoretical12,13 and strong-coupling14 predictions con-
firms both the great accuracy of DDMRG and the wide v
lidity range of both analytical methods. I have found th
four types of excitations determine the optical properties
the Mott insulating phase: pairs of unbound charge exc
tions, excitons, excitonic strings, and charge-density-w
~CDW! droplets. I will show that each type of excitation
dominate the low-energy spectrum in a particular region
the parameter space (U,V) and exhibits a distinct optica
spectrums1(v).

The model, the linear optical conductivitys1(v), and the
relevant symmetries are introduced in detail in the next s
tion. In Sec. III the numerical methods are briefly present
then the estimation of DMRG truncation errors and fini
size effects are discussed. In Sec. IV I describe the f
different types of excitations which contribute to the line
optical conductivity and the corresponding optical spectra
the various interaction regimes from the limit of a large Mo
gap to the limit of a small Mott gap. The final section co
tains the conclusion.
©2003 The American Physical Society06-1
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II. MODEL

The one-dimensional extended Hubbard model is defi
by the Hamiltonian

Ĥ52t(
l ;s

~ ĉl ,s
1 ĉl 11,s1 ĉl 11,s

1 ĉl ,s!

1U(
l

S n̂l ,↑2
1

2D S n̂l ,↓2
1

2D1V(
l

~ n̂l21!~ n̂l 1121!.

~1!

It describes electrons with spins5↑,↓ which can hop be-
tween neighboring sites. Hereĉl ,s

1 , ĉl ,s are creation and an
nihilation operators for electrons with spins at site l, n̂l ,s

5 ĉl ,s
1 ĉl ,s are the corresponding density operators, andn̂l

5n̂l ,↑1n̂l ,↓ . The hopping integralt.0 gives rise to a a
single-electron band of width 4t. The Coulomb repulsion is
mimicked by a local Hubbard interactionU, and a nearest
neighbor interactionV. The physically relevant parameter r
gime isU.V>0. The number of electrons equals the nu
ber of lattice sitesN ~half-filled band!. This system is in a
Mott insulating phase forV,Vc(U)'U/2 ~Ref. 22!. Precise
values of the Mott phase boundaryVc(U) are given in Ref.
23.

Note that the chemical potential is chosen in such a w
that the Hamiltonian~1! explicitly exhibits a particle-hole
symmetry. This Hamiltonian has two other discrete symm
tries which are useful for optical excitation calculations:
spin-flip symmetry and a spatial reflection symme
~through the lattice center!. Therefore, each eigenstate has
well-defined parity under charge conjugation (Pc561) and
spin flip (Ps561), and belongs to one of the two irredu
ible representationsAg or Bu of a one-dimensional lattice
reflection symmetry group.

Spectroscopy with electromagnetic radiation is a comm
experimental probe of solid-state materials.30 The linear
~one-photon! optical absorption is proportional to the re
part s1(v) of the optical conductivity. ForvÞ0, s1(v) is
related to the imaginary part of the current-current corre
tion function by

s1~v!5
Im$x~v!%

v
. ~2!

For v>0 the current-current correlation function is given

x~v.0!52
1

Na K 0U Ĵ 1

E02Ĥ1\v1 ih
ĴU0L

52
1

Na (
n

u^0uĴun&u2

\v2~En2E0!1 ih
, ~3!

wherea is the lattice spacing. Here,u0& is the ground state o
the HamiltonianĤ, un& are excited states ofĤ, andE0 , En
are their respective eigenenergies. Althoughh501 is infini-
tesimal, a finite value may be used to broaden the resona
at \v5En2E0 and to reduce finite-size effects.Ĵ is the
current operator
07510
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~ ĉl ,s
1 ĉl 11,s2 ĉl 11,s

1 ĉl ,s!, ~4!

where 2e is the charge of an electron. I seta5e5\51
throughout, andt51 is used in figures showing the optic
conductivity, which means thats1(v) is given in units of
e2a/\ andv in units of t/\.

We note that the current operator is invariant under
spin-flip transformation but antisymmetric under charge c
jugation and spatial reflection. Therefore, if the ground st
u0& belongs to the symmetry subspaceAg

1[(Ag ,Pc ,Ps),
only excited statesun& belonging to the symmetry subspac
Bu

2[(Bu ,2Pc ,Ps) contribute to the optical conductivity

According to selection rules, the matrix element^0uĴun&
vanishes ifun& belongs to another symmetry subspace.
this paper, the excitation energyEn2E0 of the lowest eigen-
state with a nonzero matrix element^0uĴun& is called the
optical gapEopt.

III. NUMERICAL METHODS

DMRG ~Refs. 19,20! is known to be a very accurat
method for one-dimensional quantum systems with sh
range interactions such as the extended Hubbard Ha
tonian ~1!. In this work I use three different DMRG tech
niques to calculate ground states, excited states, and dyn
response functions. All three techniques are based on
finite system DMRG algorithm.

First, the usual ground-state DMRG method is used
calculate the ground stateu0& for a fixed numberNs of elec-
trons of each spins. This method provides the ground-sta
energyE0(N↑ ,N↓) and allows us to calculate ground-sta
expectation valueŝ0uÔu0& for various operatorsÔ, such as
static correlation functions. The~Mott! gapEM in the single-
particle density of states of a Mott insulator can also be
tained using this approach. At half filling (Ns5N/2) the
Mott gap is simply given by

EM52@E0~N↑11,N↓!2E0~N↑ ,N↓!# ~5!

because of the charge-conjugation symmetry.
Second, a symmetrized DMRG~Ref. 29! technique is

used to calculate the lowest eigenstatesun& in the Bu
2 sym-

metry sector. This method yields not only the eigenenerg
En of the lowest optically excited states~in particular, the
optical gapEopt), but also allow us to compute expectatio
valueŝ nuÔun& and thus to analyze the nature of these sta
To optimize the DMRG program performance, my impl
mentation of the charge-conjugation and spin-flip symm
tries differs from the original idea presented in Ref. 29. T
is explained in detail in the Appendix.

Finally, the dynamical DMRG method11,21is used to com-
pute the optical conductivity~2! convolved with a Lorentzian
distribution of widthh.0. Comparisons with exact result
have shown that DDMRG is a very reliable numeric
6-2
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method, which yields spectra with an accuracy compara
to exact diagonalizations but for much larger systems.11,13,21

All DMRG methods have a truncation error which is r
duced by increasing the numberm of density-matrix eigen-
states kept~for more details, see Refs. 19 and 20!. Varyingm
allows one to compute physical quantities~including spectra!
for different truncation errors and thus to obtain error e
mates on these quantities. I have systematically used
procedure to estimate the precision of my numerical calc
tions and adjusted the maximal numberm of density-matrix
states to reach a desired accuracy. The largest numbe
density-matrix eigenstates used in this work ism51000. For
all numerical results presented in this paper DMRG trun
tion errors are negligible.

All numerical calculations have been performed on l
tices with an even numberN of sites using open boundar
conditions. As we are interested in the properties of
Hamiltonian~1! in the thermodynamic limit, numerical ca
culations have always been carried out for several sys
sizesN in order to investigate finite-size effects. The large
system size used here isN5512. If necessary, the resul
have been extrapolated to the infinite system limitN→`. To
evaluate finite-size effects in a continuous spectrum one
to compute it for different sizes while keepinghN 5 const.21

In this work hN512.8t is used. For all numerical result
presented in this paper finite-size effects~including chain-
end effects! are negligible unless discussed explicitly. F
spectra this means that finite-size effects are completely
den by the broadeningh. More precisely, DDMRG results
for finite N512.8t/h are not distinguishable from the corre
sponding infinite-system spectra convolved with a Loren
ian distribution of widthh ~see the discussion in Ref. 21!.

IV. RESULTS

To facilitate the comparison with analytical results, t
discussion of optical excitations in the Mott insulating pha
is divided in three subsections: the limit of a large Mott ga
the regime of finite Mott gaps, and the limit of a small Mo
gap. Note, however, that the Mott gapEM just fixes the en-
ergy scale; the minimal energy required to create a cha
excitation isEM/2 but optical excitations do not differ qual
tatively asEM varies if everything else is kept constant. In a
cases, there is spin-charge separation and the spin sec
gapless. Elementary excitations in the charge sector are s
less bosons in the lower and upper Hubbard bands. Op
excitations are always made of an even number (>2) of
elementary excitations with opposite charges~to preserve
charge neutrality!. The different types of optical excitation
and optical spectra found in the model~1! result from the
residual interactions~essentially the nonlocal part of th
Coulomb repulsion, hereV) between the elementary charg
excitations.

A. Limit of a large Mott gap

In the strong-coupling limitU@t, the properties of the
model ~1! in the Mott insulating phase can be described
ing simple concepts. In the ground state double occupatio
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prohibited and there is exactly one electron on each s
Elementary charge excitations can be represented as
empty site~holon in the lower Hubbard band! or a doubly
occupied site~doublon in the upper Hubbard band!. The
minimal energy required to create a holon or a doublon
EM/25U/22O(t)@t. Optical excitations always consist o
an equal number of holons and doublons to conserve
total charge. The ionicity of excited states is defined as
change in the number of doubly occupied sites with resp
to the ground state

I n5^nuN̂dun&2^0uN̂du0&, ~6!

whereN̂d5( l n̂l ,↑n̂l ,↓ and u0&,un& denote the ground state an
excited states, respectively. Thus,I n is a measure of the num
ber of doublons~or equivalently of holons! created by an
excitation. Depending on the strength of the nearest-neigh
interaction parameterV, the low-energy optical excitation
are made of a single doublon-holon pair (I n51) or are col-
lective excitations of several such pairs (I n.1). Note thatI n
is also equal to the derivative of the excitation energyEn
2E0 with respect toU because the derivative of an eigene
ergy En5^nuĤun& is equal to ^nuN̂dun& according to the
Hellmann-Feynman theorem.

Single holon-doublon pair. For V,U/31O(t), optical
excitations consist of a single holon-doublon pair and
optical properties, which can be calculated exactly,14,15 de-
pend only on the parametersV and t. For 0<V<2t, holon
and doublon are independent. A schematic representatio
this state is shown in Fig. 1. This pair of free charge exc
tions gives rise to a continuous band in the optical spectr
s1(v). The band starts at the Mott gapEM5U24t and has
a width of 8t. As there is no optical excitation with a lowe
energy thanEM , the Mott gap is also the optical gapEopt.
The optical spectra forV50 andV52t are shown in Fig. 2
with a broadeningh/t50.1. At the conductivity threshold
s1(v) vanishes asAv2EM for V,2t but diverges as
1/Av2EM in the special caseV52t. The optical conductiv-
ity also has a small peak atv5U2V with 1 % of thespec-
tral weight.13 This peak is visible inside the band forV50
andV52t in Fig. 2. It corresponds to a bound state made

FIG. 1. Schematic representation of~a! an unbound holon-
doublon pair,~b! an exciton, and~c! a biexciton in the strong-
coupling limit U22V@t.
6-3
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ERIC JECKELMANN PHYSICAL REVIEW B67, 075106 ~2003!
dispersionless charge excitations14 and can be seen as a lo
calized exciton with sizej51.

For V.2t, there is also a continuous band starting atv
5EM5U24t due to independent holon-doublon pairs, b
the lowest optical excitation is now an exciton~i.e., a bound
holon-doublon pair! with an energy vexc5Eopt5U2V
24t2/V ~Ref. 14!. The term24t2/V is the kinetic energy
lowering due to the exciton center-of-mass motion. The
fore, in the strong-coupling limit (U@t) the exciton binding
energy is Eb5EM2Eopt5V24t14t2/V (V.2t). This
binding energy significantly differs from the incorrect res
Eb5V often reported in the literature,26 which is ~approxi-
mately! valid only under the additional conditionV@t. In
the optical spectrums1(v) the exciton generates an isolate
d peak atvexc below the band onset. ForV@t, an exciton is
essentially the nearest-neighbor holon-doublon pair show
Fig. 1. This is exactly the state generated by the curr
operator~4! applied to the ground state with one electron
each site. Thus the spectral weight is concentrated in
excitonic peak forV@t. This strong excitonic peak is al
ready clearly visible forV55t in Fig. 2. For finite V/t,
however, there is a finite probability of finding holon an
doublon at a distancem.1. This probability can be calcu
lated exactly13

C~m!5C~12dm,0!e
2km ~7!

with k52 ln(V/2t) and a normalization constantC. The ex-
citon size~the average holon-doublon distance! is then

j~V.2t !5
V2

V224t2
~8!

and decreases asV increases. Correspondingly, one observ
a progressive transfer of spectral weight from the band ab
EM to the excitonic peak atvexc5U2V24t2/V as V in-
creases. Note that, as forV<2t, there is a small peak corre
sponding to a localized exciton atv5U2V in the optical
conductivity. This peak lies in the band forV,4t but is
situated between the band and the strong excitonic peak
V.4t. In Fig. 2 it can be seen forV55t as a small bump a
the foot of the strong peak.

Figure 2 shows optical spectra calculated with t
DDMRG method on a 128-site lattice. On the scale of t

FIG. 2. Reduced optical conductivityvs1(v) in the limit of a
large Mott gap (U@t) calculated with DDMRG for three differen
values ofV usingh/t50.1 (N5128 sites!.
07510
t

-

in
nt

e

s
ve

for

s

figure, the DDMRG spectra are indistinguishable from t
analytical results for an infinite system.14,13~For an expanded
view showing small deviations, see Fig. 1 of Ref. 13.! This
perfect agreement confirms the validity of the stron
coupling calculations done in Ref. 14. Moreover, it confirm
once more that DDMRG can accurately reproduce infin
system optical spectra.21

Collective excitations. As we have just seen, the creatio
energy of an excited state with ionicityI n51 is eitherU
2O(t) for an unbound holon-doublon pair orU2V
2O(t2/V) for an exciton. Once a first excitation has be
created, however, the creation of a second holon-doub
pair bound to the first excitation requires only an energyU
22V. Therefore, whenV becomes large enough, the lowe
optical excitations are bound states ofnexc excitons, called
excitonic strings.31,32A biexciton (nexc52) is shown in Fig.
1 as an illustration~see also Ref. 9!.

The excitation energy of anexc-exciton string is

E~nexc!5U2V1~nexc21!~U22V!2O~ t2/V!. ~9!

Here the correction of ordert2/V corresponds to the kinetic
energy lowering due to the center-of-mass motion.
nexc-exciton string (nexc>2) appears in the low-energy exc
tation spectrum, around or below the onsetEM5U24t of
the band of free holons and doublons, ifE(nexc)&EM or

V*
nexc21

2nexc21
U1O~ t !. ~10!

Thus, the biexciton becomes a low-energy excitation forV
*U/3 and longer excitonic strings (nexc>3) for larger V.
The casenexc51 corresponds to the usual exciton, whic
appears in the low-energy spectrum as soon asV.2t as
discussed above. As annexc-exciton string is made ofnexc
doublons and holons bound together, it is a neutral exc
tion, its ionicity isI 5nexc, and its length is 2nexc21 in units
of the lattice constant. Excitonic strings have been obser
in the nonlinear optical spectrum of quasi-one-dimension
neutral mixed-stack charge-transfer solids and are know
contribute to thenonlinear optical conductivity of models
such as the extended Hubbard model~1!.9,31 Naively, one
does not expect excitonic strings withI 5nexc>2 to contrib-
ute to thelinear optical spectrums1(v). In the limit U/t
@t the current operator~4! creates at most one holon
doublon pair and thus in Eq.~3! the matrix elementŝnuĴu0&
between an excited stateun& and the ground stateu0& must
vanish if the ionicity~6! is larger than 1. Yet, we will see in
the next section that excitonic strings withnexc>2 are visible
in the linear optical conductivity of the extended Hubbar
model for large but finite couplingsU/t andV/t. The reason
is that for any finitet there are quantum charge fluctuatio
~virtual holon-doublon pairs! in all eigenstates of the Hamil
tonian ~1! which leads to small but finite matrix elemen

^nuĴu0& even if the average ionicityI n of an excitationun&
exceeds 1,

^nuĴu0&;S t

U22VD (I n21)

. ~11!
6-4
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Thus, for V*U/3@t the low-energy optical spectrum con
sists of a strong excitonic peak atv5Eopt5U2V
2O(t2/V) followed by several @nexc52,3, . . .&(U
2V)/(U22V)# weaker isolatedd peaks with exponentially
decreasing spectral weight atv'Eopt1(nexc21)(U22V).
All these peaks appears below~or about! the onset of a weak
continuum due to free holons and doublons atv5EM .

As long asU22V@t, excitonic strings retain a well
defined size represented by an integer numbernexc because
the kinetic energy lowering;t due to size fluctuations is
much smaller than the energy cost;(U22V) per exciton in
the string. Close to the phase boundary (U'2V) between
the CDW ground state and the Mott insulator,22,23 however,
size fluctuations become advantageous. Thus, forU22V
&t low-energy excitations~of the Mott insulator! are CDW
droplets, which can be understood as superpositions of e
tonic strings of every size

uc&5c1unexc51&1c2unexc52&1c3unexc53&1•••

~12!

with a broad distribution of coefficientscn ((nucnu251).
For U22V→01 the distribution becomes flat, i.e.,ucnu2→
const. ~For comparison, annexc-exciton string can be de
scribed by the above state withucnu2'1 for n5nexc and
ucnu2!1 for nÞnexc.) CDW droplets in the Mott insulating
phase are the analogue to the SDW droplets in the C
insulator discussed by Hirsch.22 As excitonic strings, these
CDW droplets are neutral excitations, but one can genera
the concept to CDW droplets carrying charges~see below!.
The average sizer CDW of a CDW droplet is related to its
ionicity by r CDW52I 52( i i uci u2. Its excitation energy is

E~r CDW!5U2V1
r CDW

2
~U22V!2st, ~13!

wheres.0 and2st represents the kinetic energy lowerin
due to droplet size fluctuations and center-of-mass mo
(s'4 for U22V→01). Contrary to excitonic strings, th
ionicity I of a CDW droplet is not a integer number but c
take any value>1. Therefore, forU22V!t there is a band
of CDW droplet excitations starting atU2V2st. Moreover,
the matrix element̂nuĴu0& for a CDW dropletun& is essen-
tially given by the overlapc1 with the single exciton state in
Eq. ~12!. Thus in this regime one expects that the CD
droplets give rise to a band in the optical spectrums1(v)
starting atv5Eopt5U2V2st. This band lies below the
Mott gapEM . It should be noted that the Mott gap is dete
mined by the excitation energy of unbound holons and d
blons EM'U24t as long asU22V@t. For U22V&t,
however, CDW droplets carrying a charge6e @a CDW drop-
let ~12! bound to an extra holon or doublon# have a lower
energy than a bare holon or doublon and reduce the gap
charge excitations~5! to EM5U2s8t with s8'8 for V
→U/2.

In summary, in the limit of a large Mott gap (U@t) there
are four distinct regimes corresponding to four types of
citations in the low-energy optical spectrum: independ
charge excitations forV<2t, excitons for V.2t but V
07510
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&U/3, excitonic strings forV*U/3@t but U22V*t, and
CDW droplets forU22V&t. We will see that these excita
tions are also found in the optical spectrum of the exten
Hubbard model for finite interaction strengths and Mott ga

B. Regime of finite Mott gaps

For finite coupling parametersU and V the low-energy
optical properties of the extended Hubbard model~1! can be
calculated using the ground-state and symmetrized DM
methods presented in Sec. III. Figure 3 shows the Mott
EM and the optical gapEopt as a function ofV for three
values ofU. Both gaps increase monotonically withU but
decrease with increasing nearest-neighbor interactionV.26,27

For all values ofU the optical gap equals the Mott gap~in
the thermodynamic limit! as long asV<2t but for largerV,
Eopt becomes smaller thanEM . This suggests that for allU
.0 the low-energy excitations are unbound forV<2t and
bound for V.2t as in theU@t limit.14,26 Obviously, the
condition V.2t can be realized only for relatively stron
coupling (U*4t) because the Mott insulating phase exis
only for V up to Vc'U/2. The Mott gaps in Fig. 3 are
initially almost constant asV increases then diminish signifi
cantly close to the phase boundaryVc . This agrees with the
strong-coupling analysis in the previous section, which s
gests thatEM is essentially independent ofV for Vc2V@t
but is reduced by quantity}t as V approaches the critica
value Vc . Note that on the critical line between the CDW
and Mott insulating phases, both gaps vanish forU<3t
while the Mott gap clearly remains finite for stronger co
pling (U>4t).

To determine the nature of the low-energy optical exci
tions I have calculated their ionicity~6!. Figure 4 shows the
ionicity I 1 of the first optically excited state~the 1Bu

2 state!
as a function ofV for three values ofU. In the half-filled
Hubbard model (V50) I 1 increases monotonically from 0 a
U50 to 1 forU→`, reflecting the increasingly ionic natur
of the elementary charge excitations in the lower and up
Hubbard bands. The ionicity increases slowly withV and
remains below or close to 1 for most couplings (U,V),
which confirms that the corresponding optical excitations
made of a single pair of elementary charge excitations. In
regimeU'2V.4t, however, one observes a rapid but co

FIG. 3. Mott gapEM ~upper line! and optical gapEopt ~lower
line! versusV for U/t540 ~dot-dashed!, 6 ~solid!, and 2~dashed!.
For U52t, Eopt5EM .
6-5
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ERIC JECKELMANN PHYSICAL REVIEW B67, 075106 ~2003!
tinuous increase ofI 1 to values larger than 2 asV→Vc
'U/2. This shows that the lowest optical excitation has
come a CDW droplet. Looking at higher optical excitation
one finds the same qualitative behavior of the ionicity a
function of U and V. Additionally, one observes the forma
tion of excitonic string with integerI 5nexc>2.

To determine whether the pair of elementary charge e
tations form bound~exciton! or unbound states, one can ca
culate the average distance between both excitations usin
exciton correlation function.33,34,13 For V,2t I have found
that this average distance always diverges with increa
system sizeN. This result definitively confirms that in thi
regime an optical excitation is a pair of independent cha
excitations, in agreement with the strong-coupling analy
For V.2t, the average distance tends to a finite value
N→` as expected for an exciton. The exciton sizej deter-
mined with this procedure is shown in Fig. 5 as a function
V for two finite values ofU. The exciton size in the limit
U@t, Eq. ~8!, is also plotted for comparison. The sizej
increases and diverges asV tends to 2t, showing the unbind-
ing of the exciton atV52t. Note that forU540t the sizes
measured with the exciton correlation function13,33,34 agree
perfectly with Eq.~8!.

One can gain some knowledge about the nature of o
cally excited states by looking at the scaling of their spec
weight

Wn5
p

Na

u^nuĴu0&u2

En2E0
~14!

FIG. 4. Ionicity I 1 of the first optically excited state (1Bu
2) as a

function of V for three different values ofU.

FIG. 5. Exciton size as a function ofV for U540t ~circles! and
U58t ~squares!. The solid line is theU@t result, Eq.~8!. The
dashed line is just a guide for the eyes.
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@see Eqs.~2! and ~3!# with the system sizeN. For V<2t I
have found that the spectral weight of low-lying excitatio
vanishes forN→`, which is expected for states belonging
a continuum.~As there is an infinite number of states in
continuous band, the spectral weight of each state must g
zero asN→`, so that the total weight in any finite frequenc
interval remains finite.! For V.2t ~but outside the CDW
droplet regime!, I have found that the optical weightW1 of
the 1Bu

2 state tends to a finite value in the thermodynam
limit. This corresponds to ad peak~with total weight>W1)
in the optical spectrum as expected for an exciton or an
citonic string. In the CDW droplet regime, finite-size effec
become large and complex and, in most cases, it has not
possible to determine the scaling of the spectral weights~14!.

Optical spectra. The above analysis shows that low
energy optical excitations in the regime of finite Mott ga
are identical to those found in the limit of a large Mott ga
and can be interpreted using the simple theory developed
the strong-coupling limit in Sec. IV A. Turning next to th
optical spectrum I have calculateds1(v) for various param-
eters 40t>U>3t and U/2*V>0 using the DDMRG
method. I have found that the optical spectra of systems w
a finite Mott gap closely resemble those observed in the li
of a large Mott gap.

As a first example, the optical conductivitys1(v) is
shown in Fig. 6 forU540t and several values ofV repre-
senting the four different regimes: free charge excitatio
(V50), excitons (V55t), excitonic strings (V516t), and
CDW droplets (V519.97t). For V50 there is a single con
tinuous band starting atv5Eopt5EM536.14t. At the band
edges the optical conductivity vanishes asAv2EM as dis-
cussed in Ref. 11.

For V55t a strong excitonicd peak appears atvexc
5Eopt534.39t below the Mott gapEM536.13t. The exciton
has a sizej'1.2 in perfect agreement with Eq.~8!. There is
also a weak continuous band of free charge excitations ab
EM , which is only visible as a high-frequency tail of th
exciton peak in Fig. 6. The gap between the excitonic p
and the band is not visible in Fig. 6 because of the la
broadeningh/t50.4 used here, but it can be checked with
scaling analysis forh→0 (N→`) as discussed in Ref. 21
The only qualitative difference between the present result
U540t and the corresponding result in the limitU@t ~see

FIG. 6. Reduced optical conductivityvs1(v) for U540t and
four different values ofV calculated using DDMRG withh/t
50.4 (N532 sites!.
6-6
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FIG. 7. Reduced optical con
ductivity vs1(v) for U540t and
~a! V516t and~b! V519.97t cal-
culated using DDMRG withh/t
50.4 (N532 sites!. Vertical lines
indicate the Mott gapEM .
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Fig. 1 in Ref. 13! is the absence of the weak peak associa
with a localized exciton atv5U2V. Nevertheless, this
weak peak is not an artifact of the strong-coupling limit b
cause its existence has been confirmed in the Hubbard m
(V50) down toU54t ~Ref. 11!. The finite spectral weigh
carried by the localized exciton originates from a groun
state dimer-dimer correlation of the spin degrees
freedom.14 In the strong-coupling limit (U22V@t) of the
extended Hubbard model~1!, the effective exchange cou
pling between nearest-neighbor spins depends on the o
pation of the neighboring sites ifVÞ0. Thus the effective
spin Hamiltonian is not the one-dimensional Heisenb
model, in general. Only forV50 or in the limit U@V, the
effective spin Hamiltonian reduces to the Heisenberg mo
with a constant exchange couplingJ54t2/U. In this case,
the ground state has the relevant spin dimer-dimer corr
tions and the localized exciton carried a finite optical weig
as explained in detail in Ref. 14. For finiteU andV, however,
the spin dimer-dimer correlation is presumably destroyed
the fluctuations of the spin exchange coupling and thus
optical weight of the localized exciton vanishes.

For V516t the conditionV*U/3 is satisfied and exci
tonic strings appear in the optical spectrum below or aro
the Mott gap EM535.58t. As seen in Fig. 6, most o
the spectral weight is concentrated in the exciton of sizj
51.0 at vexc5Eopt523.53t'U2V. The biexciton atv
532.35t'2U23V is barely visible in Fig. 6. The optica
conductivity s1(v) is again shown in Fig. 7~a! on a loga-
rithmic scale. The isolated peaks associated with both e
tations are now clearly visible. The measured ionicity~6! is
I 51.1 andI 52.2 for the exciton and the biexciton, respe
tively. In Fig. 7~a! the remnant of the continuous band of fr
charge excitations and the triexciton~at v'3U25V540t)
are also visible in the intervalv536244t above the Mott
gap.

For V519.97t'U/2 the optical conductivity spectrum i
radically different. The excitonic strings collapse into a ba
of CDW droplets with varying sizes. For instance, the 1Bu

2

state is a droplet of sizer CDW58.9 with an energyEopt
'15.5t. These CDW droplets give rise to a broad band
the optical conductivity spectrum shown in Fig. 6. The on
of this band is well below the Mott gapEM530.83t. On the
logarithmic scale of Fig. 7~b!, one sees that, in this particula
case, the entire optical weight seems to be belowEM ~for
h→0). The appearance of a band below the Mott gap is a
visible in the current-current correlations forU512t andV
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56t presented in Ref. 27 but the optical spectrum in t
regimeU'2V is not interpreted correctly in that work.

As a second example and to illustrate the finite-si
scaling analysis I have carried out for dynamical spectra
discuss the optical conductivitys1(v) for U58t. Figure 8
shows the evolution of the optical conductivity for increasi
nearest-neighbor repulsionV. For V5t andV52t, the spec-
trum contains a single continuous band due to free cha
excitations starting atEopt5EM54.67t and 4.53t, respec-
tively. For V53t the spectrum consists of a strong pe
corresponding to an exciton of sizej53.2 and energyvexc

5Eopt53.86t, and of a weak band above the Mott gapEM

54.10t. This band is visible in Fig. 8 as the high-frequen
tail of the excitonic peak. ForV54t, CDW droplets of vary-
ing sizes dominate the optical spectrum. For instance,
1Bu

2 state is a droplet of sizer CDW55.6 with an excitation
energy Eopt51.55t lower than the Mott gapEM52.29t.
There is no intermediate regime with well-defined exciton
strings for this value ofU.

The precise shape ofs1(v) cannot be determined from
the sole results shown in Fig. 8 because of the finite res
tion and system size used,h/t512.8/N50.1. To determine
the properties ofs1(v) with maximal resolution (h→0) in
the thermodynamic limit (N→`), one can perform a scaling
analysis withhN5const. as explained in Ref. 21.~Here I
have usedhN512.8t.! The scaling analysis of the optica
conductivity s1(v) calculated with DDMRG always yields
results which are qualitatively and quantitatively consist
with the properties of low-lying optical excitations dete
mined using the ground state and symmetrized DMRG me

FIG. 8. Optical conductivitys1(v) for U58t and four different
values of V calculated with DDMRG usingh/t50.1 (N5128
sites!.
6-7



show

ERIC JECKELMANN PHYSICAL REVIEW B67, 075106 ~2003!
FIG. 9. Scaling analysis of the maximum in DDMRG optical spectras1(v) for U58t and three different values ofV (hN512.8t). ~a!
Positionvmax of the maximum~open symbols! as a function of the inverse system size. Lines are linear fits to these data. Solid symbols
the optical gapsEopt calculated with symmetrized DMRG forN→`. ForV53t, the Mott gapEM is indicated by a triangle. ForV/t51 and
2, EM5Eopt . ~b! Maximum of s1(v) as a function ofh/t. Lines are fits to the numerical data: the dashed line corresponds toh21, the
dot-dashed toh21/2, and the solid line is a linear fit inh.
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ods. For instance,s1(v) vanishes for allv,Eopt and there
is a continuous band forv>Eopt or a d peak atv5Eopt in
the limit h;1/N→0.

The scaling analysis of the conductivity maximumsmax
5s1(vmax) in DDMRG spectra is illustrated in Fig. 9 for th
same interaction parameters as in Fig. 8. ForV5t, vmax
tends to a value (5.15t) larger than the optical gapEopt
54.67t calculated with symmetrized DMRG forN→` @see
Fig. 9~a!# while smax tends to a finite value forh→0 @see
Fig. 9~b!#. Moreover, the derivative ofs1(v) has a maxi-
mum that diverges as 1/Ah for h→0 atv5Eopt. These fea-
tures correspond to a continuum that vanishes asAv2Eopt at
the conductivity threshold and goes through a maximum
above the optical gap atvmax'1.1Eopt ~see Ref. 21!. For V
52t, vmax tends to the same value as the optical gapEopt for
N→` @see Fig. 9~a!# and smax diverges as 1/Ah for h→0
@see Fig. 9~b!#. These features correspond to a continu
that diverges as 1/Av2Eopt at the conductivity threshold.21

@Note that for all values ofU investigateds1(v) displays
this divergence atV52t.# Therefore, the features of the op
tical spectrum forV<2t are similar to those found in th
strong-coupling limit. ForV53t, vmax tends forN→` to
the same value as the optical gapEopt ~which is smaller than
the Mott gap in the thermodynamic limit! @see Fig. 9~a!# and
smax diverges as 1/h for h→0 @see Fig. 9~b!#. These features
correspond to ad peak atv5Eopt. Moreover,s1(v) van-
ishes betweenEopt and EM but remains finite aboveEM in
the limit h;1/N→0. Therefore, in the thermodynamic lim
the spectrum forV53t ~shown in Fig. 8 forN5128 sites!
consists of an excitonicd peak separated from the band
independent charge excitations as in the strong-coup
limit. In the CDW droplet regime~i.e., close to the critical
line Vc'U/2 separating Mott and CDW phases! finite-size
effects are more complicated and larger than in the o
regimes. As a consequence, forV54t it has not been pos
sible to perform a conclusive analysis with the largest sys
sizes (N5256) available. It seems that the low-energy sp
trum contains ad peak atEopt and a band starting immed
ately aboveEopt, both due to CDW droplets.

In summary, I have found that the optical properties for
finite Mott gaps~i.e., for all U.0, V>0 in the Mott phase!
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are qualitatively similar to those calculated in the limit of
large Mott gap~Sec. IV A, Refs. 13, 14!.

~i! For V<2t ~that is the only possible case forU&4t),
independent charge excitations give rise to a continuous b
starting at the Mott gapEM , which is equal to the optica
gap. The band width is typically;8t. For V,2t, s1(v)
vanishes smoothly at the thresholdEopt, typically as
Av2Eopt. At V52t, s1(v) diverges as 1/Av2Eopt for v
2Eopt→01.

~ii ! For V.2t but U.2V1O(t) andV,U/31O(t) ~this
is possible only forU*4t), the optical spectrum consists o
an excitonicd peak below the Mott gap and a band due
free charge excitations aboveEM . Most of the optical weight
is in the excitonic peak forV*3t.

~iii ! If U is large enough (U*12t) excitonic strings ap-
pear in the low-energy spectrum forV.U/31O(t) but U
.2V1O(t). They generate isolatedd peaks below the Mott
gapEM in the optical conductivitys1(v) with a separation
between peaks ofDv'U22V. The first peak is an exciton
and contains most of the spectral weight. A very weak ba
due to free charge excitations still exists aboveEM .

~iv! Close to the boundaryVc'U/2 between the Mott
and CDW phases, ifV exceeds 2t, CDW droplets dominate
the low-energy spectrum and give rise to a broad band~in-
cluding sharp peaks! starting below the gap for charge exc
tations~5!.

C. Limit of a small Mott gap

In the limit of a small Mott gap (EM!t) the coherence
length;4t/EM becomes very large and it is not possible
carry out numerical simulations on lattices large enoughN
@4t/EM) to determine the optical spectrum with confidenc
Fortunately, in this limit field-theoretical methods provid
generic results for the low-energy optical spectrum of a o
dimensional Mott insulator.11–13 Field-theoretical results are
applicable to lattice models such as Eq.~1! for gaps up to
EM&t, which makes possible a direct quantitative compa
son of field theory and DDMRG calculations.11,13,21

In the field-theoretical approach, elementary charge e
tations are holons~in the lower Hubbard band! and antiho-
lons ~in the upper Hubbard band!. Optical excitations are
6-8
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OPTICAL EXCITAITONS IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 67, 075106 ~2003!
made of a equal number of holons and antiholons. Assum
that the low-energy excitations consist of one holo
antiholon pair, the optical conductivity is

s1
FT~v!5ASb~v/EM !, ~15!

where Sb(x) is a known function depending on the field
theory interaction parameter 0,b<1, andA is a unknown
constant which sets the conductivity scale. Strictly speak
this result is exact only forv,2EM andb2.1/3 but it has
been found by comparison with DMRG results that corr
tions for v.2EM are usually negligible.11,13 For b2>1/2,
s1

FT(v) describes a single continuous band starting atEopt

5EM , which is due to independent holons and antiholo
The optical conductivity vanishes smoothly asAv2Eopt for
b2.1/2 and diverges as 1/Av2Eopt for b251/2 at the con-
ductivity threshold. For 1/3,b2,1/2, there is ad peak at
v5Eopt,EM in addition of the band starting atv5EM . The
d peak is due to a bound holon-antiholon pair~exciton!. For
b2,1/3 additional excitons and excitonic strings~made of
several holon-antiholon pairs! appear in the spectrum. There
fore, field-theoretical predictions for the optical conductiv
of a one-dimensional Mott insulator are qualitatively simi
to what we have found in the extended Hubbard model~1!
using a strong-coupling analysis and DDMRG simulation

The field-theory parametersEM , b, andA must be esti-
mated numerically by comparison with DMRG results b
cause one does not know their relations to the lattice mo
parametersU,V,t. I have first determined several coupling
(U,V) which yield approximately the same Mott gapEM /t
'0.620.7. These couplings are listed in Table I with t
corresponding Mott and optical gaps calculated using
ground-state and symmetrized DMRG methods. Then I h
calculated the optical conductivitys1(v) for these param-
eters using DDMRG. Some results are shown in Fig.
Note the progressive displacement of spectral weight
lower energy asV increases although the Mott gap remai
almost constant~see Table I!. To determine the parametersb
andA one can now compare the field-theoretical spectra w
the DDMRG data.@s1

FT(v) has to be convolved with a
Lorentzian distribution of appropriate widthh to make a
direct comparison.21# This procedure yields the parameterb2

listed in Table I. As expected the boundaries between in

TABLE I. Mott gapEM , optical gapEopt , ionicity I 1 of the first
optically excited state 1Bu

2 , and the corresponding field-theory in
teraction parameterb2 ~see text! for several values ofU and V in
the small gap regimeEM /t50.620.7.

U/t V/t EM /t Eopt /t I 1 b2

3 0 0.631 0.628 0.574 1
3.5 1.4 0.664 0.662 0.784 0.61
4 1.9 0.628 0.627 1.11 0.52
4.15 2 0.645 0.642 1.20 1/2
4.5 2.25 0.638 0.611 1.54 ~0.449!
5 2.57 0.605 0.524 2.22 ~0.400!
6 3.115 0.643 0.445 4.00 ~0.327!
8 4.137 0.641 0.24 19.9
07510
g
-

g,

-

.

-
el

e
e

.
o

h

e-

pendent charge excitations and excitons in the field the
and in the lattice model~1! coincide:b251/2 corresponds to
V52t.

For V<2t ~corresponding tob2>1/2) one can find pa-
rameters so thats1

FT(v) perfectly fits the numerical data ove
a wide frequency range. For instance, in Fig. 11 no diff
ence is visible between the DDMRG spectrum forU
54.15t and V52t and the fitted field-theoretical spectru
up to v52t'3EM . For V.2t, however, discrepancies be
tween DDMRG and field-theory results appear and gr
progressively stronger asV increases. It is no longer possib
to find parametersb andA to reproduce the DDMRG spectr
over a significant frequency range abovev5Eopt. Insteadb
andA are set by the optical gap and the total spectral weig
This yields the values ofb shown in parenthesis in Table
As an example, one see in Fig. 11 that the field-theoret
spectrum differs significantly from the DDMRG result fo
U56t and V53.115t, although optical gap, Mott gap, an
total spectral weight are identical for both spectra. T
DDMRG result shows that there is substantial optical wei
both at Eopt50.445t and above the Mott gapEM50.643t
while, according to field theory,13 for a ratio Eopt/EM'0.7
the optical conductivity should be dominated by an excito

FIG. 10. Optical conductivitys1(v) calculated with DDMRG
using h/t50.1 (N5128 sites! for U53t,V50 ~dashed!, U
53.5t,V51.4t ~dot-dashed!, U54.15t,V52t ~dotted!, and U
56t,V53.155t ~solid!.

FIG. 11. Comparison of optical spectra calculated w
DDMRG (N5128 sites! and field theory (N5`) for h/t50.1. The
dashed line is the DDMRG result forU56t and V53.155t. The
dotted line is the corresponding field-theoretical result (b2

50.327,EM50.643t). The DDMRG spectrum forU54.15t,V
52t and the field-theoretical spectrum forb251/2, EM50.645 are
given by the solid line.
6-9
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ERIC JECKELMANN PHYSICAL REVIEW B67, 075106 ~2003!
peak at v5Eopt with very little weight in the holon-
antiholon band above the Mott gapEM and in the exciton-
exciton continuum abovev'1.7Eopt'1.1t.

This disagreement between field theory and DDMRG
sults is not due to a failure of either method in the excito
regime. It has been shown that field theory and DDMR
calculations for excitons agree very well in the extend
Hubbard model with next-nearest-neighbor repulsion.13 The
problem is that the field-theory approach assumes that
low-energy optical excitations are made of two element
charge excitations. In the extended Hubbard model~1!, how-
ever, the conditionsEM!4t and V.2t are satisfied only
close to the phase boundaryVc5U/2, where low-energy ex-
citations are CDW droplets made of many elementary cha
excitations. For instance, the ionicity of the 1Bu

2 state be-
comes significantly larger than 1 asV increases above 2t as
seen in Table I. Therefore, the field-theory approach is
applicable to the lattice model~1! with V.2t even in the
limit of a small Mott gap. Moreover, the extended Hubba
model~1! cannot describe a Mott insulator with a small g
and an exciton in the optical spectrum for any parameterU
andV.

V. CONCLUSION

I have investigated the linear~one-photon! optical excita-
tions of a one-dimensional Mott insulator, the half-filled e
tended Hubbard model, using DMRG methods. Four type
optically excited states have been found: pairs of free~un-
bound! charge excitation, excitons, excitonic strings, a
CDW droplets. Correspondingly, there are four different
gimes in the model parameter space (U,V) depending on the
nature of the low-energy optical excitations. They are sho
in the schematic ‘‘phase diagram’’ of Fig. 12. Note that on
theV52t line separating the regime of free excitations fro
that of bound excitations represents a sharp transition.
other dashed lines represent smooth crossover from on
gime to another. In each regime one observes optical spe
with distinct features. In all cases, optical excitations
made of an even number of elementary excitations carry
opposite charges in the lower and upper Hubbard bands.
different types of excitations and optical spectra found in t

FIG. 12. Schematic representation of the different regions in
(U,V) parameter space where a particular optical excitation do
nates the low-energy optical spectrum of the Mott insulating pha
The solid line is the boundary between the CDW and Mott pha
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system result from the residual interactions between th
elementary excitations.

For V<2t the low-energy optical excitations are made
two unbound elementary charge excitations. They give
to a single continuous band in the optical spectrum, star
at the Mott gapEM , which thus equals the optical gapEopt.
The optical conductivity vanishes smoothly asAv2Eopt at
the thresholdEopt, except forV52t, where it diverges as
1/Av2Eopt. For V.2t (⇒U*4t) but V,U/31O(t) and
U22V*t, the lowest optical excitation is an exciton~a neu-
tral excitation made of two bound elementary charge exc
tions! at an energyEopt lower than the Mott gapEM . This
exciton gives rise to an isolatedd peak in the optical con-
ductivity at v5Eopt. Furthermore, one still finds a continu
ous band starting at the Mott gapEM due to free charge
excitations. ForV.U/31O(t) and V.2t but U22V*t
(⇒U*12t) the low-energy optical excitations are exciton
strings consisting ofnexc>1 excitons with energyE(nexc)
'Eopt1(nexc21)(U22V). The spectrum consists of sev
eral isolatedd peaks atv5E(nexc),EM . In this regime one
still observes a very weak band of free charge excitati
starting atEM in the spectrum. Finally, close to the CDW
phase boundary (U22V&t) for V.2t the low-energy exci-
tations are CDW droplets and give rise to a broad band s
ing below the Mott gapEM .

As long as optical excitations are made of a pair
~bound or unbound! elementary charge excitations~i.e, the
excitation ionicity is I &1), the optical spectra calculate
numerically with DDMRG agree perfectly with the analyt
cal results obtained with a strong-coupling analysis or w
field-theoretical methods. This agreement confirms the ac
racy and the power of the DDMRG method for calculati
dynamical spectra in the thermodynamic limit. It also co
firms the wide range of validity of both analytical ap
proaches.

Some results presented here suggest further inves
tions. First, in the extended Hubbard model~1! no exciton
exists in the regime of a small Mott gap (EM&t), which is
relevant for some real materials such as conjuga
polymers.1,2 It is believed that an electron-electron intera
tion with a longer range13,15,18or a lattice dimerization26 can
lead to the formation of excitons in systems with small ga
However, the precise nature of the optical excitations in s
systems has been questioned.35 The approach used here fo
the extended Hubbard model enables us to determine
optical properties of these systems reliably and to confi
the presence of excitons.34 Second, excitonic strings appea
in the linear optical conductivity spectrum for strong inte
action U,V@t because of the weak hybridization of exc
tonic strings with different sizesnexc. Experimentally, exci-
tonic strings have been observed in thenon-linear optical
absorption only.31 It would be desirable to check if excitoni
strings can be found in the linear optical absorption of m
terials which are believed to be large-gap one-dimensio
Mott insulators such as Cu oxides and Ni halides.5,6,17 Last,
there is a clear boundary between free and bound excitat
in the low-energy optical spectrum atV52t. As discussed in
Ref. 23 the nature of the low-energy charge excitation see
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to be correlated with the order of the transition from the M
insulating phase to the CDW insulating phase. It is likely th
the tricritical point where the transition changes from co
tinuous to first order is located precisely on the lineV52t.
This suggests the existence of a hidden symmetry in
charge sector of the extended Hubbard model~1! at V52t. It
would be interesting to investigate this feature further.
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APPENDIX

In the original implementation of the charge-conjugati
and spin-flip symmetries for DMRG calculations,29 an ex-
plicit matrix representation of the superblock Hamiltonian
built. This matrix can be projected onto a symmetry subsp
with chosen paritiesPc and Ps , which allows one to com-
pute eigenstates of this symmetry and reduces the comp
memory and CPU time required. In an efficient implemen
tion of DMRG, however, an explicit representation of t
superblock Hamiltonian should not be constructed~at least
for quasi-one-dimensional systems with only short-range
teractions!. A representation in terms of tensor products
lar
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matrices uses much less memory and is also much fast36

Projecting this representation onto a symmetry subsp
slows down the program considerably. Therefore, instead
a projection, I use an exact diagonalization technique37 to
shift the chosen symmetry subspace to lower energy.

Let P̂c and P̂s be the charge-conjugation and spin-fl
operators for the full lattice with eigenvaluesPc561 and
Ps561. As P̂c and P̂s commute with the HamiltonianĤ,
the operator

Ĥ85Ĥ2lcP̂c2lsP̂s ~A1!

has the same eigenstates asĤ but its eigenvalues are shifted
En85En6lc6ls , where the signs6 are given by the eigen
state paritiesPc andPs . It is obvious that the lowest eigen
states of Ĥ8 lies in the symmetry subspace withPc
5lc /ulcu and Ps5ls /ulsu providedulcu and ulsu are large
enough. Therefore, one can simply apply the usual grou
state DMRG approach to the HamiltonianĤ8 with appropri-
ate values oflc and ls to obtain the lowest eigenstates
any symmetry sector. A similar approach has already b
used to shift states with high total spinS to higher energy in
a DMRG calculation.38 Using the method proposed recent
for including a non-abelian symmetry group in a DMR
calculation would be a further improvement.39
tt.
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