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Effective dielectric properties of composite materials in the surface layer
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In the framework of the mean-field picture, an expression for the effective dielectric permittivity of an
inhomogeneous medium near a flat interface with another dielectric is derived as a function of the distance
from the boundary. The obtained formula should be considered as a counterpart of the standard Maxwell-
Garnett one, but in the vicinity of a flat boundary. Possibilities of a more precise derivation using already
established methods for bulk systems are briefly discussed as well.
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The history of the problem about effective dielectric prop-which, in fact, is to be considered as a definition of the di-
erties of inhomogleneous media goes back to the classicalectric permittivity tensore if Dy, and Ey are indepen-
works of Maxwell} Garnet Wagner} and others. But de- dently calculated. If a macroscopic sample of the dielectric
spite the rich history, this problem still attracts considerableyaterial is placed into an external ﬁdﬁé then all polariza-

attention resulting in a number of publications during the Iasttion effects are describ&lby the polarization vectoP(r)
decadé'~® Of course, the main point of all recent works is so that ,
B(r"
\& f ( Q) dv’
\Y

the consideration of multiparticle effects that become very

important for relatively high concentrations. The proposed . .

methods range from consistently analyticai®=?or of more Em=Eo+V; ——

empirical natur€®*to numerically driven calculatiorSEvi- r=r|

dently, this interest is strongly stimulated by possible experi- - - -

mental applications allowing to gain information about mi- Du=Ent4nP, 2

crostructure of composites based on the analysis of theifherev - means differentiation upon and the integration is

dielectric properties?~*’ characteristics such as size of in- conducted over the entire volume of the sample. The polar-
clusions are not present in the simple Maxwell-Garnett

formulaZ ization vectorP in its turn is usually expressed in terms of
Another problem, strongly connected with the mentionedhe polarizability tensoA as

one but received much less attention, arises if one considers B—AE 3

effective dielectric function of a composite matenedar an — =0 )

interface with a homogeneous medium. In this case, the inTensorA describes dielectric properties of the sample and, in
terface plays the role of an effective mirror aIIowmg US 10 particular, the permittivitye. In the case of an inhomoge-
employ the already developed methods. Here we will show

that, for instance, repolarization technifuean be easily neolus _medlumA lhas to be. detirmlned ofn ;he' mlesgscoplc
adopted for this purpose. The same should be possible for afc e 1€ strongly .exceedlng t. €slz€ 0 teelnc usions but
methods based on the mean-field apprd3cfi as well as  Small enough to define the spatial dependefte) .

more sophisticated or numerical procedut@$®°0On the Due to the presence of a flat surfa@eterfacs, it is natu-
other hand, even the simplest approximation in this problemal to write the polarizabilityA in the form

will contain information about the size of inclusions, possi- - . - ..

bly proposing an alternative for the experimental measure- A=Ann+A, (1 —nn), (4)

(r;)e;;so:]%rmrevealmg geometrical properties of the dISSOIVm%vhereﬁ is a unit vector perpendicular to the interface dnd

The above stated problem is also related to a so-callelf @ unit 3<3 tensor; herein means tensor product. )
“imperfect interface” problenf’ an excellent review of For simplicity, we will assume that the sample is *homo-
which can be found in Ref. 21. geneous in average,” implying that the volume fractioof

In this work we will use an expression for the dielectric the dielectric inclusiongpermittivity €;) immersed into the
permittivity of a composite material as a function of “el- matr_lx (permittivity €;) is constant. Both the matrix and in-
ementary” polarizabilities of the inclusions. Thereafter, a for-clusions are uncharged. .
mula for the one-particle polarizability near the interface will It is convenient to represent the flat interface as one be-
be derived by means of the method described in Ref. 8. tween a large sphere of the radifis (containing the mate-

Let us start from a general expression for thacroscopi- rlgl) and its homogeneous dielectric surrounding. Assuming
cally defined(i.e., on the scale strongly exceeding the size ofthis spherical symmetry, we conclude ti#gtandA, depend

- ; e 2 - 222 only on the distance from the center of the sphétig. 1]
inclusions electric fieldEy and displacemeriy, (or, equivalently, from the surface in the liniR— =), so

. _ that it is possible to integrate out space angles in @y.
Dy=¢€Ey; (1)  which yields

’
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FIG. 1. Dielectric inhomogeneous sphere surrounded by homo- ®
geneous dielectric medium.

FIG. 2. Spherical inclusion in the surface layer and its electro-

R . A4 . 4 I L
EM:EO_?fl(r)Eo_?fz(r)(Eo-n)n, (5)  static image.

ability &%) only to show transparently the analogy between
one-particle problem in the presence of the interface and the
1 two-particle one in the bulk. In other words it means that
fi(r)= _J r/%jr’[A”(r’)+2AL(r’)] or_1|y the terms linear upon volume fra_lctidmf inclusions
8Jo will be taken into account corresponding ltav concentra-
tion regime. This approximation is probably not sufficient for
R1 , , practical purposes, but will transparently show the essence of
+2J'r r—,dr [Ar)=ALr)], the method discussed.
Following the same logic as befor&®") is divided into
3 two independent parts; and«, . The longitudinal compo-
fz(r):_SJ r'%ir’[AH(r’)+2Al(r’)]—3A||(r). (6) rlen£a|| is a polarizability of a single particle in the field
r=Jo Eolln. However, due to the presence of the interface, the
As a result, the permittivity tensd? defined by Eq(1) takes partlcle’_s ele_ctrostauc image also has to be.taken into ac-
the form count; implying that effectively a two-particle problem
should be solved. Of course, the same is true foraéfl
g= f\lﬁﬁ’L € = nn), ) where effec_tive]y X particlgs are involved. . _
. _ Proceeding in the quantitative way, we consider a particle
with components; and e, determined as at the distance>a from the interface. Knowing that it gen-
erates an electrostatic image, we make use of the two-patrticle
<e_i 1 ( 1— 4_7Tfl) —4mA, repolarization technique developed in Ref. 8. Its essence is in
€1 3 the iterative procedure where the repolarization oper&tor
s I P AT
=, 53 (fa+12)

wherer =|r| and

can be introduced, so that the field generated by the first
=47A. (8  Particle (which has multipole momens(, n=1, ... =)
induces moment6{? on the second one, and is represented

Here and throughout the paper we use dielectric permittivit)iis

relative to the homogeneous dielect(ion the right-hand

side in Fig. 2. EFQ=S p @) 10
Now the problem is evaluated to the one of finding the k zn: Kt (10

polarization tensoA, which is related to the set afreduc-

ible k-particle polarizabilitiesz™® as This treatment can be generalized for the present case. As it

is well known?? the multipole moments of the electrostatic
o image are connected to the original point particle ofies,
A= —[adM+a@+...]. (9)  no polarization of spheres is taken into account) y8t a
v simple rule
Here we also assume all inclusions to be identical spheres of
radiusa (v=4ma’/3). The assumption about the spherical
shape will be used further during® calculation, whereas
one about monodispersity it of crucial importance: size
distribution effects will be discussed later. Furthermore, wewhere (i) refers to the image ang) to the particle. There-
will restrict ourselves to the one-particle irreducible polariz-fore, due to presence of the image, the particle effectively

€1 1

(i) —
Fn €l+1

FP), (11)

073403-2



BRIEF REPORTS PHYSICAL REVIEW B7, 073403 (2003

“polarizes itself” so that its multipole moments on tfsth To avoid bulky formulas, we preserd in the implicit
step of the iteration is connected with the previous one by form with accuracy only up ta®/z%. Higher accuracy can be
easily achieved using higher-order terms from E(&4)

and(15),
FPeFPe S p e, a9
" 3(ex—€1)
. - A ex= € 1+ ————F—f
where, for instance, the longitudinal componenfias the €126
implicit form 2 3
3CXf 61_1 (62_61) a n (16)
i (—1)"(n+k)! [2n+1 a1 " 8 €111l (e,+2¢)2 28 '
= K(K).
Ikn n'k! 2k+1¢ (2z)"ktl e+ 1 wherex=(|,L) and¢j=2, ¢, =1.
(13 The bulk value of the dielectric permittivityz( ) co-
Here «(K)=(e,— ep)k/[e;(k+1)+e,k]. “Longitudinal’ incides with the classical Maxwell-Garnett formdlén con-

o e trast to the bulk part, the surface terms contain implicitly the

refers to polarization in the external fiefth|n, i.e., perpen- oot ih e inclusions—this outcome is obvious becai

dicular to the syrfaqe. - tlhe only parameter of the length dimension and has to be
To start the iteration procedure, one also needs the |n|t|aleed to “measure” the distance from the interface

set of moments, i.e., induced by polarization in the electro- Let us now discuss the validity region of the obtained

staticuniform  filed Ey: dipole moment F{ expression(16). As it was pointed out above, only linear
= —m/3a°Eqk(1) and the otherss P =0 (i>1). Repeat- upon concentration effects were considered, so @)

ing the iteration one gets an asymptotical result for the poterms are not present. At the same time, the first of those
larizability e, which is extracted from the formulas as a terms (which were not taken into account in the present
proportionality coefficient between the dipole moment of thework) are proportional tof? (particle-particle, image-image
particle F{”) == F{P)* and the external fiel,. Due to the interaction$ or f2a%/z® (particle image of another particle
iterative nature of the method, the result fgr has the fol-  interaction. This implies that the condition

lowing form:

a3
a6 *© f< —3< 1
aH=—a3K(l)—2K2(l),8 5 3+22 aﬁs), 4
(297 = is to be satisfied. In other words, an average interparticle
o distance should exceed an average distance between a par-
aﬁs)= 2 cl K2(1) ticle and the interface in the region of applicability of Eq.
| Ny, .. iheq=1 1lso1 (16). There are two possibilities when the above condition
2yt Ang ) +st2 b_reakes. First qf all, this hap_pen_s in the case of relatively
X k(ny)- - - xk(ng_q) B%a3 _) high Concentratlonfsf@ 1), which is far from the scope of
S 2z ’ the paper. Also, distancesof the order ofa/f'® are not
covered by Eq(16). They correspond to the region where
Cﬂh .... p = (—Dnt st the surface terms @™ and bulk ones in@® are of the
same order. The latter in this case can be accounted by the
y (N +1)(ng+ny)!t- - (Ng_g+ng)! (Ng+1) methods of Refs. 4 and 6 and others. However, we need to

point out that, nevertheless, the first nontrivial surface con-
tribution is already included in Eq16).
(14) Expression(16) can be consistently applied in the case
€,#1 because an assumption about sharp interface was put
Here B=(e1—1)/[e(e1+1)]. in the very basig11) of the calculation. Qualitatively differ-
Using exactly the same approach, the transversal part Qfn sjtyatione, = 1, where the interface is not as well defined
the operatorP is obtained, yielding as before, should be considered separately. We just note that
in order to obtain the “surface effects” terms for such a
a 2 3(1) 32 “smooth” interface, one has to take into account the spatial
(22° «k>(1)B (22)° T dependence of the volume fraction of inclusidifg) in the
(15) vicinity of the border.
Here we have considered a monodisperse material. But a
At this point using Eqs(14), (8), and (9), one is able to generalization taking into account size polydispersity can be
express the dielectric permittivity as a function of the dis- easily done by producing averaging of expressidas with
tance from the surface. So far we have taken into account the given size distribution function. This yields a trivial result
inclusions effects that are only linear upon concentrationjn the present approach because only one-particle polariz-
although in the framework of this restriction no additional abilities were taken into accoufit Of course, some real sys-
assumptions were made. tems exhibit a broad inclusions’ size distribution, so that the

nyt(ny! )2' -+ (Ng—y! )zns!

6 9

a, =—a’k(1)—«*(1)B
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polydispersity effects will be present due to multiparticle po-  An application of only one possible mettbidr account-
larization and possibly exceed the surface contributn  ing multiparticle effects in the “surface layer problem” was
though they remain spatialljndependent Probably, this —discussed. However, using the presented idea, a lot of well-
problem can be approximately solved by substitution of thedeveloped techniquegncluding exact analytical methods;
polarizabilities €,— €,)/(e,+2€,) in Eq. (16) by their S€& €.9., Refs. 10 and 5, and references thepeeviously
renormalized counterpartsee, e.g., the method proposed in @PPlied to the bulk systems can be used in the problem of
Ref. 4 that take into account interparticle polarizations, ~ °Ptaining effective dielectric properties of the inhomoge-
From an experimental point of view, boundary effects pe.neous material near the interface. In this sense, the presented
come extremely important in experirﬁents with thin films. result (16) is the S|mple§t one, which consudgrs ]nterfaC|aI
Interfacial effects evidently have to be considered if, for in_effects, and can be viewed as a generalization of the
) . . . axwell-Garnett formula.
stance, the dielectric spectroscopy method is applied to suc

a confined system. Indeed, even ELp) shows that the cor- The author thanks Professor N. P. Malomuzh for introduc-
responding terms cannot be neglected in this case. ing him to this field, and for many fruitful discussions.
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