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Effective dielectric properties of composite materials in the surface layer
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In the framework of the mean-field picture, an expression for the effective dielectric permittivity of an
inhomogeneous medium near a flat interface with another dielectric is derived as a function of the distance
from the boundary. The obtained formula should be considered as a counterpart of the standard Maxwell-
Garnett one, but in the vicinity of a flat boundary. Possibilities of a more precise derivation using already
established methods for bulk systems are briefly discussed as well.
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The history of the problem about effective dielectric pro
erties of inhomogeneous media goes back to the clas
works of Maxwell,1 Garnett,2 Wagner,3 and others. But de-
spite the rich history, this problem still attracts considera
attention resulting in a number of publications during the l
decade.4–9 Of course, the main point of all recent works
the consideration of multiparticle effects that become v
important for relatively high concentrations. The propos
methods range from consistently analytical5,7,10–12or of more
empirical nature13,14to numerically driven calculations.9 Evi-
dently, this interest is strongly stimulated by possible exp
mental applications allowing to gain information about m
crostructure of composites based on the analysis of t
dielectric properties:15–17 characteristics such as size of i
clusions are not present in the simple Maxwell-Garn
formula.2

Another problem, strongly connected with the mention
one but received much less attention, arises if one consi
effective dielectric function of a composite materialnear an
interface with a homogeneous medium. In this case, the
terface plays the role of an effective mirror allowing us
employ the already developed methods. Here we will sh
that, for instance, repolarization technique8 can be easily
adopted for this purpose. The same should be possible fo
methods based on the mean-field approach10–12 as well as
more sophisticated or numerical procedures.4,9,18,19 On the
other hand, even the simplest approximation in this prob
will contain information about the size of inclusions, pos
bly proposing an alternative for the experimental measu
ments for revealing geometrical properties of the dissol
component.

The above stated problem is also related to a so-ca
‘‘imperfect interface’’ problem,20 an excellent review of
which can be found in Ref. 21.

In this work we will use an expression for the dielectr
permittivity of a composite material as a function of ‘‘e
ementary’’ polarizabilities of the inclusions. Thereafter, a fo
mula for the one-particle polarizability near the interface w
be derived by means of the method described in Ref. 8.

Let us start from a general expression for themacroscopi-
cally defined~i.e., on the scale strongly exceeding the size
inclusions! electric fieldEW M and displacementDW M ,22

DW M5 eJEW M ; ~1!
0163-1829/2003/67~7!/073403~4!/$20.00 67 0734
-
al

e
t

y
d

i-

ir

tt

d
rs

n-

w

all

m
-
-

d

d

-
l

f

which, in fact, is to be considered as a definition of the
electric permittivity tensoreJ if DW M and EW M are indepen-
dently calculated. If a macroscopic sample of the dielec
material is placed into an external fieldEW 0, then all polariza-
tion effects are described22 by the polarization vectorPW (rW),
so that

EW M5EW 01“ rWS“ rWE
V

PW ~rW8!

urW2rW8u
dV8D ,

DW M5EW M14pPW , ~2!

where“ rW means differentiation uponrW, and the integration is
conducted over the entire volume of the sample. The po
ization vectorPW in its turn is usually expressed in terms

the polarizability tensorAJ as

PW 5AJEW 0 . ~3!

TensorAJ describes dielectric properties of the sample and
particular, the permittivityeJ. In the case of an inhomoge

neous medium,AJ has to be determined on the mesosco
scale, i.e., strongly exceeding the size of the inclusions

small enough to define the spatial dependenceAJ (rW).
Due to the presence of a flat surface~interface!, it is natu-

ral to write the polarizabilityAJ in the form

AJ5AinW nW 1A'~ IJ2nW nW !, ~4!

wherenW is a unit vector perpendicular to the interface andIJ

is a unit 333 tensor; herenW nW means tensor product.
For simplicity, we will assume that the sample is ‘‘hom

geneous in average,’’ implying that the volume fractionf of
the dielectric inclusions~permittivity e2) immersed into the
matrix ~permittivity e1) is constant. Both the matrix and in
clusions are uncharged.

It is convenient to represent the flat interface as one
tween a large sphere of the radiusR ~containing the mate-
rial! and its homogeneous dielectric surrounding. Assum
this spherical symmetry, we conclude thatAi andA' depend
only on the distance from the center of the sphere@Fig. 1#
~or, equivalently, from the surface in the limitR→`), so
that it is possible to integrate out space angles in Eq.~2!,
which yields
©2003 The American Physical Society03-1
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EW M5EW 02
4p

3
f 1~r !EW 02

4p

3
f 2~r !~EW 0•nW !nW , ~5!

wherer 5urWu and

f 1~r !5
1

r 3E0

r

r 82dr8@Ai~r 8!12A'~r 8!#

12E
r

R 1

r 8
dr8@Ai~r 8!2A'~r 8!#,

f 2~r !5
3

r 3E0

r

r 82dr8@Ai~r 8!12A'~r 8!#23Ai~r !. ~6!

As a result, the permittivity tensoreJ defined by Eq.~1! takes
the form

eJ5e inW nW 1e'~ IJ2nW nW !, ~7!

with componentse i ande' determined as

S e'

e1
21D S 12

4p

3
f 1D54pA' ,

S e i

e1
21D S 12

4p

3
~ f 11 f 2! D54pAi . ~8!

Here and throughout the paper we use dielectric permitti
relative to the homogeneous dielectric~on the right-hand
side in Fig. 2!.

Now the problem is evaluated to the one of finding t

polarization tensorAJ , which is related to the set ofirreduc-
ible k-particle polarizabilitiesaJ (k) as

AJ5
f

v
@aJ (1)1aJ (2)1•••#. ~9!

Here we also assume all inclusions to be identical sphere
radiusa (v54pa3/3). The assumption about the spheric
shape will be used further duringaJ (1) calculation, whereas
one about monodispersity isnot of crucial importance: size
distribution effects will be discussed later. Furthermore,
will restrict ourselves to the one-particle irreducible polar

FIG. 1. Dielectric inhomogeneous sphere surrounded by ho
geneous dielectric medium.
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ability aJ (1) only to show transparently the analogy betwe
one-particle problem in the presence of the interface and
two-particle one in the bulk. In other words it means th
only the terms linear upon volume fractionf of inclusions
will be taken into account corresponding tolow concentra-
tion regime. This approximation is probably not sufficient f
practical purposes, but will transparently show the essenc
the method discussed.

Following the same logic as before,aJ (1) is divided into
two independent partsa i anda' . The longitudinal compo-
nent a i is a polarizability of a single particle in the fiel
EW 0inW . However, due to the presence of the interface,
particle’s electrostatic image also has to be taken into
count; implying that effectively a two-particle problem
should be solved. Of course, the same is true for allaJ (k)

where effectively 2k particles are involved.
Proceeding in the quantitative way, we consider a part

at the distancez.a from the interface. Knowing that it gen
erates an electrostatic image, we make use of the two-par
repolarization technique developed in Ref. 8. Its essence
the iterative procedure where the repolarization operatoP̂
can be introduced, so that the field generated by the
particle ~which has multipole momentsFn

(1) , n51, . . . ,̀ )
induces momentsFn

(2) on the second one, and is represen
as

Fk
(2)5(

n
PknFn

(1) . ~10!

This treatment can be generalized for the present case.
is well known,22 the multipole moments of the electrostat
image are connected to the original point particle ones~i.e.,
no polarization of spheres is taken into account yet! by a
simple rule

Fn
( i )5

e121

e111
Fn

(p) , ~11!

where~i! refers to the image and~p! to the particle. There-
fore, due to presence of the image, the particle effectiv

o-

FIG. 2. Spherical inclusion in the surface layer and its elect
static image.
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‘‘polarizes itself’’ so that its multipole moments on thesth
step of the iteration is connected with the previous one b

Fk
(p),s5Fk

(p),s211(
n

PknFn
(p),s21 , ~12!

where, for instance, the longitudinal component ofP̂ has the
implicit form

Pikn5
~21!n~n1k!!

n!k!
A2n11

2k11

a2k11

e1~2z!n1k11

e121

e111
k~k!.

~13!

Here k(k)5(e12e2)k/@e1(k11)1e2k#. ‘‘Longitudinal’’
refers to polarization in the external fieldEW 0inW , i.e., perpen-
dicular to the surface.

To start the iteration procedure, one also needs the in
set of moments, i.e., induced by polarization in the elec
static uniform filed EW 0: dipole moment F1

(p)

52Ap/3a3E0k(1) and the others,Fi
(p)50 (i .1). Repeat-

ing the iteration one gets an asymptotical result for the
larizability a i , which is extracted from the formulas as
proportionality coefficient between the dipole moment of t
particleF1

(p)5(sF1
(p),s and the external fieldE0. Due to the

iterative nature of the method, the result fora i has the fol-
lowing form:

a i52a3k~1!22k2~1!b
a6

~2z!3
1(

s52

`

a i
(s) ,

a i
(s)5 (

n1 , . . . ,ns2151

`

Cn1 , . . . ,ns21

i k2~1!

3k~n1!•••k~ns21!bsa3S a

2zD
2(n11•••1ns21)1s12

,

Cn1 , . . . ,ns

i 5~21!n11•••1ns11

3
~n111!~n11n2!! •••~ns211ns!! ~ns11!

n1! ~n2! !2
•••~ns21! !2ns!

.

~14!

Hereb5(e121)/@e1(e111)#.
Using exactly the same approach, the transversal pa

the operatorP̂ is obtained, yielding

a'52a3k~1!2k2~1!b
a6

~2z!3
22k3~1!b2

a9

~2z!6
1•••.

~15!

At this point using Eqs.~14!, ~8!, and ~9!, one is able to
express the dielectric permittivityeJ as a function of the dis-
tance from the surface. So far we have taken into accoun
inclusions effects that are only linear upon concentrati
although in the framework of this restriction no addition
assumptions were made.
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To avoid bulky formulas, we presenteJ in the implicit
form with accuracy only up toa3/z3. Higher accuracy can be
easily achieved using higher-order terms from Eqs.~14!
and ~15!,

ex5e1F11
3~e22e1!

e212e1
f G

2
3cx

8
f

e121

e111

~e22e1!2

~e212e1!2

a3

z3
1•••, ~16!

wherex5(i ,') andci52, c'51.
The bulk value of the dielectric permittivity (z→`) co-

incides with the classical Maxwell-Garnett formula.2 In con-
trast to the bulk part, the surface terms contain implicitly t
size of the inclusions—this outcome is obvious becausea is
the only parameter of the length dimension and has to
used to ‘‘measure’’ the distance from the interface.

Let us now discuss the validity region of the obtain
expression~16!. As it was pointed out above, only linea
upon concentration effects were considered, so thatO( f 2)
terms are not present. At the same time, the first of th
terms ~which were not taken into account in the prese
work! are proportional tof 2 ~particle-particle, image-image
interactions! or f 2a3/z3 ~particle image of another particl
interaction!. This implies that the condition

f !
a3

z3
,1

is to be satisfied. In other words, an average interpart
distance should exceed an average distance between a
ticle and the interface in the region of applicability of E
~16!. There are two possibilities when the above conditi
breakes. First of all, this happens in the case of relativ
high concentrations (f &1), which is far from the scope o
the paper. Also, distancesz of the order ofa/ f 1/3 are not
covered by Eq.~16!. They correspond to the region whe
the surface terms inaJ (1) and bulk ones inaJ (2) are of the
same order. The latter in this case can be accounted by
methods of Refs. 4 and 6 and others. However, we nee
point out that, nevertheless, the first nontrivial surface c
tribution is already included in Eq.~16!.

Expression~16! can be consistently applied in the ca
e1Þ1 because an assumption about sharp interface was
in the very basis~11! of the calculation. Qualitatively differ-
ent situatione151, where the interface is not as well define
as before, should be considered separately. We just note
in order to obtain the ‘‘surface effects’’ terms for such
‘‘smooth’’ interface, one has to take into account the spa
dependence of the volume fraction of inclusionsf (z) in the
vicinity of the border.

Here we have considered a monodisperse material. B
generalization taking into account size polydispersity can
easily done by producing averaging of expressions~14! with
a given size distribution function. This yields a trivial resu
in the present approach because only one-particle pola
abilities were taken into account.23 Of course, some real sys
tems exhibit a broad inclusions’ size distribution, so that
3-3
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polydispersity effects will be present due to multiparticle p
larization and possibly exceed the surface contribution~al-
though they remain spatiallyindependent!. Probably, this
problem can be approximately solved by substitution of
polarizabilities (e22e1)/(e212e1) in Eq. ~16! by their
renormalized counterparts~see, e.g., the method proposed
Ref. 4! that take into account interparticle polarizations.

From an experimental point of view, boundary effects b
come extremely important in experiments with thin film
Interfacial effects evidently have to be considered if, for
stance, the dielectric spectroscopy method is applied to s
a confined system. Indeed, even Eq.~16! shows that the cor-
responding terms cannot be neglected in this case.
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developed techniques~including exact analytical methods
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obtaining effective dielectric properties of the inhomog
neous material near the interface. In this sense, the prese
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Maxwell-Garnett formula.
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