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Variational approach to excitons in carbon nanotubes
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Excitons in quasi-one-dimensional semiconductors may lower the optical transition energies by a substantial
amount. To quantify the effect in carbon nanotubes, we apply a simple variational approach. In excitonic units,
a power law with exponent —0.6 is obtained for the binding energy dependence on nanotube radius. When
converted to ordinary units, the ratio of binding energy to tight-binding band gap yields a roughly constant
value of nearly 40%. This substantial ratio implies that exciton effects are of prime importance for the optical
properties of carbon nanotubes.
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Following their discovery in 199}, carbon nanotubes systems, whera is approximately the width of the trans-
(CN's) have been at the focus of tremendous interest. Theseerse potential wel*'! The acceptable eigenstates are given
materials have been investigated using nearly every conceipy Whittaker functions and writing the energy eigenvalue in
able experimental technique. This has established the fathe formE=—1/a?, the condition for the lowest eigenvalue
that CN’s possess quite remarkable mechanical, electronieecome$
and optical properties As noninvasive techniques, optical
absorption and fluorescence spectroscopy are ideal tools for 1
studies of the electronic structure of CN samples. Recently, Zﬂn
optical spectra of unprecedented high resolution have been
recorded due to improvements in growth contamhid means wherea is assumed small. Here and throughout the math-
of isolating individual CN's*® Especially noteworthy are the ematical presentation, we use natural exciton units, in which
absorption and emission spectra of the Rice gfawjth a  distances are measured in units of the effective Bohr radius
line width of only 0.025 eV. From these and similar high- a§ and energies in units of the effective Rydb&g*. The
quality spectra fundamental energy gaps have beeponversion into ordinary units is considered below. Now,
extracted and the composition of samples have beensolving Eq.(1) for a readily shows that thatr—0 as the
determined* Of central importance for this purpose is the transverse potential width goes to zero. Thus, the eigen-
relation between the electronjguasiparticle band structure  value diverges and it can be shown that the square of the
and the optical spectra. Usually, absorption or emission feacorresponding wave function approaches a delta function
tures are tacitly attributed to transitions between extrema of(x).’ Hence, there is no lower bound for the exciton bind-
occupied and empty ban#s.However, as demonstrated by ing energy in the extreme one-dimensional limit. Obviously,
Ichida et al®>® and pointed out several decades ago byfor real materials with a finite width the value remains finite.
Loudor the exciton effect in quasi-one-dimensional semi-Still, if ais much smaller than the effective Bohr radius, as in
conductors is1ot a minor correction. Essentially, this means the case of typical conjugated polymers, a very large binding
that optical transitions cannot be associated with the barenergy is found.
quasiparticle energy difference. Rather, they are red-shifted The purpose of the present Brief Report is to calculate the
by a substantial exciton binding energy. Hence, whereas thiginding energy of the lowest exciton in semiconducting
exciton binding energy in ordinary three-dimensional semi-CN’s. Being one-dimensional conjugated systems, a large
conductors is on the order of 10 meV, the correspondinginding energy is expected, especially for small-diameter
figure in one-dimensional materials such as conjugated polyaanotubes. In fact, we will show below that an expression
mers is typically in the range 100 meV to 1 &vV. very similar to Eq.(1) can be derived with the role of

An exciton is an electron-hole pair bound by the attractiveplayed by the nanotube radius. To our knowledge, the only
—1/r Coulomb potential. In low-dimensional structures, theprevious theoretical study of excitons in CN’s was published
spatial confinement increases the electron-hole overlagy T. Ando!? In that work, however, only the sum of exciton
thereby enhancing the exciton binding energy. Hence, in theinding energy and quasi-particle corrections was consid-
pure two-dimensiona{quantum well limit the binding en-  ered, producing, in fact, an overall blue shift. Hence, the
ergy is increased by a factor of four compared to the threediameter-dependence of the exciton binding energy cannot
dimensional cas®.For one-dimensional semiconductors, be extracted. Moreover, no information on the spatial form of
however, the situation is even more dramatic. To study thigshe exciton wave function was given. In the present work, we
problem, Loudohconsidered the eigenstates of the truncatedapply a variational approach combined with the effective-
one-dimensional Coulomb potentiall/(|x|+a), with abe- mass approximation to obtain the properties of the lowest
ing a positive constant. This potential approaches the barexciton as a function of CN radius We assume that elec-
potential at large distancgs|>a but is regularized when trons and holes are bound to move on the surface of an
|x|<a and remains finite in the limix— 0. Such potentials infinitely long cylinder of radius, as illustrated in Fig. 1.
naturally arise as effective potentials for one-dimensionallhis assumption is expected to break down for the very

=0, @

0163-1829/2003/67)/0734014)/$20.00 67 073401-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B57, 073401 (2003

=]

|
S

//k <
/f 0.5 /k _
/ 080 0z 0% o6 |

0.1 02 0.3 0.4 0.5 0.6
Nanotube radius » [a,7]

—
s

Exciton binding energy E [Ry*]
&

=
=N

FIG. 1. Geometry of an electrdopen circle¢ and a holgclosed 0.0
circle) moving on the surface of a cylinder with radius

smallest nanotubes, when the radiusecomes comparable FIG. 2. Variational exciton binding energy as a function of
to the extension of the individual carbon atoms. For largemanotube radius. Inset: thedependence of decay lengthandq of
tubes, however, this approximation is reasonable. Recently, the trial wave function.
similar approach was successfully applied to donors in me-
tallic CN's.2® While mathematically similar, the focus of the tively. Notice that in the expression fd¢, a contribution
present work is on an entirely different physical problem.from the “seam” atx= * arr is included. No analytic expres-
Hence, the application to excitons in semiconducting CN'ssion for V has been obtained, unfortunately, and Gaussian
attests further to the power of this variational technique. — quadrature is adopted for its numerical evaluation. Using a
In the variational approach, we consider a triain- steepest-decent method, the optimum wave function is ob-
normalized wave functiony(x,y) and minimize the energy tained as a function af The energy and decay lengths found
expectation valu€& = (K —V)/N with respect to the param- in this manner are shown in Fig. 2. Here, several important
eters governing the spatial behavior ¢fx,y). Here, N features are noted. First, the exciton state rapidly approaches
=(y|y) is the normalization integralK=—(y|#%/9x>  the zero-curvature solutiork&q=1/2ag andE=—4Ry*)
+d’lay?|y)y is the kinetic energy and V  asr increases. Secondly, the exciton binding energy clearly
=2(yld"L(x,y)|¢) is the Coulomb energy with the diverges as the radius decreases. Hence, a significant en-
electron-hole  separation d given by d(x,y) hancement factor is predicted for small-diameter nanotubes.
= J4rZsir?(x/2r) +y?. Note that we use axrcoordinate that Third, the exciton becomes highly asymmetric for smaller
circles the circumference of the cylinder as shown in Fig. 1tubes, with a rati@/k of more than 2. To illustrate the spatial
This is the reason for the complicated dependencé @ur ~ properties of the wave functions, we have plotted cases rep-
choice of trial wave function should conform to the appro-resentative of smallr(=0.1ag) and large (=0.5a3) radius
priate limits asr—0 andr—c. In the latter case, the tube in Fig. 3. In the former case, we find=0.90a5 and k
becomes flat and the exact solution is the well-known expo=0.4%% , whereas the larger tube has=0.53% and k
nential exp—(x*+y)Y4k] with k=1/2a} and an eigenvalue =0.51a% . Thus, these examples illustrate caseg®fr and
of E= —4Ry*.° On the other hand, as—0 different decay q~r, respectively. The consequences are clearly visible in
lengths are expected for the andy-directions. A trial form  Fig. 3. Most notably, the smaller nanotube has a large wave

that accommodates both of these limits is function amplitude at the sear+ = 7rr. Hence, with a hole
)2 ooy located on one side of the tube there is a relatively large
y(x,y)=exd — (xg?+y?/k?)"], (2 probability of finding the electron on the opposite side. In

wherek andq are variational parameters that are adjusted tgontrast, this probability if virtually zero for the larger nano-
minimize the energy. Due to the nonseparable form, the relube.

quired integrals are somewhat involved, however. A rather !N order to study the divergent behavior in the snmall
tedious calculation yields limit, we now focus specifically on an approximate solution

for g>r or equivalently8<1. In this limit, we find the
following analytic expression for the energy:
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1-p% 1+p2 where J, and Y, are Bessel functions of first and second
+ (2—qz+ K2 (4) kind, respectively, angF; is a generalized hypergeometric

function* This expression can then be simplified even fur-
Here,=2mxr/q andK, and L, are thenth modified Bessel ther if the additional condition/k<1 is assumed. In this
function of the second kind and Struve functidrrespec-  limit, we obtain the extremely simple result
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FIG. 4. Results of the full and approximate calculations of the
exciton binding energy vs. The log-log scale and the fitted solid
line serve to emphasize the power-law dependence.
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ever, the reported Coulomb corrections are the blue shifts

including quasiparticle correction, whereas the present study
only considers the exciton binding energy. The binding en-
ergy and quasiparticle corrections may well have very differ-
entr-dependencies.

To convert the calculated curves to actual numbers, we
need the correct distance and energy scales. In terms of the
reduced effective mass (in units of the free-electron mass

; ; ; ; *
FIG. 3. lllustration of the exciton wave function for nanotubes mo) and static dielectric constany they are .gl\/.en byag
of radiusr =0.1a% (a) andr— 0.5 (b) =0.529 A e/ andRy* =13.6 eV u/e?. In principle, both
] ~xg b ; ;
n and e should be different for different CN samples. We
will assume, however, that screening is mainly due to exter-
1 4 r . . .
E~ ot _> , (6)  hal charges in e.g. the zeolite cAge micelle structuré,etc.
k® Kk k Hence, a sample-independent valuesef3.5 will be used.
where y=0.57721... is Euler's constant. Minimizing this Since the energy scale varies inversely wtlihis relatively
function leads to the condition large value should lead to a conservative estimate of the
exciton binding energy. The reduced mass, on the other hand,
is obviously intimately connected to the band structure of the
+1+y=0. (7)  CN. To estimate the dependencewbn CN radius, we will
consider the zigzag nanotubes of typa,Q) with n
This condition is seen to be very similar to Loudon’s original =7,10,13,... in the usual notatidhThese nanotubes are all
result Eq.(1) with 2a replaced byr. The additional constant semiconductors. We will adopt the simple tight-binding
term 1+ y in Eq.(7) is only of minor importance whekand  zone-folding schenté for the band structure calculation
r are small. In fact, if Loudon’s analysis of the one- even thoughr— o mixing makes the results less reliable for
dimensional hydrogen atom is carried to one higher order, athe smallest nanotubes. For the present purpose of estimating
additional constant of 1 enters on the left-hand side of Equ, however, the accuracy is sufficient. In the zone-folding
(1). Denoting the solution of Eq7) by k(r) we finally find  scheme for zigzag nanotubes, the two-dimensiokalk)
that the exciton binding energy is given bE(r)~  band structure of a graphene sheet is subject to the boundary
—k™2(r)—4k~(r) in the limit of smallr. The energies condition a-ky=2mp/n, wherep is an integer between 1
given by the approximate expressions in E@.and(6) are  and 2h anda~2.46 A is the graphene lattice constant. The
shown in Fig. 4 along with the result of the full expression. Atight-binding band gaE is located at the zone centér
log-log scale is used in order to display the power-law be-The highest valence band is found fpre=(2n+1)/3 (an
havior of ther-dependence. The successive approximationsnteger for the present values fand the lowest conduction
leading to Egs(5) and (6) are seen to produce increasingly band is located symmetrically above the band gap. Expand-
inaccurate results. However, reasonable agreement is founidg thek, dependence of these bands aroundlitpoint we
for the smallest tubes and, in particular, an approximatelyind band gaps and effective masses givenEyy=21y,|1
correct slope is predicted. The solid line in Fig. 4 is a power-+ 2c,| and uw=%2/(3y,a%)|1/c,+2|, with y,~3 eV the
law fit to the binding energies obtained from the full expres-pp# hopping matrix element and,=cog=(2n+1)/3n].
sion. The divergent behavior is seen to followrarf depen-  For n large, these expressions simplify ig~11 eV/in and
dence withp=0.6x0.1. In their recent experimental study, u/my=~0.50h implying that both of these quantities are ap-
Ichida et al®> obtained Coulomb corrections following a proximately inversely proportional to the CN radius
power law with a somewhat larger expongnt1.3. How-  =an/27.%® In Table |, band gaps and effective masses are
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TABLE |. Characteristics of zigzagn(0) nanotubes with different values of

n r[A] Eqy [eV] w [mo] ag [A] Ry* [eV] E [eV]
7 2.74 1.48 0.055 33 0.062 -0.55
10 3.92 1.05 0.042 44 0.046 —0.40
13 5.09 0.82 0.034 55 0.037 -0.31
16 6.26 0.67 0.028 66 0.031 -0.26
19 7.44 0.56 0.024 77 0.027 -0.22
22 8.61 0.49 0.021 88 0.023 -0.19
25 9.79 0.43 0.019 99 0.021 -0.17

listed for several zigzag nanotubes. In addition, the correfraction ~38% is a clear demonstration of the prime impor-
sponding distance and energy scales and the binding energgnce of excitons in CN’s.

E converted to electron volts are given. Remarkably, the In conclusion, exciton effects aret small corrections to
binding energy constitutes a nearly constant fraction of thehe optical properties of semiconducting CN’s. The present
band gap, the ratio varying from 37% far=7 to 39% for  variational approach indicates that exciton binding lowers
n=25. The simple reason is thain units ofag is, in fact,  the optical transition energies by nearly 40% of the tight-
largely independent ofi due to then™* of u. Hence, the binding calculated band gap. Hence, this shift should neces-
n-dependence of is almost entirely that oRy*. As both  sarily be considered whenever the electronic properties of

Ry* andE, scale approximately as™* as well, it follows  cN's are deduced from optical spectra.
that their ratio should be roughly constant. The very large
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