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Variational approach to excitons in carbon nanotubes
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Aalborg University, Institute of Physics, Pontoppidanstræde 103, DK-9220 Aalborg Øst, Denmark

~Received 2 December 2002; published 6 February 2003!

Excitons in quasi-one-dimensional semiconductors may lower the optical transition energies by a substantial
amount. To quantify the effect in carbon nanotubes, we apply a simple variational approach. In excitonic units,
a power law with exponent;20.6 is obtained for the binding energy dependence on nanotube radius. When
converted to ordinary units, the ratio of binding energy to tight-binding band gap yields a roughly constant
value of nearly 40%. This substantial ratio implies that exciton effects are of prime importance for the optical
properties of carbon nanotubes.
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Following their discovery in 1991,1 carbon nanotubes
~CN’s! have been at the focus of tremendous interest. Th
materials have been investigated using nearly every conc
able experimental technique. This has established the
that CN’s possess quite remarkable mechanical, electr
and optical properties.2 As noninvasive techniques, optica
absorption and fluorescence spectroscopy are ideal tool
studies of the electronic structure of CN samples. Recen
optical spectra of unprecedented high resolution have b
recorded due to improvements in growth control3 and means
of isolating individual CN’s.4,5 Especially noteworthy are th
absorption and emission spectra of the Rice group5 with a
line width of only 0.025 eV. From these and similar hig
quality spectra fundamental energy gaps have b
extracted5 and the composition of samples have be
determined.3,4 Of central importance for this purpose is th
relation between the electronic~quasiparticle! band structure
and the optical spectra. Usually, absorption or emission
tures are tacitly attributed to transitions between extrema
occupied and empty bands.4,5 However, as demonstrated b
Ichida et al.3,6 and pointed out several decades ago
Loudon7 the exciton effect in quasi-one-dimensional sem
conductors isnot a minor correction. Essentially, this mea
that optical transitions cannot be associated with the b
quasiparticle energy difference. Rather, they are red-shi
by a substantial exciton binding energy. Hence, whereas
exciton binding energy in ordinary three-dimensional se
conductors is on the order of 10 meV, the correspond
figure in one-dimensional materials such as conjugated p
mers is typically in the range 100 meV to 1 eV.8

An exciton is an electron-hole pair bound by the attract
21/r Coulomb potential. In low-dimensional structures, t
spatial confinement increases the electron-hole over
thereby enhancing the exciton binding energy. Hence, in
pure two-dimensional~quantum well! limit the binding en-
ergy is increased by a factor of four compared to the thr
dimensional case.9 For one-dimensional semiconductor
however, the situation is even more dramatic. To study
problem, Loudon7 considered the eigenstates of the trunca
one-dimensional Coulomb potential21/(uxu1a), with a be-
ing a positive constant. This potential approaches the b
potential at large distancesuxu@a but is regularized when
uxu!a and remains finite in the limitx→0. Such potentials
naturally arise as effective potentials for one-dimensio
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systems, wherea is approximately the width of the trans
verse potential well.10,11The acceptable eigenstates are giv
by Whittaker functions and writing the energy eigenvalue
the formE521/a2, the condition for the lowest eigenvalu
becomes7

1

2a
1 lnS 2a

a D50, ~1!

where a is assumed small. Here and throughout the ma
ematical presentation, we use natural exciton units, in wh
distances are measured in units of the effective Bohr rad
aB* and energies in units of the effective RydbergRy* . The
conversion into ordinary units is considered below. No
solving Eq. ~1! for a readily shows that thata→0 as the
transverse potential widtha goes to zero. Thus, the eigen
value diverges and it can be shown that the square of
corresponding wave function approaches a delta func
d(x).7 Hence, there is no lower bound for the exciton bin
ing energy in the extreme one-dimensional limit. Obvious
for real materials with a finite width the value remains finit
Still, if a is much smaller than the effective Bohr radius, as
the case of typical conjugated polymers, a very large bind
energy is found.

The purpose of the present Brief Report is to calculate
binding energy of the lowest exciton in semiconducti
CN’s. Being one-dimensional conjugated systems, a la
binding energy is expected, especially for small-diame
nanotubes. In fact, we will show below that an express
very similar to Eq.~1! can be derived with the role ofa
played by the nanotube radius. To our knowledge, the o
previous theoretical study of excitons in CN’s was publish
by T. Ando.12 In that work, however, only the sum of excito
binding energy and quasi-particle corrections was con
ered, producing, in fact, an overall blue shift. Hence, t
diameter-dependence of the exciton binding energy can
be extracted. Moreover, no information on the spatial form
the exciton wave function was given. In the present work,
apply a variational approach combined with the effectiv
mass approximation to obtain the properties of the low
exciton as a function of CN radiusr. We assume that elec
trons and holes are bound to move on the surface of
infinitely long cylinder of radiusr, as illustrated in Fig. 1.
This assumption is expected to break down for the v
©2003 The American Physical Society01-1
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smallest nanotubes, when the radiusr becomes comparabl
to the extension of the individual carbon atoms. For lar
tubes, however, this approximation is reasonable. Recent
similar approach was successfully applied to donors in m
tallic CN’s.13 While mathematically similar, the focus of th
present work is on an entirely different physical proble
Hence, the application to excitons in semiconducting C
attests further to the power of this variational technique.

In the variational approach, we consider a trial~un-
normalized! wave functionc(x,y) and minimize the energy
expectation valueE5(K2V)/N with respect to the param
eters governing the spatial behavior ofc(x,y). Here, N
5^cuc& is the normalization integral,K52^cu]2/]x2

1]2/]y2uc& is the kinetic energy and V
52^cud21(x,y)uc& is the Coulomb energy with the
electron-hole separation d given by d(x,y)
5A4r 2 sin2(x/2r )1y2. Note that we use anx-coordinate that
circles the circumference of the cylinder as shown in Fig
This is the reason for the complicated dependence ofd. Our
choice of trial wave function should conform to the appr
priate limits asr→0 andr→`. In the latter case, the tub
becomes flat and the exact solution is the well-known ex
nential exp@2(x21y2)1/2/k# with k51/2aB* and an eigenvalue
of E524Ry* .9 On the other hand, asr→0 different decay
lengths are expected for thex- andy-directions. A trial form
that accommodates both of these limits is

c~x,y!5exp@2~x2/q21y2/k2!1/2#, ~2!

wherek andq are variational parameters that are adjusted
minimize the energy. Due to the nonseparable form, the
quired integrals are somewhat involved, however. A rat
tedious calculation yields

N5
pb

2
qk$L1~b!K0~b!1L0~b!K1~b!% ~3!

and

K5
b2

4 S k

q
2

q

kD $p22bK0~b!22K1~b!%

1S 12b2

2q2 1
11b2

2k2 DN. ~4!

Here,b52pr /q andKn and Ln are thenth modified Bessel
function of the second kind and Struve function,14 respec-

FIG. 1. Geometry of an electron~open circle! and a hole~closed
circle! moving on the surface of a cylinder with radiusr.
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tively. Notice that in the expression forK, a contribution
from the ‘‘seam’’ atx56pr is included. No analytic expres
sion for V has been obtained, unfortunately, and Gauss
quadrature is adopted for its numerical evaluation. Usin
steepest-decent method, the optimum wave function is
tained as a function ofr. The energy and decay lengths foun
in this manner are shown in Fig. 2. Here, several import
features are noted. First, the exciton state rapidly approa
the zero-curvature solution (k5q51/2aB* andE524Ry* )
as r increases. Secondly, the exciton binding energy clea
diverges as the radius decreases. Hence, a significan
hancement factor is predicted for small-diameter nanotub
Third, the exciton becomes highly asymmetric for smal
tubes, with a ratioq/k of more than 2. To illustrate the spatia
properties of the wave functions, we have plotted cases
resentative of small (r 50.1aB* ) and large (r 50.5aB* ) radius
in Fig. 3. In the former case, we findq50.90aB* and k
50.49aB* , whereas the larger tube hasq50.53aB* and k
50.51aB* . Thus, these examples illustrate cases ofq@r and
q;r , respectively. The consequences are clearly visible
Fig. 3. Most notably, the smaller nanotube has a large w
function amplitude at the seamx56pr . Hence, with a hole
located on one side of the tube there is a relatively la
probability of finding the electron on the opposite side.
contrast, this probability if virtually zero for the larger nan
tube.

In order to study the divergent behavior in the smalr
limit, we now focus specifically on an approximate solutio
for q@r or equivalentlyb!1. In this limit, we find the
following analytic expression for the energy:

E'
1

k2 1
2p

k
J0S 2r

k DY0S 2r

k D
2

32r

pk2 2F3F1,1;
3

2
,
3

2
,
3

2
;2

4r 2

k2 G , ~5!

where J0 and Y0 are Bessel functions of first and secon
kind, respectively, and2F3 is a generalized hypergeometr
function.14 This expression can then be simplified even fu
ther if the additional conditionr /k!1 is assumed. In this
limit, we obtain the extremely simple result

FIG. 2. Variational exciton binding energy as a function
nanotube radius. Inset: ther-dependence of decay lengthsk andq of
the trial wave function.
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E'
1

k2 1
4

k Fg1 lnS r

kD G , ~6!

where g50.57721... is Euler’s constant. Minimizing th
function leads to the condition

1

2k
1 lnS r

kD111g50. ~7!

This condition is seen to be very similar to Loudon’s origin
result Eq.~1! with 2a replaced byr. The additional constan
term 11g in Eq. ~7! is only of minor importance whenk and
r are small. In fact, if Loudon’s analysis of the on
dimensional hydrogen atom is carried to one higher order
additional constant of 1 enters on the left-hand side of
~1!. Denoting the solution of Eq.~7! by k(r ) we finally find
that the exciton binding energy is given byE(r )'
2k22(r )24k21(r ) in the limit of small r. The energies
given by the approximate expressions in Eqs.~5! and~6! are
shown in Fig. 4 along with the result of the full expression
log-log scale is used in order to display the power-law
havior of ther-dependence. The successive approximati
leading to Eqs.~5! and ~6! are seen to produce increasing
inaccurate results. However, reasonable agreement is fo
for the smallest tubes and, in particular, an approxima
correct slope is predicted. The solid line in Fig. 4 is a pow
law fit to the binding energies obtained from the full expre
sion. The divergent behavior is seen to follow anr 2p depen-
dence withp50.660.1. In their recent experimental stud
Ichida et al.3 obtained Coulomb corrections following
power law with a somewhat larger exponentp'1.3. How-

FIG. 3. Illustration of the exciton wave function for nanotub
of radiusr 50.1aB* ~a! and r 50.5aB* ~b!.
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ever, the reported Coulomb corrections are the blue sh
including quasiparticle correction, whereas the present st
only considers the exciton binding energy. The binding e
ergy and quasiparticle corrections may well have very diff
ent r-dependencies.

To convert the calculated curves to actual numbers,
need the correct distance and energy scales. In terms o
reduced effective massm ~in units of the free-electron mas
m0) and static dielectric constant«, they are given byaB*
50.529 Å•«/m andRy* 513.6 eV•m/«2. In principle, both
m and « should be different for different CN samples. W
will assume, however, that screening is mainly due to ex
nal charges in e.g. the zeolite cage4 or micelle structure,5 etc.
Hence, a sample-independent value of«53.5 will be used.
Since the energy scale varies inversely with«, this relatively
large value should lead to a conservative estimate of
exciton binding energy. The reduced mass, on the other h
is obviously intimately connected to the band structure of
CN. To estimate the dependence ofm on CN radius, we will
consider the zigzag nanotubes of type (n,0) with n
57,10,13,... in the usual notation.15 These nanotubes are a
semiconductors. We will adopt the simple tight-bindin
zone-folding scheme15 for the band structure calculatio
even thoughs2p mixing makes the results less reliable f
the smallest nanotubes. For the present purpose of estim
m, however, the accuracy is sufficient. In the zone-foldi
scheme for zigzag nanotubes, the two-dimensional (kx ,ky)
band structure of a graphene sheet is subject to the boun
condition a•ky52pp/n, wherep is an integer between 1
and 2n anda'2.46 Å is the graphene lattice constant. T
tight-binding band gapEg is located at the zone centerG.
The highest valence band is found forp5(2n11)/3 ~an
integer for the present values ofn! and the lowest conduction
band is located symmetrically above the band gap. Expa
ing thekx dependence of these bands around theG point we
find band gaps and effective masses given byEg52g0u1
12cnu and m5\2/(3g0a2)u1/cn12u, with g0'3 eV the
ppp hopping matrix element andcn5cos@p(2n11)/3n#.
For n large, these expressions simplify toEg'11 eV/n and
m/m0'0.50/n implying that both of these quantities are a
proximately inversely proportional to the CN radiusr
5an/2p.16 In Table I, band gaps and effective masses

FIG. 4. Results of the full and approximate calculations of t
exciton binding energy vsr. The log-log scale and the fitted soli
line serve to emphasize the power-law dependence.
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TABLE I. Characteristics of zigzag (n,0) nanotubes with different values ofn.

n r @Å# Eg @eV# m @m0# aB* @Å# Ry* @eV# E @eV#

7 2.74 1.48 0.055 33 0.062 20.55
10 3.92 1.05 0.042 44 0.046 20.40
13 5.09 0.82 0.034 55 0.037 20.31
16 6.26 0.67 0.028 66 0.031 20.26
19 7.44 0.56 0.024 77 0.027 20.22
22 8.61 0.49 0.021 88 0.023 20.19
25 9.79 0.43 0.019 99 0.021 20.17
rre
e
th
th

rge

r-

ent
ers
ht-
es-
of
listed for several zigzag nanotubes. In addition, the co
sponding distance and energy scales and the binding en
E converted to electron volts are given. Remarkably,
binding energy constitutes a nearly constant fraction of
band gap, the ratio varying from 37% forn57 to 39% for
n525. The simple reason is thatr in units of aB* is, in fact,
largely independent ofn due to then21 of m. Hence, the
n-dependence ofE is almost entirely that ofRy* . As both
Ry* and Eg scale approximately asn21 as well, it follows
that their ratio should be roughly constant. The very la
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fraction ;38% is a clear demonstration of the prime impo
tance of excitons in CN’s.

In conclusion, exciton effects arenot small corrections to
the optical properties of semiconducting CN’s. The pres
variational approach indicates that exciton binding low
the optical transition energies by nearly 40% of the tig
binding calculated band gap. Hence, this shift should nec
sarily be considered whenever the electronic properties
CN’s are deduced from optical spectra.
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