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Currents in a system of noisy mesoscopic rings
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A semiphenomenological model is proposed to study magnetic fluxes and currents in mesoscopic rings at
nonzero temperature. The model is based on a Langevin equation for a flux subject to thermal equilibrium
Nyquist noise. Quenched randomness, which mimics disorder, is included via the fluctuating parameter
method. It is shown that self-sustaining and persistent currents survive in the presence of Nyquist noise and
quenched disorder but the stability threshold can be shifted by noise.
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Quantum phenomena manifested at the mesoscopic
have attracted much experimental and theoretical atten
Phase coherence and persistent currents can be mention
examples. It is known that a small metallic ring threaded
a magnetic flux displays a persistent current,1 signifying
quantum coherence of electrons called coherent electr
Moreover, it has been theoretically shown that in such a s
tem self-sustaining currents can run even if the external
is switched off.2 At temperatureT50, the system is in the
ground state and only coherent electrons exist.3 Then the
persistent current flows without dissipation. At temperat
T.0 the amplitude of the persistent current run by coher
electrons decreases and some electrons become ‘‘nor
~i.e., noncoherent!. The motion of normal electrons is ran
dom and their flow is dissipative. Under some conditio
coherent conduction and normal conduction coexist, res
ing in dissipation of a total current. It was confirme
experimentally4 in that mesoscopic rings connected to a c
rent source presented a nonzero ohmic resistance.

Thermal motion of charge carriers in any conductor is
source of random fluctuations of current which is called N
quist noise.5 This thermal equilibrium noise is universal an
exists in any conductor, irrespective of the type of cond
tion. Moreover, this noise increases with temperature. Th
fore at relatively high temperatures and relatively large rin
universal conductance fluctuations and shot noise can
neglected,6,7 and only Nyquist noise can play an importa
role. Nyquist noise generates the flux fluctuations which
directly influence persistent currents run by coherent e
trons. In the paper we analyze the steady states of mag
fluxes and currents in a mesoscopic system subject to d
pation and fluctuations. Our main goal is to answer the qu
tion of whether persistent and self-sustaining currents
vive in the presence of dissipation and fluctuations.
introduce a semiphenomenological model formulated a
Langevin equation with a noise term and with terms o
quantum origin. Our model is minimal in the sense that
the limiting cases it reduces to the well-established model
the quantum persistent current of coherent electrons and
classical Nyquist current of normal electrons. The appro
used could be justified in a more elegant way applying
methods of thermofield dynamics.8

Now, let us formulate our model: The system is a colle
tion of rings ~individual current channels! stacked along a
certain axis forming a cylinder. There areNz channels in the
direction of the cylinder axis andNr in the direction of the
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cylinder radius. We assume that the thickness of the cylin
wall is small if compared with the radius. Because of t
mutual inductance between rings, the current in one ring
duces flux in other rings. In turn, the flux induces a curre
and so on. We will analyze the effect of the mutual indu
tance among the rings. We assume that the rings are
contacted. So, there is no tunneling of electrons among
channels and the charge carriers moving in the different ri
are independent. It has been shown9 that the effective inter-
action between the ring currents, when taken in the s
consistent mean-field approximation, results in the magn
flux f5LI tot felt by all electrons, whereL is the cylinder
inductance andI tot is the total current in a cylinder. For
cylinder of radiusr and height l z the inductance10 is L
5m0pr 2/ l z , wherem0 is the permeability of the free space
At temperatureT.0, the currentI coh(f,T) of the coherent
electrons~in a set ofN5Nr3Nz current channels forming a
cylinder! is an average~with a weightp) of the paramagnetic
currentI even coming from the channels with an even numb
of coherent electrons and diamagneticI odd coming from the
channels with an odd number of coherent electrons:

I coh~f,T!5pIeven~f,T!1~12p!I odd~f,T!, ~1!

where3

I even~f,T!5NI0(
n51

`

An~T!sin~2npf/f0! ~2!

and I odd(f,T)5I even(f1f0/2,T). The flux quantumf0

ªh/e and I 05heNe /(2l x
2me) where Ne is the number of

coherent electrons in a single channel of circumferencel x
andme is the electron mass. The amplitude is

An~T!5
4T

pT*

exp~2nT/T* !

12exp~22nT/T* !
cos~nkFl x!. ~3!

The characteristic temperatureT* is given by the relation
kBT* 5DF/2p2, wherekB is the Boltzmann constant,DF is
the energy gap at the Fermi surface, andkF is the Fermi
momentum. For temperaturesT,T* the coherent curren
flows in such a system without dissipation but its amplitu
~3! is reduced.3 On the other hand, at temperatureT.0,
normal electrons occur, their flow is dissipative, and it ge
erates random currents. The current coming from the nor
©2003 The American Physical Society05-1
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electrons can be induced by, e.g., the change of the mag
flux f. According to Lenz’s rule and Ohm’s law one gets11

RInor~f!52
df

dt
, ~4!

where R is the effective resistance of the system.12 In the
absence of fluctuations, the magnetic flux is related to
total current via the expression

f5fext1L@ I nor~f,T!1I coh~f,T!#, ~5!

i.e., it is a sum of the external fluxfext and the flux coming
from the currents.

Combining Eqs.~4! and ~5! and adding the term describ
ing Nyquist noise yields the equation

1

R

df

dt
52

1

L
~f2fext!1I coh~f,T!1A2kBT

R
G~ t !, ~6!

whereG(t) is Gaussian white noise. This equation takes
form of a classical Langevin equation and is our basic e
lution equation.

Now, let us introduce dimensionless variables. The flux
scaled asx5f/f0, and the timet̃ 5t/t0 wheret0ªL/R is
the relaxation time of the averaged normal current. In t
case, Eq.~6! can be transformed into its dimensionless for

ẋ52V8~x!1A2DG̃~ t̃ !, ~7!

where the dot denotes a derivative with respect to the
caled timet̃ and the prime denotes a derivative with resp
to x. The generalized potential

V~x!5
1

2
x22lx2 i 0E f ~x,p,T!dx, ~8!

where l5fext /f0, is the rescaled external flux. The co
pling constant i 05NLI0 /f0. The function f (x,p,T)
5pg(x,T)1(12p)g(x11/2,T) and

g~x,T!5 (
n51

`

An~T!sin~2npx!. ~9!

The dimensionless intensityD of rescaled Gaussian whit
noise G̃( t̃ )[At0G(t0 t̃ ) is a ratio of thermal energy to th
elementary energy stored up in the inductance,D
ª

1
2 kBT/e0 with e0ªf0

2/2L. Let us notice that the resistanc
R does not occur explicitly in the rescaled Eq.~7!.

Let us evaluate the order of magnitude of the parame
appearing in our equations. Consider the cylinder of the
dius r 533104 Å and the heightl z5100 Å consisting of a
set of N;50 current channels13 in a wall of width much
smaller than the radius. If the number of electrons in e
channel isNe;23105 then i 0;1. The energy gap at th
Fermi surfaceDF5\2Ne /(2mer

2) gives the rescaled nois
amplitudeD5m0e2/(16p3me)(Ne / l z). For the above values
of parameters the diffusion coefficientD;0.001T/T* .

The Langevin Eq.~7! defines a Markov diffusion process
Its probability density p(x, t̃ ) obeys a Fokker-Planck
equation.14 Its stationary solutionps(x) reads
07330
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ps~x!5N0e2V(x)/D ~10!

with a normalization constantN0. The probability density
~10! looks like a Boltzmann distribution. However, it is no
strictly a Boltzmann distribution because temperatureT en-
ters into it in two ways: into the intensityD5kBT/e0 of
Nyquist noise and into the generalized potential~8!. Never-
theless, it describes an equilibrium state. There are exam
of equilibrium distributions with temperature-dependent
fective ~generalized! potentials in thermofield dynamics8 or
for quantum Smoluchowski systems@cf. Eq. ~11! in Ref.
15!#.

Let us consider the case of absence of external fluxl
50 andp51/2. The properties ofps(x) are determined by
the properties of the potentialV(x). In high temperature,
where no coherent electrons are present, the potential~8! is
monostable. If temperature decreases, a bifurcation occu
the potential becomes bistable and two nonzero symme
minima appear atxs56xm . Physically, it means that below
some critical temperatureTc the spontaneous flux16,17 ap-
pears and nonzero stationary current flows in the syst
This critical temperatureTc is defined by the condition
V9(xs50)50. The formation of a bistability is shown in
Fig. 1. The phenomenon is analogous to thecontinuous
phase transitionin macroscopic systems, and appears here
a result of the interaction of ring currents. Because the
tential is reflection symmetric,V(x)5V(2x), the mean val-
ues of both the fluxx and the current are zero. From th
point of view, properties of stationary states are trivial a
nonzero fluxes and currents are impossible. However, i
possible to define the phase transition in the following way18

the phase transition point is a value of the relevant param
g of the system at which the profile of the stationary dist
bution function changes drastically~e.g., if the number of
maxima of the distribution function changes! or if a certain
most probable pointx0 begins to change to an unstable sta
In the case considered here, for sufficiently low tempe
tures, thermal fluctuations are small and one expects the
perimental results to be accumulated around themost prob-

FIG. 1. The dimensionless generalized potentialV(x) is shown
as a function of the dimensionless magnetic fluxx for several values
of the scaled temperatureT/T* . The scaled amplitudei 051 and
scaled external magnetic fluxl50.
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able valuesof the stationary probability distribution. I
follows from Eq. ~10! that the most probable values of th
flux correspond exactly to the minima of the generaliz
potentialV(x). One can introduce characteristic time sca
of the system. The first characteristic timetd51/V9(xs) de-
scribes decay within the attractorxs56xm of the potential
V(x). The second characteristic time is the escape timete
from the well around6xm . This time is related to the mea
first passage time from the minimum of the potential to
maximum.14 If these time scales are well separated, i.e.
te@td , then the description based on the most proba
value is correct. Otherwise, this description fails and
should characterize the system by averaged values of
evant variables. We have calculatedte for the transition from
the left minimum of the potential~8! assuming that the lef
boundary at2` is reflecting and the right boundary at th
maximum xM of the potential is absorbing. In Fig. 2 w
show the dependence of two characteristic timeste and td
upon the rescaled temperatureT/T* . From Eq.~8! we esti-
mated the critical temperatureTc21.66T* for the param-
eters chosen as in Fig. 1. One can observe that roughly
temperaturesT,14T* , the characteristic timetd is more
than one order-of-magnitude less thante . Both time scales
are then well separated and self-sustaining currents are l
living states. In this sense, they are not destroyed by Nyq
noise. In the opposite case, self-sustaining currents are s
lived and ‘‘jump’’ between various states.

Fluctuations of the magnetic flux and currents exhi
nonlinear dependence on temperature of the system an
minimal at a certain temperatureT5T1 which is always
larger thanTc . This has been confirmed by numerical ana
sis ~Fig. 3!. Becausêx&50, the temperature dependence
these fluctuations is exactly the same as for the average
ergy stored in the magnetic field, i.e.,̂E&5^f2&/2L
5e0^x

2&. For low temperatures, Nyquist fluctuations a
small and the main contribution to the energy comes fr
the deterministic partf2/2L. Because the magnetic fluxf
decreases as temperature increases, hence^E& decreases a
well. On the other hand, for high temperature, the station
state approaches the Gaussian state and as a consequen
main contribution to the average magnetic energy com

FIG. 2. Plot of the characteristic escape timete and decay time
td as a function of the temperatureT/T* for i 051 and the strength
of Nyquist noiseD50.001T/T* .
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from thermal energy,̂ E&}kT, which obviously increases
when T grows. The competition between these two mec
nisms leads to the minimal value of^E& andminimal current
fluctuationsat T1.Tc .

The influence of the external field on the critical points
the stationary density~10! was studied in Ref. 19. An inter
esting feature is the occurrence of the hysteresis loop. It
hallmark of thefirst-order phase transition. The transition
can occur only below the critical temperatureTc . Due to the
‘‘structural periodicity’’ the hysteresis loop is repeated wi
the periodl51/2 which results in the formation of a famil
of loops.

The last problem we want to consider is a system w
disorder. There are several sources of disorder. The first
is caused by impurities distributed randomly in the syste
The presence of impurities leads to modification of the
herent current amplitude.13 There is also a geometrica
source of disorder: The radius of rings is not exactly of t
same value, and may change randomly from one ring to
other. Also the numberNr of current channels in the direc
tion of the cylinder radius can be, in general, different
every point of the vertical axis of the cylinder. These sourc
of disorder can influence the flux and current. Consequen
they should be included at the microscopic level of desc
tion. Their caricature can be modeled phenomenologic
assuming that the coupling parameteri 0 defined below Eq.
~8! is a random variable, i.e.,i 05 j 01ej, where j 0 is an
averaged value of the amplitudei 0 , e characterizes magni
tude of disorder, andj is a zero-mean random variable o
values in the interval@21,1# and of the probability density
Pj(z). It means that disorder is described by quenched fl
tuations. The stationary probability densityps(x) of the flux
is now expressed as

ps~x!5E
21

1

p~xuz!Pj~z!dz, ~11!

where the conditional probability distributionp(xuz)
5C0(z)exp$2@V(x)2ezF(x)#/D% has the same form as Eq
~10! with the replacementi 05 j 01ez in the potential~8!.
Now, the normalization constant depends onz, C0

21(z)

FIG. 3. Plot of the critical temperatureTc and the temperature
T1 corresponding to minimal current fluctuations or minimal ener
^E& versus coupling constanti 0 for D50.001T/T* .
5-3
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5*2`
` exp$2@V(x)2ezF(x)#/D%dx. In Fig. 4 we show the dis-

tribution ~11! for p51/2, l50 and the uniform probability
distribution Pj(z). The observed shift of the most probab
value of the flux is rather small and can be interpreted a
small increase of the magnitude of the self-sustaining cur
~Fig. 5!. The magnitude of peaks does not change sign
cantly as well. One observes that both the depth of the m
mum and the height of the maxima decrease. One conclu
that the quenched disorder does not drastically change
properties of the flux with only one exception. The probab
ity density in or near the critical temperatureTc may change
qualitatively from one peak to two peaks. In the critical r
gion the quenched disorder lowers the critical tempera
Tc .

In summary, we have investigated the influence of N
quist noise and quenched disorder on the persistent and

FIG. 4. Probability density for the system with («50.25) and
without («50) quenched disorder forT/T* 51.4, j 051, l50,
andD50.001T/T* .
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sustaining currents in a set of mesoscopic rings havin
cylindrical symmetry. Our discussion is limited to stationa
states of the magnetic flux and current although the propo
model of the flux dynamics can be, in principle, applied
study time-dependent problems. The presented approach
be applied also to superconducting rings and carb
nanotubes.20 The general conclusion is that persistent a
self-sustaining currents survive in the presence of the abo
mentioned fluctuations. However, if the intensity of Nyqu
noise or quenched disorder is sufficiently strong, fluctuatio
lead to the lowering of the temperature below which t
system is in the ordered state characterized by long-liv
self-sustaining currents. It is very favorable for the expe
mental observations.

This work was supported by the KBN Grant No
5PO3B0320.

FIG. 5. The most probable value ofx as a function of the inten-
sity of disorder« for j 051 andD50.001T/T* .
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