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Currents in a system of noisy mesoscopic rings
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A semiphenomenological model is proposed to study magnetic fluxes and currents in mesoscopic rings at
nonzero temperature. The model is based on a Langevin equation for a flux subject to thermal equilibrium
Nyquist noise. Quenched randomness, which mimics disorder, is included via the fluctuating parameter
method. It is shown that self-sustaining and persistent currents survive in the presence of Nyquist noise and
qguenched disorder but the stability threshold can be shifted by noise.
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Quantum phenomena manifested at the mesoscopic leveylinder radius. We assume that the thickness of the cylinder
have attracted much experimental and theoretical attentionvall is small if compared with the radius. Because of the
Phase coherence and persistent currents can be mentionednaigtual inductance between rings, the current in one ring in-
examples. It is known that a small metallic ring threaded byduces flux in other rings. In turn, the flux induces a current,
a magnetic flux displays a persistent currersignifying ~ and so on. We will analyze the effect of the mutual induc-
quantum coherence of electrons called coherent electrontance among the rings. We assume that the rings are not
Moreover, it has been theoretically shown that in such a syscontacted. So, there is no tunneling of electrons among the
tem self-sustaining currents can run even if the external flughannels and the charge carriers moving in the different rings
is switched off? At temperatureT=0, the system is in the are independent. It has been shéwimat the effective inter-
ground state and only coherent electrons exifhen the action between the ring currents, when taken in the self-
persistent current flows without dissipation. At temperatureconsistent mean-field approximation, results in the magnetic
T>0 the amplitude of the persistent current run by coherenflux ¢=LI felt by all electrons, wheré is the cylinder
electrons decreases and some electrons become “normahductance and,,, is the total current in a cylinder. For a
(i.e., noncohereit The motion of normal electrons is ran- cylinder of radiusr and heightl, the inductanc® is L
dom and their flow is dissipative. Under some conditions,= o™t ?/l,, Wherepu, is the permeability of the free space.
coherent conduction and normal conduction coexist, resultAt temperatureT >0, the current ;,(,T) of the coherent
ing in dissipation of a total current. It was confirmed electrons(in a set ofN=N, XN, current channels forming a
experimentall§ in that mesoscopic rings connected to a cur-cylinden is an averagéwith a weightp) of the paramagnetic
rent source presented a nonzero ohmic resistance. currentl ¢, coming from the channels with an even number

Thermal motion of charge carriers in any conductor is aof coherent electrons and diamagnétigq coming from the
source of random fluctuations of current which is called Ny-channels with an odd number of coherent electrons:
quist noise’ This thermal equilibrium noise is universal and
exists in any conductor, irrespective of the type of conduc- leon(@, T)=pPleyen(@d, T)+(1=p)logqa( &, T), (D)
tion. Moreover, this noise increases with temperature. There-
fore at relatively high temperatures and relatively large rings}Nheré
universal conductance fluctuations and shot noise can be
neglected,” and only Nyquist noise can play an important - .
role. Nyquist noise generates the flux fluctuations which in- leven(®, T)= Nlo;::l An(T)sin(2nm ¢l ¢o) i)
directly influence persistent currents run by coherent elec-

trons. In the paper we analyze the steady states of magnetihd | | (b, T)=1g,en(b+ $o/2.T). The flux quantume,
fluxes and currents in a mesoscopic system subject to dissizp/e and 1,=heN,/(212m,) where N, is the number of

pation and fluctuations. Our main goal is to answer the queSsoherent electrons in a single channel of circumference

tion o_f whether persistent e_mo_l se_lf-sustalnlng currents sury g m, is the electron mass. The amplitude is

vive in the presence of dissipation and fluctuations. We

introduce a semiphenomenological model formulated as a N

Langevin equation with a noise term and with terms of a A(T)= 4T exg—nT/T) cognkl). (3

guantum origin. Our model is minimal in the sense that in " aT* 1—exp —2nT/T*) P

the limiting cases it reduces to the well-established models of

the quantum persistent current of coherent electrons and thEhe characteristic temperatufie is given by the relation

classical Nyquist current of normal electrons. The approaclkgT* =Ag/27%, wherekg is the Boltzmann constani\r is

used could be justified in a more elegant way applying theéhe energy gap at the Fermi surface, dgdis the Fermi

methods of thermofield dynamiés. momentum. For temperaturéds<T* the coherent current
Now, let us formulate our model: The system is a collec-flows in such a system without dissipation but its amplitude

tion of rings (individual current channelsstacked along a (3) is reduced On the other hand, at temperatufe-0,

certain axis forming a cylinder. There axg channels in the normal electrons occur, their flow is dissipative, and it gen-

direction of the cylinder axis anhl, in the direction of the erates random currents. The current coming from the normal
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electrons can be induced by, e.g., the change of the magnetic 0024y } '
flux ¢. According to Lenz’s rule and Ohm’s law one géts \ —TT= ‘-’,'
R— LT ’i,';'.-;
d¢ - —-Tm=18 1
Rlnor(d’)—_aa (4) _____ =18 {7 {
whereR is the effective resistance of the syst&frin the - TT=24 /
absence of fluctuations, the magnetic flux is related to the A
total current via the expression
- ‘::. -------- - 3
¢:¢ext+L[Inor(¢vT)+|coh(¢:T)]a (5) 0008 \‘\: ------------- ; ./.
i.e., it is a sum of the external flug.,; and the flux coming ] e’
from the currents. oz a1 00 w 0z
Combining Egs(4) and(5) and adding the term describ- X

ing Nyquist noise yields the equation
FIG. 1. The dimensionless generalized poter¥igt) is shown
1d¢ 1 2kgT as a function of the dimensionless magnetic ftifar several values
Rdt [(¢_ Pext) +lcon(¢,T)+ V'R T'(1), ®  of the scaled temperatuf®/T*. The scaled amplitudg,=1 and

. . . . ) ) scaled external magnetic flux=0.
wherel'(t) is Gaussian white noise. This equation takes the

form of a classical Langevin equation and is our basic evo-
lution equation.
Now, let us introduce dimensionless variables. The flux is

scaled as= ¢/ ¢, and the tim&=t/ro where rg:=L/R is with a normalization constaritly. The probability density

the relaxation time of the averaged normal current. In this(lo) looks like a Boltzmann distribution. However, it is not

case, Eq(6) can be transformed into its dimensionless form strictly a Boltzmann distribution because temperatiren-
= 'ters into it in two ways: into the intensitid =kgT/eq of

L / ™ Nyquist noise and into the generalized potent&l Never-
=— + . . 2
X==VI(x)+y2DI(), @ theless, it describes an equilibrium state. There are examples
where the dot denotes a derivative with respect to the ressf equilibrium distributions with temperature-dependent ef-

caled timet and the prime denotes a derivative with respectfective (generalizeli potentials in thermofield dynamitsr

Ps(x)=Nge™ V()P (10

to x. The generalized potential for quantum Smoluchowski systenfsf. Eq. (11) in Ref.
15)].
1, o q Let us consider the case of absence of external flux,
V()= 2% ~ M=o | f(x,p,T)dx, ®  —p andp=1/2. The properties op¢(x) are determined by

, the properties of the potentidf(x). In high temperature,
where\ = ¢e,i/ ¢, is the rescaled external flux. The cou- yhere no coherent electrons are present, the potelias
pling constant io=NLIo/#o. The function f(X,p,T)  monostable. If temperature decreases, a bifurcation occurs—

=pg(x,T)+(1—p)g(x+1/2T) and the potential becomes bistable and two nonzero symmetric
o minima appear ats= *x,,. Physically, it means that below
gx,T)=> A(T)sin2nmx). (9p  some critical temperaturd. the spontaneous fld®t” ap-
n=1 pears and nonzero stationary current flows in the system.

This critical temperaturel; is defined by the condition

The dimensionless intensity) of rescaled Gaussian white V"(x.=0)=0. The formation of a bistability is shown in

noiseT'(t)=/7ol'(7ot) is a ratio of thermal energy to the rjg 1 The phenomenon is analogous to thentinuous
elelmentary _energy Zstored up in the inductand®, phase transitiorin macroscopic systems, and appears here as
=3KpT/€o With €g:= /2L Let us notice that the resistance g result of the interaction of ring currents. Because the po-
R does not occur explicitly in the rescaled Ed). tential is reflection symmetria/(x) =V(—x), the mean val-

Let us evaluate the order of magnitude of the parameterges of hoth the fluxx and the current are zero. From this
appearing in our equations. Consider the cylinder of the rapoint of view, properties of stationary states are trivial and
diusr=3x10" A and the height,=100 A consisting of @ nonzero fluxes and currents are impossible. However, it is
set of N~50 current channeld in a wall of width much  possible to define the phase transition in the following Way:
smaller than the radius. If the number of electrons in eachihe phase transition point is a value of the relevant parameter
channel isN.~2x 10" thenio~1. The energy gap at the ., of the system at which the profile of the stationary distri-
Fermi surfaceAr=7%°N./(2m.r?) gives the rescaled noise pytion function changes drasticallg.g., if the number of
amplitudeD = uqe?/ (167°me) (Ne/1,). For the above values maxima of the distribution function changesr if a certain
of parameters the diffusion coefficieDt~0.001T/T*. most probable point, begins to change to an unstable state.

The Langevin Eq(7) defines a Markov diffusion process. |n the case considered here, for sufficiently low tempera-
Its probability density p(x,t) obeys a Fokker-Planck tures, thermal fluctuations are small and one expects the ex-
equation™* Its stationary solutiorpg(x) reads perimental results to be accumulated aroundrtiwest prob-
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FIG. 2. Plot of the characteristic escape timeand decay time
74 @s a function of the temperatuféT* for io=1 and the strength T,
of Nyquist noiseD =0.001T/T*.

FIG. 3. Plot of the critical temperaturg, and the temperature
corresponding to minimal current fluctuations or minimal energy
(E) versus coupling constang for D=0.001IT/T*.

able valuesof the stationary probability distribution. It from thermal energy{E)xkT, which obviously increases
follows from Eq. (10) that the most probable values of the when T grows. The competition between these two mecha-
flux correspond exactly to the minima of the generalizednisms leads to the minimal value ¢£) andminimal current
potential V(x). One can introduce characteristic time scalesfyctuationsat T,>T..
of the system. The first characteristic timg=1\V"(xs) de- The influence of the external field on the critical points of
scribes decay within the attractag= *x, of the potential  the stationary density10) was studied in Ref. 19. An inter-
V(x). The second characteristic time is the escape tge esting feature is the occurrence of the hysteresis loop. It is a
from the well aroundt-x,,. This time is related to the mean hallmark of thefirst-order phase transitionThe transition
first passage time from the minimum of the potential to thecan occur only below the critical temperatiifg. Due to the
maximum:* If these time scales are well separated, i.e., ifstructural periodicity” the hysteresis loop is repeated with
7> 14, then the description based on the most probablghe period\ = 1/2 which results in the formation of a family
value is correct. Otherwise, this description fails and weof |oops.
should characterize the system by averaged values of rel- The |ast problem we want to consider is a system with
evant variables. We have calculategfor the transition from  disorder. There are several sources of disorder. The first one
the left minimum of the potential8) assuming that the left is caused by impurities distributed randomly in the system.
boundary at— is reflecting and the right boundary at the The presence of impurities leads to modification of the co-
maximum x, of the potential is absorbing. In Fig. 2 we herent current amplitud€. There is also a geometrical
show the dependence of two characteristic timgand 74  source of disorder: The radius of rings is not exactly of the
upon the rescaled temperatuf€T*. From Eq.(8) we esti-  same value, and may change randomly from one ring to the
mated the critical temperatufB,—1.66T* for the param- other. Also the numbeN, of current channels in the direc-
eters chosen as in Fig. 1. One can observe that roughly fajon of the cylinder radius can be, in general, different at
temperaturesT<14T*, the characteristic timey is more  every point of the vertical axis of the cylinder. These sources
than one order-of-magnitude less than Both time scales of disorder can influence the flux and current. Consequently,
are then well separated and self-sustaining currents are longrey should be included at the microscopic level of descrip-
living states. In this sense, they are not destroyed by Nyquigion. Their caricature can be modeled phenomenologically
noise. In the opposite case, self-sustaining currents are shatgsuming that the coupling parametgrdefined below Eq.
lived and “jump” between various states. (8) is a random variable, i.eig=jo+ €&, wherej, is an
Fluctuations of the magnetic flux and currents exhibitaveraged value of the amplitudg, e characterizes magni-
nonlinear dependence on temperature of the system and aiigde of disorder, and is a zero-mean random variable of
minimal at a certain temperature=T; which is always values in the interval —1,1] and of the probability density
larger thanT.. This has been confirmed by numerical analy-Pg(z)_ It means that disorder is described by quenched fluc-
sis (Fig. 3). Becausdx) =0, the temperature dependence of tuations. The stationary probability densfiy(x) of the flux
these fluctuations is exactly the same as for the average e now expressed as
ergy stored in the magnetic field, i.e{E)={(¢?)/2L
=eo(x?). For low temperatures, Nyquist fluctuations are 1
small and the main contribution to the energy comes from Ps(X)= Jilp(xlz)PS(z)dz, (11
the deterministic party?/2L. Because the magnetic flug
decreases as temperature increases, h@felecreases as Where the conditional probability distributiorp(x|2)
well. On the other hand, for high temperature, the stationary= Co(z)exp{—[V(X)—ezHx)}/D} has the same form as Eq.
state approaches the Gaussian state and as a consequence 1k with the replacementy=j,+ €z in the potential(8).
main contribution to the average magnetic energy comeblow, the normalization constant depends nncgl(z)
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FIG. 4. Probability density for the system witle €0.25) and
without (¢=0) quenched disorder fof/T*=1.4, j,=1, A=0,
andD=0.001T/T*.

= [ exp[—[V(X)—ezFH(X)]/D}dx. In Fig. 4 we show the dis-
tribution (11) for p=1/2, A\=0 and the uniform probability
distribution P,(z). The observed shift of the most probable
value of the flux is rather small and can be interpreted as
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FIG. 5. The most probable value »fas a function of the inten-
sity of disordere for jo=1 andD=0.001T/T*.

sustaining currents in a set of mesoscopic rings having a
cylindrical symmetry. Our discussion is limited to stationary
states of the magnetic flux and current although the proposed
model of the flux dynamics can be, in principle, applied to
study time-dependent problems. The presented approach can

small increase of the magnitude of the self-sustaining currerR® aPplied also to superconducting rings and carbon

(Fig. 5. The magnitude of peaks does not change signifi

nanotube€’ The general conclusion is that persistent and

cantly as well. One observes that both the depth of the miniself-sustaining currents survive in the presence of the above-
mum and the height of the maxima decrease. One concludégentioned fluctuations. However, if the intensity of Nyquist
that the quenched disorder does not drastically change tHoise or quenched disorder is sufficiently strong, fluctuations

properties of the flux with only one exception. The probabil-

ity density in or near the critical temperatufe may change
qualitatively from one peak to two peaks. In the critical re-

lead to the lowering of the temperature below which the
system is in the ordered state characterized by long-living
self-sustaining currents. It is very favorable for the experi-

gion the quenched disorder lowers the critical temperaturenental observations.

T..

In summary, we have investigated the influence of Ny-
quist noise and quenched disorder on the persistent and se
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