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Lifetime of metastable states in resonant tunneling structures
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We investigate the transport of electrons through a double-barrier resonant-tunneling structure in the regime
where the current-voltage characteristics exhibit bistability. In this regime one of the states is metastable, and
the system eventually switches from it to the stable state. We show that the mean switching grnes
exponentially as the voltagé across the device is tuned from the boundary valyeinto the bistable region.

In samples of small area we find [V—V,[*2, while in larger samples lno|V—Vy|.
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The problem of the decay of a metastable state has beet®. The DBRTS is formed as a layered semiconductor het-
addressed in a variety of areas including first-order phaserostructure. The electrostatic potential across the device is
transitions' Josephson junctiorfsfield theory? magnetisnf, ~ shown in Fig. 1a). The potential is assumed to be indepen-
and chemical kineticsMeanwhile, progress in nanofabrica- dent of thex andy coordinates. The model includes only one
tion technology has made possible observation of intrinsi@ubband in the quantum well. We furthermore assume that at
bistabilities in double-barrier resonant-tunneling structure€ro bias the bottom of this subbakg is above the Fermi
(DBRTS (Ref. 6 and superlattices Recent experimerftd en'ergyEF in the left and right leads. If the area qf the samplg
with such devices have demonstrated that near the bounda;%'s_sma”’ we can assume that the charge in the well is
of the bistable region one of the two states is metastable, arf§iStributed uniformly. Then, the state of the device is com-
its lifetime has been studied by measuring current as a fundl/€tely described by the electron densityin the quantum
tion of time at different voltages. Thus, these devices providd/ell: Below we will also discuss effects of nonuniform
an ideal experimental system for studying the decay of metacharge dlsttlbut|on in the well, which are important in the
stable states in real time. In this Brief Report we develop th&ase of devices of large area. o _
theory of switching times in double barrier structures, Fig. N the sequential tunneling approximation, the transport in

1(a). We expect the results to be relevant for other devices i€ device is described by the following master equation for
which sequential resonant tunneling plays a key role in deth® time-dependent distribution functiét(n,t) of the elec-

scribing the electronic transport, such as weakly coupled sgfon densityn in the well,

perlattices. S N . aP(n,t)
We concentrate on the case of intrinsic bistability, which =

can be observed by measuring currénas a function of at

voltageV applied to the device while the impedance of the 1

external circuit equals zero. As shown in Ref. 6, for a certain + P( n+ = ,t) > Wp

range of biasV, two states of current are possible at the S/

same value of the voltage, and th&/ curve has character-

istic hysteretic behavior. As one increases bias, the upper —P(n,t)> Wiq(n) f(1—1g)

branch ends at some boundary voltagg, shown schemati- ak

cally in Fig. Ab). If the voltageV is fixed just below the

thresholdV,,, the system stays in the upper state for a finite - P(n,t)z Wep(n)fg. (D)

time 7, before decaying to the stable lower state. ap
We will show that the lifetime of the metastable state

can be understood by analogy to the problem of a Brownian

1 1
P(n— §,t)% wkq( n— g) fr(1—fq)

1
n+§ fq

particle in a double-well potentigFig. 2). Here the coordi- @) (®)
nate of the Brownian particle has the meaning of the current
I in the device(or the electron densitg). In the problem of E I

the Brownian particler depends exponentially on the height
of the potential barrietd,, separating the local and global
minima, i.e., rcexpU,/T*), where T* is the temperature.
Unlike a Brownian particle, a DBRTS at nonzero bias is a
nonequilibrium system in which fluctuation phenomena are
driven by shot noise in the current rather than the electron
temperaturel. On the boundary of the bistable region, the
local minimum disappears, and therefddg goes to zero.
Thus, it is clear that will depend exponentially on the volt- FIG. 1. (a) The potential profile of the DBRTS at applied bis
age measured from the boundary, of the bistable region. (b) Thel-V curve of the device has a bistable region between the
Here we investigate effects of shot noise in DBRTS usingdashed lines. The dotted line shows the process of switching from a
the framework of the theoretical model introduced in Ref.metastable state to the stable one.

e
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can be found by minimizingi(n). The minimization condi-
tion written asA(n)=0 is in agreement with the results of
Ref. 10.

Our model allows for an analytical treatment at small val-
ues of the parametar=me?/2742C, whereC is the capaci-
tance of the device per unit area. Then the calculations are
greatly simplified, and one obtains the following expressions
for A andB near the threshold:

b
o A()=— 5[ —a+y(n=ng)?], (42

FIG. 2. Brownian particle in a double-well potential. The life-
time of the metastable statedepends exponentially on the height

of the barrier U, separating the local and global minima, b=SB(n,)= E)\ZE T_E EEZ (4b)
reexpU,/T*). The coordinate of the partickehas the meaning of m hTre2 ©
the electron density in the well, andU(n)=Su(n), see Eq(3).

: . . 1 (TR\?Eo
Heref,, f,, andf, are the Fermi occupation numbers in the a:2—<—) —esV, (4¢)
left lead, right lead, and the quantum well, respectively; AT E.zz
Wiq(n) andWg,(n) are the tunneling rates through the left
and right barriers. The first two terms of E{) account for 1 [Tg\% e?\? ES
the processes which bring the system to the state of electron Y= 2—4(1-—) (E) - (4d)
densityn, and the last two terms describe the processes that A - Er

take the system away from it. The first and the third terms oryere sv=\/,,—V, the electron density at the threshalg,

the right-hand side of Ed1) describe tunneling of one elec- =(\H2)(T, ITRZ(C EE/eZEO); and T, are the transmis-

tron into the well from the left lead, \(\{hile the second and thesion coefficients of the left and right barriers at enefy
fourth ones account for the probability of an electron in the

I i he right 1 h and zero applied bias. KX is not small, we cannot get ex-
quantum well to tunnel into the right lead. We dropped thepjcit expressions for, y andb, but the generic form of Eq.
terms describing the tunneling from the well to the left Iead(4a) remains unchanged.

and tunneling from the right lead into the well. These con-
tributions are negligible because the bistability emefyes voltage which lies slightly below the threshold voltadg,

when the level in' the well is close to the bottom of the Close to the threshold the potential can be approximated by a
conduction band in the left lead and far above the Fermi bic polynomial

level in the right lead(We assumd <Eg.)

Assuming that the total number of particles in the well is y
large,nS>1, we can expand Edl) in the small parameter u(n)~—a(n—ngy)+ §(n—nth)3+ u(ny). (5)
1/S. Keeping terms up to the second order we reduce the
master equation to the Fokker-Planck equation

The potentialu(n) is shown schematically in Fig. 2 for a

The switching rater ! is proportional to the distribution

aP(n,t) P 1 2 function (3) at the maximum of the effective potential
ny

__ 7 Lo Su(n). Thus, 7 depends exponentially on the barrier height,
o Gl AMPMOTE 5 —Z[BMPMGL 2
2
) ) r 4 Sa®?
The exact expressions féq(n) andB(n) are rather compli- InT—=§ " xSV, (6)
0

cated, but near the threshold they can be calculated analyti-
cally, see Eq(4) below. The stationary solution of E¢R)

f i h hni -
can be easily obtained: The prefactorry can be found using the techniques de

scribed, e.g., in Ref. 11.
It is important to note that the forrtb) of the potential

Py(n)= %tefsu(n) u(n)=— Ef” A(n") an’, (3) u(n) and the linear dependeneex sV are dictated by ana-
0 B(n) ' SJo B(n") ' Iyticity of the potential near the threshold. Thus, the applica-
bility of the following results is not limited to a particular
whereu(n) is the effective potential. model of transport in DBRTS. A 3/2-power law analogous to

In the derivation of the Fokker-Planck equati@®), the  Eq.(6) was theoretically predicted for different physical sys-
coefficientsA(n) andB(n) appeared as the first and secondtems in Refs. 2,4,5,12. Experimentally it was observed re-
terms of the expansion in 3/ We therefore conclude that cently for an optically trapped Brownian particfe.
A(n)/B(n)«S, andu(n) is independent o& Thus when the The result(6) has been obtained under the assumption
areaSis large, the distribution functioRq(n) has very nar- that the electrons spread rapidly in tke/ plane, and their
row peaks near the minima of(n). If we neglect the fact densityn is uniform. In large samples, however, the spread-
that the width is finite, then the electron densitin the well  ing takes a long time, and one has to account for the depen-
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dence of the density on the point =(x,y) in the well. This Substituting Eq(11) into Eq. (10), integrating twice by
can be done by generalizing the Fokker-Planck equa®pn parts and assuming thét,— u,|<T, one obtains the fol-
to the case of nonuniform(r). lowing Fokker-Planck equation:

We begin by studying the in-plane diffusion of electrons

in the well neglecting coupling to the leads. For simplicity dP{n,t} 5| e? ) , 0
we neglect the electron correlation effects; the interactions of o~ vD|dre- €V N+ TV = IPin.t}.
electrons will be accounted for in the charging energy ap- (12)

proximation. Assuming that the electrons diffuse indepen- ' . . . '
dently, one can write a master equation for the distributionThe stationary solution of Eq12) is found easily by requir-
function P{n(r),t} as follows. During the time\t at most ing the part of the integrand after the first functional deriva-
one electron can move from positioq to r,, that is, tive to vanish,

P{n(r),t+At}—P{n(r),t} _ 1 e?n?(r)
Po{n} ex;{ f 7E dr|.

-
=f f drydro[P{n(r)+&(r—ry)—8(r—ry),t}

XW(rq,rp,At)—P{n(r),t}W(r,,r,,At)]. (7)

This result has a simple physical meaning. The equilibrium
distribution functionP, has the Gibbs forne &'T, with the
energy per unit area®n?/2C in agreement with the electro-
Here W(r,,r,At) is the probability density of an electron chemical potentia(11). _

diffusing from a pointr; in the plane of the quantum well to ~ Using Eq.(12) we can take into account processes of
point r, during the time intervalit. Since electrons are fer- charge spreading in the quantum well. The electron density
mions, a particle can diffuse only from a filled staterato ~ N(r) can change due to either tunneling of electrons through

elastic scattering of electrons by defects, we find add the terms from the right-hand side of £2). to Eq.(12)
to account for both processes. The combined Fokker-Planck

equation takes the form
Wirs 20 =0(1—12,A0 | 12(E)[1- F(E) JdE,

8 aP{n(r),t} o S

(8) T—f dr% A(n)+§%B(n)
where v is the density of states in the welber unit areg
andf, ,(E) are the occupation numbers at poinis r,. The g2
classical diffusion probabilitg(r,At) is given by —vD EVZH P{n(r),t}. (13

Here we neglected the second term in EkR). This can be
done as long as the temperature of the electrons in the well is
much lower than the Fermi enerdy.

whereD is the diffusion coefficient. The approximate formis  The stationary solution of this equation is

obtained in the limitAt—0.

g(r,At)= e MDA 5(r)+ DALV25(r), (9)

47DAt

Using EQgs.(8), (9) and expanding the distribution func- const _

tion from Eq.(7) up to the second order ii(r —r,)— &(r Potn}= B(m© g F{n}:f dr[u(n)+7(Vn)?],

—Tr,) we obtain a functional Fokker-Planck equation (14)
IP{n(r),t} S ) where n=c/CSB(n), ando=€?vD is the in-plane conduc-
T:VDJ f drqdr, (m—m tivity. Note that in the limitD—« the electron density is

1 2 uniform, Vn=0, and we recover the resuyB).
1 5 5 \2 h1— fhp In the case when the diffusion coefficiebtis finite, the
+—< - ) electron density varies from point to point in the quantum
2\0n(ry)  on(ry)] J1—e (mamw2lT well; hence, this problem is infinite dimensional. In the mul-

tidimensional case, the system escapes from the local mini-
mum of potential through a point where the barrier separat-
Here u, and u, are the electrochemical potentialsratand NG it from the global minimum takes the lowest possible

r,, respectively. Their values are found by adding the elecvalue, i.e., through a saddle point. The mean switching time

XP{N(r),t}V28(r —r,). (10

trostatic potentiat?n/C to the Fermi energy/ v 7 is determined by the potential at the saddle point, measured
' from the local minimum. This approach is similar to the one
5 used in the theory of kinetics of first-order phase transitfons,

(12) with F playing the role of the free energy.
The saddle point of the function&{n} is achieved ah
=ng(r) which almost everywhere in the sample is very close
HereC is defined bye?/C=e?/C+ 1/v. to the densityn,;, of the system at the local minimum &t

e
Ml,Zzgn(rl,Z)-
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The switching rater™ ! is proportional to the distribution
function Pg{ng}, where ng(r)=nmin—2valyzs(riry).
Therefore, one can calculate the logarithm of the mean
switching timer asF{ng} —F{nmin},

T an
. In—=xk—x V. (16)
T2 Y
Here the constant=62.01 was found numericalfy:®
According to Eq.(16), In(7/7,) does not depend on the
5 areaS On the other hand, since the critical fluctuatiyfr)
can be centered anywhere in the sample, the switching rate
71 is proportional to the area of the same hencer,
FIG. 3. Numerical solution of E¢15). «1/S. The exact calculation of the prefactey presents a
number of theoretical challenges, which we leave for future
However, in a region of some characteristic sigethe den-  work.
sity ng(r) changes in the direction of the global minimum, In contrast to the case of small samples ), the loga-
Fig. 2. Thus, the DBRTS of large area first switches to theithm of the escape tim¢l6) in large samples is linear in
stable state in a region of sizg, which then expands to the §V. The crossover between the two regimes occurs when the
whole sample. area$S of the sample is of the order of= 7(a7y) Y2 One
We perform the following calculations in the regime of can see from Eq4o thatr(z)oc oV~ 2 Thus, one can observe
voltages very close to the threshdlil,, where we can use this crossover in a single sample by tuning the voltage. In-
u(n) in the form (5), and 7 takes a constant valugy  deed, at relatively smalbV we will have S<r3 and In7
=¢/Cb. Initially the system is in the local minimum, de- «&Vv®? whereas at largefV we have Inr<éV.
scribed by a uniform densit§i,= N+ Ve/y. In order to In conclusion, we have studied the switching tim&om
find the saddle point, it is convenient to parametrize the electhe metastable state to the stable one in DBRTS. We showed
tron densityn(r) in terms of a dimensionless functiafp), that 7 is exponential in the voltage measured from the
such than(r) = n,— 2\/al yz(r/r,), where the length scale boundary of the bistable region; it is given by E6) or (16)
ro:\/;(ay)—l/“_ Using this parametrization, one can find depending on the area of the sample. Our results can be
the saddle point of as a nontrivial solutiorzs(p) of the  tested in experiments similar to Refs. 8,9.
equation
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