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Short-range correlation in an electron gas: A scattering approach
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The pair-correlation function at zero interparticle separadi@®) of an interacting electron gas is derived by
an averaging procedure using the exact enhancement factor for scattered waves of electrons in a model
potential. The range of the screened potential is fixed by a physically motivated constraint. Agreement with the
result of a many-body method based on summation of ladder diagrams for electron-electron interactions is
established. Possible applications of the potential are discussed as well. A nontrivial density-scaling in the
thermal resistivity of metals is predicted.
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The pair-distribution functiong(r) of a homogeneous whereB.=(2a/57)(7%+6In2—3) with a=(4/97) thus
electron gas describesralative behavior of pairs of spin- B,=0.732, and
half fermions. It is defined as the probabilitg(r)=0] that
another patrticle is at if there is already one at=0. A -2

2m 2

well-motivatedg(r) for the uniform system is, in addition to Zg'(O,rS):[ > ! | , 2
its intrinsic theoretical interest, the starting point for model- m-o0 m'(m+1)! 11(2u)

ing averaged exchange-correlation hole of a many-electron

system of nonuniform density. in which u?=4ar /7 andl(x) is the first-order modified

For an unpolarized gag(r)=(1/2)[g;(r)+g;,(r)], in  Bessel function. From Eq2) one obtains 8'(0r—0)=1
which g;(r) describes both exchange and Coulomb corre— s with 8,=4a/m=0.663.
lations among the equal-spin electrons, whije (r) de- A recent theoretical effort, using an effective two-particle
scribes Coulomb correlation among electrons with oppositénteraction with no empirical parameter to account for two-
spin. For a system of noninteracting electrons described by Body correlations, gavsurprisingly accurate numerical val-
single Slater determinant, there are no correlation effectgjes forg(0,r) even for the mentioned high-density limit.
only exchange. This latter is due solely to the Pauli exclusionThis effort was based on the scattering interpretation and
principle. Therefore, in the Hartree-Fo@KF) approximation — implementation of Overhaus&Note at this important point,
g(r=0)=(1/2), becaus@;(r=0)=0 andg; (r)=1. that the concept of effective, state-dependent pair potentials
A lower energy state of the interacting electron gas tharhas been successfully applied in the descriptiomeafuced
the HF one is governed by correlated motions of electrorCoulomb repulsions between antiparallel-spin electrons of
pairs. The value ofg(r=0r,), at a given densityn, the main shells of atonts.
=3/(47rd) of the system, reflecmostclearly the effect of Overhauser used a physically motivated, the so-called
Coulomb interactions, sinog:(0,r¢)=0 by the Pauli con- Point charge in the continuum or Wigner-Seitz model of
straint. A standard mean-fieltartred method, based on the Screening, finite-range potential of the férfr?
charge-polarization concept and the random-phase approxi-
mation (RPA) for the dielectric function, gives a negative 1 r r2
value forg(0,,) already atr;=0.8, as was shown and ana- Vws(r)=—|1— —( 3- —2)
lyzed by Hedin' This method violates the requirement of the ' 2rs s
exclusion principle and, furthermore, treats the short-range
correlation due to the Coulomb force between electrons oWith Vys(r)=0 for r=rs, and obtained a first-iteration re-
antiparallel spin perturbatively. The RPA is a method to ac-sult from the two-particle scattering Schiioger equation
count the long-range part of the pair-distribution function,
but fails to distinguish between electrons of equal and oppo-
site spin? 2g°(0r o) = _
The considerations of interactions, using powerful many- (8+3rg)?
body methods, provide the exa) asymptotié (r—0),
and the well-establish&ctlectron-electron laddet) results  Using this potential (with additional probabilistic arguments
for the averagegy(0,rg) functions on its capability and performing a complete partial-wave
expansion at a fixedelative scattering (k) momentum,
introducing the proper weighting over this momentum by its
20%(0r—0)=1—B.rs, (1) normalized probability distribution function

, ()
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k2 k¥ Kb 04
P(k)=24é—36g+12k—g, (5) )
whereke[0ke] and k2=3%2n,, Gori-Giorgi and Perdew 03 R
obtained a remarkably similar numerical result fg(0,r), y \\ Tl
in the range of ;€[ 0,10], to the one prescribed by ER). ~ / \ s
The established and surprising agreement may generat 02 { L
in our opinion, quite natural questions. Is the agreement due® N
to the screened form of the applied potential? If the screeninc RN
is so important, how important is the particular finite-range o1 L S ‘
version? The present paper is devoted to a detailed theoret o e e
cal investigation on these questions, and provides anothe T
form for the screened potential resulting in an almost com- . J
plete agreement with'(0r) for ther e[0,10] range of the 0.0 20 40 6.0 80 100
density parameter, too. I,
Generally, for a given potential one can calculate the so- _ ) _
called enhancement factor defined by the scattering-wave FIG. 1. Pair-correlation functions, plotted ag(Ors), at zero

(V) solution of the Schidinger equation as interparticle separation as a function of. The solid and dash-
K dotted curves are the results of the present work. The dotted curve is
W, (0) 2 based on the same averaging procedure but rests on the Coulombic
E(k)= K , (6) enhancement factdt.(k). The dashed curve refers to H¢). See
\PE(O) the text for further details.
whereW, is the field-free solution. Thus, using EG) one Supported by the above detailed investigations, we de-
obtains scribe the screened potential in our treatment on the pair-
; 2
ke correlation problem by a Hulthen-type form
201019~ [ "akPUOEK). ™ N
0
_ _ _ Vi(r)=——. (10)
For a repulsive(unscreenedCoulomb interaction between e’ —1

equal-mass and unit-charge particleg (k)= (7/k)

. 3 . _
[exp(mlk)— 1]~%, thus for ther 0 limit the result is This form allows® anexactrepresentation of the correspond

ing enhancement factor needed to EQ. as

29°(0rs—0)=1— B, ) T sinh(v)
Bn=1 coshw)— coshv)’ (D

in which B,=6ma/5=1.964. The asymptotic result of Eq.

(8) heralds that the mathematical tuning of the coefficient in

the r. term requires physical screening in an effective two- V1€ vz(bZth/A) ang%wf= lr’](l+Ad/k|2)1/2' Fur;[jhebrmore,

body model. The requirel dependence of the screening Ln;ljg/;teadn dyetseei?;lr r?is titgrggnem%;ﬁggsf%r $r¥ﬂg\7:r'

length is investigated now by using an auxiliary example. [the radial \;vavg-functyi/(’)n behaves BEr)~(1/r)], we use
Let us introduce dixedimpurity potential of Yukawa-type the ’

Vy(r)=(1/r)exp(—Ar) into the electron gas and calculate

the induced charge-densityn(r) using standard perturba- re 1 o 1

tion theory based on plane waves. The result¥a0) is as fo drrZFVWS(r)z J; drrZFVH(r), (12)

follows:

constraint and obtaif = (27/3)?/r ;=2.28% . Note that in
standard scattering thedfythe above-defined weighted av-
erage of a potential is related, for th#ractive case, to the
convergence of the Born-seriesd appearance of a bound
where x=2kg/(A\?+4k2)¥? and F is the hypergeometric state.

function. Defining a pair-correlation function &(0,r¢) =1 Usingthis prescription forA in Eq. (11) for Ey(k,A), the
—An(0)/n, for the auxiliary model, one can see tlmtlya  remaining single integral in Eq7) with Eq. (5) is performed
A~k scaling could allow tuning ofAn(0,r¢) withoutvio-  numerically. In Fig. 1 we compare the presgh{0r) result
lating the G(0r,—0)=1—Br character in the relevant (solid curvg with other estimates 0§(0rs). The dashed
high-density limit. For any othex ~kf (0<m<1) scaling curve refers to Eqi4) obtained, in a first-iteration analytical
the limit value atr¢—0 remains unchanged; one gets, in method, by Overhauser. The dotted curve is based on the
these cases, always the correspondsigtic fixed impurity ~ Coulomb enhancement factér, (k). The dash-dotted curve
Coulombic limit with 8=3ma/2=2.455. In addition, we corresponds to the present procedure, hbwith AZ
note that with the\ tg= (4kg /) ”> Thomas-Fermi value in =20§(3)/r§ for screeningsee, below, where the Riemann-
Eq. (9) one hasG(0,r¢) =0 at aboutr=0.8 already. zeta function is{(3)=1.2. The result of the many-body

A0_2|<§F13_5_2 o
n( )—Qx 21515:X | 9
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method(summing the ladder diagrams for electron-electron 0.0
interaction for g'(0rg) is not plotted: theg'(0ry) and
g™(0rs) [with A based on Eq(12)] functions practically .l
coincide in therge[0,10] range. The deviation between e
them remains very moderate evenrgt 20. At this density
parameter rg'(0r¢)=0.0032 while r,g"(0r¢)=0.0035. 04|
The mathematical limits fors— are, however, different. ~
By analytical expansions in Eq&) and (11) we obtain fo
-0.6
reg'(0rg—w)=r2mule M=3.4 5% 32T (13
-0.8
rg™(0rs—0)=2mr2e 3\s, (14)
One can conclude, that it is the special dependence of the  ~19, 5 20 30 20 50 6.0
screening length ok, and not the finite- or longer-range r,
form of a two-body effective potential with no empirical pa- _ _ _
rameter’ that determines the good performanceg((ﬁ,r S) FIG. 2. The Ieadlng phase Sh|tt§0(k|:)] for the metallic range:

obtained by Gori-Giorgi and Perdew and in the present works<[1.6]. The solid and dash-dotted curves are based on(E.

for the interesting range of,. The useful constraint given by With Egs.(12) and (15), respectively, while the dashed one is ob-

Eq. (12) may provide a background to restrict other, i_e_'talned by Eq.(3). The Schrdinger equat_lon wnth_ reduced mags

V(r), one-parametric potential forms with Coulomb singu- =(1/2) for electron-electron scattering is used in all cases.

larity. Proper treatments, such as a ladder or a two-body ex-

act scattering, of the singularigatisfythe electron-electron we already noted, thg—0 limit is properly treated by the

cusp condition. This fact, and the effective potential-rangeRPA. On the other hand, scattering rates in the conduction

put rather stringent conditions on the possigfér ) values.  characteristics contain weighting-out factors for the forward
We have investigated anoth@elated to the nonlinearity direction and, therefore, may be more sensitive to the short-

question aspect of scattering by using the potentigs(r)  range part of the two-body interaction. Reasonable descrip-

andVy(r). The Hulthen-type potential is fixed with of Eq.  tion of the interparticle interaction at close range is a prereg-

(12) and theA$=20¢(3)/r} value. ThisA s value is obtained yisite in the proper treatment of the so-called GW

by aforward-limit constraint, i.e., via the Fourier-transforms approximation, tod®

of Vws(r) andVy(r) atq=0 as The specialensitivitywith which the thermal resistivity

W,.(T,rg), at a given temperaturg and the scattering life-

time depend on the screening Iengﬂjcl(rs) of one-

parametric effective interactions was already clearly

stated!®?®° Using the standard Wee~TrZ/4a3(ry)

expressiort? here we argue that the experiment&li§? veri-

fied very sharp increase ®¥.4rs) by growingrg of metals

€[1,6]. Solid and dash-dotted curves are based ontlzend ma_ybe, at Iegst partly,_ due to the form Bidry) in the .

A, values inV,(r), respectively, while the dotted curve on anupgra]lel—spm scattengg channe!. In an average meap—ﬁeld

the V,y(r) potential. The obtained phase shifts are not smalf€SCrPtionk s~ A e~ 1/r = for all-kind of scattering, while

showing that a nonpertubative method is required to charadhe preslear/12t study SUQQESISA&7A~1/rS scaling, thLiglza

terize them. Furthermore, a comparison of curves herald¥/te~Trs>> channel-character instead of tWee~Trg

that theg(0rg) (Fig. 1) and 5y(kg) quantities sample in a mean-field-based behavior.

different way the strength of the two-body interaction. We quantify our statement by a representative example
The established success based on an effective potential which covers a broad-range of the density via th@aram-

model correlated motions of antiparallel-spin electrons andters. Experimental results oW, obtained for Rb(rg

obtain a ground-state characterisig0r.), of an interact- =5.2) target by Cook and for Cu(r¢=2.66) target by

ing electron gas may raise a natural question: Is this potenti:}.laubitz22 give, using the mean-value data, tie=350/4

an acceptable one to the theoretical description of physicaE87 ratio for We(Rb)/We¢(Cu). Our scaling results iR

quantities usually considered as determined by particle=(5.2/2.66}*?=80, while the usual one iR=(5.2/2.66§

particle (in different relative spin statgsscattering at the =28. The nontrivial scaling, and the important role of the

Fermi level? The scattering lifetimélecay is recently a antiparallel-spin scattering channel behind of it, may contrib-

topic of great interes Similarly, a scattering rate is a key ute to the understanding of the abovementioned sksep

quantity in various low-temperature transport propertles. Fig. 1 of Ref. 19 increase ofW,(rs) of metals withrg

The mentioned lifetime is, mainly, determined by the small-[2.6,5.9.

momentum transferq— 0) limit of an effective interaction, Finally, by returning to the basic problem of this paper, a

while this work addressed the short-range{=) limit. As  similar analysis as the present one for the 3D electron gas

frsdrrszs(r)z fxdrrZVH(r). (15)
0 0

The leading [=0) phase shifts,5y(k), calculated at the
maximal relative momentunk=kg from the Schrdinger
equation®® are exhibited in Fig. 2 for the metallic range
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