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Short-range correlation in an electron gas: A scattering approach
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The pair-correlation function at zero interparticle separationg(0) of an interacting electron gas is derived by
an averaging procedure using the exact enhancement factor for scattered waves of electrons in a model
potential. The range of the screened potential is fixed by a physically motivated constraint. Agreement with the
result of a many-body method based on summation of ladder diagrams for electron-electron interactions is
established. Possible applications of the potential are discussed as well. A nontrivial density-scaling in the
thermal resistivity of metals is predicted.
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The pair-distribution functiong(r ) of a homogeneous
electron gas describes arelative behavior of pairs of spin-
half fermions. It is defined as the probability@g(r )>0# that
another particle is atr if there is already one atr 50. A
well-motivatedg(r ) for the uniform system is, in addition to
its intrinsic theoretical interest, the starting point for mod
ing averaged exchange-correlation hole of a many-elec
system of nonuniform density.

For an unpolarized gasg(r )5(1/2)@g↑↑(r )1g↑↓(r )#, in
which g↑↑(r ) describes both exchange and Coulomb cor
lations among the equal-spin electrons, whileg↑↓(r ) de-
scribes Coulomb correlation among electrons with oppo
spin. For a system of noninteracting electrons described
single Slater determinant, there are no correlation effe
only exchange. This latter is due solely to the Pauli exclus
principle. Therefore, in the Hartree-Fock~HF! approximation
g(r 50)5(1/2), becauseg↑↑(r 50)50 andg↑↓(r )51.

A lower energy state of the interacting electron gas th
the HF one is governed by correlated motions of elect
pairs. The value ofg(r 50,r s), at a given densityn0

53/(4pr s
3) of the system, reflectsmostclearly the effect of

Coulomb interactions, sinceg↑↑(0,r s)50 by the Pauli con-
straint. A standard mean-field~Hartree! method, based on th
charge-polarization concept and the random-phase app
mation ~RPA! for the dielectric function, gives a negativ
value forg(0,r s) already atr s>0.8, as was shown and an
lyzed by Hedin.1 This method violates the requirement of th
exclusion principle and, furthermore, treats the short-ra
correlation due to the Coulomb force between electrons
antiparallel spin perturbatively. The RPA is a method to
count the long-range part of the pair-distribution functio
but fails to distinguish between electrons of equal and op
site spin.2

The considerations of interactions, using powerful ma
body methods, provide the exact~e! asymptotic3 (r s→0),
and the well-established4 electron-electron ladder~l! results
for the averageg(0,r s) functions

2ge~0,r s→0!512ber s , ~1!
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wherebe5(2a/5p)(p216ln223) with a5(4/9p)1/3 thus
be>0.732, and

2gl~0,r s!5F (
m50

`
u2m

m! ~m11!! G22

5F u

I 1~2u!G
2

, ~2!

in which u254ar s /p and I 1(x) is the first-order modified
Bessel function. From Eq.~2! one obtains 2gl(0,r s→0)51
2b l r s with b l54a/p>0.663.

A recent theoretical effort, using an effective two-partic
interaction with no empirical parameter to account for tw
body correlations, gavesurprisinglyaccurate numerical val
ues forg(0,r s) even for the mentioned high-density limit5

This effort was based on the scattering interpretation
implementation of Overhauser.6 Note at this important point,
that the concept of effective, state-dependent pair poten
has been successfully applied in the description ofreduced
Coulomb repulsions between antiparallel-spin electrons
the main shells of atoms.7

Overhauser used a physically motivated, the so-ca
point charge in the continuum or Wigner-Seitz model
screening, finite-range potential of the form6,8,9

VWS~r !5
1

r F12
r

2r s
S 32

r 2

r s
2D G , ~3!

with VWS(r )50 for r>r s , and obtained a first-iteration re
sult from the two-particle scattering Schro¨dinger equation

2g°~0,r s!5
64

~813r s!
2

. ~4!

Using this potential~with additional probabilistic argument
on its capability! and performing a complete partial-wav
expansion at a fixedrelative scattering ~k! momentum,
introducing5 the proper weighting over this momentum by i
normalized probability distribution function
©2003 The American Physical Society02-1
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P~k!524
k2

kF
3

236
k3

kF
4

112
k5

kF
6

, ~5!

where kP@0,kF# and kF
353p2n0, Gori-Giorgi and Perdew

obtained5 a remarkably similar numerical result forg(0,r s),
in the range ofr sP@0,10#, to the one prescribed by Eq.~2!.

The established and surprising agreement may gene
in our opinion, quite natural questions. Is the agreement
to the screened form of the applied potential? If the screen
is so important, how important is the particular finite-ran
version? The present paper is devoted to a detailed theo
cal investigation on these questions, and provides ano
form for the screened potential resulting in an almost co
plete agreement withgl(0,r s) for the r sP@0,10# range of the
density parameter, too.

Generally, for a given potential one can calculate the
called enhancement factor defined by the scattering-w
(Ck) solution of the Schro¨dinger equation as

E~k!5UCk~0!

Ck
0~0!

U2

, ~6!

whereCk
0 is the field-free solution. Thus, using Eq.~5! one

obtains

2g~0,r s!5E
0

kF
dkP~k!E~k!. ~7!

For a repulsive~unscreened! Coulomb interaction betwee
equal-mass and unit-charge particlesEc(k)5(p/k)
3@exp(p/k)21#21, thus for ther s→0 limit the result is

2gc~0,r s→0!512bcr s , ~8!

in which bc56pa/5>1.964. The asymptotic result of Eq
~8! heralds that the mathematical tuning of the coefficien
the r s term requires physical screening in an effective tw
body model. The requiredkF dependence of the screenin
length is investigated now by using an auxiliary example

Let us introduce afixedimpurity potential of Yukawa-type
VY(r )5(1/r )exp(2lr ) into the electron gas and calcula
the induced charge-densityDn(r ) using standard10 perturba-
tion theory based on plane waves. The result forDn(0) is as
follows:

Dn~0!5
2kF

2

3p2
xFS 1

2
,
3

2
;
5

2
;x2D , ~9!

where x52kF /(l214kF
2)1/2 and F is the hypergeometric

function. Defining a pair-correlation function asG(0,r s)51
2Dn(0)/n0 for the auxiliary model, one can see thatonly a
l;kF scaling could allow tuning ofDn(0,r s) without vio-
lating the G(0,r s→0)512br s character in the relevan
high-density limit. For any otherl;kF

m (0,m,1) scaling
the limit value atr s→0 remains unchanged; one gets,
these cases, always the corresponding~static fixed impurity!
Coulombic limit with b53pa/2>2.455. In addition, we
note that with thelTF5(4kF /p)1/2 Thomas-Fermi value in
Eq. ~9! one hasG(0,r s)50 at aboutr s50.8 already.
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Supported by the above detailed investigations, we
scribe the screened potential in our treatment on the p
correlation problem by a Hulthen-type11,12 form

VH~r !5
L

eLr21
. ~10!

This form allows13 anexactrepresentation of the correspon
ing enhancement factor needed to Eq.~7! as

EH~k!5
p

k

sinh~v !

cosh~w!2cosh~v !
, ~11!

where v5(2pk/L) and w5v(11L/k2)1/2. Furthermore,
motivated by the success5 of the model proposed by Over
hauser and, especially, his iteration method for thes wave
@the radial wave-function behaves asR(r );(1/r )], we use
the

E
0

r s
drr 2

1

r
VWS~r !5E

0

`

drr 2
1

r
VH~r !, ~12!

constraint and obtainL5(2p/3)2/r s>2.285kF . Note that in
standard scattering theory14 the above-defined weighted av
erage of a potential is related, for theattractivecase, to the
convergence of the Born-seriesand appearance of a boun
state.

Using this prescription forL in Eq. ~11! for EH(k,L), the
remaining single integral in Eq.~7! with Eq. ~5! is performed
numerically. In Fig. 1 we compare the presentgH(0,r s) result
~solid curve! with other estimates ofg(0,r s). The dashed
curve refers to Eq.~4! obtained, in a first-iteration analytica
method, by Overhauser. The dotted curve is based on
Coulomb enhancement factorEc(k). The dash-dotted curve
corresponds to the present procedure, butwith Ls

2

520z(3)/r s
2 for screening~see, below!, where the Riemann-

zeta function isz(3)>1.2. The result of the many-bod

FIG. 1. Pair-correlation functions, plotted asr sg(0,r s), at zero
interparticle separation as a function ofr s . The solid and dash-
dotted curves are the results of the present work. The dotted cur
based on the same averaging procedure but rests on the Coulo
enhancement factorEc(k). The dashed curve refers to Eq.~4!. See
the text for further details.
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method~summing the ladder diagrams for electron-electr
interactions! for gl(0,r s) is not plotted: thegl(0,r s) and
gH(0,r s) @with L based on Eq.~12!# functions practically
coincide in the r sP@0,10# range. The deviation betwee
them remains very moderate even atr s520. At this density
parameter r sg

l(0,r s)>0.0032 while r sg
H(0,r s)>0.0035.

The mathematical limits forr s→` are, however, different
By analytical expansions in Eqs.~2! and ~11! we obtain

r sg
l~0,r s→`!5r s2pu3e24u>3.4r s

5/2e23.26Ar s, ~13!

r sg
H~0,r s→`!>2pr s

2e23Ar s. ~14!

One can conclude, that it is the special dependence o
screening length onkF , and not the finite- or longer-rang
form of a two-body effective potential with no empirical p
rameter, that determines the good performance ofg(0,r s)
obtained by Gori-Giorgi and Perdew and in the present w
for the interesting range ofr s . The useful constraint given b
Eq. ~12! may provide a background to restrict other, i.
VY(r ), one-parametric potential forms with Coulomb sing
larity. Proper treatments, such as a ladder or a two-body
act scattering, of the singularitysatisfythe electron-electron
cusp condition. This fact, and the effective potential-ran
put rather stringent conditions on the possibleg(0,r s) values.

We have investigated another~related to the nonlinearity
question! aspect of scattering by using the potentialsVWS(r )
andVH(r ). The Hulthen-type potential is fixed withL of Eq.
~12! and theLs

2520z(3)/r s
2 value. ThisLs value is obtained

by a forward-limit constraint, i.e., via the Fourier-transform
of VWS(r ) andVH(r ) at q50 as

E
0

r s
drr 2VWS~r !5E

0

`

drr 2VH~r !. ~15!

The leading (l 50) phase shifts,d0(k), calculated at the
maximal relative momentumk5kF from the Schro¨dinger
equation,15 are exhibited in Fig. 2 for the metallic ranger s
P@1,6#. Solid and dash-dotted curves are based on theL and
Ls values inVH(r ), respectively, while the dotted curve o
theVWS(r ) potential. The obtained phase shifts are not sm
showing that a nonpertubative method is required to cha
terize them. Furthermore, a comparison of curves her
that theg(0,r s) ~Fig. 1! and d0(kF) quantities sample in a
different way the strength of the two-body interaction.

The established success based on an effective potent
model correlated motions of antiparallel-spin electrons a
obtain a ground-state characteristic,g(0,r s), of an interact-
ing electron gas may raise a natural question: Is this pote
an acceptable one to the theoretical description of phys
quantities usually considered as determined by parti
particle ~in different relative spin states! scattering at the
Fermi level? The scattering lifetime~decay! is recently a
topic of great interest.16 Similarly, a scattering rate is a ke
quantity in various low-temperature transport propertie17

The mentioned lifetime is, mainly, determined by the sma
momentum transfer (q→0) limit of an effective interaction,
while this work addressed the short-range (q→`) limit. As
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we already noted, theq→0 limit is properly treated by the
RPA. On the other hand, scattering rates in the conduc
characteristics contain weighting-out factors for the forwa
direction and, therefore, may be more sensitive to the sh
range part of the two-body interaction. Reasonable desc
tion of the interparticle interaction at close range is a prer
uisite in the proper treatment of the so-called G
approximation, too.18

The specialsensitivitywith which the thermal resistivity
Wee(T,r s), at a given temperatureT, and the scattering life-
time depend on the screening lengthlsc

21(r s) of one-
parametric effective interactions was already clea
stated.19,20 Using the standard Wee;Trs

7/2/lsc
3 (r s)

expression,19 here we argue that the experimentally21,22 veri-
fied very sharp increase ofWee(r s) by growingr s of metals
maybe, at least partly, due to the form oflsc(r s) in the
antiparallel-spin scattering channel. In an average mean-
descriptionlsc;lTF;1/r s

1/2 for all-kind of scattering, while
the present study suggests alsc;L;1/r s scaling, thus a
Wee

↑↓;Trs
13/2 channel-character instead of theWee;Trs

10/2

mean-field-based behavior.
We quantify our statement by a representative exam

which covers a broad-range of the density via ther s param-
eters. Experimental results onWee obtained for Rb(r s
55.2) target by Cook21 and for Cu(r s52.66) target by
Laubitz22 give, using the mean-value data, theR5350/4
>87 ratio for Wee(Rb)/Wee(Cu). Our scaling results inR
5(5.2/2.66)13/2>80, while the usual one inR5(5.2/2.66)5

>28. The nontrivial scaling, and the important role of t
antiparallel-spin scattering channel behind of it, may contr
ute to the understanding of the abovementioned sharp~see
Fig. 1 of Ref. 19! increase ofWee(r s) of metals with r s
P@2.6,5.6#.

Finally, by returning to the basic problem of this paper
similar analysis as the present one for the 3D electron

FIG. 2. The leading phase shifts@d0(kF)# for the metallic range:
r sP@1,6#. The solid and dash-dotted curves are based on Eq.~10!
with Eqs. ~12! and ~15!, respectively, while the dashed one is o
tained by Eq.~3!. The Schro¨dinger equation with reduced massm
5(1/2) for electron-electron scattering is used in all cases.
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would be desirable for the 2D fermion system, where
forward-backward limits of effective interactions areequally
important in lifetime calculations.23 Certain scattering as
pects, using a Wigner-Seitz-like potential,9 were already
investigated24 for the important two-dimensional model. Th
so-calleddouble-photoelectron emission, as a tool25 for cor-
relation imaging, could give further informations on the m
tual interaction between electrons.
s
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