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We show that fundamental conservation laws mandate parameter-free mechanisms of decoherence of quan-
tum oscillations of the superconducting current between opposite directions in a superconducting quantum
interference device—emission of phonons and photons at the oscillation frequency. The corresponding rates are
computed and compared with experimental findings. The decohering effects of external mechanical and mag-
netic noises are investigated.
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I. INTRODUCTION attached to a substrate that is firmly attached to another solid,
etc., so that the angular momentum is transferred to the infi-
The possibility of macroscopic quantum tunneling of thenite mass, like the linear momentum in B&bauer experi-
magnetic flux in superconducting quantum interference dement. If this were true, the SC current would simply bounce
vices (SQUID’s) was suggested in a seminal paper of Cal-elastically between clockwise and counterclockwise direc-
deira and Leggettand was subsequently demonstrated intions, making conservation of the total angular momentum
experiment® Following these developments the possibility irrelevant. It is easy to see, however, that for a current oscil-
of coherent quantum oscillations between macroscopic flukating at a high frequency, e.d.,~10°— 10 s™1, the anal-
states was intensively studied by theorigee, e.g., Ref. 4 ogy with the Masbauer effect breaks down. Indeed, during
and references thergirModern interest to this problem was the period of oscillations, the elastic deformation cannot
generated by the hope to build a supercondudiB© qubit.  travel more than a distaneg/f, away from the currenty
The goal of preparing quantum superposition of macroscopibeing the speed of the transverse sound. For, eg:5
flux states in a SQUID had remained elusive, however, untilx 10* m/s andf,~5x10° s*! one obtainsvs/fo~1 um.
recent experiments of Friedmaet al®> and van der Wal Thus, the part of the solid involved in the conservation of the
et al® In these experiments the tunneling splitting betweerangular momentum is small, not macroscopically large. Con-
the states corresponding to symmetric and antisymmetrisequently, the torsional oscillations of the part of the solid
quantum superpositions of clockwise and counterclockwisenatrix “cowiggling” with the current must generate phonons
currents in a SQUID loop has been observed. These experdf frequencyf, in the surrounding matter. As long as the
ments were followed by similar measurements of morespeed of sound is finite this should result in a decoherence of
elaborate designs® qguantum oscillations of the current. Similar effect exists due
The most important question about the above experiment® the interaction of the magnetic moment of the current with
is the one of the decoherence tithany degree of freedom vacuum photons. The difference from the phonon problem is
that interacts with the coherently oscillating variable can behat at f,~5x10° s™* the wavelength of the light),
the source of decoherence. One can divide all such sourcesc/f,, is about five orders of magnitude larger thag.
into two groups, avoidable and unavoidable. Examples oConsequently, the vacuum properties of the photons depend
avoidable sources are, e.g., nuclear spins and nonthermgtrongly on the geometry of the experiment, in particular, on
noise. In this paper we study generic mechanisms of decahe metal shielding of the SQUID.
herence which are controlled by the conservation [HwS. The above picture is quasiclassical. From the quantum-
In application to SQUID’s, such mechanisms are unavoidmechanical point of view, the states of the tunneling SC cur-
able as they originate from the fundamental symmetries ofent are not classified by specific values of the angular mo-
free space. To illustrate our point, consider, e.g., experimenhentum. The interaction of the current with the solid matrix
of Ref. 5 in which the current)~3 uA, oscillated due to entangles the angular momentum states of the current with
quantum tunneling between clockwise and counterclockwisgnhe angular momentum states of the matrix. In the absence of
directions. The angular momentum associated with the cutthe external noise, the total angular momentum is, of course,
rent was of ordet .~ 10'%. The total angular momentum of a well-defined conserved quantum number. In this respect, it
the system isL;,;=L.+L,,, whereL, is the mechanical is important to understand why the external noise acting on
angular momentum of the solid matrix bearing the currentthe macroscopic solid matriike, e.g., vibration of the
To conservel,;, oscillations ofL. betweenL.=10'% and  building) does not instantaneously destroy the quantum en-
L.=—10"% must be accompanied by simultaneous tor-tanglement between the angular momentum states of the cur-
sional oscillations of the solid matrix between the states withrent and the angular momentum states of the matrix. We will
the angular momenta,,= —10'% andL,,=10'%, so that discuss this issue in the context of the local versus global
L{ot=0. One can argue that the current loop is always firmlymechanisms of decoherence.
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In the language of a two-state system described by thgionality is m, /e, wherem, ande are bare electron mass and
Hamiltonian= —3A oy + 7 €0, (Whereo, ando, are Pauli  charge. Without loss of generality, one can employ the fol-
matrices, and\ and e determine the tunneling splitting and |owing argument in order to derive the interaction term. Con-

the bias, respectively the mechanism of the decoherencesider the classical density of the kinetic energy of electrons

studied in this paper is due to the coupling of the environ-gn( jons,

ment to o,, which is usually the most important form of

coupling, see, e.g., Ref. 4. While other mechanisms of deco- mevg MiUZ

herence, including both the environmental couplingotp KE=ne——+ni——, (©)

and the pure-phase-noise couplingstpand oy, may be of

interest in the context of practical quantum computing, thevheren,; are concentrations of electrons and iols,is the

purpose of our paper is to emphasize the significance of thienic mass, ands, is the velocity field of electrons in the

specific unavoidable decoherence mechanism mandated kgboratory coordinate frame. Notice now that the electronic

the conservation laws. current is formed by the electron band states in the coordi-
The paper has the following structure. The decoherenceate frame co-moving with the lattice. Consequently,

due to the exchange of the angular momentum with the solid ,

matrix is studied in Sec. Il. The limits in which the dimen- j=eng(ve—u). (4)

sions of the SQUID loop are smaller and greater than th% ina E . f phvsical variablé
wavelength of the emitted phonons;=v¢/f,, are consid- xpressing Eq(3) in terms of physical variablgsandu, one

ered in the Secs. Il A and 11 B, correspondingly. The role ofnds up with the coupling of the formme/e)(j-u). The

the external mechanical noise is discussed in the Sec. ”Cg_tlar.]eraliza_tion of this argument for quantum operators Is
The photon effects are studied in Sec. Ill. The decoherencégv'al' l.t gives the following Hamiltonian of the effective
in the unshielded and shielded SQUID are computed in secdteraction in the laboratory frame:

[IIA and IlI B, respectively. Conclusions that may be useful - _

for building SQUID-based qubits are summarized in Sec. IV. Hintsz d3rj-u. (5)

Il. DECOHERENCE DUE TO PHONONS This formula is a consequence of the translational symmetry
and is, therefore, parameter free. It can be used as long as

Consider quantum oscillations of the currehtn a flat 5 resulits in a small perturbation of one-electron energy
loop of spacial dimensioR at a frequencyf,. The border-  pang.

line between the cases of small and large SQUID studied in
this section is the dimensidR~\. For f of the order of a
few GHz, itisR~1 um. Obviously, both caseR<\¢ and A Small SQUID
R>\ must be of interest for the ongoing experiments on We shall start with the case of a small current loopRof
quantum superposition of SQUID states and in connectior<\s in the X-Y plane. The shape of the loop will be irrel-
with the goal of building a SC qubit. evant. In the context of its magnetoelastic interaction with
Let the magnitude of the dimensionless angular momenthe solid matrix it is equivalent to a magnetic atom of angu-
tum associated with the current heThe magnetic moment lar momentumL, embedded in a solid. We shall denote the

of the current is states withL up andL down by|1) and|]), respectively.
They are the eigenvalues bf;:
M = ugl = Jalc, (1)
LT)=LIT), Ldl)=—L[L). (6)

whereug is the Bohr magneton aralis the area of the loop. ) .
Thus, for a given current and given dimensions of theWith no regard for the conservation of the angular momen-

SQUID the value of the oscillating angular momentum of thetum, the ground state of the system can be approximated by
SC electrons can be found froin=Ja/ugc. For, e.g., a

0.1-um (small) SQUID carrying an electric current of |0>=i(|T>+|l>) @
~0.1-uA, this givesL~10?, while for a 100um (large 2 ’

SQUID carrying an electric current af~10 uA, one ob-

tains L ~ 101 while the first excited state, with the same accuracy, is
The dynamical torsional deformations of the lattice are 1
described by the transversal displacement figldt) satis- 1)= — _ _ ®)
fying 1) ﬁm 1))
V.u=0. (2)  Let the energy separation of these two statesAbefiwg

=hf,. If the energy scale of the experiment does not signifi-
These deformations do not affect the density of the ioniccantly exceed\, then any quantum state of the SQUID is a
lattice and, in the long-wave limit, do not modify electronic superposition )=C4]|0)+C,|1). One of the mechanisms
states. The minimal, allowed by symmetry, coupling of suchof decoherence of this superposition, which exists down to
deformations with the electric currey(tr,t) must be propor-  zero temperature, is the decay|ah onto|0) accompanied
tional to fd®rj - u. Let us show that the coefficient of propor- by the radiation of the quantum of energdy
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As has been discussed in the Introduction, the conservai4) givesI's~1 s 1. Consequently, the above mechanism
tion law requires that the oscillations of the current are acof decoherence should not be of great concern for a small
companied by the torsional oscillations of the solid matrix, SQUID. For a large SQUID the situation will be quite dif-
so that the total angular momentum stays constard., ferent, as is discussed below.
zerg. Such a local wiggling of the matrix must result in the  We should emphasize that E(L4) can be used for the
finite probability of the emission of a transverse phonon ofestimate of the decoherence rate onlyRat A ;=v/f,. In
frequencyf,. Since the wavelength of the phonan, is  experiments of Ref. 5 and Ref. 8 the size the SQUID was
large compared to the dimensions of the SQUID, its effect onarge in comparison witih,. The interaction of such a
the SQUID is equivalent to the uniform local rotation of the SQUID with phonons is nonlocal and cannot be treated by
solid matrix at the position of the SQUIB.In terms of the  the above method. The nonlocal theory of the phonon emis-
deformation fieldu(r,t), the angular velocity of this rotation sjon by a large SQUID is developed in the following section.
is given by

B. Large SQUID

Q= QVXU- 9) For R>\g4, one should employ the general form of the
interaction given by Eq(5). This term results in the coupled
Accordingly, the lattice velocity field at the position of the dynamics of the currents and the lattice displacements. How-
SQUID isu=Qxr. Substituting this into Eq(5), one finds  ever, in reality, the large difference between the ionic and
electron masses makes the renormalization of the SC dynam-
Heps=1hL-Q, (100 ics insignificant. In what follows, we will ignore the effect of
Eqg. (5) on the spatial and temporal structure of the current
and the SQUID fluxP generated by the current. We shall be
Me concerned with the fact that, due to E¢), the currents
ﬁLE?J d3rr X (1) serve as the source of phonons in the elastic equation. In
other words, the solid lattice must take the recoil from the
stands for the angular momentum of the SC current. Thescillating current. This effect is mandated by conservation
effective interaction(10) is mandated by symmetry and is, laws and it leads to the decoherence of the quantum dynam-
therefore, parameter free. Correspondingly, the mechanismas of the flux.

where

of decoherence provided by this effect is universal. Inside a good conductor, either a metal or a supercon-
Based upon Eq(10) the rate of the transition frofl) to  ductor, the longitudinal electric fields are screened with a
|0) is given by typical time scale of the plasma oscillations; 10 ° s. The
. A flux dynamics is much slower. Consequently, the longitudi-
I's=2%(0|L|1)[Jen,(A)](1|L|0O), (12 nal phonons that change the local concentration of ions

should be excluded from our consideration. This can be done
by supplementing Ed5) with condition(2). For the purpose
of estimates we shall adopt the simplest model of uniform
R R and isotropic elastic medium. Then, the energy of the free
Jem(A):w; (k,i|Q]0)(0|Q|k,i)(A—fiwy), (13)  transverse phonon field is

S

whereJ.,,,(A) is the spectral function of the environmental
coupling for phonons,

k, i, and wy; denote the wave vector, polarization, and the Ho= | d3 1 U2+ pu? (15)
. . ph Zp RE
frequency of the phonon, respectively. Further computation

along the lines of Ref. 11 yields where u is the shear modulus of the solid ang= %(aiuj

AL2 A +9;u;) is the strain tensorX;u;; being zero for transverse

rym-= Tom kgcotr{ZK T} phonons. In this model the torsional strains are described by
P B just one elastic modulu;u=pv§. Accordingly, the trans-

} verse sound velocity ¢ is independent of the phonon polar-

(14) ization (which is orthogonal to the phonon wave vegtaie

shall further simplify our consideration by neglecting all dif-
ferences in the actual material composition of the experimen-
tal setup, that is, by assuming that the phonon spectrum is the
same inside and outside the part of the solid matrix that

. . ) carries the SC current. This assumption, while not valid in
(14) is proportional o the fifth power dfp and to the fourth experiment, should not significantly affect our estimate of

Foomzrf?fzhthpz\?\/léfoc;ft:‘heesiggt; [;f Itths tlfn;/ne;\?sgep;%%%gl:ogiktheTﬂicggﬁgi?ccj raLljtaeﬁtization of the phonon field yields
ing it important to use solid matricesubstrates of high q P y
shear modulus. For practical values of the parameteyE: 1 5
<A, R~0.1pum, J~0.1uA, p~5glen’, vs~5 u(r) = — aeik T gl =ik
X10° m/s, andfy~5%x10° s ! (that is, \¢~1 um), Eq. m WV kZ (3 K )8

_omz J%a? }_{
3whe? P

where p is the mass density of the solid matrix akg
=2m/\g is the wave number of the emitted sound.
It is important to notice that the decoherence rate of Eq

2pwy
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—j hogp _ _ Due to the cylindrical symmetry of the currents, the only
(r)= — 2 T‘(akielk-r_alie*'k-f)a_ (16) nonzero component of the vector potentialAs=A ,(r,z).
W Then, inside the ring, Eq20) reduces to

2

5A+>\‘2A ¢ 1 (22)
#z - 2 '

HereIl= pu is the momentum of the phonons that is canoni- P
cally conjugate tal, wyj=vk is the frequency of the pho- -
non of the wave vectok and polarization, andV is the ar
volume of the system. Due to the isotropy for the trans-
verse phononsk(- ¢ =0) does not depend on the polariza-
tion. Substituting Egs(16) into Eq. (15) and Eq.(5), one

19 A
v (™)

while outside the ring one has

. a1 A
obtains == =
ol T ar (rA) pon 0. (23
1
H=Hpnt Him=2 h g aliaki+ > These equations must be accompanied by the boundary con-
kil ditions for A and for non-zero components of the magnetic
i 12 field,
=3 %<—f“‘”k) (&) (@q—ag), @7

W el zp | U GaTad) A LA .

N A (24

wherej, = [d®rj exp(—ikr) is the spatial Fourier component
of the current density(r), and the summation is ovérand In this paper we shall not pursue the exact solution of the
i satisfyingk-e=0. The Fermi golden rule, then, yields the problem for the finite crosssection of the ring carrying the
following expression for the decoherence rate: current. Instead, we will make use of a thin-ring approxima-
tion in which the thickness of the ringb, whereb stands for

the area of the wire crossection, is small compared to its
radiusR as well as ton| . Then, in cylindrical coordinates,

the only nonzero component of the current density is

r 2 mﬁ A t?‘{ A
=— co
PR 262 2kgT

d3k j4(z,r). It equalsJ/b inside the ring and zero outside the
X E f 3 (0| (jk-&)|1)|?8(A — i), ring. At k\b<<1 the Fourier transform of such a distribution
! (27) of the current is
(18 . .
ji=—i2mRJ,(k, R)In,, (25)

where|0) and|1) are given by Eqs(7) and (8). _ _ _ _
We shall now computg,. The SC current can be written wheren, Lk is the unit vector in the plane of the ring,

in terms of the SC phase and the vector potentia, =ksiné, 6 is the angle betweek and theZ axis, and
J1(k, R) stands for the Bessel function of the first order.

c ((DO The quantization procedure consists of assigning the op-

j= A2 EWP—A), (19 eratorJ to the total currend. In the two-level approximation,
AL one introduces the statés) of the current operator such

with ®y=hc/2e and \| being the flux quantum and the that +=J are the respective eigenvaluel:+)=+J|+). In
London penetration length, respectively. The vector potentialerms of the angular momentum operator, these states are
satisfies the Maxwell equation, identical to those in Eq(6), that is |+)=|1) and |—)
=||). Tunneling between these two degenerate states pro-
duces new states, E(f) and Eq.(8), which are split by the
energyA. These states are characterized by the zero current,
(0|3]0)=0 and(1|J|1)=0. The transition matrix element is
(0]3|1)=J. Substituting Eq(25) into Eq. (18) we get

41
VXVXA=TJ, (20

with the current density given by Eq.(19) inside the SC
loop and byj=0 outside the loop.

To simplify calculations we shall adopt the ring geometry 2o 2R
of the SQUID. In the presence of the fldk, the phasep .= mme J°R cotr{ A
winds around the ring byp;=27®/d,, which is the Jo- Ph™ 2 2kgT
sephson phase in the junction cutting the ring. We shall study (26)
the problem in cylindrical coordinateg,(r,¢), with the Z . )
axis passing through the center of the ring perpendicular td N€ limit of ksR<1 corresponds to a small SQUID. tis
its plane,r standing for the radial coordinate, agdbeing ~ ©2SY t0 see thatin this limit,, is proportional tkg and Eq.

the polar angle in the plane of the ring. The solution for the(26) becomes Eq(14). In the limit of a large SQUIDkSR
phase is >1, we find

1
kgf d coshIZ(ksRsinG).
0

2 12
o3 P Mg R, A
QD_Z_Ed)I (21 th—ﬁ TkSCOt KT’ (27)
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Based upon Eq(27), let us make an estimate of the de- For a large SQUID withL~10% and wy~10°s™?, this
coherence rate for, e.g., the experiment of Ref. SKAT  gives Qg<1 s 1. Thus, random movements of the equip-
<A, for R~0.1mm, J~3 uA, p~8glcn?, v~5 ment may give rise to significant limitations on coherence in
X 10° m/s, andfq~2x10° s (that is,A\¢~2.5 um), Eq. this case. For a small SQUID, with small and practical
(27) gives Iy~ 10° s™1. This is a significant decoherence values ofw,, condition(31) can be satisfied by a very large
rate that would limit the quality factor of the corresponding margin.
qubit by the value of about one thousand. The time dependence &1 is another factor. The adia-

baticity implies that
C. Global noise

Twh

Here we will compare the effect of the global noise— A= i
uncontrolled rotations of the solid matrix as a whole at some AL|Qg|

angular velocity€)q(t)—with the above estimates for the Then, the main effect of the time dependence of the global
local effects due to phonons. Ticomponent of the global riytations is generation of additional harmonics in the Rabi

>1. (32

rotation removes the degeneracy _be_tween c_IockW|se ANGscillations between clockwise and counterclockwise SC
counterclockwise current states. This is a particular case g

) . . ==~ currents due to the time dependencesof The correspond-
the Bar.nett effect. A rotating SOI.'d develaps magnet|zat|oning decoherence raté,;, can be estimated from the varia-
pr_opqruonal to the angular_velocny of the rotat|b7n.ln aP-  fion of e.. during one cycle, Z/w, of the undisturbed Rabi
plication to the' SQ.UID’ thls eﬁgct can be .descnbed'by doscillations. The global random rotations occur when the
two-state Hamiltonian written in the rotating coordinate

equipment is subjected to a random external torque. Let this

frame: ;
torque result in an angular acceleratias Q) ¢, so that the
He=—As,—2hLQG(1)s, (289  change of}g during one cycle is5)¢~ a/w,. This gives
wheres, , are spin-1/2 operators. We want to estimate the g~ de, [hi~wol A, (33

effect of the second term in E€R8) on coherent oscillations
of the SC current[Notice that for externally imposed rota-
tions, the sign of this term is opposite to the sign of Ed)
that was written for phonons dynamically produced by
SQUID oscillations in the laboratory franjet is easy to see
that there is no need to quantife;(t) as we did in the
previous sections. Indeed, for a macroscopic solid matrix, th
characteristic correlation time qf)s(t)Q2(0)) cannot be Q=A>wyl o), (34)

less than the time it takes the sound to travel across the

matrix. Consequently, on the time scate 1/f,, random ro-  In principle, at smalkw,, the effect of the mechanical noise
tations of the equipment as a whole are slow enough to pecan overpower the decoherence from local phonon effects,
mit the treatment of Eq28) within the adiabatic approxima- which decrease as some power ®f. However, for any
tion in which Q(t) may be considered as a classical slow-practical values ofvy and « in the coherence experiments,

where A= 7w?/4L|«|. Thus, the quality factor for the above
mechanism i9)=A. It is entirely determined by the adiaba-
ticity of global rotations.

If the typical frequency of the mechanical noiseds,
then a~ w,Q¢. Assuming that the conditiof81) is satis-
ged, this implies

varying variable. the adiabadicity factor is very large, so that the decohering
In the adiabatic approximation the eigenvalues and eigereffect of the external global noise can be safely ignored.
functions of the Hamiltoniari28) are We would also like to make the following interesting ob-
servation. Consider rotatiorf@ = at that last long enough
€.=+JA’+[2aLOG]% to violate condition(31). According to Eq(30), as time goes

from —oo to +o0, the states).. of Eq. (29) switch between
1 |T) and|]). This, however, is true only in the limit dfx|
po=—[C()|T)=C.| )], (299 —0. At finite |«| the answer depends on the adiabaticity
V2 factor A. If at t=—o the SQUID is prepared in, e.g., the
state with the clockwise SC current, then, the probability for
the SQUID to switch to the counterclockwise currenttat
=+ is given by the Landau-Zener formdfa

whereC.. are given by

2/L0¢

C.= \/1i . 30 =1—p A
+ AT A0 (30 P ,=1—e " (35)
] This probability is high if the angular acceleration satisfies
One can see that random rotations of the system as a whole Q= ww§/4L. Consequently, at low tunneling rate the
do not significantly perturb the staté®) and|1) given by
Eq. (7) and Eqg.(8) only if Q¢ satisfies

relatively slow mechanical rotation can provide the quantum-
mechanical switching between clockwise and counterclock-
wise currents. It should be noted, however, that the Landau-
Q< ﬂ. (31) Zener transitions can also be generated by the magnetic field.
2L Thus, the above effects of uniform rotations can only be
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observed if the SQUID is shielded from the magnetic fields For a small SQUID(as defined above in Sec) With R

with an accuracyugH<#Q. ~N\¢~100nm andl~0.1 uA, Eq.(37), atf,~10°s ! and
keT<A, gives negligible decoherencel’,~10 8 s 1.
[1l. DECOHERENCE DUE TO PHOTONS However, for a large SQUID withR~100um and J

o ~3 uA, at f;~10°s™1, and kgT<A, one obtainsl',
The problem of decoherence due to the emission of pho=_ 17 -1 Thus. for a large SQUID, the radiation of photons
tons of frequencyf, is very similar to the problem of the i the open space can easily reduce the quality factor of the
emission of phonons. The main difference is that the vacuungoyip down to one hundred.

wavelength of the lightA|=c/f,, is typically large com-  The decoherence rate can be decreased by choosing a
pared to the size of the SQUID that exhibits quantum OSCIl-doub|e_|oop geometry with equal areas of the single loops

lations of the current. The electromagnetic radiation by suchynq equal currents flowing in the opposite directions, as was
a SQUID into the open space is equivalent to the radiation ofcyally done in Ref. 5. In that case, the total magnetic mo-
a point magnetic dipole. If,_however, the_ SQUID is shieldedyent of the system is zero and the radiation is of the qua-
by a metal placed at a distance that is comparable 10 Qfjrypolar nature. If the magnetic moment is compensated ex-
smaller than\,, the decoherence rate becomes strongly geactly (which must be difficult to achieve in experimgthe
ometry dependent. These two problems are considered in thgqiation rate will be reduced by a factokR)2<1. At a
following two sections. finite compensation;y=AM/M<1, the decoherence rate
(37) acquires a factory?.
A. Decoherence in the open space Here we have neglected the effects of dc and low-
If the wavelength of the emitted photons is large com-frequency adiabatic ac magnetic fieltit). These effects
pared to the SQUID size, then the SQUID can be treated a@'€ equivalent to the effects of global rotations studied in
a point particle with an angular momentumwhich is per- Sec. Il C. To estimate them quantitatively, one should replace
pendicular to the SQUID loop. This angular momentum in-{¢ and a by wy=eH/?2ms. and w,cwy, respectively,

teracts with the photon field via Zeeman Hamiltonian where w, is the typical frequency of the ac field. Then,
conditions(31) and(32) become

Hz=—pslHy, (36)
whereH, is the Z component of the magnetic field of the wn< o (40)
vacuum photons. We are interested in the transition between 2L
the tunnel-splitted quantum states given by Ef.and Eqg. d
(8). The expression for the rate is similar to Efj2), where
the spectral density of the photons can be obtained by either 2
quantizingH(r) or taking (in|2> from the theory of elec- = &>1 (41)
. A 1 1
tromagnetic fluctuation¥" AL wacwy

The Fermi golden rule then yields the following expres-

sion for the decoherence rate: respectively. In a two-loop design, where the magnetic mo-

ment is compensated by a factp=AM/M <1, L in Egs.
} (40) and (41) should be replaced byL.

For, e.g, a small SQUID witth. ~100 and no compensa-
tion, Eq.(40) at wy~ 10'° s~ translates intdd <10 Oe. For
4 a large SQUID withy=10"2, L=10" andw,~10"s™ 1,
= —2J2a2kf‘cotr{m , (37 the fields that do not disturb the stat€$ and|1) should
3hc B satisfyH<10"° Oe. If Eq.(40) is satisfied, then substituting
wherek, = A/fic is the wave vector of the emitted light. It is it into Eg. (41) one obtains the following relation for the
proportional to the third power df, as compared to the fifth quality factor coming from the low-frequency magnetic
power off, in Eq. (14). The reason for the difference is the NOiSe alone:
additional time derivative of the boson field in the Hamil-
tonian of Eqg.(10) as compared to Ed36). Q=A>wo/ 0. (42)
Notice that the identical result fdr, follows from

F(T)=i 2| 2k3cot A
z 3n MBS EC oK

B. Decoherence in the presence of metal shielding

I
I'2(0)=7—, (39 We shall now study the case when the SQUID loop is
0 adjacent to a metal sheet parallel to the plane of the loop.
wherg® Following published experiments, we shall assume that the
distance between the SQUID and the shieldidigis much
4 ., smaller than the wavelength of the vacuum electromagnetic
|:§| | (39) radiation, \,. In that case the radiation becomes strongly

renormalized by the conducting medium and the formulas of
is the intensity of the magnetic dipole radiation due to thethe preceding section can no longer be used. Now the main
classical dynamics of the magnetic moméht gl . source of decoherence is the dissipative current in the metal
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shielding induced by the ac fields of the SQUID. We shallHere we have introduced the length and the area of the cur-
compute theT=0 decoherence rate as rent loop,|=27R and a=wR?, respectively, in order to
emphasize the fact that the above limiting expressions are
correct for flat current loops of arbitrary shape. Numerical
analysis shows that these expressions holdif&<0.3 and

. N . .d/R>5, correspondingly. For the double loop with a com-
whereP is the power absorbed by the shielding. This quas"pensated magnF:atic mgn}:ent due to equal singl;Ie-Ioop currents

classical relatlon_5|mply exte_nds the use Of_ &), W_h'_ch IS flowing in the opposite directions, the decoherence rate prac-
exact, to the arbitrary electric and magnetic permittivities o ically does not change in the limit af<R. In the opposite
the environment. The possibility of using such quasiclassica}\mit of d>R, it reduces by a factorF{/d)é

calculations is a direct consequence of the Bohr correspon- Note that the frequency dependence of the (48 fol-

dence principle: lows from the frequency dependence of the skin depth,

Let H=H,(r)explwyt) be the magnetic field generated . .
ot . o 5 «1/\f,. Then the Maxwell equation giveEs S(aH/dt)
by the oscillating current in the SQUID. Théis given by «\/fo for the electric field in the skin layer and the dissipa-

c P tion rate due to Joule’s power lossesE?5, becomes pro-
P:EV% é ([H,|?)df, (44)  portional to \f,. Divided by f, in Eq. (43), it gives the
1/\/f, dependence of the decoherence rate. If the thickness of
where o is the electric conductivity of the shielding,--)  the metal shieldingD is smaller thans, the electric and
means quantum-mechanical average, and the integratiaonagnetic fields are not significantly modified by the shield-
goes over the metal surface facing the SQUID. Equa#dh  ing, so thatExfyH, with the proportionality factor deter-
can be used when the thickness of the skin lay@&r, mined by the geometry of the SQUID and its distance to the
=c/J2mowy, is small compared to the thickness of the shielding. Thus, in the low-frequency limiD(< §), the dis-
shielding metalD, but large compared to the mean free pathsipation in the shielding®~ ¢E?D is proportional tof3 and
of electrons of the metal,. These conditions were appar- Iy, due to shielding is proportional tf,.
ently fulfilled in the experiment of Ref. 5 for which we esti-  ForJ~3 pA, o=3%x10" emu, f,~2x10° s %, andR
mates~1 um andl,<0.1 um atD~8 um. The condition ~d, Eq.(46) givesT'y,~10° s~ %, which was, probably, the
d<\, allows one to use the quasistationary approximation case in the experiment of Ref. 5. This shows that for a
to obtainH. In this approximation the field is formed by two SQUID carrying a microampere current the above mecha-
current loops, one being the mirror image of the other withnism can provide a very high decoherence rate. Notice that
respect to the surface of the shielding. At the metal surfacel’,, can be drastically reduced by increasing the distahce
z=d, this field has the tangential component ort(r). between the SQUID and the shielding. Indeed, according to
For a thin circular loop carrying the electric curret) Egs. (48), I'yxd™* at R<d<\,. Too larged, however,

P
Tu(0)= 5o 43

=Jexplwgt), it is given by would reduce the effectiveness of the shielding in protecting
the SQUID from external radio signals. Choosing smaller
AIRd (= d¢ cosp SQUID’s operating at smaller currents should be more ben-
¢ fo (d2+ 12+ R?— 2rR cosp)?2’ (45) eficial for qubit designs.
which can be expressed in terms of the elliptic integfals.
Substituting Eq(45) into Eqg. (44), one obtains IV. CONCLUSIONS
2 32 We have studied generic mechanisms of decoherence
I‘M(O)=E—F(R/d), (46) mandated by the conservation laws—emission of phonons
\/U_fo and photons of the oscillation frequené€y. Our practical
where the functiorF is given by conclusions are as follows _
The decoherence due to the above mechanisms scales as
w0 - cospd 2 the second power of the current.
F(g)zgzj dx J’ - | - For small SQUID’s of sizeR<uv./f,, the decoherence
0 0 (1+x°+&°—2x¢écosp) due to the emission of phonons BEA is negligible.
(47) For large SQUID’s of sizeR>v /f,, the emission of

At a nonzero temperaturd],, is expected to acquire the Phonons can significantly limit the quality factor. The corre-
usual thermal factor coth(2kgT). In the two limiting cases ~SPonding decoherence rate scales linearly with the size of the

of small and larged, the geometrical facto7) reduces to SQUID and quadratically on the oscillation frequency.
In the absence of the metal shielding, the emission of

photons is negligible for small SQUID’s but becomes signifi-

F= R,d< R, (48)  cant for large SQUIDs. It scales as the fourth power of the
size of the SQUID and as the third power of the oscillation
342 frequency.
F=— d>R. Decoherence due to the shielding strongly depends on the
32d* geometry of the experimental setup. It may completely de-
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stroy the coherence in large SQUID’s and can be the mai®QUID, making small SQUID’s less susceptible to the noise
mechanism of decoherence in small SQUID’s. The shieldinghan large SQUID’s.

must be provided by a metal sheet of thickness greater than

the skin layer at the oscillation frequendy. To achieve
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