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Decoherence of a superposition of macroscopic current states in a SQUID
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We show that fundamental conservation laws mandate parameter-free mechanisms of decoherence of quan-
tum oscillations of the superconducting current between opposite directions in a superconducting quantum
interference device—emission of phonons and photons at the oscillation frequency. The corresponding rates are
computed and compared with experimental findings. The decohering effects of external mechanical and mag-
netic noises are investigated.
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I. INTRODUCTION

The possibility of macroscopic quantum tunneling of t
magnetic flux in superconducting quantum interference
vices ~SQUID’s! was suggested in a seminal paper of C
deira and Leggett1 and was subsequently demonstrated
experiment.2,3 Following these developments the possibil
of coherent quantum oscillations between macroscopic
states was intensively studied by theorists~see, e.g., Ref. 4
and references therein!. Modern interest to this problem wa
generated by the hope to build a superconducting~SC! qubit.
The goal of preparing quantum superposition of macrosco
flux states in a SQUID had remained elusive, however, u
recent experiments of Friedmanet al.5 and van der Wal
et al.6 In these experiments the tunneling splitting betwe
the states corresponding to symmetric and antisymme
quantum superpositions of clockwise and counterclockw
currents in a SQUID loop has been observed. These exp
ments were followed by similar measurements of m
elaborate designs.7,8

The most important question about the above experim
is the one of the decoherence time.9 Any degree of freedom
that interacts with the coherently oscillating variable can
the source of decoherence. One can divide all such sou
into two groups, avoidable and unavoidable. Examples
avoidable sources are, e.g., nuclear spins and nonthe
noise. In this paper we study generic mechanisms of de
herence which are controlled by the conservation laws.10,11

In application to SQUID’s, such mechanisms are unavo
able as they originate from the fundamental symmetries
free space. To illustrate our point, consider, e.g., experim
of Ref. 5 in which the current,J;3 mA, oscillated due to
quantum tunneling between clockwise and counterclockw
directions. The angular momentum associated with the
rent was of orderLc;1010\. The total angular momentum o
the system isLtot5Lc1Lm , where Lm is the mechanica
angular momentum of the solid matrix bearing the curre
To conserveLtot , oscillations ofLc betweenLc51010\ and
Lc521010\ must be accompanied by simultaneous t
sional oscillations of the solid matrix between the states w
the angular momentaLm521010\ and Lm51010\, so that
Ltot50. One can argue that the current loop is always firm
0163-1829/2003/67~6!/064515~8!/$20.00 67 0645
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attached to a substrate that is firmly attached to another s
etc., so that the angular momentum is transferred to the
nite mass, like the linear momentum in Mo¨ssbauer experi-
ment. If this were true, the SC current would simply boun
elastically between clockwise and counterclockwise dir
tions, making conservation of the total angular moment
irrelevant. It is easy to see, however, that for a current os
lating at a high frequency, e.g.,f 0;10921010 s21, the anal-
ogy with the Mössbauer effect breaks down. Indeed, duri
the period of oscillations, the elastic deformation cann
travel more than a distancevs / f 0 away from the current;vs
being the speed of the transverse sound. For, e.g.,vs;5
3103 m/s and f 0;53109 s21 one obtainsvs / f 0;1 mm.
Thus, the part of the solid involved in the conservation of t
angular momentum is small, not macroscopically large. C
sequently, the torsional oscillations of the part of the so
matrix ‘‘cowiggling’’ with the current must generate phonon
of frequency f 0 in the surrounding matter. As long as th
speed of sound is finite this should result in a decoherenc
quantum oscillations of the current. Similar effect exists d
to the interaction of the magnetic moment of the current w
vacuum photons. The difference from the phonon problem
that at f 0;53109 s21 the wavelength of the light,l l
5c/ f 0, is about five orders of magnitude larger thanls .
Consequently, the vacuum properties of the photons dep
strongly on the geometry of the experiment, in particular,
the metal shielding of the SQUID.

The above picture is quasiclassical. From the quantu
mechanical point of view, the states of the tunneling SC c
rent are not classified by specific values of the angular m
mentum. The interaction of the current with the solid mat
entangles the angular momentum states of the current
the angular momentum states of the matrix. In the absenc
the external noise, the total angular momentum is, of cou
a well-defined conserved quantum number. In this respec
is important to understand why the external noise acting
the macroscopic solid matrix~like, e.g., vibration of the
building! does not instantaneously destroy the quantum
tanglement between the angular momentum states of the
rent and the angular momentum states of the matrix. We
discuss this issue in the context of the local versus glo
mechanisms of decoherence.
©2003 The American Physical Society15-1
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In the language of a two-state system described by
HamiltonianH52 1

2 Dsx1 1
2 esz ~wheresx andsz are Pauli

matrices, andD ande determine the tunneling splitting an
the bias, respectively!, the mechanism of the decoheren
studied in this paper is due to the coupling of the enviro
ment to sz , which is usually the most important form o
coupling, see, e.g., Ref. 4. While other mechanisms of de
herence, including both the environmental coupling tosz
and the pure-phase-noise coupling tosx andsy , may be of
interest in the context of practical quantum computing,
purpose of our paper is to emphasize the significance of
specific unavoidable decoherence mechanism mandate
the conservation laws.

The paper has the following structure. The decohere
due to the exchange of the angular momentum with the s
matrix is studied in Sec. II. The limits in which the dime
sions of the SQUID loop are smaller and greater than
wavelength of the emitted phonons,ls5vs / f 0, are consid-
ered in the Secs. II A and II B, correspondingly. The role
the external mechanical noise is discussed in the Sec.
The photon effects are studied in Sec. III. The decoheren
in the unshielded and shielded SQUID are computed in S
III A and III B, respectively. Conclusions that may be use
for building SQUID-based qubits are summarized in Sec.

II. DECOHERENCE DUE TO PHONONS

Consider quantum oscillations of the currentJ in a flat
loop of spacial dimensionR at a frequencyf 0. The border-
line between the cases of small and large SQUID studie
this section is the dimensionR;ls . For f 0 of the order of a
few GHz, it isR;1 mm. Obviously, both cases,R,ls and
R.ls must be of interest for the ongoing experiments
quantum superposition of SQUID states and in connec
with the goal of building a SC qubit.

Let the magnitude of the dimensionless angular mom
tum associated with the current beL. The magnetic momen
of the current is

M5mBL5Ja/c, ~1!

wheremB is the Bohr magneton anda is the area of the loop
Thus, for a given current and given dimensions of t
SQUID the value of the oscillating angular momentum of t
SC electrons can be found fromL5Ja/mBc. For, e.g., a
0.1-mm ~small! SQUID carrying an electric current ofJ
;0.1-mA, this gives L;102, while for a 100mm ~large!
SQUID carrying an electric current ofJ;10 mA, one ob-
tainsL;1010.

The dynamical torsional deformations of the lattice a
described by the transversal displacement fieldu(r ,t) satis-
fying

“•u50. ~2!

These deformations do not affect the density of the io
lattice and, in the long-wave limit, do not modify electron
states. The minimal, allowed by symmetry, coupling of su
deformations with the electric currentj (r ,t) must be propor-
tional to*d3r j•u̇. Let us show that the coefficient of propo
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tionality is me /e, whereme ande are bare electron mass an
charge. Without loss of generality, one can employ the f
lowing argument in order to derive the interaction term. Co
sider the classical density of the kinetic energy of electro
and ions,

KE5ne

meve
2

2
1ni

M i u̇
2

2
, ~3!

wherene,i are concentrations of electrons and ions,Mi is the
ionic mass, andve is the velocity field of electrons in the
laboratory coordinate frame. Notice now that the electro
current is formed by the electron band states in the coo
nate frame co-moving with the lattice. Consequently,

j5ene~ve2u̇!. ~4!

Expressing Eq.~3! in terms of physical variablesj andu, one
ends up with the coupling of the form (me /e)( j•u̇). The
generalization of this argument for quantum operators
trivial. It gives the following Hamiltonian of the effective
interaction in the laboratory frame:

Hint5
me

e E d3r j•u̇. ~5!

This formula is a consequence of the translational symm
and is, therefore, parameter free. It can be used as lon
Hint results in a small perturbation of one-electron ene
band.

A. Small SQUID

We shall start with the case of a small current loop ofR
,ls in the X-Y plane. The shape of the loop will be irre
evant. In the context of its magnetoelastic interaction w
the solid matrix it is equivalent to a magnetic atom of ang
lar momentumL, embedded in a solid. We shall denote t
states withL up andL down by u↑& and u↓&, respectively.
They are the eigenvalues ofLz :

Lzu↑&5Lu↑&, Lzu↓&52Lu↓&. ~6!

With no regard for the conservation of the angular mom
tum, the ground state of the system can be approximated

u0&5
1

A2
~ u↑&1u↓&), ~7!

while the first excited state, with the same accuracy, is

u1&5
1

A2
~ u↑&2u↓&). ~8!

Let the energy separation of these two states beD5\v0
5h f0. If the energy scale of the experiment does not sign
cantly exceedD, then any quantum state of the SQUID is
superpositionuc&5C1u0&1C2u1&. One of the mechanism
of decoherence of this superposition, which exists down
zero temperature, is the decay ofu1& onto u0& accompanied
by the radiation of the quantum of energyD.
5-2
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DECOHERENCE OF A SUPERPOSITION OF . . . PHYSICAL REVIEW B 67, 064515 ~2003!
As has been discussed in the Introduction, the conse
tion law requires that the oscillations of the current are
companied by the torsional oscillations of the solid matr
so that the total angular momentum stays constant~e.g.,
zero!. Such a local wiggling of the matrix must result in th
finite probability of the emission of a transverse phonon
frequency f 0. Since the wavelength of the phonon,ls , is
large compared to the dimensions of the SQUID, its effect
the SQUID is equivalent to the uniform local rotation of th
solid matrix at the position of the SQUID.11 In terms of the
deformation fieldu(r ,t), the angular velocity of this rotation
is given by

V5
1

2
“3u̇. ~9!

Accordingly, the lattice velocity field at the position of th
SQUID is u̇5V3r . Substituting this into Eq.~5!, one finds

He f f5\L•V, ~10!

where

\L[
me

e E d3r r3 j ~11!

stands for the angular momentum of the SC current. T
effective interaction~10! is mandated by symmetry and i
therefore, parameter free. Correspondingly, the mechan
of decoherence provided by this effect is universal.

Based upon Eq.~10! the rate of the transition fromu1& to
u0& is given by

Gs52\^0uL̂ u1&@Jenv~D!#^1uL̂ u0&, ~12!

whereJenv(D) is the spectral function of the environment
coupling for phonons,

Jenv~D!5p(
k,i

^k,i uV̂u0&^0uV̂uk,i &d~D2\vki !, ~13!

k, i, and vki denote the wave vector, polarization, and t
frequency of the phonon, respectively. Further computa
along the lines of Ref. 11 yields

Gs~T!5
\L2

12pr
ks

5cothF D

2kBTG
5

me
2

3p\e2

J2a2

r
ks

5cothF D

2kBTG , ~14!

where r is the mass density of the solid matrix andks
52p/ls is the wave number of the emitted sound.

It is important to notice that the decoherence rate of
~14! is proportional to the fifth power off 0 and to the fourth
power of the size of the SQUID. It is inversely proportion
to the fifth power of the speed of the transverse sound, m
ing it important to use solid matrices~substrates! of high
shear modulus. For practical values of the parameters:kBT
<D, R;0.1 mm, J;0.1 mA, r;5 g/cm3, vs;5
3103 m/s, and f 0;53109 s21 ~that is, ls;1 mm), Eq.
06451
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~14! gives Gs;1 s21. Consequently, the above mechanis
of decoherence should not be of great concern for a sm
SQUID. For a large SQUID the situation will be quite di
ferent, as is discussed below.

We should emphasize that Eq.~14! can be used for the
estimate of the decoherence rate only atR<ls[vs / f 0. In
experiments of Ref. 5 and Ref. 8 the size the SQUID w
large in comparison withls . The interaction of such a
SQUID with phonons is nonlocal and cannot be treated
the above method. The nonlocal theory of the phonon em
sion by a large SQUID is developed in the following sectio

B. Large SQUID

For R.ls , one should employ the general form of th
interaction given by Eq.~5!. This term results in the couple
dynamics of the currents and the lattice displacements. H
ever, in reality, the large difference between the ionic a
electron masses makes the renormalization of the SC dyn
ics insignificant. In what follows, we will ignore the effect o
Eq. ~5! on the spatial and temporal structure of the curr
and the SQUID fluxF generated by the current. We shall b
concerned with the fact that, due to Eq.~5!, the currents
serve as the source of phonons in the elastic equation
other words, the solid lattice must take the recoil from t
oscillating current. This effect is mandated by conservat
laws and it leads to the decoherence of the quantum dyn
ics of the flux.

Inside a good conductor, either a metal or a superc
ductor, the longitudinal electric fields are screened with
typical time scale of the plasma oscillations,t;10215 s. The
flux dynamics is much slower. Consequently, the longitu
nal phonons that change the local concentration of i
should be excluded from our consideration. This can be d
by supplementing Eq.~5! with condition~2!. For the purpose
of estimates we shall adopt the simplest model of unifo
and isotropic elastic medium. Then, the energy of the f
transverse phonon field is

Hph5E d3r S 1

2
ru̇21mui j

2 D , ~15!

wherem is the shear modulus of the solid andui j 5
1
2 (] iuj

1] jui) is the strain tensor (( iuii being zero for transverse
phonons!. In this model the torsional strains are described
just one elastic modulusm5rvs

2 . Accordingly, the trans-
verse sound velocityvs is independent of the phonon pola
ization ~which is orthogonal to the phonon wave vector!. We
shall further simplify our consideration by neglecting all d
ferences in the actual material composition of the experim
tal setup, that is, by assuming that the phonon spectrum is
same inside and outside the part of the solid matrix t
carries the SC current. This assumption, while not valid
experiment, should not significantly affect our estimate
the decoherence rate.

The canonical quantization of the phonon field yields

u~r !5
1

AV
(
k,i
A \

2rvki
~akie

ik•r1aki
† e2 ik•r !ei ,
5-3
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P~r !5
2 i

AV
(
k,i
A\vkir

2
~akie

ik•r2aki
† e2 ik•r !ei . ~16!

HereP5ru̇ is the momentum of the phonons that is cano
cally conjugate tou, vki5vsk is the frequency of the pho
non of the wave vectork and polarizationi, and V is the
volume of the system. Due to the isotropy,vki for the trans-
verse phonons (k•ei50) does not depend on the polariz
tion. Substituting Eqs.~16! into Eq. ~15! and Eq.~5!, one
obtains

H5Hph1Hint5(
k,i

\vki S aki
† aki1

1

2D
1

i

AV
(
k,i

me

e S \v ik

2r D 1/2

~ j k•ei !~aki2aki
† !, ~17!

wherej k5*d3r j exp(2ikr ) is the spatial Fourier componen
of the current densityj (r ), and the summation is overk and
i satisfyingk•ei50. The Fermi golden rule, then, yields th
following expression for the decoherence rate:

Gph5
2p

\

me
2

2e2r
D cothF D

2kBTG
3(

i
E d3k

~2p!3
u^0u~ j k•ei !u1&u2d~D2\v ik!,

~18!

whereu0& and u1& are given by Eqs.~7! and ~8!.
We shall now computej k . The SC current can be writte

in terms of the SC phasew and the vector potentialA,

j5
c

4plL
2 S F0

2p
“w2AD , ~19!

with F05hc/2e and lL being the flux quantum and th
London penetration length, respectively. The vector poten
satisfies the Maxwell equation,

“3“3A5
4p

c
j , ~20!

with the current densityj given by Eq.~19! inside the SC
loop and byj50 outside the loop.

To simplify calculations we shall adopt the ring geome
of the SQUID. In the presence of the fluxF, the phasew
winds around the ring bywJ52pF/F0, which is the Jo-
sephson phase in the junction cutting the ring. We shall st
the problem in cylindrical coordinates (z, r,f), with the Z
axis passing through the center of the ring perpendicula
its plane,r standing for the radial coordinate, andf being
the polar angle in the plane of the ring. The solution for t
phase is

w5
wJf

2p
5

F

F0
f. ~21!
06451
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Due to the cylindrical symmetry of the currents, the on
nonzero component of the vector potential isA[Af(r ,z).
Then, inside the ring, Eq.~20! reduces to

2
]

]r F1

r

]

]r
~rA !G2

]2A

]2z
1lL

22A5
F

2plL
2

1

r
, ~22!

while outside the ring one has

2
]

]r F1

r

]

]r
~rA !G2

]2A

]2z
50. ~23!

These equations must be accompanied by the boundary
ditions for A and for non-zero components of the magne
field,

Hr52
]A

]z
, Hz5

1

r

]~rA !

]r
. ~24!

In this paper we shall not pursue the exact solution of
problem for the finite crosssection of the ring carrying t
current. Instead, we will make use of a thin-ring approxim
tion in which the thickness of the ringAb, whereb stands for
the area of the wire crossection, is small compared to
radiusR as well as tolL . Then, in cylindrical coordinates
the only nonzero component of the current density
j f(z,r ). It equalsJ/b inside the ring and zero outside th
ring. At kAb!1 the Fourier transform of such a distributio
of the current is

j k52 i2pRJ1~k'R!Jnk , ~25!

wherenk'k is the unit vector in the plane of the ring,k'

5k sinu, u is the angle betweenk and theZ axis, and
J1(k'R) stands for the Bessel function of the first order.

The quantization procedure consists of assigning the
eratorĴ to the total currentJ. In the two-level approximation
one introduces the statesu6& of the current operator suc
that 6J are the respective eigenvalues:Ĵu6&56Ju6&. In
terms of the angular momentum operator, these states
identical to those in Eq.~6!, that is u1&[u↑& and u2&
[u↓&. Tunneling between these two degenerate states
duces new states, Eq.~7! and Eq.~8!, which are split by the
energyD. These states are characterized by the zero curr

^0uĴu0&50 and^1uĴu1&50. The transition matrix element i

^0uĴu1&5J. Substituting Eq.~25! into Eq. ~18! we get

Gph5
2pme

2

\e2

J2R2

r
cothF D

2kBTGks
3E

0

1

d cosuJ1
2~ksR sinu!.

~26!

The limit of ksR!1 corresponds to a small SQUID. It i
easy to see that in this limitGph is proportional toks

5 and Eq.
~26! becomes Eq.~14!. In the limit of a large SQUID,ksR
@1, we find

Gph5
pme

2

\e2

J2R

r
ks

2cothF D

2kBTG . ~27!
5-4
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DECOHERENCE OF A SUPERPOSITION OF . . . PHYSICAL REVIEW B 67, 064515 ~2003!
Based upon Eq.~27!, let us make an estimate of the d
coherence rate for, e.g., the experiment of Ref. 5. AtkBT
<D, for R;0.1 mm, J;3 mA, r;8 g/cm3, vs;5
3103 m/s, andf 0;23109 s21 ~that is, ls;2.5 mm), Eq.
~27! gives Gph;106 s21. This is a significant decoherenc
rate that would limit the quality factor of the correspondi
qubit by the value of about one thousand.

C. Global noise

Here we will compare the effect of the global noise
uncontrolled rotations of the solid matrix as a whole at so
angular velocityVG(t)—with the above estimates for th
local effects due to phonons. TheZ component of the globa
rotation removes the degeneracy between clockwise
counterclockwise current states. This is a particular cas
the Barnett effect: A rotating solid develops magnetizat
proportional to the angular velocity of the rotation.12 In ap-
plication to the SQUID, this effect can be described by
two-state Hamiltonian written in the rotating coordina
frame:

HG52Dsx22\LVG~ t !sz , ~28!

wheresx,z are spin-1/2 operators. We want to estimate
effect of the second term in Eq.~28! on coherent oscillations
of the SC current.@Notice that for externally imposed rota
tions, the sign of this term is opposite to the sign of Eq.~10!
that was written for phonons dynamically produced
SQUID oscillations in the laboratory frame.# It is easy to see
that there is no need to quantizeVG(t) as we did in the
previous sections. Indeed, for a macroscopic solid matrix,
characteristic correlation time of^VG(t)VG(0)& cannot be
less than the time it takes the sound to travel across
matrix. Consequently, on the time scalet;1/f 0, random ro-
tations of the equipment as a whole are slow enough to
mit the treatment of Eq.~28! within the adiabatic approxima
tion in which VG(t) may be considered as a classical slo
varying variable.

In the adiabatic approximation the eigenvalues and eig
functions of the Hamiltonian~28! are

e656AD21@2\LVG#2,

c65
1

A2
@C7~ t !u↑&6C6u↓&], ~29!

whereC6 are given by

C65A16
2\LVG

AD21@2\LVG#2
. ~30!

One can see that random rotations of the system as a w
do not significantly perturb the statesu0& and u1& given by
Eq. ~7! and Eq.~8! only if VG satisfies

VG!
v0

2L
. ~31!
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For a large SQUID withL;1010 and v0;1010 s21, this
gives VG!1 s21. Thus, random movements of the equi
ment may give rise to significant limitations on coherence
this case. For a small SQUID, with smallL and practical
values ofv0, condition~31! can be satisfied by a very larg
margin.

The time dependence ofVG is another factor. The adia
baticity implies that

A[
pv0

2

4LuV̇Gu
@1. ~32!

Then, the main effect of the time dependence of the glo
rotations is generation of additional harmonics in the R
oscillations between clockwise and counterclockwise
currents due to the time dependence ofe6 . The correspond-
ing decoherence rate,GG , can be estimated from the varia
tion of e6 during one cycle, 2p/v0, of the undisturbed Rab
oscillations. The global random rotations occur when
equipment is subjected to a random external torque. Let
torque result in an angular accelerationa5V̇G , so that the
change ofVG during one cycle isdVG;a/v0. This gives

GG;de1 /\;v0 /A, ~33!

whereA5pv0
2/4Luau. Thus, the quality factor for the abov

mechanism isQ5A. It is entirely determined by the adiaba
ticity of global rotations.

If the typical frequency of the mechanical noise isvn ,
then a;vnVG . Assuming that the condition~31! is satis-
fied, this implies

Q5A@v0 /vn . ~34!

In principle, at smallv0, the effect of the mechanical nois
can overpower the decoherence from local phonon effe
which decrease as some power ofv0. However, for any
practical values ofv0 and a in the coherence experiment
the adiabadicity factorA is very large, so that the decoherin
effect of the external global noise can be safely ignored.

We would also like to make the following interesting o
servation. Consider rotationsVG5at that last long enough
to violate condition~31!. According to Eq.~30!, as time goes
from 2` to 1`, the statesc6 of Eq. ~29! switch between
u↑& and u↓&. This, however, is true only in the limit ofuau
→0. At finite uau the answer depends on the adiabatic
factor A. If at t52` the SQUID is prepared in, e.g., th
state with the clockwise SC current, then, the probability
the SQUID to switch to the counterclockwise current at
51` is given by the Landau-Zener formula13

PLZ512e2A. ~35!

This probability is high if the angular acceleration satisfi
a<ac5pv0

2/4L. Consequently, at low tunneling rate th
relatively slow mechanical rotation can provide the quantu
mechanical switching between clockwise and counterclo
wise currents. It should be noted, however, that the Land
Zener transitions can also be generated by the magnetic fi
Thus, the above effects of uniform rotations can only
5-5
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observed if the SQUID is shielded from the magnetic fie
with an accuracymBH,\VG .

III. DECOHERENCE DUE TO PHOTONS

The problem of decoherence due to the emission of p
tons of frequencyf 0 is very similar to the problem of the
emission of phonons. The main difference is that the vacu
wavelength of the light,l l5c/ f 0, is typically large com-
pared to the size of the SQUID that exhibits quantum os
lations of the current. The electromagnetic radiation by s
a SQUID into the open space is equivalent to the radiation
a point magnetic dipole. If, however, the SQUID is shield
by a metal placed at a distance that is comparable to
smaller thanl l , the decoherence rate becomes strongly
ometry dependent. These two problems are considered in
following two sections.

A. Decoherence in the open space

If the wavelength of the emitted photons is large co
pared to the SQUID size, then the SQUID can be treated
a point particle with an angular momentumL which is per-
pendicular to the SQUID loop. This angular momentum
teracts with the photon field via Zeeman Hamiltonian

HZ52mBLzHz , ~36!

whereHz is the Z component of the magnetic field of th
vacuum photons. We are interested in the transition betw
the tunnel-splitted quantum states given by Eq.~7! and Eq.
~8!. The expression for the rate is similar to Eq.~12!, where
the spectral density of the photons can be obtained by e
quantizingH(r ) or taking ^uHvu2& from the theory of elec-
tromagnetic fluctuations.14,15

The Fermi golden rule then yields the following expre
sion for the decoherence rate:

GZ~T!5
4

3\
mB

2L2kl
3cothF D

2kBTG
5

4

3\c2
J2a2kl

3cothF D

2kBTG , ~37!

wherekl5D/\c is the wave vector of the emitted light. It i
proportional to the third power off 0 as compared to the fifth
power of f 0 in Eq. ~14!. The reason for the difference is th
additional time derivative of the boson field in the Ham
tonian of Eq.~10! as compared to Eq.~36!.

Notice that the identical result forGZ follows from

GZ~0!5
I

\v0
, ~38!

where16

I 5
4

3c3
uM̈ u2 ~39!

is the intensity of the magnetic dipole radiation due to
classical dynamics of the magnetic momentM5mBL .
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For a small SQUID~as defined above in Sec. II! with R
;ls;100nm andJ;0.1 mA, Eq. ~37!, at f 0;1010 s21 and
kBT<D, gives negligible decoherence,GZ;1028 s21.
However, for a large SQUID withR;100 mm and J
;3 mA, at f 0;1010 s21, and kBT!D, one obtainsGZ
;107 s21. Thus, for a large SQUID, the radiation of photon
into the open space can easily reduce the quality factor of
SQUID down to one hundred.

The decoherence rate can be decreased by choosi
double-loop geometry with equal areas of the single loo
and equal currents flowing in the opposite directions, as w
actually done in Ref. 5. In that case, the total magnetic m
ment of the system is zero and the radiation is of the q
drupolar nature. If the magnetic moment is compensated
actly ~which must be difficult to achieve in experiment! the
radiation rate will be reduced by a factor (kR)2!1. At a
finite compensation,g5DM /M,1, the decoherence rat
~37! acquires a factorg2.

Here we have neglected the effects of dc and lo
frequency adiabatic ac magnetic fieldsH(t). These effects
are equivalent to the effects of global rotations studied
Sec. II C. To estimate them quantitatively, one should repl
VG and a by vH5eH/2mec and vacvH , respectively,
where vac is the typical frequency of the ac field. The
conditions~31! and ~32! become

vH!
v0

2L
~40!

and

A[
pv0

2

4LvacvH
@1, ~41!

respectively. In a two-loop design, where the magnetic m
ment is compensated by a factorg5DM /M,1, L in Eqs.
~40! and ~41! should be replaced bygL.

For, e.g, a small SQUID withL;100 and no compensa
tion, Eq.~40! at v0;1010 s21 translates intoH!10 Oe. For
a large SQUID withg51022, L51010, andv0;1010 s21,
the fields that do not disturb the statesu0& and u1& should
satisfyH!1025 Oe. If Eq.~40! is satisfied, then substituting
it into Eq. ~41! one obtains the following relation for th
quality factor coming from the low-frequency magnet
noise alone:

Q5A@v0 /vac . ~42!

B. Decoherence in the presence of metal shielding

We shall now study the case when the SQUID loop
adjacent to a metal sheet parallel to the plane of the lo
Following published experiments, we shall assume that
distance between the SQUID and the shielding,d, is much
smaller than the wavelength of the vacuum electromagn
radiation, l l . In that case the radiation becomes strong
renormalized by the conducting medium and the formulas
the preceding section can no longer be used. Now the m
source of decoherence is the dissipative current in the m
5-6



a

s

o
ic
o

d

ti

,
e
th

r-
i-

n
o
it
c

e

cur-

are
al

-
ents
rac-

,

a-

s of

ld-
-
the

a
ha-
that
e

to

ing
ler
en-

nce
ons

es as

e-
f the

of
ifi-
the
on

the
de-

DECOHERENCE OF A SUPERPOSITION OF . . . PHYSICAL REVIEW B 67, 064515 ~2003!
shielding induced by the ac fields of the SQUID. We sh
compute theT50 decoherence rate as

GM~0!5
P

\v0
, ~43!

whereP is the power absorbed by the shielding. This qua
classical relation simply extends the use of Eq.~38!, which is
exact, to the arbitrary electric and magnetic permittivities
the environment. The possibility of using such quasiclass
calculations is a direct consequence of the Bohr corresp
dence principle.16

Let H5Hv(r )exp(iv0t) be the magnetic field generate
by the oscillating current in the SQUID. ThenP is given by15

P5
c

16p
A v0

2ps R ^uHvu2&d f , ~44!

wheres is the electric conductivity of the shielding,^¯&
means quantum-mechanical average, and the integra
goes over the metal surface facing the SQUID. Equation~44!
can be used when the thickness of the skin layerd
5c/A2psv0, is small compared to the thickness of th
shielding metal,D, but large compared to the mean free pa
of electrons of the metal,l 0. These conditions were appa
ently fulfilled in the experiment of Ref. 5 for which we est
mated;1 mm andl 0,0.1 mm at D;8 mm. The condition
d!l l allows one to use the quasistationary approximatio15

to obtainH. In this approximation the field is formed by tw
current loops, one being the mirror image of the other w
respect to the surface of the shielding. At the metal surfa
z5d, this field has the tangential component only,Hr(r ).
For a thin circular loop carrying the electric currentJ(t)
5J exp(iv0t), it is given by

Hr5
4JRd

c E
0

p df cosf

~d21r 21R222rR cosf!3/2
, ~45!

which can be expressed in terms of the elliptic integrals.15

Substituting Eq.~45! into Eq. ~44!, one obtains

GM~0!5
2

hc

J2

As f 0

F~R/d!, ~46!

where the functionF is given by

F~j!5j2E
0

`

dx xF E
0

p cosfdf

~11x21j222xjcosf!3/2G 2

.

~47!

At a nonzero temperature,GM is expected to acquire th
usual thermal factor coth(D/2kBT). In the two limiting cases
of small and larged, the geometrical factor~47! reduces to

F5
l

4d
,d!R, ~48!

F5
3a2

32d4
,d@R.
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Here we have introduced the length and the area of the
rent loop, l 52pR and a5pR2, respectively, in order to
emphasize the fact that the above limiting expressions
correct for flat current loops of arbitrary shape. Numeric
analysis shows that these expressions hold ford/R<0.3 and
d/R.5, correspondingly. For the double loop with a com
pensated magnetic moment due to equal single-loop curr
flowing in the opposite directions, the decoherence rate p
tically does not change in the limit ofd!R. In the opposite
limit of d@R, it reduces by a factor (R/d)2.

Note that the frequency dependence of the rate~46! fol-
lows from the frequency dependence of the skin depthd
}1/Af 0. Then the Maxwell equation givesE}d(]H/]t)
}Af 0 for the electric field in the skin layer and the dissip
tion rate due to Joule’s power losses,sE2d, becomes pro-
portional to Af 0. Divided by f 0 in Eq. ~43!, it gives the
1/Af 0 dependence of the decoherence rate. If the thicknes
the metal shieldingD is smaller thand, the electric and
magnetic fields are not significantly modified by the shie
ing, so thatE} f 0H, with the proportionality factor deter
mined by the geometry of the SQUID and its distance to
shielding. Thus, in the low-frequency limit (D,d), the dis-
sipation in the shieldingP;sE2D is proportional tof 0

2 and
GM due to shielding is proportional tof 0.

For J;3 mA, s5331017 emu, f 0;23109 s21, andR
;d, Eq. ~46! givesGM;109 s21, which was, probably, the
case in the experiment of Ref. 5. This shows that for
SQUID carrying a microampere current the above mec
nism can provide a very high decoherence rate. Notice
GM can be drastically reduced by increasing the distancd
between the SQUID and the shielding. Indeed, according
Eqs. ~48!, GM}d24 at R!d!l l . Too large d, however,
would reduce the effectiveness of the shielding in protect
the SQUID from external radio signals. Choosing smal
SQUID’s operating at smaller currents should be more b
eficial for qubit designs.

IV. CONCLUSIONS

We have studied generic mechanisms of decohere
mandated by the conservation laws–emission of phon
and photons of the oscillation frequencyf 0. Our practical
conclusions are as follows

The decoherence due to the above mechanisms scal
the second power of the current.

For small SQUID’s of sizeR,vs / f 0, the decoherence
due to the emission of phonons atT<D is negligible.

For large SQUID’s of sizeR@vs / f 0, the emission of
phonons can significantly limit the quality factor. The corr
sponding decoherence rate scales linearly with the size o
SQUID and quadratically on the oscillation frequency.

In the absence of the metal shielding, the emission
photons is negligible for small SQUID’s but becomes sign
cant for large SQUIDs. It scales as the fourth power of
size of the SQUID and as the third power of the oscillati
frequency.

Decoherence due to the shielding strongly depends on
geometry of the experimental setup. It may completely
5-7
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stroy the coherence in large SQUID’s and can be the m
mechanism of decoherence in small SQUID’s. The shield
must be provided by a metal sheet of thickness greater
the skin layer at the oscillation frequencyf 0. To achieve
small decoherence, the distance to the shielding, while s
in comparison withc/ f 0, should be considerably greater tha
the loop size.

The effects of the external mechanical and magn
noises are proportional to the total magnetic moment of
ar

rg

n

n
ci

a
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SQUID, making small SQUID’s less susceptible to the no
than large SQUID’s.
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