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Plastic depinning in artificial vortex channels: Competition between bulk and boundary nucleation
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We study the depinning transition of a driven-chain-like system in the presence of frustration and quenched
disorder. The analysis is motivated by recent transport experiments on artificial vortex-flow channels in super-
conducting thin films. We start with a London description of the vortices and then map the problem onto a
generalized Frenkel-Kontorova model and its continuous equivalent, the sine-Gordon model. In the absence of
disorder, frustration reduces the depinning threshold in the commensurate phase, which nearly vanishes in the
incommensurate regime. Depinning of the driven frustrated chain occurs via unstable configurations that are
localized at the boundaries of the sample and evolve into topological defects which move freely through the
entire sample. In the presence of disorder, topological defects can also be generated in the bulk. Further,
disorder leads to pinning of topological defects. We find that weak disorder effectively reduces the depinning
threshold in the commensurate phase, but increases the threshold in the incommensurate phase.
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[. INTRODUCTION tal observations that have been attributed to plastic flow are
the peak effect*® unsual broadband noigéand steps in
The depinning transition in driven systems has attracted ¢he |-V curvel’
great deal of attention recently. The phenomenon can be ob- In order to study the plastic depinning of vortices, artifi-
served in charge-density-wave systems submitted to an elecial easy-flow channels have been manufactdféd.The
tric field,! in magnetic bubbles moving under an appliedsamples are typically made of type-ll superconducting thin
magnetic field gradierft,in current-driven Josephson junc- films, which consist of a fairly strong pinning layer on top of
tion arrays>* and in the two-dimensional electron gas in aa weakly pinning base layer. The artificial vortex-flow chan-
magnetic field, which at low densities forms a Wigner crys-nels are fabricated by etching away stripes of the stronger
tal, but can move under an applied voltagBepinning is  pinning top layer. In the Shubnikov phase, vortices penetrate
also important to understand tribology and solid frictfon, the sample. Applying a current perpendicular to the channel
surface growth of crystals with quenched bulk or substratelirection, the resulting Lorentz force in the direction of the
disorder, and the dynamics of domain walls in incommensuehannel drives the vortices. Since the influence of pointlike
rate solids. A very prominent example of driven systems material defects in the weak pinning channel is negligible,
displaying a depinning transition are vortices in type-ll channel vortices are mainly pinned indirectly via the interac-
superconductord. tion with the stronger pinned vortices in the channel environ-
The H-T phase diagram of type-ll superconductors dis-ment. Above a threshold force, plastic depinning of the vor-
plays regions of both elastic and plastic fldWThe interplay  tices inside the channel takes place. In contrast to natural
between the elasticity of the vortex lattice and the impuritieschannels, the depinning threshold force displays interesting
present in the substrate leads to a rich phenomenology witbscillations when the externally applied magnetic field is var-
many static and dynamic phases. A crucial question in botled. The position of the threshold force maxima hint at com-
the dynamics and statics is whether—in addition to thermamensurability effects between the vortex lattice in the envi-
fluctuations—quenched disorder produces topological deronment and in the chann®. The magnitude of the
fects in the periodic structure. Whereas in the absence afepinning force minima and maxima indicates that lattice
topological defects it is sufficient to consider only elasticdistortions produced by quenched disorder in the pinned
deformations with depinning causing elastic flow, the dy-channel environment is relevant in these samfles.
namics will be governed by plastic flow, if topological de-  The present system has similarities with other artificially
fects exist. One expects plastic motion to become importargtructured superconductors. Pronounced commensurability
for either strong disorder, high temperature, or near the deeffects were found in films with periodic arrays of antiddts
pinning transition in low dimensions. In these cases, depiner magnetic dots for flux densities equal to integer values
ning is observed to occur through “plastic channels” be-of the density of dots. In these systems, vortices or vortex
tween pinned regions. This type of plastic flow has beerchains at interstitial positions of the periodic arrdf@ ex-
found in numerical simulations of a two-dimensional thin- ample, at the so-called second matching field of a square
film geometry!®'2 Above the threshold, the filamentary pinning array interact with the neighboring pinned vortices
channels become both denser and broader when the drivirapd exhibit quasi-one-dimensional motion in presence of an
force is increased. Measurements of the differential resisapplied current* Numerical studieS have also provided
tance of MoGe films display abrupt steps, which could beevidence for such flow mechanisms. Besides artificial struc-
interpreted in terms of plastic depinnifigOther experimen- tures, there exist also natural systems in which vortex chan-
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neling can occur. Among the most prominent examples are
“shear” depinning of vortices in grain boundaries in |oWy-
material® or motion of mixed Abrikosov-Josephson vorti-
ces in grain boundaries in high: superconductors. The lat-
ter situation was studied in detail by Gurevith.

In this work, we present theoretical studies of the depin-
ning and dynamical behavior of vortices in artificial easy- J
flow channels. Frustration and disorder are essential ingredi- - 0~ Nb,Ge
ents for determining the depinning transition in this driven

system. Motivated by recent experiments on vortex-flow [iG. 1. Schematic plot of the artificial flow channel geometry.
channels, we develop a model which takes into account inthe channels are manufactured by etching away the strongly pin-
homogeneities, such as the sample boundaries and disordgiig top layer materialgray areiin stripes of widthw. Applying a
We find that depinning occurs due to boundary or bulk nuclemagnetic fieldH generates vortices. In the strong pinning area the
ation, respectively, in the absence or presence of disordevortices are static. Vortices in the weakly pinning channel are
Further, we clarify the role of disorder and frustration andmainly pinned due to the interaction with the strongly pinned ones
compare our results to the available experimental data. in the channel edgegray area In presence of a current density
First, we study this problem considering a perfectly or-a Lorentz forcef, acts on the vortices. At the depinning transition
dered vortex lattice in the environment. Starting from a Lon-the channel vortices start to flow whereas the strongly pinned vor-
don description of vortices inside and outside the channetlices in the channel environment remain static.
we derive the coefficients of a generalized Frenkel-
Kontorova modef® The force-velocity curve of this simple film (weak pinning and then etching away a few hundred
model displays a drastic decrease of the threshold pinninghannels of widthw from the top layer. In the strongly
force when topological defects enter the system via the syssinned region, the vortex-lattice spacing isa,
tem boundaries. However, the experimental data show & (4/3)Y4®,/B)*? such thatagby=®,/B, with &, the
smooth variation of the pinning force as a function of theflux quantum anmoz(ﬁ/z)ao; see Fig. 23). In order to
magnetic field. The behavior suggests that disorder in théneasure the effect of a single vortex row in the channel, the
channel edges may lead to smoothening of the transitioghannel widthw is chosen to be of the order af,. There-
from the topologically ordered to the defective state. In ordefore, the vortex-lattice spacing in the channel &
to investigate the transition in presence of disorder, we take- ®,/wB. Depending on the mismatch parametgr
into account that the vortex lattice in the channel environ—:(a/ao)_1:(b0/w)_1, a commensurate-incommen-
ment is distorted due to impurities in the superconductingsyrate transition can be observed. In the experiments de-
substrate. To determine the characteristic current-voltage Qfcriped herea,~w~100 nm and the distance between the
force-yelocity curves, the problem is most cpnveni_ently tac_k'channels is 1Qum. Due to the material steps at the channel
led with numerical molecular dynamics simulations. Thiseqges, screening currents flow along the surface which inter-
method enables us also to nicely visualize how depinningct with the vortices in the channels. As a consequence, we
occurs in the topologically ordered and defective regimes. Itan expect the first rows of strongly pinned vortices near the
turns out that systems that are topologically ordered in th@hannel edges to be lined up fairly straight along the channel.
static phase depin at the boundary or by generating mobilg¢herefore, we can assume that the transversal shifts are neg-
defect droplets at weak spots in the random channel potefgiple. On the other hand, longitudinal displacements may
tial. In the defective static phase, the preexisting topologicabccur due to the presence of impurities in the superconduct-
defects are pinned by the random potential. Then, the depir]ﬁg material[see Fig. 2)]. Here we will concentrate on the

ning transition occurs via a release of these defects at thl%ngitudinal dynamics of the vortices within the channel.
threshold.

The paper is organized as follows: In Sec. Il, we discuss
the experiments that motivated the theoretical studies; in Sec
Il we introduce the model and present the results concerning® ¢ ¢ © ¢ ¢ © @ ® © ® 0600000 &
. . " . . . ~ 0 O O O 0O O O o ® ® € 000 O8O e @
the depinning transition. Finally, the discussion and conclu-5 6 6 6 0 o o o B (8 D T T
sions are presented in Sec. IV.
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Il. EXPERIMENTAL MOTIVATION SR il sk Galu
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Let us start with a short overview of the experimental @22 ererererernty RS
state of the art. In order to obtain a more detailed understand a
H H H H H H 0 Rmn+dmn le’l
ing of the depinning process in disordered superconducting : : :
films, esxgerlmentallsts fabrlqated artl_f|C|a_I vortex FIG. 2. (a) Easy flow channel environmefghadedl in the ab-
.Cha'fme|51- = A sketch of a typical device is presented sence of disorder. Vortex positions in the environment are marked
in Fig. 1. by open circles(b) Immobile vortices(dotg in the environment in

The devices are manufactured by first absorbing a thinhe presence of weak disorder and one row of mobile vortices in the
layer of NbN (strong pinning materialon top of a NRGe  flow channel.
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=UgK(r/\), whereU,=d31/(87°\?). Here\ is the pen-

o etration depth®,=hc/2e the flux quantum, and>N\ the
§ sample thickness. Then the potential eneg¢r) that is felt
c by a test vortex at position= (X,y) interacting with a row of
- vortices placed abbye, is
.’ . . .
0.0 0.5 1.0 1.5 E°(r)= U(r—R , 1
B(T) A(N=2 U(r=Rn,) @)

FIG. 3. The experimentally obtained critical shear force densityVhere we introduced the lattice vector®y,=([m
F. vs magnetic field for a channel sample witv=~290 nm ata T N/2]ag,nby) of a hexagonal lattice. Fourier transforming
temperaturel = 1.7 K (Ref. 29. and using the Poisson sum rule the latter can be recast into

In the channel, pinning due to impurities is very weak. Eor)=> cos{qv(x—naO/Z)]fwdk Tely-nbo) (2)
Below the depinning threshold, vortices in the channel are n ” 2mag Y

localized due to the interaction with the vortices in the static ~

environment. In the presence of a current derjsigyLorentz ~ Whereq, = 2mv/a, with integerr andU is the Fourier trans-
force f_ acts on the vortices. As long as the vortices areform of the potential, which is given by

pinned, the supercurrent is flowing dissipationless through
the sample. At a threshold fordég the channel vortices depin
and start to move. The vortex motion causes dissipation of
energy, and a voltage drop occurs across the sample bound- ) )
aries. Hence, a well-defined critical current dengitgan be ~ Performing the integral ovek, leads to

determined by measuring the current-voltage characteristics

of the sample. Figure 3 shows shear force density data de- ES(r)=>, B,(ly—nby|)cogq,(x—nay/2)], %)
duced from current-voltage measuremétitshe oscillations v

277U0

—_—. 3
kN ©

U(q, k)=

in the shear force densifys as a function oB are related to

the (in)commensurability of the vortex-lattichk, with the where

channel widthw. Naively, we would expect the maxima of Y

F to occur at integer values of the ratw/b,, where the B,(y)= —(/’ e 0y (5
vortex-lattice spacing inside the channel is commensurate aoq,

with the width of the channek should then be reduced for andq’= W

nonintegerw/by. This could qualitatively be explained by - .
the development of misfit dislocations along the channel We construct an easy-flow channel by building a two di-

edges®9 Although this intuitive picture holds for the case mensional vortex lattice, but leaving a region of widih
of weak (or zerg disorder, these features change drasticall;ﬁlong thex axis empty[see Fig. £a)]. .
in the limit of a strongly disordered environment. Indeed, as If_ we consider a hexago_nal vortex Iattl_ce in the channel
explained in Refs. 21 and 29, in the latter limit, the trans_enwronment, the potential in the channel is
verse degrees of freedom of vortices in the channel become %
important and the minima, not the maxima,Faf correspond Eoo(r)= > [EAr—b/2)+E° (r+b/2)], (6)
to an integer number of vortex rows in the channel. In this n=1
paper, however, we restrict ourselves to the limit of Weaklywherebz(w—b )e,. Summing over the vortex rows one
disordered environment and investigate the competition bes 0)&- g
. oo - finds
tween boundary and bulk nucleation for activating the depin-
ning process of a single vortex chain.
Eoc1)=2 A,(Y)cog0,X), )
lll. MODEL FOR ARTIFICIAL VORTEX CHANNELS !

Starting from a London description of vortices in a type-II and the Fourier coefficients, (y) read

superconductor, we now derive a simplified one-dimensional w—by
(1D) model for vortices in an artificial easy-flow channel. 2 cosliq.y)B, T)
ALY)= — ®
A. Channel with a perfect vortex lattice in the environment (—1)"e%Po—1

Let us first consider a row of straight vortices that areSince the magnetic inductior® used in the experiments
aligned along the axis at positionanage,, wheremis an  cover the entire range up to the upper critical d@, a
integer,a, the distance between adjacent vortices, @nithe  more general expression féx, than the London limit that
unit vector in thex direction. In a type-ll superconductor has been discussed until now is needed. However, the theory
within London theory the interaction energy between twopresented here can easily be extended to larger magnetic in-
straight vortices of lengthl at r and 0 is U(r) ductions. First one takes into account the finite diameter of
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the vortex core which is of the ordérin the vortex-vortex It has the form of a generalized Frenkel-Kontorova mdé8el.
interaction potentialU— U [Ko(r/\)—Kq(r/€)]. Second, The interactions between vortices inside the channel are ap-
one replaces\—\'=\/(1-B/By)? and é¢—¢'=¢/(2  proximated by Hookian springs with spring constamis
—2B/B,,)*? to take into account the reduction of the super-=(Uy/\?)K{(na/\), where the double prime denotes the
conducting order parameter at large magnetic figlddle  second derivative. Notice that the displacementse mea-

then obtain sured with respect to the vortex-lattice preferred posiéiam
) the channel.
mUo(1—B/B,,)| 2 costiqly)e™ d¥(W=bo)’2 The Frenkel-Kontorova model has been intensively stud-
ALy)= ; 7 ied close to equilibriumf~0; see Ref. 31. The reduced
Qo q.[(—1)"ePo—1] f ) .
v dimensionless elasticity
2 costiqy)e 9y(W=bo)2 © 1 i , e™3\ L 13
- " = —_— ~ _>
QUL(—1) et 1) A" 8 a 49
where nowq’ = \/o?+(\') "2 andq’= g2+ (¢') 2. together with the winding numbe® =a/a, crucially deter-
mines the behavior of the system. For ratiofiathe vortex
B. Equation of motion chain is commensurate with the periodic channel potential

whereas for irrational) it is in an incommensurate state.
The commensurate-incommensurate transition is a continu-
ous transition that occurs at finite mismatchefrecall that
x=(a—ag)/ag], since the creation of discommensurations
Mm=f-€—VEo(rm)— 2 VU(rp—ry),  (10)  costs energy.
n£m If the discreteness of the chain is relevant, Peierls-

wheref=jd,/c is the magnitude of the Lorentz force that Nabarro barrier; may exist. The Peierls-Nabarro barrier_ is
drives the vortices in presence of a current dengity¥he the energy barrier that_has to be_ overcome f_or a tran;latlon,
viscous drag coefficient is related to the flux flow resistiv- Xm—Xm+1. Whereas this barrier is always finite for rational
ity prs by 7=B®y/[c%pi+(B)]. The sum is taken over the Q, it may yamsh in the incommensurate stateg is lower _
positionsn of all other vortices inside the channel. than a critical valuegc(a/ao), the incommensurate state is

In the simplest case the channel widthwis-b, such that ~ Pinned; however, fog>g.(a/ao), the Aubry transition to a
only a single vortex row is inside the channel. Then theSliding state with truly vanishing critical force takes pléte.
motion of the mobile vortices in thedirection is essentially For pinned defective configurations the Peierls-Nabarro bar-
guided by the channel potential, whereas the interaction bdier, which determines the corresponding pinning fofgg,
tween vortices in the channel does not contribute signifidepends org. Large g>1 implies that an isolated defect
cantly to the motion in they direction, ﬂym”—ﬁyEoc(f)- having a size~Il4 extends over several lattice constants.

However, the motion in the direction is determined by both Then', the Pfe|erls'—Nabarro barrier is nearly vanisffirand

the interactions between mobile vortices and the gradient g€ Pinning force is

the _cha_nnel pot(_antia_l. To simplify matters, we neg!ect the f o=~ 6472g 1 exH — m2\g). (14)
motion in they direction,y,=0, such that the equation of 4 o )

motion can be simplified to a one-dimensional one. Further>iNC@fpy<10""4, we neglect it in the following.

we restrict our considerations k0= a, as in a typical experi- Since we are most interested in the regigiel, it is
ment. Then, the amplitudes,(0) fall off exponentially fast, convenient to study the model_lr_1 the continuum limit. Fur-
A,(0)~ U exp(=m/3v), and the approximation to consider ther, we take into account the finite length of the system and
only the first harmoni@ =g, = 27/a, of the channel poten- Cconsider open boundary conditions. Rewriting E&2) in

tial is a good one. Introducing = 2g|A,(0)| and restricting terms of the displacements of the vortices from the environ-
the interaction between vortices in the channel to nextMental lattice positionsuy,=Xy,—ma, and substituting
neighbor springlike forces, the equation for the overdamped@ =%, Um—U(X), (Umin~Um)/(N8)—du(X), Zn

The overdamped dynamics of a vortex with indexat
positionr,, inside the channel is described by

longitudinal motion reads — [dx/a,, we obtain the continuum equation of motion
. oV[u]
. Y =—
MXm=— =, 1y 7U(X)= "2 su(x)
X
where the potential energy of the vortices in the channel is ~d?U(x) . ~
given by 9 =R~ uSIQUOO ]+ 4 XK (x— L)~ 800,

(15

where we have introduced=2ma,ug and the last term is
an effective surface force that arises at the open sample
Kn . . . .
+2 2 X=X — )2} . (12) boundaries in the presence of frustratidn i6 the channel
n 2 length. The energy functional reads

v=> %[1—cos{qu)]—fxm
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dx|x (o 2
V[U]=fa—;([§(&—§—x) +%[1—cos{qu)]—fu),

where the integral runs from 0O to. It can be decomposed
into

V:VSG+ VX+VO’ (16)
where
dx| & (ou\? wu . . o
Vsdul=| —i=|—=| +=[1—cogqu)]—fu ~FIG. 4. Potential energy of atantjkink AV in units of V
o (29X a =kx.il2 as a function of théantjkink centerx.. Displayed are
is the energy functional of the sine-Gordon model, values close to the system boundaryatO for frustration param-

eters|x| = x.i (upper curvg and|x|= x.(0) (lower curve. At the
XK classical commensurate-incommensurate transition, wHete
V [u]=——[u(L)—u(0)] (17) = xci» an entry barrier has to be overcome with the help of fluc-
o tuations to make a transition from , to uy , or u, ,. The entry
is the frustration energy due to the mismaighdetermined  barrier vanishes dty| = x.(0) where(antjkinks can penetrate the
by the values of the displacement fiel@0) andu(L) at the  System.

boundaries, an¥, is an irrelevant offset that is omitted in =~ ) . o
the following. in Fig. 4). In general, the barrier vanishes at a sufficiently

strong frustration or driving force. We therefore define a
threshold frustrationy.(f), which is a function of the driv-
i ing forcef. Finite driving forcesf >0 are considered in Sec.
We now present a short review of the commensuratey|| p, where depinning is studied. In the following we inves-
incommensurate transition. Then, we will extend the picturqigate how(ant)kinks enter the system at equilibriufr=0
to discuss the role of edge barriers for defects in finite sysand determine the zero-force threshgig0).
tems, which is crucial to understand how discommensura- | et ys first determine the energy that is needed to deform
tions penetrate a sample in the absence of thermal or quag-yniform state into a kinked one. We note that due to frus-
tum fluctuations. _ o tration kinks can only be created spontaneously at the system
The extrema ofV[u] are found solving the variational poyndariesx=0 or x=L. Of course, in the presence of
problemsV/6u=0. In the absence of frustratiop=0, and  thermal fluctuations, quantum fluctuations, or quenched dis-
for f=0, uniform static solutions exist. They are the stablegrder, deep in the bulk kinks can in principle be created in
Usn=2aoN, unstabley, ,=(2n+1)ay/2, and kinked, the form of kink-antikink pairs. However, in the absence of
4 % quctL_Jations as con_si_dered _here this is not possib_le. The rea-
U n(X;Xe) = Ug n+ —arcta+ ex;{ C) , (18) son is that kink-antikink pairs cannot gain frustration energy
’ —q lg for a spontaneous kink emergence, singé)=u(L)=usp
solutions of the sine-Gordon model at zero driving force.2nd hence/,=0. Thus,(antjkinks can only enter the sys-

Here,| 4=a,/g is the width of the kink. The corresponding €M atx=0 andx=L. In the following we discuss the pen-
antikink solution readsu, ,(x:Xc) = Uy n(—X; —X.). The etration of an antikink axfO, having in mllnd thfit_ the same
commensurate-incommensurate transition is a transition th&0!ds forx=L and for kinks. Note that in a finite system
oceurs in equilibrium {=0) when it becomes energetically With ~boundaries — at x=0 and x=L one has
favorable to have a finite density of discommensurations iliMx.—~=Uan(0:Xc) =Us . Hence, a deformation from ,

the system. Neglecting effects of system boundaries, the mi$o u, , can be achieved by pushing an antikink centered. at
matchy.; at which the commensurate-incommensurate tranfrom x,=— to x,.>0. The energy of the antikink solution
sition takes place is then quickly found by comparing therelative to the uniform one as a function of center coordinate
energy of the kinked solution with the energy of the stablex. is then

homogeneous on&/[uy ,]— V[ Ug ] = (4/m) (k! q) Y2~k x

C. Commensurate-incommensurate transition

=0, AV(XC):V[ua,n(X;Xc)]_V[us,n(x)]
1/2 ~
4l m 2 =25 K| X[Uan(0;X) ~ Ugn(LiXc)]
xei=—|=| == (19 ' '
m\qx/  w\g
. . L [dug n(x:xc)]?

Though at the commensurate-incommensurate transifign +J dx ——————=| |, (20)
or u, , have the same energy as,, a barrier has to be 0 28
overcome in order to make the transition frag,— uy , or Since the tail of the kink falls off exponentially, we can

Usn—Uan; See upper curve in Fig. 4. In the absence ofneglect the influence of the boundaryxat L>14. For sim-
fluctuations, as considered here, discommensurations canticity, we then consider a semi-infinite systdm-«~ and
only enter the system when this barrier vanistieser curve  obtain
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“xeil4 x X X system when their entry barrier vanishes. Whether they are
AV(x.)= —C'[— —arcta+exp< —C) + 1+tan|‘(—°> ] mobile or not depends on further barriers that may exist in
2 {7 Xei lg lg the bulk,
S _ _ o In the continuous limit as discussed here, the defective
Minimizing AV with respect tax; we find a minimum at state is not pinned. Hence, in the continuum model the
thresholdy.(0) indicates the change from a static equilib-
2.2 . .
—1nl = TXci [T Xci 1 (22) rium ground statel(s ,) to a mobile one fy , or u, ).
X1~ ld 2x 4y? Note that an exit barrier exists for gingle kink at the
) other boundaryimagine the mirror image of the entry bar-
and a maximum at rier as shown in Fig. 4 at the other end of the systeow-
>3 ever, the exit barrier becomes irrelevant in the presence of
=1l — TXci T Xci 1 23) further kinks. This can be easily understood by the following
2 d 2x 4y° argument. Suppose a kink enters the system, freely flows to

) the other end, and then becomes trapped by the exit barrier.
At the frustration Then a second kink follows and interacts with the first one. If
it would move “adiabatically,” it would become trapped by
(24)  the interaction with the first kink, which mediates the pin-
ning force. However, the first kink would experience the in-

- . . . teraction of the second kink, too. The resulting interaction
the minimum and maximum merge into a saddle point atf

X.=0 where the entry barrier vanishes and an antikink flows > c© 's of the same magnitude as the pinning force, but of
o= o . : )
freely into the system. It is interesting to note that §or.0 opposite sign. Hence, the total force is zero and the first kink

the minimum of the antikink enerav relative to the uniform is released. The second becomes pinned for a while until it is
solution is always negativeé,V(x ngo This means that in released by the third and so forth. For nonadiabatically mov-

y g L G i’ . : ing kinks, the successor does not even become pinned by the
a frustrated system the uniform solutiog , is unstable in

th f 2 bound Instead. the stabl ution i predecessor; it only lowers its velocity before the predeces-
1€ presence of a boundary. Instead, he stablé solution 1S g, escapes due to the kink-kink interaction and the succes-
virtual antikink with a centek,, localized outside the system

. . sor becomes pinned at the boundary.
at X 1<<0. At the boundary, the chain thus tries to adapt So far we have determined the frustration strengtf0)
optimally to the frustration to reduce its energy. Fer

. . b hich di ti ter th tem in the ab-
— — .(0) one findsx.~0. which means that half of the above which discommensurations enter the system in the a

kink is already inside the system and that it can gain mor sence of a driving force=0. In the presence of a driving

by slidi ds th f th Th Rorce f, we can roughly distinguish between the regime
energy by sliding towards t € genter 0 t e system. The Sceyy, e equilibrium thresholdy|> x.(0), andbelow equilib-
nario is the same for an antikink entering the systenx at

: ~ . A
=L. For a kink the description given above is identical ex-| threshold, x| < x¢(0). Above equiliorium threshold,

; ) . |x|>x:(0), depending on the sign of, kinks or antikinks
cept that y>0. The kink entry barrier vanishes af are present in the system, since the entry barrier for discom-

mensurations has vanished. Neglecting the effects of the

_ The picture of the commensurate-incommensurate ranSigie s Nabarro barriers, the threshold force has basically
tion is thus drastically modified in the presence of system anished

boundaries when there are no physical mechanisms like ther-

mal or quantum fluctuations that are needed to cross the edge f~0 (26)
barrier. In fact, since in the absence of fluctuations a system ©

with boundaries remains commensurate [figi< x-(0), we
identify the threshold dty| = x.(0) with the commensurate-
incommensurate transition of a finite, purely mechanical sys
tem.

X:_XC(O):_EXci:_Wa7

For|x|<xc(0) there are no kinks present in the system at
equilibrium due to the finite entry barrier. However, at a
sufficiently large driving force, the entry barrier vanishes,
too. Then discommensurations enter the system at one
boundary, freely flow through it, and exit at the other bound-
ary. In presence of a force the formation of kinks is similar to

In the following we investigate how the chain inside thethe kink penetration at equiliborium we discussed in Sec.
channel actually depins in presence of a driving forte, 1l C. Of course, the extremal solutions which determine the
>0. In the simplest case, fov=Db,, we have a commensu- energy barrier for kink formation are different. The stable
rate state without frustratiors=a, and y=0. The chain  and unstable solutions of the sine-Gordon model in the pres-
locks perfectly to the potential and the threshold depinningence of a driving forcé read®

D. Depinning in the presence of boundaries

force is
£.(0)= (25 Usn=aon+q tarcsir(f/u) (27)
c .
If the system is frustratech,#w, depinning occurs via 2nd
mobile discommensurations which in the sine-Gordon model (2n+1)
are represented by kinks or antikinks. As in the equilibrium _lentbae
case, for finite driving forces discommensurations enter the un 2 q tarcsint/u), (28
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respectively.

For frustrations close to the equilibrium threshold frustra-
tion, x<(0)—|x|<xc(0), the depinning threshold force is
small, f,<u. Let us study the depinning of an antikink at
the left boundaryk=0 for negative frustrationgy<<O0, in the
presence of a small force,<0f<u. In the low-force limit,
we can neglect the deformation of the antikink due to the 6 4 2 0
force. The energy of the driven antikink relative to the uni- x /1
form solution as a function of the antikink centey is then

FIG. 5. Potential energy of a small amplitude nucldg,,,, in

~ units of Vgan= 47<a§/15aols as a function of the positiorg of the
KX maximum amplitude. Shown are values close to the system bound-
AV(Xo)~ —[Uga n(0;Xc) — Uy n(L;X i
(Xc) ag [Ua,n(03Xe) = Ua,n(LiXc) ] ary atx=0 for frustration parameterg=—23x.(f)/5 (upper
curve and y= x.(f) (lower curve, where the barrier vanishes.

1 ~| g n(X;Xe)

+— | dx{ k ’
2N

ax

2
- fua,n(X;Xc)] :

~ A2
_ AKag 5 X Au(0xs)
(29) Avsar‘xs)‘lsaols{ 2B XD as
If we neglect the presence of the other boundary=at., the 3Au(0xg) Au(0xg) 312
derivative of the potential with respect fq is N 2ag +11- < '
~ (33
d K dUg n(0;Xc) g n(05X%c)
— ~— ’ ' where
dx, AV(xe) ag X X+ X
. f 3/4
f f)= WXC'[Z(l——” . 34
+ 3 Uan(00) (30) x(D=773 4 (34)

As shown in Fig. 5, the SAN potentidlV,,(Xs) has a bar-
The antikink depins at the left boundary when the maximunvier (upper curvg, which vanishes aty=— x.(f) (lower
slope of the potential at.=0 vanishes. This occurs at the curve. This can be seen by analyzing the zeros of the de-

threshold force rivative
d kas AAU(OXS) | 2 x
4 X — AVgu(X)=——r
fc:7[ _Xc(o) ) (31 dxs— AT aglg IXs 3\/§ xc(f)
Au(0x9) [  Au(0xg)]*?
which is easy to show realizing thai, ,(0;0)=ay/2, A 1- a . (39

AUq n(0;0)/0%.= x(0), andu = mrx2(0)/(2a,). The same o , o
result is found for kink depinning at the other boundacy, ©One zero is given byk,=0, where the partial derivative
—L, for positive frustrationy>0. dAu(0xs)/dxs vanishes. The others can in principle be

At low frustration,| y| < x.(0), thedepinning threshold, found by stu_dying the term in the curly brackets which be-
is close tow. One thus has to consider the large force regimée®mes zero if

u—f<<u, where the lowest-energy saddle-point solution of Aul? Aul 4 2
the sine-Gordon modelis,n n(X;Xs) = Ug n + AU(X;Xg), has a b B el S S (36)
small amplitude and hence is called small amplitude nucleus as as| 27 x(f)

(SAN). It can be calculated by approximating the tilted co- yoever, to find the threshold condition, we do not need to
sine potential by a cubic parabola calculatex, explicitly; it is sufficient to determiné u(0;x,).
Equation(36) has at most three roots, depending on the value

_Xs} of ¥?>0. One of the roots is negative, which is no solution,

21,

Au(x;Xs) =ascosh 2 X (32)  since O<Aus=a, [see Eq.(32)]. For — x.(f)<x<O0 there
are two positive roots, which indicate the existence of two
extrema ofAVg,,, @ minimum and a maximum. Calculating

with center x;, amplitude a;=3q Y [2(1—f/x)]"¥? and the extrema of Eq(36) with respect toAu, one sees that at

width lg=14[2(1— /)]~ Y4 x=—xc(f) the positive roots of Eq(36) become degener-
Let us now consider the penetration of an antikink for ate, which means that the minimum and maximum merge
<0 at the boundaryx=0. The energy differenc&V,,, into a saddle point oAVg,,. Hence, the entry barrier of the

=V[Usann]— V[ Us ] as a function oks=<0 is SAN vanishes. At this valué\u=2a4/3. Thus, two-thirds of
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a SAN are localized at the left boundary=0, but are un- 1 ™~ ' ' '

stable against small perturbations. Increasing eigher f h

depins the SAN which then evolves into a full antikink. Fi- 08 r i

nally, from Au(0;xs) =2a4/3 we findx.=14n(2—/3). 3 | |
To summarize, for low frustrationky|<x.(0) and for o 0

frustrations close to the equilibrium thresholg,(0)—|x|

04 r b
<x.(0), thethreshold forcef .. is given by
32/3{ Xl r/s 021 1
1-— : <xc(0), R
,LL{ 2 XC(O) } |X| XC( ) 0 | | | | N
il 4 |)(| 0 0.2 0.4 0.6 0.8 1 1.2
S M Rt 0)— x| <xo(0), 1/ % ()
ﬂ_,u,[l Xc(O)} Xe(0) =[x <xc(0)
0 X|= x<(0) FIG. 6. Critical forcef; as a function of the mismatch parameter
1 —~ C .

7) x. Shown are the numerical integration resukslid line), high-
force approximationf,— u<<u (dash-dotted ling and the low-
For completeness, we calculated the threshold force foforce approximatiorf <y (dashed ling
arbitrary frustration by numerical integration. To calculate
the static and dynamic solutions of E@5), we use a stan- =0,)=0. This means that close to the maximum of the
dard numerical integration procedure. Starting with a flat ini-sinusoidal potential, where the chain bead spends most of the

tial configurationu,,=0, we iterate time, it effectively behaves like a single particle which is
driven by a forcef. For|x|> x. a similar argument can be

Up(t+ 8t) =upn(t) + Stv (1), (38) given. At f=0 the effective force at the system boundary
pushes defects into the channel until their density is so high

with that their repulsion prevents new defects to flow in. Effec-
tively, the chain bead at the boundary reaches an unstable

V(D) =F+si27un(t) ]+ 27g[ Uy 1 (1) +Up_1(1) equilibrium. Driving the system now with a nonzero force
f>0 results in the same motion for the bead at the boundary

_2Um(t)+5m,M_5m,l]a (39) as for|X|:Xc-
where length is measured in units &f, time in units oft, For x<x.(0) the entry barrier for the defects becomes

=ayn/r, and force in units ofx. The length of the system relevant and the force-velocity characteristics show the be-
is M=L/a,. Recalling that the vortex-vortex interaction en- havior typical for quasiparticles with a vanishing saddle-
ergy falls off exponentially fast for distances between vorti-point barrier withv ~[ f — f(x) ]2 for f—f. Finally, in the
ces larger than\, we take only theN=[5\/a,] next- absence of frustration the particles depin instantly and
neighboring vortices into account in the sum over channel= (f./#7)(2f/f.—2)"2 like a single particle in a sinusoidal
vortices. The channel has a lengthLofAt its ends, we apply  potential.
boundary conditions taking into account the frustratign,
For a given force, Eq(38) is iterated until a fairly steady
state is reached[vp(t+ t) —v,(t)]/6t<10"4. Channel
vortices are defined to be staticpif,<10™ 8. The calculated
um(t) andov,(t) are recorded for several forces. In addition 2r
we can record the particle trajectorigg(t) to visualize the
dynamical behavior of the channel vortices close to the de-
pinning transition. The numerical results and the analytical 1r
limits for f;(x) are shown in Fig. 6.

The numerical integration also allows us to determine the

vn/u

velocity averaged over time and space, 0 A ‘ . .
0 0.5 L L5 2 25 3
ag . Tdt . f/u
v="1" T um(t)v (40) R )
Lm=1JoT FIG. 7. Typical f-v curves computed for systems with

=100, and\ =a,. The result for the unfrustrated commensurate

as abfunctlon of thﬁ forc(re]as showrt: |n.F|g.h7. ished th casey =0 (solid line) is identical to the curve of a single particle in
Above x.(0) where the entry barrier has vanished t €a sinusoidal potential; ~ (f — )", with v=1/2. Frustration lowers

topological defects move freely through the sample. The Iin'the threshold force ., but does not alter the exponentin the
ear force-velocity characteristics resemble the one of a singlgsmmensurate regime. However, in the incommensurate |sthte
free particle with dissipative dynamias=f/ 7. The velocity -, (0), thef-v curve becomes lineas~f. Shown are the-v
of the entire chain is determined by the velocity of the de-characteristics for frustrated systems with x.(0) (dash—double-
fects that enter the system at the boundary.jt=x.,  dotted ling, 0.7y.(0) (dash-dotted ling and 0.5(0) (dashed
where the entry barrier for defects has vanisheiiJ(x line).
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E. Preliminary comparison with experimental data distortions of the order of the coherence lengttue to the

Let us now compare these theoretical findings with exdisorder occur on average on a lengghin the direction of
perimental and numerical datd.Clearly, the generalized the magnetic field and on a lengk transverse to it. Here,
Frenkel-Kontorova model predicts a nearly vanishing depinWe consider two-dimensional collective pinning whege
ning forcef.~0 in the defective state. In the commensurate™ ! such that the approximation of straight vortex lines re-
state, the depinning threshofd is finite, but decreases mo- Mains valid. _ _ ,
notonously with increasing frustration and vanishes at the With quenched disorder in the environment of the chan-
commensurate-incommensurate transition, where the criticdl€l the interaction energy of a single vortex with the vortex
mismatch is reachedy= x.(0); seeFig. 6. As a typical oW becomes
value for\/ay in the low-field limit we considein = 3a,.
From Eq.(13) we find g~28 and hence Eq(24) yields En(r)ZE U(r—Rmn—dmn) (41)
xc(0)~0.06. Sincey=(bg/w)—1, one expects a sharp m
spike in the threshold force around the magnetic mductlor;,vheredm’n are the displacements from the ordered positions

with a vortex-lattice plane distandg=w. Rmn - Itis convenient to rewrite the row potential in terms of
If we associate the maxima of the critical force to the o yortex density,

spikes corresponding to a commensurate state and the

minima to the incommensurate one, we would nonetheless

observe that some essential ingredient must be missing in our En(r)= J d’r'U(r—r")pn(r’), (42)
model. Indeed, in Fig. 3 we see that instead of sharp spikes,

the measurements rather show a continuous modulation &fhere

the critical current as a function of the magnetic field or,

equivalentllyl, as a function of the frl.Js'tration in§id¢ the.ch'an- pn(r’)=2 S(r" =R n— ). (43)
nel. In addition, the data do not exhibit the vanishing pinning m

barriers which are expected for incommensufraefective

structures with perfectly ordered channel edges. Both pheWe introduce a continuous displacement field

nomena cannot be explained solely in terms of thermal or 22
quantum fluctuations: They would lead to an effective reduc- dir)=—=| d%ke*r> e kRmngd,_ (44)
tion of the pinning barrier in both cases. This motivates us to 472 )82 mn ’

study the influence of quenched disorder in the environmen-
tal vortex lattice. Actually, recent experiments have unveile
the essential role of disorder. It turns out that the picture o

here BZ indicates that the integration is restricted to the
irst Brillouin zone. Note thad(R,,)=dy,. In order to

maximum critical force corresponding to an integer numbelder've a simplified one-dimensional F“Od?' as in the ordered
case, we make use of a few approximations. Since we con-

of rows inside the channel is only valid for zero and weak™: i . T
disorder. If the disorder is strong, exactly the opposite will beSlder the vortex lattice to be in the elastic limit, then
realized; namely, the integer number of rows will correspond Al c
to the minima off . (Ref. 29. V- d|~&/Re<1. (45

It is generally understood that quenched disorder leads tiloreover, since the vortex potential falls off exponentially
pinning of vortice8 or topological defects of the vortex lat- fast for [r—r’|>\, the channel environment is mainly
tice, which would explain the increased critical force in theprobed within|r—r’|<\, where one can estimafe(r’)
defective state. It remains to understand how disorder leads d(r)|<\é&/R; using Eq.(45). For Né/R.<ag/2 it is then
to a reduction of pinning barriers in the commensurate rereasonable to expand the displacemei(ts) in the integral,
gime.

— NE
d(r')=d(r)+0O )

R (46)

F. Channel with a distorted vortex lattice in the environment
In a realistic sample the static nature of the channel envitiére, we have introduced the coarse-grained displacement

ronment is caused by some sort of pinning which may distortield

the vortex lattice. In the following we consider a device

where the vortices outside the channel are pinned by d_(r)=(27rU0)‘1)\‘2f d2r'U(r—rd(r’), (47
guenched disorder. The pinning in the channel environment

is str_zng gnough :odgua_;?lnteehthat it 'ren;air;ﬁ pinhned G}t allihich is smooth on the scale. Up to terms of the order
considered current densities whereas inside the channel pi :29

ning by quenched disorder is orders of magnitudes lower angj()\glRC)' we obtair

can be entirely neglected. In a typical experiment the mag- E (r)=E°[r—d_(r)] (48)
netic inductions are so large that the interaction between the " "

vortices is much stronger than the pinning. Further, we asfor the collectively pinned vortex row potential.

sume that the vortex lattice in the channel environment is To calculate the effective channel potential for a channel
free of dislocations. Then it is natural to treat the vortexof width w~b,, we perform the summation over pinned
lattice in its elastic limit. In a weakly pinned vortex lattice, vortex rowsE, as in the ordered case. Further, since the
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influence of pointlike disorder at the edge is assumed to be _

much weaker than the reordering due to the edge currents, dy(X,0)=W(X—X,)
we may well taked,(r)=0. Then, the interaction of a single
vortex in the channel with the disordered environment read

O(X—X,)— %} (53

yere,e(x) is the Heaviside function and/> 0 the distortion
parameter. It is convenient to introduce transformed dis-
_ placement fieldsi=u—q~Y¢. Neglecting terms of the order
Eacd(r)= 2;4 Au(y)codq,[x—dy(r)]}. (49 (9,0)%’ and (p")24,U, the relevanti-dependent part of the
energy functional reads
For the partial derivatives of the channel potential one finds

V[ul=Vsdul+V,[u]+V,[u], (54)
. - where
HEqdr)= =2 q,A,(y)sin{g,[x—dy()]}, 3 o
' v <[ g™ ad, -
B Jlul= ag) ox ax - (55)
&yEdc(r)ZEV Ay(y)codq,[x—dx(]}, In the following, we examine the effect of lattice distortions

at the boundarie,,=0,L, and in the bulkx,=L/2. To gain
plus terms of ordeD(A&/R.). As in the perfectly ordered a basic understanding of the depinning process, we restrict
case, we now consider the equation of motion. Substitutinghe analysis to the large system liniit2>1g, where the
Eoc by Eq4¢ in Eq. (10) and following similar arguments we system is so large that the depinning configurations at the
derive an equation for the longitudinal motion. Introducingweak spotsx,=0,L andx,=L/2 do not interact with each
?(x)=qd,(x,0) we obtain a generalized phase-disorderedther.
Frenkel-Kontorova model, For x,=0, the lattice is distorted homogeneously in the
entire sample and the contribution of the distortion to the
o - energy functional yields
V:% {a{l_coiqu_‘P(Xm)]}_me

- KW -
V[U]=5[U(L)-U(0)]. (56)

+> ﬁ(x —Xm—Nna)? (50) 0

T2 Tmrnoom ' Physically, the distortion results in an additional frustration
) ) . ) .. of the system, as can be immediately understood by compar-
The corresponding energy functional in the continuum |Im|ting Eq.(56) with Eq. (17). This means that for the threshold
is then force, one can use the results that were found in the absence
of the distortion[see Eq.37)], but the frustration has to be
replaced by an effective frustration

W
X=X~ 5 (57)

it & [ du 2 72
Viu]=a, fo dx 215 X +a{1—cos{qu

“ex+uli- fu] : GD The resultis thus a simple shift of thef. curve. Similarly,

] ) ] ] for x,=L, thef-y curve is shifted,
and the resulting equation of motion for the displacement

fieldsu(x,t) reads W
. _ - ~d%u - . . -
pu=f—pusifqu—e(x+u)]+ KE +xx[8(x—L) Forx,=L/2, in addition to boundary depinning, bulk de-

pinning atx, can occur. In large systenls/2>1s we can
treat the effect of the distortions at the boundaries and in the
bulk separately. At the boundaries, the threshold solution is
then approximately given by the solution in absence of the
defect, but with an increased effective frustratppit W/2 in

the left half and a lowered effective frustratign- W/2 in the
L o ) right half of the system. The threshold force for boundary
G. Depinning in a channel with distorted environment depinning is again given by E¢37) with the modulus of the

Up to now, we have not specified the disorder displacefrustration replaced by

ment fieldd,. To gain some basic understanding, we now

consider the effect of a local distortion on the depinning [x|—
properties. The field we choose is somewhat academic, but is

convenient to understand the effect of a lattice distortion afo understand bulk depinning, we first restrict the consider-
the system boundary and in the bulk. The perturbation occursations toy=0 and then discuss the behavior in the presence
aroundx,, , of frustration.

—68(x)1, (52

where aXEX terms that are of orde©O(A¢/R.) have been
neglected.

W
Xl =51 (59)
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For L/2>1s we can neglect the influence of the bound- At W=2/(7/g) stable saddle-point solutions cease to ex-
aries and treat them as if they were shiftedtt@. Then, the st for all f and disorder induced mobile kink-antikink pairs
extremal threshold solutioﬁ¢(x;x‘p) can be constructed by are spontaneously formed even at equilibrium.
joining two extremal solutions d¥ 5. The matching condi- After having gained some understanding how pinning oc-
tion is found from curs at a weak spot in the bulk fgr=0, let us now consider
the frustrated casgy|>0, where bulk depinning competes
with boundary depinning. Comparing the bulk depinning

thresholdf (W) with the boundary threshold in presence of
: . . the defectf.(| x| —W/2), we find that fol y| <W the system
h that th h for th f fiel S e .
Sue _t att (ej matching condition for the transformed fie ddepms in the bulk and fdry|>W at one of the boundaries.
Ue(XiX,) reads Note that to lowest order, we can apply these results to dis-

tortions of this kind that are not necessarily centered at

Ju(x—eg) _du(x+ €)
ax  Ix

(60)

IUG(Xe—&:X,) _ﬁu¢(x¢+s;x¢) _

W. (61) =L/2, as long a$;<x,<L—I holds.
ax IX
The mirror symmetry reqUiregxu(Xﬂ"):O; hencez?xu(_xq, H. Depinning in a channel with randomly displaced edge
+e)=FW/2. At the threshold forcef. stable solutions vortices

cease to exist. In fact, it can be shown thaf athe stable ) ]
solution merges with an unstable one. This occurs when the OPPosed to the rather well-behaved distortions of the pre-

maximum of the tongue developing & reaches the maxi- vious paragraph, we now consider the effect of randomly
mum of the sinusoidal potential. FrodV/su=0 it follows displaced vortices in the channel edge. We mimic the disor-
that at the potential maximum the extremal solution has taler by uncorrelated relative displacemerjtg, (R 1)

fulfill oZu(x,)=0, which holds if JZu(x,=&)—0 for &  —d,(Rnn)]/a,. The latter are independent identically
—0. box-distributed random numbers within the interval
For weak distortion$W/2| <1/(/g), the threshold force [ —W/2W/2],
for bulk depinning is close ta and the threshold solution
u,=Us+Au, can be found by merging two SAN solutions
tX,* X5, Wh =lJn(2+3), -1 —
atx,*xa, Wherex,=l4n(2+3) Pul(dh)= [ 00+ WI2)~ 6(d,~Wi2)].  (67)

Au(X;X,+Xa), X<X,,

AU (X;X,)=
U, (X;X,) AUKX = X2), X=X,

(62)
The width of the box distributioWV parametrizes the dis-

The maximum value of the tongue developinggtis given order strength. Theny andd, e are random functions, which

by Aug(X,;X,) =2a4/3. This implies are smooth on the scale and bounded. Note that although
~ d,¢ is boundedg is unbounded. Thus, long-range order is
AU (Xp— 83X ): 28s :V_V, (63) lost along the channel direction. On length scales much
X 3\/§|s larger thana,, the displacement field,(r) behaves like a

from which one obtains the bulk depinning threshold force infandom walk in 1D and the phase-phase correlator scales

the presence of weak distortions, linearly with the distance([ ¢(x) —¢(0)]?)=x.
The unfrustrated case has been discussed in Ref. 29. Here
1(77 ’_39 W) 4/3

we generalize the results fdy|>0. In weakly frustrated
2 2

(64  systems y|<WI/2, nucleation still occurs at a weak spot in

the bulk. Hence, the depinning threshdldshould be inde-
This formula becomes invalid for 2#/g)—|W]| pendent of the frustratioly. This can be indeed observed

<2/(m\g). For strong distortions|W|<2/(m\g), the (see Fig. & the y-T. curve has a plateau around-0; be-
threshold cpnfiguration can be constructed by merging a kinkore at larger values of depinning takes place via the for-
and an antikink, mation of defects at the boundary as in the ordered case. The
threshold for boundary depinning is affected by lattice dis-
@ 65 tortions at the sample edge as discussed in Sec. lll G, result-

Ua(XiXg), X=Xg, ing in an overall shift of the-f., curve to lower values of.

, , o . For intermediate frustration ®y<x.(0), a defect that
from which one obtains the bulk depinning threshold force ingptiered the sample via the boundary cannot be pinned by
the presence of strong distortions, disorder in the bulk. It moves freely to the other boundary,
where it becomes pinned by the exit barrier until being re-
leased by the next defect that enters the channel and then
travels freely to the exit.

foe=pu| 1

~ U(X;X,),  X<X
Ug(X;Xg) =

. A4u
o=

g
1-—~ w). (66)
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1 T T T T T T T
_ ux,ty/ao
0.8 6
3 160
5 0.6 b
te 155
0.4 |
24000
0
0.2 05 22000 t/t,
x/L 0.3
0 . . . . :
0 02 04 06 08 1 12 FIG. 10. Time evolution of the displacementi, t) in a system
X! %e (O of length L=1000, for y=— x.(0) andf>T.. Strong pinning

_ sites are indicated by bars parallel to the time axis. Here, intersti-
FIG. 8. Numerically obtained minimum threshold forkeas a tials (antikinks travel to the right. At strong pinning sites they
function of frustrationy for 100 channels with. =1008,, A=a9,  collide with pinned kinks. The formerly pinned kinks are released
andW=0.1. while the previously moving ones become pinned.

For frustrations abovg.(0)—W/2 bulk pinning becomes similar to the transitionv=1/2—1 occurring in the ordered
possible since the boundary depinning threshold force bemodel aty.(0) cannot be observed in the disordered case.
comes lower than the disorder induced pinning forces in the Until now we considered the weak disorder limit in agree-
bulk. In Fig. 8 bulk pinning becomes relevant arougpd ment with the assumptions made in order to develop the
~0.8x.(0). Indeed one can observe pinning of defects anddisordered model. If we increase the disorder paraméter
bundles of defects in the numerical simulations in this re-beyond the initially assumed limits, we can gain some in-
gime. In Fig. 9 a static state in a system of lendth sight into the depinning properties at large disorder. In Fig.
=100G, for x= — x(0) just below the depinning threshold 12 minimum threshold force$, as a function of disorder
f<T¥. is shown. One clearly sees single-pinned kinks and atrengthW for 100 channels with.=100a, and\ =a, are
few multiple-pinned kinkgbundles. At the exit of the sys- shown for systems without frustratiop=0 and for frus-
tem kinks accumulate due to both bulk pinning and due tdrated systems witly= x.(0), where we expect the effect of
pinning at the presence of the exit barrier. When reaching théhe boundaries to become irrelevant.\Wt= 0.5 the disorder
depinning threshold, a defect is formed at the entry on thés so strong that a distinction between a commensurate and
channel and travels until it collides with a defect that isan incommensurate system cannot be made. We speculate
already pinned at a strong pinning site. While the latterthat this indicates a crossover to a depinning transition with
becomes released, the former gets pinned. This scenarirue critical behavior as is reported for sandpile models or the
repeats until a mobile defect has reached the channel exiEukuyma-Lee-Rice model for charge density waves.
see Fig. 10.

In contrast to the force-velocity curve of single systems,
which behave ag ~(f—f.)” with »=1/2, the functional
form of the disorder averaged force-velocity curves for finite | this work we have developed a model for artificial
systems all show upward curvature foef., which corre-  vortex-flow channels motivated by recent experiméfitg°
sponds tov>1; see Fig. 11. A crossover between exponentdMVe have studied the depinning properties of vortices in chan-

nels of finite length taking into account inhomogeneities

IV. DISCUSSIONS AND CONCLUSIONS
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FIG. 9. Static displacementsy(x) in a system of lengthL f/u

=100, for y=— x(0) in the pinned regimé<T.. (a) Pinned FIG. 11. Disorder-averagettv curves computed for systems
single interstitialskinks). (b) Multiple pinned kinks at strong pin- with L=100a, and A\=a,. Shown are the-v characteristics for
ning sites.(c) Kink accumulation at the end of the systerxL, systems withy= x.(0) (dash-dotted ling x=0.5y.(0) (dashed
where in addition to disorder the exit barrier is present. line), and y=0 (solid line).
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1 - ' - ' studied the overdamped dynamics of a chain of interacting
vortices in the effective channel potential. In our simplified
08 r 1 description we have restricted the considerations to channels
= with a width of the order of the lattice spacing,~b,. We
ey 06T | have assumed that the resulting confinement perpendicular to

the channel direction is strong such that the transverse mo-

047 tion of the vortices in the channel can be neglected. Further,
since in all known channel experiments even for the lowest
021 achievable magnetic inductions=a, holds, to a very good
: . . accuracy only the first harmonic of the periodic potential is
00 0.1 0.2 0.3 0.4 0.5 kept. These assumptions and restrictions allow us to deter-

W mine the coefficients of a driven generalized Frenkel-
Kontorova model. Foh =a,, where the typical lengthy of
FIG. 12. Numerically obtained minimum threshold fofceas a & topological defect in the channel is much larger than the
function of disorder strengthV for 100 channels witl.=100a, lattice spacin@y, but still much smaller than the system size

and\=a,. Upper curve;y=0. Lower curve:y= x.(0). ls, Is>14>ag, the dynamics in the channel is conveniently
. ) described by the continuum limit of the Frenkel-Kontorova
such as the sample boundaries and disorder. model known as the driven sine-Gordon model.

Throughout our analysis, we have neglected the influence after deriving the coefficients of the Frenkel-Kontorova

of thermal or quantum fluctuations on the depinning processyodel, we investigate the commensurate-incommensurate
To see that this is well justified with respect to the experi-yansition commonly known to occur in this model at thermal
ments that have been performed so far, let us estimate tfl?quilibrium. Since our focus is on the depinning probliem
magnitude of both types of fluctuations in conventionalihe apsence of fluctuationse modify the theory. We define
type-Il superconductors which have been used to fabricatg «mechanical” commensurability-incommensurability tran-
the channels. The typical pinning energies of topological latsition. It turns out that the boundaries of the system play a
tice defects are larger than the vortex self eneray, which igycial role if one supposes that the number of static vortices
about 10 eV, whereas the thermal energy-i80 " eV since iy the strong pinning environment is constant: the purely
the samples are cooled down 2 K. Hence, only when  nechanical commensurate-incommensurate transition occurs

. . —5 . . .
the resulting energy barriers are reduced by a fact®0 > \hen the entry barrier for discommensurations at the bound-
can one expect to observe thermal creep of vortex-latticgy yanishes.

defects. Since the barrier energy scales-65—j/j.)%? the This concept can be generalized to describe depinning at
width of the current density n_ﬁerval_asr_oumgat which ther-  finjte driving forces. The reason is that the entry barrier for
mal creep can be observedAg=10""j.. discommensurations is reduced when a driving force is ap-

To estimate the relevance of quantum creep, we considgjjied. The depinning then occurs at frustrations below the
the effective Euclidean action as a function of the currenero-force threshold frustration, at which the mechanical
density, S£''(j). At equilibrium, j=0, S£'(j=0)  commensurate-incommensurate transition occurs. In this re-
~£h21(€2p)(jaljc) ™% see Ref. 8. Here the coherence lengthgime, the entry barrier is by far the largest barrier in the
is £€~10 nm, the resistivity in the normal state i§  system.
~10® Q m, the depairing current ig;~10° A/m?, and the Above the zero-force threshold frustration, in the incom-
critical current is j.~10° A/m?. We find S‘Eff(j=0)/h mensurate regime, the entry barrier has vanished and dis-
~10°. For an overdamped vortex dynamics, which is charcommensurations enter the system until the mutual repulsion
acteristic for conventional superconductor§E'(j)/% between the defects prevents new ones from flowing in. The
~10%(1—jljo)¥. Quantum effects become irrelevant for extremely small Peierls-Nabarro barrier which may arise due
s‘é”(j)wﬁ; henceAj~10 %j.. Thus, in artificial vortex- 1O the discreteness of the sysféris not taken into account.
flow channels made of conventional superconductors thermal The depinning scenario depends on both the driving force
and quantum fluctuations only become relevant in an exand the frustration parametgr=(a—ao)/ao, which mea-
tremely narrow interval around the critical current which hassures the mismatch between the lattice consggnof the
not been resolved in the experiments discussed here. In a firshannel environment and the preferred lattice spacing in the
step, we have therefore entirely neglected fluctuations anghannel,a. In the absence of frustration;=0, depinning
have studied a purely classical mechanical model at zereccurs via a trivial homogeneous solution when the barrier of
temperature. the tilted washboard potential vanishes and the threshold

First, we have considered a perfectly ordered vortex latforce is given by the amplitude of the sinusoidal channel
tice in the channel environment. Starting from a London depinning force,f.=u. In the presence of frustration, depin-
scription of straight vortices in a superconductor, we evaluat®ing occurs via the formation of topological defects at one of
the periodic potential experienced by the vortices in thethe sample boundaries. For weak frustratigh< x.(0), we
channel. The result, which is strictly valid only at inductions find f.= u{1—(1/2)[ \/§x/)(c(0)]4’3}, whereas close to the
far belowB,,, is generalized to higher inductions by taking threshold frustration x.(0)—|x|<x.(0), we obtain f.
into account the vortex core and by introducing a field-=(4u/7)[1—x/x.(0)] and for|x|>x.(0) the depinning
dependent coherence length and penetration depth. We haf@ce vanishesf.=0. By performing a numerical integra-
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tion of the equation of motion we have determined the valueor lattice distortions. Further, we assumed that close to the
of f;(x) in between these limits. channel edges\ é/R.<ay/2 in order to obtain a local ap-
Further, we have numerically calculated the force-velocityproximation for the displacement fields of the static vortices
curves which correspond to the current-voltage characterislose to the channel edge. Sing&k <1, this approximation
tics of the sample. In the commensurate regihg should be valid as long as the penetration depth is not orders
<xc(0), we find acharacteristics typical to a saddle-point of magnitudes larger than the typical vortex-lattice constants.
bifurcation scenariop~(f—f,)*? whereas in the incom- Further, we took only into account longitudinal displace-
mensurate regime, where the commensurability gap has vaments along the channel edge. For narrow channgisw,
ished, the response is linear;-f. This behavior is typical we then obtained a generalized amplitude and phase-
for a system with open boundary conditions, where the dendisordered Frenkel-Kontorova model which in the con-
sity of topological defects is a function bbththe frustration  tinuum limit corresponds to a disordered sine-Gordon model.
x and the driving forcéd. Transverse displacements imply modifications of the disor-
In systems with twisted periodic boundary conditions,dered phase and amplitude of the sinusoidal pinning force
where the density of topological defects is constant, theand to additional pinning force terms. This issue and its con-
force-velocity characteristics are different in the incommen-sequences for depinning have not been considered here.
surate regimé’ One observes a linear low-mobility regime  In order to gain a basic understanding, we have first in-
for small driving forcesf < u. The slope of the linear partis vestigated depinning caused by a specific longitudinal
proportional to the density of topological defects in the sys-ortex-lattice distortion field along the channel edges. De-
tem which isfixedby the magnitude of the twist at the ends pending on their location, these distortions cause additional
of the system. The slope of the low-force regime is thuslocal frustration of the system, modifying the threshold force
considerably smaller than in the high-force regifsew. For  for depinning. Distortions at the boundary of the sample af-
f=pu the curves show a square-root dependenee(f fect the entry barrier for topological defects and cause shifts
— u)Y2and only in the high-force limit do they become lin- of the y-f curve along they axis. Local distortions in the
ear again. The resulting force-velocity characteristics thudulk are shown to act as nucleation seeds, reducing the
differ significantly from our results in the incommensuratethreshold force.
phase, which is linear for all forces. Finally, we have studied the effect of small disorder-
We conclude that the boundary conditions strongly affecinduced displacements of vortices in the channel environ-
the force-velocity characteristics. The reason is that in frusment. We model disorder by uncorrelated relative displace-
trated systems the presencgabpen boundaries supports the ments which are represented by random values that are
formation of topological defects which lead to depinning.independent identically distributed according to a box distri-
Further, the entry barriers at the boundaries determine thieution. In the absence of frustration local lattice distortions
rate at which defects enter the sample, thus ruling the dyin the channel environment lead to an effective channel po-
namic behavior entirely. The main problem in determiningtential with weak spots. At the weakest spots vacancy-
the behavior of vortex-flow channels is thus to model realis4interstitial pairs are formed when reaching the depinning
tic sample boundaries. Note that boundary effects other thathreshold force. In the presence of frustration, a crossover
considered here might modify the picture. For example, thérom bulk depinning to boundary depinning occurs when the
vortex lattice of the channel environment may be distortecentry barrier becomes smaller than the smallest bulk pinning
due to the presence of screening currents along the sampbarrier. Increasing the frustration the entry barrier is de-
boundary, causing a local variation of the frustration. Furthercreased until it becomes smaller than the typical bulk pinning
screening currents may lead to Bean-Livingston barriers foforce for kinks due to disorder. Applying a finite driving
vortices which would increase the energy to form a defect aforce that is large enough to overcome the entry barrier, but
the sample edge. However, the conclusion that transport ismaller than the bulk pinning force, topological defects enter
artificial vortex-flow channels with a perfectly ordered vor- the channel and become pinned in the bulk. The finite depin-
tex lattice in the environment is ruled by the entry barriers aning force in this regime is thus again determined by bulk
the sample boundary persists even if further boundary effectsroperties. Increasing the driving force up to the threshold,
are taken into account. topological defects which travel some distance until becom-
The picture that depinning occurs only via defect forma-ing trapped are successively introduced. Above the depin-
tion at the boundaries does not hold if inhomogeneities araing threshold this leads to a jerky motion with successive
present in the bulk. For example, local distortions of thedepinning and pinning of topological defects.
vortex lattice in the channel environment caused by We obtained the force-velocity characteristics, the thresh-
quenched disorder may generate weak spots that support tb&l force as a function of the frustration, and the threshold
formation of vacancy-interstitial pairs at sufficiently large force as a function of the disorder for an ensemble of chan-
driving force. nels with randomly perturbed channel edges. Since the the-
To investigate this issue, we have extended the model bgretical results are only valid for narrow channels with one
accounting for small static displacemed(s) of the vortices mobile row, weak longitudinal disorder, and since the
in the channel environment. We assumed the channel envéqueezing effects of channel edge currents were not taken
ronment to be in the elastic limj¥ -d|~&/R.<1, whereé  into account, the interpretation of the available experimental
is the coherence length measuring the typical displacememtata remains speculative. It would thus be interesting to ex-
within a distance given by the in-plane correlation lenBth  tend the model to include these additional properties.
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Realizing that the Frenkel-Kontorova model and the sinedisorder is of a different type. If at all, characteristics of the
Gordon model are equivalent, the question arises as tBLRM like the avalanching below depinning threshold, the
whether the disordered Frenkel-Kontorova model studiedoughness of the critical state at threshold, and the jerky
here is related to the Fukuyama-Lee-Rice m8tf&I(FLRM)  motion above the depinning threshold resemble what we ob-
for charge density waves. This question is especially interserve in the incommensurate state in the presence of weak
esting with respect to the characteristics of the depinninglisorder.
transition. The FLRM and simplified versions have been The main difference to the problem treated here is that the
studied both analyticalff*” and numerically®=**mostly in ~ FLRM considers a system close to thermal equilibrium
higher dimensions. The FLRM possesses a phase-disorderadhereas here we are interested in the depinning behavior far
sinusoidal potential where the phases are chosen randomisom equilibrium. We identify typical configurations that act
from an interval — 7, 7]. This model shows critical behav- as sources which produce vacancy-interstitial pairs and thus
ior for d<4. Approaching the threshold from below, the lower the depinning threshold. These we call weak spots. We
critical state is formed by the release of avalanches charadind also other configurations that pin the topological defects.
terized by typical sizes that diverge with a power-law behav-The system is static if all topological defects that enter the
ior. Above threshold the motion is typically jerfand the  system via the boundaries or are induced at weak spots are
velocity shows a power-law behavier~ (f —f.)”, where trapped by lattice distortions of the pinning type. Depinning
the exponent depends on the dimensionality of the system.takes place when the density of topological defects becomes

One is tempted to say that vortex-flow channels provide aarger than the density of pinning sites. It is thus clear that an
physical realization of the one-dimensional FLRM. How- enhancement of the depinning threshold can only occur in
ever, we find that the depinning process and the dynamicsystems with a considerable amount of pinning sites formed
above threshold strongly depend on the type of boundaries &l lattice distortions in the channel.
the sample edges, the strength of the frustration, and the
strength and type of disorder. In finite weakly disordered
systems as studied in this work three depinning regimes can
be identified. Increasing the frustration depinning first takes T.D. acknowledges financial support from the DFG-
place via defect nucleation at weak spots in the bulk, then vi&rojekt No. MO815/1-1 and from the Graduierteenkolleg
defect nucleation at the boundary, and finally by releasingPhysik nanostrukturierter Festkoer,” University of Ham-
pinned preexisting defects when the frustration is so stronppurg. R.B. and P.K. were supported by the Nederlandse
that the entry barrier for defects has become irrelevant.  Stichting voor Fundamenteel Onderzoek der Mat&fi®M)

This is indeed very different compared to the FLRM and C.M.S. was supported by the Swiss National Foundation
where system boundaries are not taken into account and thender Grant No. 620-62868.00.
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