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Plastic depinning in artificial vortex channels: Competition between bulk and boundary nucleation
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3Département de Physique, Universite´ de Fribourg, Pe´rolles, CH-1700 Fribourg, Switzerland

~Received 20 August 2002; published 28 February 2003!

We study the depinning transition of a driven-chain-like system in the presence of frustration and quenched
disorder. The analysis is motivated by recent transport experiments on artificial vortex-flow channels in super-
conducting thin films. We start with a London description of the vortices and then map the problem onto a
generalized Frenkel-Kontorova model and its continuous equivalent, the sine-Gordon model. In the absence of
disorder, frustration reduces the depinning threshold in the commensurate phase, which nearly vanishes in the
incommensurate regime. Depinning of the driven frustrated chain occurs via unstable configurations that are
localized at the boundaries of the sample and evolve into topological defects which move freely through the
entire sample. In the presence of disorder, topological defects can also be generated in the bulk. Further,
disorder leads to pinning of topological defects. We find that weak disorder effectively reduces the depinning
threshold in the commensurate phase, but increases the threshold in the incommensurate phase.

DOI: 10.1103/PhysRevB.67.064508 PACS number~s!: 74.25.Qt, 71.45.Lr, 83.50.Lh
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I. INTRODUCTION

The depinning transition in driven systems has attracte
great deal of attention recently. The phenomenon can be
served in charge-density-wave systems submitted to an e
tric field,1 in magnetic bubbles moving under an appli
magnetic field gradient,2 in current-driven Josephson junc
tion arrays,3,4 and in the two-dimensional electron gas in
magnetic field, which at low densities forms a Wigner cry
tal, but can move under an applied voltage.5 Depinning is
also important to understand tribology and solid friction6

surface growth of crystals with quenched bulk or substr
disorder, and the dynamics of domain walls in incommen
rate solids.7 A very prominent example of driven system
displaying a depinning transition are vortices in type
superconductors.8

The H-T phase diagram of type-II superconductors d
plays regions of both elastic and plastic flow.5,9 The interplay
between the elasticity of the vortex lattice and the impurit
present in the substrate leads to a rich phenomenology
many static and dynamic phases. A crucial question in b
the dynamics and statics is whether—in addition to therm
fluctuations—quenched disorder produces topological
fects in the periodic structure. Whereas in the absence
topological defects it is sufficient to consider only elas
deformations with depinning causing elastic flow, the d
namics will be governed by plastic flow, if topological d
fects exist. One expects plastic motion to become impor
for either strong disorder, high temperature, or near the
pinning transition in low dimensions. In these cases, dep
ning is observed to occur through ‘‘plastic channels’’ b
tween pinned regions. This type of plastic flow has be
found in numerical simulations of a two-dimensional thi
film geometry.10–12 Above the threshold, the filamentar
channels become both denser and broader when the dr
force is increased. Measurements of the differential re
tance of MoGe films display abrupt steps, which could
interpreted in terms of plastic depinning.13 Other experimen-
0163-1829/2003/67~6!/064508~16!/$20.00 67 0645
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tal observations that have been attributed to plastic flow
the peak effect,14,15 unsual broadband noise,16 and steps in
the I -V curve.17

In order to study the plastic depinning of vortices, arti
cial easy-flow channels have been manufactured.18,19 The
samples are typically made of type-II superconducting t
films, which consist of a fairly strong pinning layer on top
a weakly pinning base layer. The artificial vortex-flow cha
nels are fabricated by etching away stripes of the stron
pinning top layer. In the Shubnikov phase, vortices penet
the sample. Applying a current perpendicular to the chan
direction, the resulting Lorentz force in the direction of th
channel drives the vortices. Since the influence of pointl
material defects in the weak pinning channel is negligib
channel vortices are mainly pinned indirectly via the intera
tion with the stronger pinned vortices in the channel enviro
ment. Above a threshold force, plastic depinning of the v
tices inside the channel takes place. In contrast to nat
channels, the depinning threshold force displays interes
oscillations when the externally applied magnetic field is v
ied. The position of the threshold force maxima hint at co
mensurability effects between the vortex lattice in the en
ronment and in the channel.20 The magnitude of the
depinning force minima and maxima indicates that latt
distortions produced by quenched disorder in the pinn
channel environment is relevant in these samples.21

The present system has similarities with other artificia
structured superconductors. Pronounced commensurab
effects were found in films with periodic arrays of antidots22

or magnetic dots23 for flux densities equal to integer value
of the density of dots. In these systems, vortices or vor
chains at interstitial positions of the periodic arrays~for ex-
ample, at the so-called second matching field of a squ
pinning array! interact with the neighboring pinned vortice
and exhibit quasi-one-dimensional motion in presence of
applied current.24 Numerical studies25 have also provided
evidence for such flow mechanisms. Besides artificial str
tures, there exist also natural systems in which vortex ch
©2003 The American Physical Society08-1
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neling can occur. Among the most prominent examples
‘‘shear’’ depinning of vortices in grain boundaries in low-Tc
materials26 or motion of mixed Abrikosov-Josephson vort
ces in grain boundaries in high-Tc superconductors. The lat
ter situation was studied in detail by Gurevich.27

In this work, we present theoretical studies of the dep
ning and dynamical behavior of vortices in artificial eas
flow channels. Frustration and disorder are essential ingr
ents for determining the depinning transition in this driv
system. Motivated by recent experiments on vortex-fl
channels, we develop a model which takes into account
homogeneities, such as the sample boundaries and diso
We find that depinning occurs due to boundary or bulk nuc
ation, respectively, in the absence or presence of disor
Further, we clarify the role of disorder and frustration a
compare our results to the available experimental data.

First, we study this problem considering a perfectly
dered vortex lattice in the environment. Starting from a Lo
don description of vortices inside and outside the chan
we derive the coefficients of a generalized Frenk
Kontorova model.28 The force-velocity curve of this simple
model displays a drastic decrease of the threshold pinn
force when topological defects enter the system via the
tem boundaries. However, the experimental data sho
smooth variation of the pinning force as a function of t
magnetic field. The behavior suggests that disorder in
channel edges may lead to smoothening of the transi
from the topologically ordered to the defective state. In or
to investigate the transition in presence of disorder, we t
into account that the vortex lattice in the channel enviro
ment is distorted due to impurities in the superconduct
substrate. To determine the characteristic current-voltag
force-velocity curves, the problem is most conveniently ta
led with numerical molecular dynamics simulations. Th
method enables us also to nicely visualize how depinn
occurs in the topologically ordered and defective regimes
turns out that systems that are topologically ordered in
static phase depin at the boundary or by generating mo
defect droplets at weak spots in the random channel po
tial. In the defective static phase, the preexisting topolog
defects are pinned by the random potential. Then, the de
ning transition occurs via a release of these defects at
threshold.

The paper is organized as follows: In Sec. II, we disc
the experiments that motivated the theoretical studies; in S
III we introduce the model and present the results concern
the depinning transition. Finally, the discussion and conc
sions are presented in Sec. IV.

II. EXPERIMENTAL MOTIVATION

Let us start with a short overview of the experimen
state of the art. In order to obtain a more detailed understa
ing of the depinning process in disordered superconduc
films, experimentalists fabricated artificial vortex
channels.18,19 A sketch of a typical device is presente
in Fig. 1.

The devices are manufactured by first absorbing a
layer of NbN ~strong pinning material! on top of a Nb3Ge
06450
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film ~weak pinning! and then etching away a few hundre
channels of widthw from the top layer. In the strongly
pinned region, the vortex-lattice spacing isa0
5(4/3)1/4(F0 /B)1/2, such thata0b05F0 /B, with F0 the
flux quantum andb05(A3/2)a0; see Fig. 2~a!. In order to
measure the effect of a single vortex row in the channel,
channel widthw is chosen to be of the order ofa0. There-
fore, the vortex-lattice spacing in the channel isa
5F0 /wB. Depending on the mismatch parameterx
5(a/a0)215(b0 /w)21, a commensurate-incommen
surate transition can be observed. In the experiments
scribed here,a0;w;100 nm and the distance between t
channels is 10mm. Due to the material steps at the chann
edges, screening currents flow along the surface which in
act with the vortices in the channels. As a consequence
can expect the first rows of strongly pinned vortices near
channel edges to be lined up fairly straight along the chan
Therefore, we can assume that the transversal shifts are
ligible. On the other hand, longitudinal displacements m
occur due to the presence of impurities in the supercond
ing material@see Fig. 2~b!#. Here we will concentrate on the
longitudinal dynamics of the vortices within the channel.

FIG. 1. Schematic plot of the artificial flow channel geomet
The channels are manufactured by etching away the strongly
ning top layer material~gray area! in stripes of widthw. Applying a
magnetic fieldH generates vortices. In the strong pinning area
vortices are static. Vortices in the weakly pinning channel
mainly pinned due to the interaction with the strongly pinned on
in the channel edges~gray area!. In presence of a current densityj
a Lorentz forcefL acts on the vortices. At the depinning transitio
the channel vortices start to flow whereas the strongly pinned
tices in the channel environment remain static.

FIG. 2. ~a! Easy flow channel environment~shaded! in the ab-
sence of disorder. Vortex positions in the environment are mar
by open circles.~b! Immobile vortices~dots! in the environment in
the presence of weak disorder and one row of mobile vortices in
flow channel.
8-2
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PLASTIC DEPINNING IN ARTIFICIAL VORTEX . . . PHYSICAL REVIEW B67, 064508 ~2003!
In the channel, pinning due to impurities is very wea
Below the depinning threshold, vortices in the channel
localized due to the interaction with the vortices in the sta
environment. In the presence of a current densityj , a Lorentz
force fL acts on the vortices. As long as the vortices a
pinned, the supercurrent is flowing dissipationless throu
the sample. At a threshold forcef c the channel vortices depi
and start to move. The vortex motion causes dissipation
energy, and a voltage drop occurs across the sample bo
aries. Hence, a well-defined critical current densityj c can be
determined by measuring the current-voltage characteris
of the sample. Figure 3 shows shear force density data
duced from current-voltage measurements.29 The oscillations
in the shear force densityFs as a function ofB are related to
the ~in!commensurability of the vortex-latticeb0 with the
channel widthw. Naively, we would expect the maxima o
Fs to occur at integer values of the ratiow/b0, where the
vortex-lattice spacing inside the channel is commensu
with the width of the channel.Fs should then be reduced fo
nonintegerw/b0. This could qualitatively be explained b
the development of misfit dislocations along the chan
edges.18,19 Although this intuitive picture holds for the cas
of weak ~or zero! disorder, these features change drastica
in the limit of a strongly disordered environment. Indeed,
explained in Refs. 21 and 29, in the latter limit, the tran
verse degrees of freedom of vortices in the channel bec
important and the minima, not the maxima, ofFs correspond
to an integer number of vortex rows in the channel. In t
paper, however, we restrict ourselves to the limit of wea
disordered environment and investigate the competition
tween boundary and bulk nucleation for activating the dep
ning process of a single vortex chain.

III. MODEL FOR ARTIFICIAL VORTEX CHANNELS

Starting from a London description of vortices in a type
superconductor, we now derive a simplified one-dimensio
~1D! model for vortices in an artificial easy-flow channel.

A. Channel with a perfect vortex lattice in the environment

Let us first consider a row of straight vortices that a
aligned along thex axis at positionsma0ex , wherem is an
integer,a0 the distance between adjacent vortices, andex the
unit vector in thex direction. In a type-II superconducto
within London theory the interaction energy between t
straight vortices of length l at r and 0 is U(r )

FIG. 3. The experimentally obtained critical shear force den
Fs vs magnetic fieldB for a channel sample withw'290 nm at a
temperatureT51.7 K ~Ref. 29!.
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5U0K0(r /l), whereU05F0
2l /(8p2l2). Herel is the pen-

etration depth,F05hc/2e the flux quantum, andl @l the
sample thickness. Then the potential energyEn

o(r ) that is felt
by a test vortex at positionr5(x,y) interacting with a row of
vortices placed atnb0ey is

En
o~r !5(

m
U~r2Rm,n!, ~1!

where we introduced the lattice vectorsRm,n5(@m
1n/2#a0 ,nb0) of a hexagonal lattice. Fourier transformin
and using the Poisson sum rule the latter can be recast

En
o~r !5(

n

cos@qn~x2na0/2!#

2pa0
E

2`

1`

dkyŨeiky(y2nb0) ~2!

whereqn52pn/a0 with integern andŨ is the Fourier trans-
form of the potential, which is given by

Ũ~qn ,ky!5
2pU0

qn
21ky

21l22
. ~3!

Performing the integral overky leads to

En
o~r !5(

n
Bn~ uy2nb0u!cos@qn~x2na0/2!#, ~4!

where

Bn~y!5
pU0

a0qn8
e2qn8y ~5!

andqn85Aqn
21l22.

We construct an easy-flow channel by building a two
mensional vortex lattice, but leaving a region of widthw
along thex axis empty@see Fig. 2~a!#.

If we consider a hexagonal vortex lattice in the chan
environment, the potential in the channel is

Eoc~r !5 (
n51

`

@En
o~r2b/2!1E2n

o ~r1b/2!#, ~6!

whereb5(w2b0)ey . Summing over the vortex rowsn one
finds

Eoc~r !5(
n

An~y!cos~qnx!, ~7!

and the Fourier coefficientsAn(y) read

An~y!5

2 cosh~qn8y!BnS w2b0

2 D
~21!neqn8b021

. ~8!

Since the magnetic inductionsB used in the experiment
cover the entire range up to the upper critical oneBc2, a
more general expression forAn than the London limit that
has been discussed until now is needed. However, the th
presented here can easily be extended to larger magneti
ductions. First one takes into account the finite diamete

y

8-3
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the vortex core which is of the orderj in the vortex-vortex
interaction potential,U→U0@K0(r /l)2K0(r /j)#. Second,
one replacesl→l85l/(12B/Bc2)1/2 and j→j85j/(2
22B/Bc2)1/2 to take into account the reduction of the sup
conducting order parameter at large magnetic fields.30 We
then obtain

An~y!5
pU0~12B/Bc2!

a0
F2 cosh~qn8y!e2qn8y(w2b0)/2

qn8@~21!neqn8b021#

2
2 cosh~qn9y!e2qn9y(w2b0)/2

qn9@~21!neqn9b021#
G , ~9!

where nowqn85Aqn
21(l8)22 andqn95Aqn

21(j8)22.

B. Equation of motion

The overdamped dynamics of a vortex with indexm at
position rm inside the channel is described by

h ṙm5 f •ex2¹Eoc~rm!2 (
n5” m

¹U~rm2rn!, ~10!

where f 5 j F0 /c is the magnitude of the Lorentz force th
drives the vortices in presence of a current densityj. The
viscous drag coefficienth is related to the flux flow resistiv
ity r f f by h5BF0 /@c2r f f(B)#. The sum is taken over th
positionsn of all other vortices inside the channel.

In the simplest case the channel width isw'b0 such that
only a single vortex row is inside the channel. Then t
motion of the mobile vortices in they direction is essentially
guided by the channel potential, whereas the interaction
tween vortices in the channel does not contribute sign
cantly to the motion in they direction, h ẏm'2]yEoc(r ).
However, the motion in thex direction is determined by both
the interactions between mobile vortices and the gradien
the channel potential. To simplify matters, we neglect
motion in they direction,ym50, such that the equation o
motion can be simplified to a one-dimensional one. Furth
we restrict our considerations tol*a0 as in a typical experi-
ment. Then, the amplitudesAn(0) fall off exponentially fast,
An(0);U0exp(2pA3n), and the approximation to conside
only the first harmonicq5q152p/a0 of the channel poten
tial is a good one. Introducingm52quA1(0)u and restricting
the interaction between vortices in the channel to ne
neighbor springlike forces, the equation for the overdam
longitudinal motion reads

h ẋm52
]V

]xm
, ~11!

where the potential energy of the vortices in the channe
given by

V5(
m

H m

q
@12cos~qxm!#2 f xm

1(
n

kn

2
~xm1n2xm2na!2J . ~12!
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It has the form of a generalized Frenkel-Kontorova mode28

The interactions between vortices inside the channel are
proximated by Hookian springs with spring constantskn

5(U0 /l2)K09(na/l), where the double prime denotes th
second derivative. Notice that the displacementsx are mea-
sured with respect to the vortex-lattice preferred positiona in
the channel.

The Frenkel-Kontorova model has been intensively st
ied close to equilibrium,f ;0; see Ref. 31. The reduce
dimensionless elasticity

g5
1

qm (
n51

`

n2kn'
epA3

8p

l

a
@1 ~13!

together with the winding numberV5a/a0 crucially deter-
mines the behavior of the system. For rationalV the vortex
chain is commensurate with the periodic channel poten
whereas for irrationalV it is in an incommensurate state
The commensurate-incommensurate transition is a cont
ous transition that occurs at finite mismatchesx @recall that
x5(a2a0)/a0], since the creation of discommensuratio
costs energy.

If the discreteness of the chain is relevant, Peie
Nabarro barriers may exist. The Peierls-Nabarro barrie
the energy barrier that has to be overcome for a translat
xm→xm11. Whereas this barrier is always finite for ration
V, it may vanish in the incommensurate state: ifg is lower
than a critical valuegc(a/a0), the incommensurate state
pinned; however, forg.gc(a/a0), the Aubry transition to a
sliding state with truly vanishing critical force takes place32

For pinned defective configurations the Peierls-Nabarro b
rier, which determines the corresponding pinning forcef PN ,
depends ong. Large g@1 implies that an isolated defec
having a size; l d extends over several lattice constan
Then, the Peierls-Nabarro barrier is nearly vanishing31 and
the pinning force is

f PN'64p2gm exp~2p2Ag!. ~14!

Since f PN!1024m, we neglect it in the following.
Since we are most interested in the regimeg@1, it is

convenient to study the model in the continuum limit. Fu
ther, we take into account the finite length of the system a
consider open boundary conditions. Rewriting Eq.~12! in
terms of the displacements of the vortices from the envir
mental lattice positions,um5xm2ma0, and substituting
ma0→x, um→u(x), (um1n2um)/(na0)→]xu(x), (m
→*dx/a0, we obtain the continuum equation of motion

hu̇~x!52a0

dV@u#

du~x!

5k̃
]2u~x!

]x2
2m sin@qu~x!#1 f 1xk̃@d~x2L !2d~x!#,

~15!

where we have introducedk̃52pa0mg and the last term is
an effective surface force that arises at the open sam
boundaries in the presence of frustration (L is the channel
length!. The energy functional reads
8-4
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V@u#5E dx

a0
H k̃

2 S ]u

]x
2x D 2

1
m

q
@12cos~qu!#2 f uJ ,

where the integral runs from 0 toL. It can be decompose
into

V5VSG1Vx1V0 , ~16!

where

VSG@u#5E dx

a0
H k̃

2 S ]u

]xD 2

1
m

q
@12cos~qu!#2 f uJ

is the energy functional of the sine-Gordon model,

Vx@u#52
xk̃

a0
@u~L !2u~0!# ~17!

is the frustration energy due to the mismatchx determined
by the values of the displacement fieldu(0) andu(L) at the
boundaries, andV0 is an irrelevant offset that is omitted i
the following.

C. Commensurate-incommensurate transition

We now present a short review of the commensura
incommensurate transition. Then, we will extend the pict
to discuss the role of edge barriers for defects in finite s
tems, which is crucial to understand how discommensu
tions penetrate a sample in the absence of thermal or q
tum fluctuations.

The extrema ofV@u# are found solving the variationa
problemdV/du50. In the absence of frustration,x50, and
for f 50, uniform static solutions exist. They are the stab
us,n5a0n, unstable,uu,n5(2n11)a0/2, and kinked,

uk,n~x;xc!5us,n1
4

q
arctanFexpS x2xc

l d
D G , ~18!

solutions of the sine-Gordon model at zero driving forc
Here, l d5a0Ag is the width of the kink. The correspondin
antikink solution readsua,n(x;xc)5uk,n(2x;2xc). The
commensurate-incommensurate transition is a transition
occurs in equilibrium (f 50) when it becomes energetical
favorable to have a finite density of discommensurations
the system. Neglecting effects of system boundaries, the
matchxci at which the commensurate-incommensurate tr
sition takes place is then quickly found by comparing t
energy of the kinked solution with the energy of the sta
homogeneous one,V@uk,n#2V@us,n#5(4/p)(k̃m/q)1/22k̃x
50,

xci5
4

p S m

qk̃
D 1/2

5
2

p2Ag
. ~19!

Though at the commensurate-incommensurate transitionuk,n
or ua,n have the same energy asus,n , a barrier has to be
overcome in order to make the transition fromus,n→uk,n or
us,n→ua,n ; see upper curve in Fig. 4. In the absence
fluctuations, as considered here, discommensurations
only enter the system when this barrier vanishes~lower curve
06450
-
e
-

a-
n-

,

.

at

n
is-
-

e

f
an

in Fig. 4!. In general, the barrier vanishes at a sufficien
strong frustration or driving force. We therefore define
threshold frustrationxc( f ), which is a function of the driv-
ing forcef. Finite driving forcesf .0 are considered in Sec
III D, where depinning is studied. In the following we inve
tigate how~anti!kinks enter the system at equilibriumf 50
and determine the zero-force thresholdxc(0).

Let us first determine the energy that is needed to defo
a uniform state into a kinked one. We note that due to fr
tration kinks can only be created spontaneously at the sys
boundaries,x50 or x5L. Of course, in the presence o
thermal fluctuations, quantum fluctuations, or quenched
order, deep in the bulk kinks can in principle be created
the form of kink-antikink pairs. However, in the absence
fluctuations as considered here this is not possible. The
son is that kink-antikink pairs cannot gain frustration ener
for a spontaneous kink emergence, sinceu(0)5u(L)5us,n
and henceVx50. Thus,~anti!kinks can only enter the sys
tem atx50 andx5L. In the following we discuss the pen
etration of an antikink atx50, having in mind that the sam
holds for x5L and for kinks. Note that in a finite system
with boundaries at x50 and x5L one has
limxc→2`ua,n(0;xc)5us,n . Hence, a deformation fromus,n

to ua,n can be achieved by pushing an antikink centered axc
from xc52` to xc.0. The energy of the antikink solution
relative to the uniform one as a function of center coordin
xc is then

DV~xc!5V@ua,n~x;xc!#2V@us,n~x!#

5a0
21k̃H x@ua,n~0;xc!2ua,n~L;xc!#

1E
0

L

dxF]ua,n~x;xc!

]x G2J . ~20!

Since the tail of the kink falls off exponentially, we ca
neglect the influence of the boundary atx5L@ l d . For sim-
plicity, we then consider a semi-infinite systemL→` and
obtain

FIG. 4. Potential energy of an~anti!kink DV in units of Vk

5k̃xci/2 as a function of the~anti!kink centerxc . Displayed are
values close to the system boundary atx50 for frustration param-
etersuxu5xci ~upper curve! and uxu5xc(0) ~lower curve!. At the
classical commensurate-incommensurate transition, whereuxu
5xci , an entry barrier has to be overcome with the help of flu
tuations to make a transition fromus,n to uk,n or ua,n . The entry
barrier vanishes atuxu5xc(0) where~anti!kinks can penetrate the
system.
8-5
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DV~xc!5
k̃xci

2 H 4

p

x

xci
arctanFexpS xc

l d
D G111tanhS xc

l d
D J .

~21!

Minimizing DV with respect toxc we find a minimum at

xc,15 l dlnS 2
pxci

2x
2Ap2xci

2

4x2
21D ~22!

and a maximum at

xc,25 l dlnS 2
pxci

2x
1Ap2xci

2

4x2
21D . ~23!

At the frustration

x52xc~0!52
p

2
xci52

1

pAg
, ~24!

the minimum and maximum merge into a saddle point
xc50 where the entry barrier vanishes and an antikink flo
freely into the system. It is interesting to note that forx,0
the minimum of the antikink energy relative to the unifor
solution is always negative,DV(xc,1),0. This means that in
a frustrated system the uniform solutionus,n is unstable in
the presence of a boundary. Instead, the stable solution
virtual antikink with a centerxc localized outside the system
at xc,1,0. At the boundary, the chain thus tries to ada
optimally to the frustration to reduce its energy. Forx
52xc(0) one findsxc50, which means that half of the
kink is already inside the system and that it can gain m
energy by sliding towards the center of the system. The s
nario is the same for an antikink entering the system ax
5L. For a kink the description given above is identical e
cept that x.0. The kink entry barrier vanishes atx
5xc(0).

The picture of the commensurate-incommensurate tra
tion is thus drastically modified in the presence of syst
boundaries when there are no physical mechanisms like t
mal or quantum fluctuations that are needed to cross the
barrier. In fact, since in the absence of fluctuations a sys
with boundaries remains commensurate foruxu,xc(0), we
identify the threshold atuxu5xc(0) with the commensurate
incommensurate transition of a finite, purely mechanical s
tem.

D. Depinning in the presence of boundaries

In the following we investigate how the chain inside t
channel actually depins in presence of a driving forcef
.0. In the simplest case, forw5b0, we have a commensu
rate state without frustration,a5a0 and x50. The chain
locks perfectly to the potential and the threshold depinn
force is

f c~0!5m. ~25!

If the system is frustrated,b05” w, depinning occurs via
mobile discommensurations which in the sine-Gordon mo
are represented by kinks or antikinks. As in the equilibriu
case, for finite driving forces discommensurations enter
06450
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t

e
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e

system when their entry barrier vanishes. Whether they
mobile or not depends on further barriers that may exis
the bulk.

In the continuous limit as discussed here, the defec
state is not pinned. Hence, in the continuum model
thresholdxc(0) indicates the change from a static equili
rium ground state (us,n) to a mobile one (uk,n or ua,n).

Note that an exit barrier exists for asingle kink at the
other boundary~imagine the mirror image of the entry ba
rier as shown in Fig. 4 at the other end of the system!. How-
ever, the exit barrier becomes irrelevant in the presence
further kinks. This can be easily understood by the followi
argument. Suppose a kink enters the system, freely flow
the other end, and then becomes trapped by the exit ba
Then a second kink follows and interacts with the first one
it would move ‘‘adiabatically,’’ it would become trapped b
the interaction with the first kink, which mediates the pi
ning force. However, the first kink would experience the
teraction of the second kink, too. The resulting interact
force is of the same magnitude as the pinning force, bu
opposite sign. Hence, the total force is zero and the first k
is released. The second becomes pinned for a while until
released by the third and so forth. For nonadiabatically m
ing kinks, the successor does not even become pinned by
predecessor; it only lowers its velocity before the predec
sor escapes due to the kink-kink interaction and the suc
sor becomes pinned at the boundary.

So far we have determined the frustration strengthxc(0)
above which discommensurations enter the system in the
sence of a driving force,f 50. In the presence of a driving
force f, we can roughly distinguish between the regim
above equilibrium threshold,uxu.xc(0), andbelow equilib-
rium threshold,uxu,xc(0). Above equilibrium threshold,
uxu.xc(0), depending on the sign ofx, kinks or antikinks
are present in the system, since the entry barrier for disc
mensurations has vanished. Neglecting the effects of
Peierls-Nabarro barriers, the threshold force has basic
vanished,

f c'0. ~26!

For uxu,xc(0) there are no kinks present in the system
equilibrium due to the finite entry barrier. However, at
sufficiently large driving force, the entry barrier vanishe
too. Then discommensurations enter the system at
boundary, freely flow through it, and exit at the other boun
ary. In presence of a force the formation of kinks is similar
the kink penetration at equilibrium we discussed in S
III C. Of course, the extremal solutions which determine t
energy barrier for kink formation are different. The stab
and unstable solutions of the sine-Gordon model in the p
ence of a driving forcef read33

us,n5a0n1q21arcsin~ f /m! ~27!

and

uu,n5
~2n11!a0

2
2q21arcsin~ f /m!, ~28!
8-6
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respectively.
For frustrations close to the equilibrium threshold frust

tion, xc(0)2uxu!xc(0), the depinning threshold force is
small, f c!m. Let us study the depinning of an antikink
the left boundaryx50 for negative frustrations,x,0, in the
presence of a small force, 0, f !m. In the low-force limit,
we can neglect the deformation of the antikink due to
force. The energy of the driven antikink relative to the u
form solution as a function of the antikink centerxc is then

DV~xc!'
k̃x

a0
@ua,n~0;xc!2ua,n~L;xc!#

1
1

a0
E dxH k̃F]ua,n~x;xc!

]x G2

2 f ua,n~x;xc!J .

~29!

If we neglect the presence of the other boundary atx5L, the
derivative of the potential with respect toxc is

d

dxc
DV~xc!'2

k̃

a0

]ua,n~0;xc!

]xc
Fx1

]ua,n~0;xc!

]xc
G

1
f

a0
ua,n~0;xc!. ~30!

The antikink depins at the left boundary when the maxim
slope of the potential atxc50 vanishes. This occurs at th
threshold force

f c5
4m

p F12
uxu

xc~0!G , ~31!

which is easy to show realizing thatua,n(0;0)5a0/2,
]ua,n(0;0)/]xc5xc(0), andm5pk̃xc

2(0)/(2a0). The same
result is found for kink depinning at the other boundaryx
5L, for positive frustration,x.0.

At low frustration,uxu!xc(0), thedepinning thresholdf c
is close tom. One thus has to consider the large force regi
m2 f !m, where the lowest-energy saddle-point solution
the sine-Gordon model,usan,n(x;xs)5us,n1Du(x;xs), has a
small amplitude and hence is called small amplitude nucl
~SAN!. It can be calculated by approximating the tilted c
sine potential by a cubic parabola

Du~x;xs!5ascosh22Fx2xs

2l s
G , ~32!

with center xs , amplitude as53q21@2(12 f /m)#1/2, and
width l s5 l d@2(12 f /m)#21/4.

Let us now consider the penetration of an antikink forx
,0 at the boundaryx50. The energy differenceDVsan
5V@usan,n#2V@us,n# as a function ofxs<0 is
06450
-

e
-

e
f

s
-

DVsan~xs!5
4k̃as

2

15a0l s
H 11

5

2A3

x

xc~ f !

Du~0,xs!

as

2F3Du~0,xs!

2as
11GF12

Du~0,xs!

as
G3/2J ,

~33!

where

xc~ f !5
pxci

2A3
F2S 12

f

m D G3/4

. ~34!

As shown in Fig. 5, the SAN potentialDVsan(xs) has a bar-
rier ~upper curve!, which vanishes atx52xc( f ) ~lower
curve!. This can be seen by analyzing the zeros of the
rivative

d

dxs
DVsan~xs!5

k̃as

a0l s

]Du~0,xs!

]xs
H 2

3A3

x

xc~ f !

1
Du~0,xs!

as
F12

Du~0,xs!

as
G1/2J . ~35!

One zero is given byxs50, where the partial derivative
]Du(0,xs)/]xs vanishes. The others can in principle b
found by studying the term in the curly brackets which b
comes zero if

FDu

as
G2F12

Du

as
G5

4

27F x

xc~ f !G
2

. ~36!

However, to find the threshold condition, we do not need
calculatexs explicitly; it is sufficient to determineDu(0;xs).
Equation~36! has at most three roots, depending on the va
of x2.0. One of the roots is negative, which is no solutio
since 0,Du<as @see Eq.~32!#. For 2xc( f ),x,0 there
are two positive roots, which indicate the existence of t
extrema ofDVsan, a minimum and a maximum. Calculatin
the extrema of Eq.~36! with respect toDu, one sees that a
x52xc( f ) the positive roots of Eq.~36! become degener
ate, which means that the minimum and maximum me
into a saddle point ofDVsan. Hence, the entry barrier of th
SAN vanishes. At this value,Du52as/3. Thus, two-thirds of

FIG. 5. Potential energy of a small amplitude nucleusDVsan in

units of Vsan54k̃as
2/15a0l s as a function of the positionxs of the

maximum amplitude. Shown are values close to the system bo
ary at x50 for frustration parametersx522A3xc( f )/5 ~upper
curve! andx5xc( f ) ~lower curve!, where the barrier vanishes.
8-7
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a SAN are localized at the left boundary,x50, but are un-
stable against small perturbations. Increasing eitherx or f
depins the SAN which then evolves into a full antikink. F
nally, from Du(0;xs)52as/3 we findxs5 l sln(22A3).

To summarize, for low frustrationsuxu!xc(0) and for
frustrations close to the equilibrium threshold,xc(0)2uxu
!xc(0), thethreshold forcef c is given by

f c'5
mH 12

32/3

2 F uxu
xc~0!G

4/3J , uxu!xc~0!,

4

p
mF12

uxu
xc~0!G , xc~0!2uxu!xc~0!,

0, uxu*xc~0!.
~37!

For completeness, we calculated the threshold force
arbitrary frustration by numerical integration. To calcula
the static and dynamic solutions of Eq.~15!, we use a stan-
dard numerical integration procedure. Starting with a flat i
tial configurationum50, we iterate

um~ t1dt !5um~ t !1dtvm~ t !, ~38!

with

vm~ t !5 f 1sin@2pum~ t !#12pg@um11~ t !1um21~ t !

22um~ t !1dm,M2dm,1#, ~39!

where length is measured in units ofa0, time in units oft0
5a0h/m, and force in units ofm. The length of the system
is M5L/a0. Recalling that the vortex-vortex interaction e
ergy falls off exponentially fast for distances between vo
ces larger thanl, we take only theN5@5l/a0# next-
neighboring vortices into account in the sum over chan
vortices. The channel has a length ofL. At its ends, we apply
boundary conditions taking into account the frustration,x.
For a given force, Eq.~38! is iterated until a fairly steady
state is reached,@vm(t1dt)2vm(t)#/dt,1024. Channel
vortices are defined to be static, ifvm,1028. The calculated
um(t) andvm(t) are recorded for several forces. In additio
we can record the particle trajectoriesxm(t) to visualize the
dynamical behavior of the channel vortices close to the
pinning transition. The numerical results and the analyti
limits for f c(x) are shown in Fig. 6.

The numerical integration also allows us to determine
velocity averaged over time and space,

v5
a0

L (
m51

L E
0

Tdt

T
u̇m~ t !, ~40!

as a function of the forcef as shown in Fig. 7.
Above xc(0) where the entry barrier has vanished t

topological defects move freely through the sample. The
ear force-velocity characteristics resemble the one of a si
free particle with dissipative dynamics,v5 f /h. The velocity
of the entire chain is determined by the velocity of the d
fects that enter the system at the boundary. Atuxu5xc ,
where the entry barrier for defects has vanished,]x

2u(x
06450
or

-

-

l

-
l

e

-
le

-

50,L)50. This means that close to the maximum of t
sinusoidal potential, where the chain bead spends most o
time, it effectively behaves like a single particle which
driven by a forcef. For uxu.xc a similar argument can be
given. At f 50 the effective force at the system bounda
pushes defects into the channel until their density is so h
that their repulsion prevents new defects to flow in. Effe
tively, the chain bead at the boundary reaches an unst
equilibrium. Driving the system now with a nonzero forc
f .0 results in the same motion for the bead at the bound
as for uxu5xc .

For x,xc(0) the entry barrier for the defects becom
relevant and the force-velocity characteristics show the
havior typical for quasiparticles with a vanishing sadd
point barrier withv;@ f 2 f c(x)#1/2 for f→ f c . Finally, in the
absence of frustration the particles depin instantly andv
5( f c /h)(2 f / f c22)1/2 like a single particle in a sinusoida
potential.

FIG. 6. Critical forcef c as a function of the mismatch paramet
x. Shown are the numerical integration results~solid line!, high-
force approximationf c2m!m ~dash-dotted line!, and the low-
force approximationf c!m ~dashed line!.

FIG. 7. Typical f -v curves computed for systems withL
51000a0 andl5a0. The result for the unfrustrated commensura
casex50 ~solid line! is identical to the curve of a single particle i
a sinusoidal potential,v;( f 2m)n, with n51/2. Frustration lowers
the threshold forcef c , but does not alter the exponentn in the
commensurate regime. However, in the incommensurate stateuxu
.xc(0), the f -v curve becomes linear,v; f . Shown are thef -v
characteristics for frustrated systems withx5xc(0) ~dash–double-
dotted line!, 0.7xc(0) ~dash-dotted line!, and 0.5xc(0) ~dashed
line!.
8-8
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E. Preliminary comparison with experimental data

Let us now compare these theoretical findings with
perimental and numerical data.20 Clearly, the generalized
Frenkel-Kontorova model predicts a nearly vanishing dep
ning force f c'0 in the defective state. In the commensura
state, the depinning thresholdf c is finite, but decreases mo
notonously with increasing frustration and vanishes at
commensurate-incommensurate transition, where the cri
mismatch is reached,x5xc(0); seeFig. 6. As a typical
value for l/a0 in the low-field limit we considerl53a0.
From Eq. ~13! we find g;28 and hence Eq.~24! yields
xc(0);0.06. Sincex5(b0 /w)21, one expects a shar
spike in the threshold force around the magnetic induct
with a vortex-lattice plane distanceb05w.

If we associate the maxima of the critical force to t
spikes corresponding to a commensurate state and
minima to the incommensurate one, we would nonethe
observe that some essential ingredient must be missing in
model. Indeed, in Fig. 3 we see that instead of sharp spi
the measurements rather show a continuous modulatio
the critical current as a function of the magnetic field
equivalently, as a function of the frustration inside the ch
nel. In addition, the data do not exhibit the vanishing pinn
barriers which are expected for incommensurate~defective!
structures with perfectly ordered channel edges. Both p
nomena cannot be explained solely in terms of therma
quantum fluctuations: They would lead to an effective red
tion of the pinning barrier in both cases. This motivates us
study the influence of quenched disorder in the environm
tal vortex lattice. Actually, recent experiments have unvei
the essential role of disorder. It turns out that the picture
maximum critical force corresponding to an integer num
of rows inside the channel is only valid for zero and we
disorder. If the disorder is strong, exactly the opposite will
realized; namely, the integer number of rows will correspo
to the minima off c ~Ref. 29!.

It is generally understood that quenched disorder lead
pinning of vortices8 or topological defects of the vortex la
tice, which would explain the increased critical force in t
defective state. It remains to understand how disorder le
to a reduction of pinning barriers in the commensurate
gime.

F. Channel with a distorted vortex lattice in the environment

In a realistic sample the static nature of the channel e
ronment is caused by some sort of pinning which may dis
the vortex lattice. In the following we consider a devi
where the vortices outside the channel are pinned
quenched disorder. The pinning in the channel environm
is strong enough to guarantee that it remains pinned a
considered current densities whereas inside the channel
ning by quenched disorder is orders of magnitudes lower
can be entirely neglected. In a typical experiment the m
netic inductions are so large that the interaction between
vortices is much stronger than the pinning. Further, we
sume that the vortex lattice in the channel environmen
free of dislocations. Then it is natural to treat the vort
lattice in its elastic limit. In a weakly pinned vortex lattic
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distortions of the order of the coherence lengthj due to the
disorder occur on average on a lengthl c in the direction of
the magnetic field and on a lengthRc transverse to it. Here
we consider two-dimensional collective pinning wherel c
@ l such that the approximation of straight vortex lines
mains valid.

With quenched disorder in the environment of the cha
nel, the interaction energy of a single vortex with the vort
row becomes

En~r !5(
m

U~r2Rm,n2dm,n!, ~41!

wheredm,n are the displacements from the ordered positio
Rm,n . It is convenient to rewrite the row potential in terms
the vortex density,

En~r !5E d2r 8U~r2r 8!rn~r 8!, ~42!

where

rn~r 8!5(
m

d~r 82Rm,n2dm,n!. ~43!

We introduce a continuous displacement field

d~r !5
a0

2

4p2EBZ
d2keik•r(

m,n
e2 ik•Rm,ndm,n , ~44!

where BZ indicates that the integration is restricted to t
first Brillouin zone. Note thatd(Rm,n)5dm,n . In order to
derive a simplified one-dimensional model as in the orde
case, we make use of a few approximations. Since we c
sider the vortex lattice to be in the elastic limit, then

u¹•du;j/Rc!1. ~45!

Moreover, since the vortex potential falls off exponentia
fast for ur2r 8u.l, the channel environment is mainl
probed within ur2r 8u,l, where one can estimateud(r 8)
2d(r )u&lj/Rc using Eq.~45!. For lj/Rc!a0/2 it is then
reasonable to expand the displacementsd(r 8) in the integral,

d~r 8!5d̄~r !1OS lj

Rc
D . ~46!

Here, we have introduced the coarse-grained displacem
field

d̄~r !5~2pU0!21l22E d2r 8U~r2r 8!d~r 8!, ~47!

which is smooth on the scalel. Up to terms of the order
O(lj/Rc), we obtain29

En~r !5En
o@r2d̄~r !# ~48!

for the collectively pinned vortex row potential.
To calculate the effective channel potential for a chan

of width w;b0 , we perform the summation over pinne
vortex rowsEn as in the ordered case. Further, since
8-9
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influence of pointlike disorder at the edge is assumed to
much weaker than the reordering due to the edge curre
we may well taked̄y(r )50. Then, the interaction of a singl
vortex in the channel with the disordered environment re

Edc~r !5(
n

An~y!cos$qn@x2d̄x~r !#%. ~49!

For the partial derivatives of the channel potential one fin

]xEdc~r !52(
n

qnAn~y!sin$qn@x2d̄x~r !#%,

]yEdc~r !5(
n

An8~y!cos$qn@x2d̄x~r !#%,

plus terms of orderO(lj/Rc). As in the perfectly ordered
case, we now consider the equation of motion. Substitu
Eoc by Edc in Eq. ~10! and following similar arguments we
derive an equation for the longitudinal motion. Introduci
w̃(x)5qd̄x(x,0) we obtain a generalized phase-disorde
Frenkel-Kontorova model,

V5(
m

H m

q
$12cos@qxm2w̃~xm!#%2 f xm

1(
n

kn

2
~xm1n2xm2na!2J . ~50!

The corresponding energy functional in the continuum lim
is then

V@u#5a0
21E

0

L

dxH k̃

2 S ]u

]x
2x D 2

1
m

q
$12cos@qu

2w̃~x1u!#%2 f uJ , ~51!

and the resulting equation of motion for the displacem
fields u(x,t) reads

hu̇5 f 2m sin@qu2w̃~x1u!#1k̃
]2u

]x2
1k̃x@d~x2L !

2d~x!#, ~52!

where ]xd̄x terms that are of orderO(lj/Rc) have been
neglected.

G. Depinning in a channel with distorted environment

Up to now, we have not specified the disorder displa
ment field d̄x . To gain some basic understanding, we n
consider the effect of a local distortion on the depinni
properties. The field we choose is somewhat academic, b
convenient to understand the effect of a lattice distortion
the system boundary and in the bulk. The perturbation occ
aroundxw ,
06450
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d̄x~x,0!5W~x2xw!Fu~x2xw!2
1

2G . ~53!

Here,u(x) is the Heaviside function andW.0 the distortion
parameter. It is convenient to introduce transformed d
placement fieldsũ5u2q21w̃. Neglecting terms of the orde
(]xũ)2w̃8 and (w̃8)2]xũ, the relevantũ-dependent part of the
energy functional reads

Ṽ@ ũ#5VSG@ ũ#1Vx@ ũ#1Vw@ ũ#, ~54!

where

Vw@ ũ#5
k̃

a0
E dx

]ũ

]x

]d̄x

]x
. ~55!

In the following, we examine the effect of lattice distortion
at the boundaries,xw50,L, and in the bulk,xw5L/2. To gain
a basic understanding of the depinning process, we res
the analysis to the large system limitL/2@ l s , where the
system is so large that the depinning configurations at
weak spotsxw50,L and xw5L/2 do not interact with each
other.

For xw50, the lattice is distorted homogeneously in t
entire sample and the contribution of the distortion to t
energy functional yields

Vw@ ũ#5
k̃W

2a0
@ ũ~L !2ũ~0!#. ~56!

Physically, the distortion results in an additional frustrati
of the system, as can be immediately understood by com
ing Eq. ~56! with Eq. ~17!. This means that for the threshol
force, one can use the results that were found in the abs
of the distortion@see Eq.~37!#, but the frustration has to be
replaced by an effective frustration

x→x2
W

2
. ~57!

The result is thus a simple shift of thex-f c curve. Similarly,
for xw5L, the f -x curve is shifted,

x→x1
W

2
. ~58!

For xw5L/2, in addition to boundary depinning, bulk de
pinning at xw can occur. In large systemsL/2@ l s we can
treat the effect of the distortions at the boundaries and in
bulk separately. At the boundaries, the threshold solution
then approximately given by the solution in absence of
defect, but with an increased effective frustrationx1W/2 in
the left half and a lowered effective frustrationx2W/2 in the
right half of the system. The threshold force for bounda
depinning is again given by Eq.~37! with the modulus of the
frustration replaced by

uxu→Uuxu2
W

2 U. ~59!

To understand bulk depinning, we first restrict the consid
ations tox50 and then discuss the behavior in the prese
of frustration.
8-10
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PLASTIC DEPINNING IN ARTIFICIAL VORTEX . . . PHYSICAL REVIEW B67, 064508 ~2003!
For L/2@ l s we can neglect the influence of the boun
aries and treat them as if they were shifted to6`. Then, the
extremal threshold solutionũw(x;xw) can be constructed b
joining two extremal solutions ofVSG. The matching condi-
tion is found from

]u~x2«!

]x
5

]u~x1«!

]x
~60!

such that the matching condition for the transformed fi
ũw(x;xw) reads

]ũw~xw2«;xw!

]x
2

]ũw~xw1«;xw!

]x
5W. ~61!

The mirror symmetry requires]xu(xw)50; hence]xũ(xw

6«)57W/2. At the threshold forcef c stable solutions
cease to exist. In fact, it can be shown that atf c the stable
solution merges with an unstable one. This occurs when
maximum of the tongue developing atxw reaches the maxi
mum of the sinusoidal potential. FromdV/du50 it follows
that at the potential maximum the extremal solution has
fulfill ]x

2u(xw)50, which holds if ]x
2ũ(xw6«)→0 for «

→0.
For weak distortionsuW/2u!1/(pAg), the threshold force

for bulk depinning is close tom and the threshold solution
ũw5ũs1Dũw can be found by merging two SAN solution
at xw6xa , wherexa5 l sln(21A3),

Dũw~x;xw!5H Du~x;xw1xa!, x,xw ,

Du~x;xw2xa!, x>xw .
~62!

The maximum value of the tongue developing atxw is given
by Dũw(xw ;xw)52as/3. This implies

]Dũw~xw2«;xw!

]x
5

2as

3A3l s

5
W

2
, ~63!

from which one obtains the bulk depinning threshold force
the presence of weak distortions,

f̂ c5mF12
1

2 S pA3g

2
WD 4/3G . ~64!

This formula becomes invalid for 2/(pAg)2uWu
!2/(pAg). For strong distortionsuWu&2/(pAg), the
threshold configuration can be constructed by merging a k
and an antikink,

ũw~x;xw!5H uk~x;xw!, x,xw ,

ua~x;xw!, x>xw ,
~65!

from which one obtains the bulk depinning threshold force
the presence of strong distortions,

f̂ c5
4m

p S 12
pAg

2
WD . ~66!
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At W52/(pAg) stable saddle-point solutions cease to e
ist for all f and disorder induced mobile kink-antikink pai
are spontaneously formed even at equilibrium.

After having gained some understanding how pinning
curs at a weak spot in the bulk forx50, let us now consider
the frustrated caseuxu.0, where bulk depinning compete
with boundary depinning. Comparing the bulk depinni

thresholdf̂ c(W) with the boundary threshold in presence
the defect,f c(uxu2W/2), we find that foruxu,W the system
depins in the bulk and foruxu.W at one of the boundaries
Note that to lowest order, we can apply these results to
tortions of this kind that are not necessarily centered atxw

5L/2, as long asl s!xw!L2 l s holds.

H. Depinning in a channel with randomly displaced edge
vortices

Opposed to the rather well-behaved distortions of the p
vious paragraph, we now consider the effect of random
displaced vortices in the channel edge. We mimic the dis

der by uncorrelated relative displacements@ d̄x(Rm11,n)

2d̄x(Rm,n)#/a0. The latter are independent identical
box-distributed random numbers within the interv
@2W/2,W/2#,

PW~ d̄x!5
1

W
@u~ d̄x1W/2!2u~ d̄x2W/2!#. ~67!

The width of the box distributionW parametrizes the dis

order strength. Then,m̃ and]xw̃ are random functions, which
are smooth on the scalel and bounded. Note that althoug

]xw̃ is bounded,w̃ is unbounded. Thus, long-range order
lost along the channel direction. On length scales mu

larger thana0, the displacement fieldd̄x(r ) behaves like a
random walk in 1D and the phase-phase correlator sc
linearly with the distance,̂@w̃(x)2w̃(0)#2&}x.

The unfrustrated case has been discussed in Ref. 29.
we generalize the results foruxu.0. In weakly frustrated
systemsuxu,W/2, nucleation still occurs at a weak spot
the bulk. Hence, the depinning thresholdf̃ c should be inde-
pendent of the frustrationx. This can be indeed observe
~see Fig. 8!: the x- f̃ c curve has a plateau aroundx;0; be-
fore at larger values ofx depinning takes place via the for
mation of defects at the boundary as in the ordered case.
threshold for boundary depinning is affected by lattice d
tortions at the sample edge as discussed in Sec. III G, re
ing in an overall shift of thex- f̃ c curve to lower values ofx.

For intermediate frustration 0!x!xc(0), a defect that
entered the sample via the boundary cannot be pinned
disorder in the bulk. It moves freely to the other bounda
where it becomes pinned by the exit barrier until being
leased by the next defect that enters the channel and
travels freely to the exit.
8-11
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For frustrations abovexc(0)2W/2 bulk pinning becomes
possible since the boundary depinning threshold force
comes lower than the disorder induced pinning forces in
bulk. In Fig. 8 bulk pinning becomes relevant aroundx
;0.8xc(0). Indeed one can observe pinning of defects a
bundles of defects in the numerical simulations in this
gime. In Fig. 9 a static state in a system of lengthL
51000a0 for x52xc(0) just below the depinning threshol
f & f̃ c is shown. One clearly sees single-pinned kinks an
few multiple-pinned kinks~bundles!. At the exit of the sys-
tem kinks accumulate due to both bulk pinning and due
pinning at the presence of the exit barrier. When reaching
depinning threshold, a defect is formed at the entry on
channel and travels until it collides with a defect that
already pinned at a strong pinning site. While the lat
becomes released, the former gets pinned. This scen
repeats until a mobile defect has reached the channel
see Fig. 10.

In contrast to the force-velocity curve of single system
which behave asv;( f 2 f c)

n with n51/2, the functional
form of the disorder averaged force-velocity curves for fin
systems all show upward curvature forf * f̃ c , which corre-
sponds ton.1; see Fig. 11. A crossover between expone

FIG. 8. Numerically obtained minimum threshold forcef̃ c as a
function of frustrationx for 100 channels withL5100a0 , l5a0,
andW50.1.

FIG. 9. Static displacementsus(x) in a system of lengthL

51000a0 for x52xc(0) in the pinned regimef , f̃ c . ~a! Pinned
single interstitials~kinks!. ~b! Multiple pinned kinks at strong pin-
ning sites.~c! Kink accumulation at the end of the system,x&L,
where in addition to disorder the exit barrier is present.
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similar to the transitionn51/2→1 occurring in the ordered
model atxc(0) cannot be observed in the disordered cas

Until now we considered the weak disorder limit in agre
ment with the assumptions made in order to develop
disordered model. If we increase the disorder parameteW
beyond the initially assumed limits, we can gain some
sight into the depinning properties at large disorder. In F
12 minimum threshold forcesf̃ c as a function of disorder
strengthW for 100 channels withL5100a0 and l5a0 are
shown for systems without frustrationx50 and for frus-
trated systems withx5xc(0), where we expect the effect o
the boundaries to become irrelevant. AtW50.5 the disorder
is so strong that a distinction between a commensurate
an incommensurate system cannot be made. We spec
that this indicates a crossover to a depinning transition w
true critical behavior as is reported for sandpile models or
Fukuyma-Lee-Rice model for charge density waves.

IV. DISCUSSIONS AND CONCLUSIONS

In this work we have developed a model for artifici
vortex-flow channels motivated by recent experiments.18–20

We have studied the depinning properties of vortices in ch
nels of finite length taking into account inhomogeneiti

FIG. 10. Time evolution of the displacementsu(x,t) in a system

of length L51000a0 for x52xc(0) and f . f̃ c . Strong pinning
sites are indicated by bars parallel to the time axis. Here, inte
tials ~antikinks! travel to the right. At strong pinning sites the
collide with pinned kinks. The formerly pinned kinks are releas
while the previously moving ones become pinned.

FIG. 11. Disorder-averagedf -v curves computed for system
with L5100a0 and l5a0. Shown are thef -v characteristics for
systems withx5xc(0) ~dash-dotted line!, x50.5xc(0) ~dashed
line!, andx50 ~solid line!.
8-12
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PLASTIC DEPINNING IN ARTIFICIAL VORTEX . . . PHYSICAL REVIEW B67, 064508 ~2003!
such as the sample boundaries and disorder.
Throughout our analysis, we have neglected the influe

of thermal or quantum fluctuations on the depinning proce
To see that this is well justified with respect to the expe
ments that have been performed so far, let us estimate
magnitude of both types of fluctuations in convention
type-II superconductors which have been used to fabric
the channels. The typical pinning energies of topological
tice defects are larger than the vortex self energy, which
about 10 eV, whereas the thermal energy is;1024 eV since
the samples are cooled down to&2 K. Hence, only when
the resulting energy barriers are reduced by a factor;1025

can one expect to observe thermal creep of vortex-lat
defects. Since the barrier energy scales as}(12 j / j c)

3/2, the
width of the current density interval aroundj c at which ther-
mal creep can be observed isD j &1023 j c .

To estimate the relevance of quantum creep, we cons
the effective Euclidean action as a function of the curr
density, SE

e f f( j ). At equilibrium, j 50, SE
e f f( j 50)

'j\2/(e2r)( j d / j c)
1/2; see Ref. 8. Here the coherence leng

is j;10 nm, the resistivity in the normal state isr
;1026 V m, the depairing current isj d;109 A/m2, and the
critical current is j c;106 A/m2. We find SE

e f f( j 50)/\
;103. For an overdamped vortex dynamics, which is ch
acteristic for conventional superconductors,SE

e f f( j )/\
;103(12 j / j c)

3/4. Quantum effects become irrelevant f
SE

e f f( j );\; henceD j ;1024 j c . Thus, in artificial vortex-
flow channels made of conventional superconductors ther
and quantum fluctuations only become relevant in an
tremely narrow interval around the critical current which h
not been resolved in the experiments discussed here. In a
step, we have therefore entirely neglected fluctuations
have studied a purely classical mechanical model at z
temperature.

First, we have considered a perfectly ordered vortex
tice in the channel environment. Starting from a London
scription of straight vortices in a superconductor, we evalu
the periodic potential experienced by the vortices in
channel. The result, which is strictly valid only at inductio
far belowBc2, is generalized to higher inductions by takin
into account the vortex core and by introducing a fie
dependent coherence length and penetration depth. We

FIG. 12. Numerically obtained minimum threshold forcef̃ c as a
function of disorder strengthW for 100 channels withL5100a0

andl5a0. Upper curve:x50. Lower curve:x5xc(0).
06450
e
s.
-
he
l
te
t-
is

e

er
t

-

al
-

s
rst
d

ro

t-
-

te
e

-
ve

studied the overdamped dynamics of a chain of interac
vortices in the effective channel potential. In our simplifie
description we have restricted the considerations to chan
with a width of the order of the lattice spacing,w;b0. We
have assumed that the resulting confinement perpendicul
the channel direction is strong such that the transverse
tion of the vortices in the channel can be neglected. Furt
since in all known channel experiments even for the low
achievable magnetic inductionsl*a0 holds, to a very good
accuracy only the first harmonic of the periodic potential
kept. These assumptions and restrictions allow us to de
mine the coefficients of a driven generalized Frenk
Kontorova model. Forl*a0, where the typical lengthl d of
a topological defect in the channel is much larger than
lattice spacinga0, but still much smaller than the system siz
l s , l s@ l d@a0, the dynamics in the channel is convenien
described by the continuum limit of the Frenkel-Kontoro
model known as the driven sine-Gordon model.

After deriving the coefficients of the Frenkel-Kontorov
model, we investigate the commensurate-incommensu
transition commonly known to occur in this model at therm
equilibrium. Since our focus is on the depinning problemin
the absence of fluctuations, we modify the theory. We define
a ‘‘mechanical’’ commensurability-incommensurability tra
sition. It turns out that the boundaries of the system pla
crucial role if one supposes that the number of static vorti
in the strong pinning environment is constant: the pur
mechanical commensurate-incommensurate transition oc
when the entry barrier for discommensurations at the bou
ary vanishes.

This concept can be generalized to describe depinnin
finite driving forces. The reason is that the entry barrier
discommensurations is reduced when a driving force is
plied. The depinning then occurs at frustrations below
zero-force threshold frustration, at which the mechani
commensurate-incommensurate transition occurs. In this
gime, the entry barrier is by far the largest barrier in t
system.

Above the zero-force threshold frustration, in the inco
mensurate regime, the entry barrier has vanished and
commensurations enter the system until the mutual repul
between the defects prevents new ones from flowing in. T
extremely small Peierls-Nabarro barrier which may arise d
to the discreteness of the system31 is not taken into account

The depinning scenario depends on both the driving fo
and the frustration parameterx5(a2a0)/a0, which mea-
sures the mismatch between the lattice constanta0 of the
channel environment and the preferred lattice spacing in
channel,a. In the absence of frustration,x50, depinning
occurs via a trivial homogeneous solution when the barrie
the tilted washboard potential vanishes and the thresh
force is given by the amplitude of the sinusoidal chan
pinning force,f c5m. In the presence of frustration, depin
ning occurs via the formation of topological defects at one
the sample boundaries. For weak frustrationuxu!xc(0), we
find f c5m$12(1/2)@A3x/xc(0)#4/3%, whereas close to the
threshold frustrationxc(0)2uxu!xc(0), we obtain f c
5(4m/p)@12x/xc(0)# and for uxu.xc(0) the depinning
force vanishes,f c50. By performing a numerical integra
8-13
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tion of the equation of motion we have determined the val
of f c(x) in between these limits.

Further, we have numerically calculated the force-veloc
curves which correspond to the current-voltage characte
tics of the sample. In the commensurate regimeuxu
,xc(0), we find acharacteristics typical to a saddle-poi
bifurcation scenario,v;( f 2 f c)

1/2, whereas in the incom
mensurate regime, where the commensurability gap has
ished, the response is linear,v; f . This behavior is typical
for a system with open boundary conditions, where the d
sity of topological defects is a function ofboth the frustration
x and the driving forcef.

In systems with twisted periodic boundary condition
where the density of topological defects is constant,
force-velocity characteristics are different in the incomme
surate regime.20 One observes a linear low-mobility regim
for small driving forces,f !m. The slope of the linear part i
proportional to the density of topological defects in the s
tem which isfixedby the magnitude of the twist at the end
of the system. The slope of the low-force regime is th
considerably smaller than in the high-force regimef @m. For
f *m the curves show a square-root dependencev;( f
2m)1/2 and only in the high-force limit do they become lin
ear again. The resulting force-velocity characteristics t
differ significantly from our results in the incommensura
phase, which is linear for all forces.

We conclude that the boundary conditions strongly aff
the force-velocity characteristics. The reason is that in fr
trated systems the presence of~open! boundaries supports th
formation of topological defects which lead to depinnin
Further, the entry barriers at the boundaries determine
rate at which defects enter the sample, thus ruling the
namic behavior entirely. The main problem in determini
the behavior of vortex-flow channels is thus to model rea
tic sample boundaries. Note that boundary effects other t
considered here might modify the picture. For example,
vortex lattice of the channel environment may be distor
due to the presence of screening currents along the sa
boundary, causing a local variation of the frustration. Furth
screening currents may lead to Bean-Livingston barriers
vortices which would increase the energy to form a defec
the sample edge. However, the conclusion that transpo
artificial vortex-flow channels with a perfectly ordered vo
tex lattice in the environment is ruled by the entry barriers
the sample boundary persists even if further boundary eff
are taken into account.

The picture that depinning occurs only via defect form
tion at the boundaries does not hold if inhomogeneities
present in the bulk. For example, local distortions of t
vortex lattice in the channel environment caused
quenched disorder may generate weak spots that suppo
formation of vacancy-interstitial pairs at sufficiently larg
driving force.

To investigate this issue, we have extended the mode
accounting for small static displacementsd(r ) of the vortices
in the channel environment. We assumed the channel e
ronment to be in the elastic limitu¹•du;j/Rc!1, wherej
is the coherence length measuring the typical displacem
within a distance given by the in-plane correlation lengthRc
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for lattice distortions. Further, we assumed that close to
channel edges,lj/Rc!a0/2 in order to obtain a local ap
proximation for the displacement fields of the static vortic
close to the channel edge. Sincej/Rc!1, this approximation
should be valid as long as the penetration depth is not or
of magnitudes larger than the typical vortex-lattice consta
Further, we took only into account longitudinal displac
ments along the channel edge. For narrow channelsb0;w,
we then obtained a generalized amplitude and pha
disordered Frenkel-Kontorova model which in the co
tinuum limit corresponds to a disordered sine-Gordon mod
Transverse displacements imply modifications of the dis
dered phase and amplitude of the sinusoidal pinning fo
and to additional pinning force terms. This issue and its c
sequences for depinning have not been considered here

In order to gain a basic understanding, we have first
vestigated depinning caused by a specific longitudi
vortex-lattice distortion field along the channel edges. D
pending on their location, these distortions cause additio
local frustration of the system, modifying the threshold for
for depinning. Distortions at the boundary of the sample
fect the entry barrier for topological defects and cause sh
of the x-f curve along thex axis. Local distortions in the
bulk are shown to act as nucleation seeds, reducing
threshold force.

Finally, we have studied the effect of small disorde
induced displacements of vortices in the channel envir
ment. We model disorder by uncorrelated relative displa
ments which are represented by random values that
independent identically distributed according to a box dis
bution. In the absence of frustration local lattice distortio
in the channel environment lead to an effective channel
tential with weak spots. At the weakest spots vacan
interstitial pairs are formed when reaching the depinn
threshold force. In the presence of frustration, a crosso
from bulk depinning to boundary depinning occurs when
entry barrier becomes smaller than the smallest bulk pinn
barrier. Increasing the frustration the entry barrier is d
creased until it becomes smaller than the typical bulk pinn
force for kinks due to disorder. Applying a finite drivin
force that is large enough to overcome the entry barrier,
smaller than the bulk pinning force, topological defects en
the channel and become pinned in the bulk. The finite dep
ning force in this regime is thus again determined by b
properties. Increasing the driving force up to the thresho
topological defects which travel some distance until beco
ing trapped are successively introduced. Above the de
ning threshold this leads to a jerky motion with success
depinning and pinning of topological defects.

We obtained the force-velocity characteristics, the thre
old force as a function of the frustration, and the thresh
force as a function of the disorder for an ensemble of ch
nels with randomly perturbed channel edges. Since the
oretical results are only valid for narrow channels with o
mobile row, weak longitudinal disorder, and since t
squeezing effects of channel edge currents were not ta
into account, the interpretation of the available experimen
data remains speculative. It would thus be interesting to
tend the model to include these additional properties.
8-14
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PLASTIC DEPINNING IN ARTIFICIAL VORTEX . . . PHYSICAL REVIEW B67, 064508 ~2003!
Realizing that the Frenkel-Kontorova model and the si
Gordon model are equivalent, the question arises as
whether the disordered Frenkel-Kontorova model stud
here is related to the Fukuyama-Lee-Rice model34,35~FLRM!
for charge density waves. This question is especially in
esting with respect to the characteristics of the depinn
transition. The FLRM and simplified versions have be
studied both analytically36,37 and numerically,38–40mostly in
higher dimensions. The FLRM possesses a phase-disord
sinusoidal potential where the phases are chosen rand
from an interval@2p,p#. This model shows critical behav
ior for d,4. Approaching the threshold from below, th
critical state is formed by the release of avalanches cha
terized by typical sizes that diverge with a power-law beh
ior. Above threshold the motion is typically jerky38 and the
velocity shows a power-law behaviorv;( f 2 f c)

n, where
the exponentn depends on the dimensionality of the syste

One is tempted to say that vortex-flow channels provid
physical realization of the one-dimensional FLRM. How
ever, we find that the depinning process and the dynam
above threshold strongly depend on the type of boundarie
the sample edges, the strength of the frustration, and
strength and type of disorder. In finite weakly disorder
systems as studied in this work three depinning regimes
be identified. Increasing the frustration depinning first tak
place via defect nucleation at weak spots in the bulk, then
defect nucleation at the boundary, and finally by releas
pinned preexisting defects when the frustration is so str
that the entry barrier for defects has become irrelevant.

This is indeed very different compared to the FLR
where system boundaries are not taken into account and
d

e
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disorder is of a different type. If at all, characteristics of t
FLRM like the avalanching below depinning threshold, t
roughness of the critical state at threshold, and the je
motion above the depinning threshold resemble what we
serve in the incommensurate state in the presence of w
disorder.

The main difference to the problem treated here is that
FLRM considers a system close to thermal equilibriu
whereas here we are interested in the depinning behavio
from equilibrium. We identify typical configurations that a
as sources which produce vacancy-interstitial pairs and
lower the depinning threshold. These we call weak spots.
find also other configurations that pin the topological defec
The system is static if all topological defects that enter
system via the boundaries or are induced at weak spots
trapped by lattice distortions of the pinning type. Depinni
takes place when the density of topological defects beco
larger than the density of pinning sites. It is thus clear that
enhancement of the depinning threshold can only occu
systems with a considerable amount of pinning sites form
by lattice distortions in the channel.
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