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Phase diagrams of spin ladders with ferromagnetic legs
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The low-temperature properties of the si8r 1/2 ladder with anisotropic ferromagnetic legs are studied
using the continuum limit Bosonization approach. The weak-coupling ground-state phase diagram of the model
is obtained for a wide range of coupling constants and several unconventional gapless “spin liquid” phases are
shown to exist for ferromagnetic coupling. The behavior of the ladder system in the vicinity of the ferromag-
netic instability point is discussed in detail.
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[. INTRODUCTION the weak-coupling ground-state phase diagram &=dl/2
ladder system with ferromagnetic legs and anisotropic inter-

A theoretical understanding of the properties of quantunieg exchange using the continuum limit Bosonization ap-
spin ladder systems has attracted a lot of current interest fgroach.

a number of reasons: on the one hand there is an increasing The Hamiltonian of the model under consideration is
number of new magnetic materials with a ladderlike struc-given by

ture characterized by rich ground-state phase diagtadrs.

the other hand, spin ladder models pose interesting theoreti- H=H
cal problems. For example, since a sfirchain can be de- o )
scribed as a $leg ladder with spinS=1/2, provided the Where the Hamiltonian for leg is
interchain coupling is appropriately chodehthe even- or
odd-leg ladder systems are an excellent demonstration for
Haldane’s conjectufeas generalized t&=1/2 ladders: the
antiferromagneticspin ladder with an even number of legs 2)
corresponds to a spin chain with integer spin and is predicted ) R

to have a gap, while a ladder with an odd number of legs hagnd the interleg coupling is given by

a gapless excitation spectrum. The two-leg antiferromagnetic N N

ladder is presumably the simplest spin system which allows

us to follow the continuous evolution between s@s 1/2 Hi:Jiy;l (S}Y]-SQJ-+S{JS32’J)+JEJ§=:1 STETRENC)
andS=1 antiferromagnetic chains nearly exactRy.

The two-leg ladder model has been the subject of considHere Sﬁ’yj'z are spinS=1/2 operators at th¢th rung, the
erable theoretical intere&t®® most of this work, however, index a=1,2 denotes the ladder legs. The intraleg coupling
concentrated on isotropic or weakly anisotropistiferro-  constant is ferromagnetid >0, and therefore the limiting
magneticchains coupled by an interchain exchange of arbi-case ofisotropic ferromagnetidegs corresponds td =1,
trary sign. The obvious reason is that antiferromagnetic ladwhile the case oisotropic antiferromagnetitegs is obtained
der systems exist in nature and have been experimentallpr A=—1. Since we study the ground-state phase diagram
investigated in some detail; the most prominent example if the ladder system with ferromagnetic legs we will restrict
the CyO; ladder subsystem of the compound S1,,0,4;.  ourselves to considex>0, including|A|<1 in the limit of
The present work is devoted to the much less studied field akgs with strong in-plane anisotropy.
ferromagnetic spin ladders and our motivation is mainly the- The outline of the paper is as follows: In Sec. Il we derive
oretical, since we have found these systems to exhibit inteithe Bosonized formulation of the model in the continuum
esting aspects. However, quasi-low-dimensional spin sysimit. In Sec. Il we discuss the weak-coupling phase dia-
tems with ferromagnetic interactions are also realized agrams of the model for three different cases of anisotropic
real crystals, as exemplified by the&s=1/2 chain interleg coupling. Finally, we conclude and summarize our
(CgH1:NH3) CuBr; (CHAB),*® and theS=1 chain CsNig.*"  results in Sec. IV. In the Appendix we present the spin-wave
No ladder systems with ferromagnetic interactions areapproach to study the transition line related to the ferromag-
known yet, but considering recent progress in material scinetic instability in the system.
ence such systems may well be synthesized in the future.
Theoretically, the ferromagnetic ladder model in the vicinity
of the ferromagnetic instability point was recently studied by
Kolezhuk and Mikeska within the framework of quasiclassi- In this section we derive the low-energy effective-field
cal analysis based on a nonlineaimodel approach? In this  theory of the lattice model Ed1). Since the weak-coupling
work we extend these studies addressing the problem of ReBosonization approach to the ladder models is based on the
24 in the extreme quantum limit of spins 1/2 and investigateperturbative treatment of the interchain couplihtfsve start
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II. BOSONIZATION
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from the Bosonization of separate si@@r 1/2 ferromagnetic c \ﬁ
XXZ chains. St =-—=:c08\/ -6,

N K

A. Separate chains _ib \/;
— 1) ——siny in\/—o -
The anisotropic spirb=1/2 Heisenberg chain withA| +(=1) ‘/277'3'” 4K gosin Ke‘”" ©
<1 is known to be critical. The long-wavelength excitations
are described by the standard Gaussian tHéomjth the
Hamiltonian c \/;
S =——==:sin\/ ~0,:
Ny K

_U 2 2 .
Hieg=7 f dX[(3x)?+ (3:6)°]. 4 e % - \/éea:, 0
an
¢(x) and 6(x) are dual Bosonic fields};¢p=ud, 6, and sat-
isfy the following commutational relation: K a
S .= \/;axgbaﬂ—l)';:sin\/4wK¢a(x):. (11
[(x),0(y)]=1O(y—x), (5

Note that the first and the second terms in E§$.and (10)
[H(x),0(x)]=i/2. are Hermitian because of E(). Furthermore :- -: denotes
the normal ordering with respect to free Bose systdina
u stands for the velocity of spin excitation and is fixed fromis the leg index. The nonuniversal real constamtb, andc

the Bethe ansatz solution®4s depend smoothly on the parametkr are of the order of
unity at A=0,%2*3and are expected to be nonzero at arbi-
K trary A<1.
U—JmSIﬂ(’IT/ZK), (6)

B. Coupled spin-¥2 chains
whereK is the Luttinger liquid parameter known from com-

parison with the exact solution of theéxZ chain: For coupledS=1/2 chains we start with two criticeb

=1/2 Heisenberg chains and treat the interleg coupling as a
perturbation assuming? |,|JY|<J. Therefore we start with
K= . @ two free Bose field Hamiltonian@) and simply attach a leg

2 arccos\ index a=1,2 to the fields.

Then we introduce the symmetric and antisymmetric
Thus the parameteK increases monotonically along the combinations of the Bosonic fields:
XXZ critical line —1<A<1 from its minimal valueK

=1/2 atA = —1 (isotropic antiferromagnetic chains equal 1 AL
to unity atA=0 (the XY chain, andK—~ at A—1. At b= \/T((ﬁli ¢2), 0= \/7’(61i 05), (12

A=1 the spin excitation velocity vanishes=0. This cor-
responds to thderromagnetic instabilitypoint of a single

s

chain. where
To obtain the Bosonized version of the ladder Hamil- ,

tonian we need the explicit Bosonized expressions of the A :(1:i ‘]_L)

spin operators. The Bosonization procedure for the $§pin * 27 Jets

=1/2 Heisenberg chain is reviewed in many plates!

However, since we consider the ladder model é#tliomag-  and

netic legs our Bosonization conventions require some com-

ments. The unitary transformation 1 T
JeffZJmSinz—K.

SY—(-1isyY, S-Sk 8
Using Eqgs(9)—(11), we finally obtain the following Bosonic

changes the sign of the intrachain transverse exchange amfhmiltonian density:

maps the Hamiltonial) to the Hamiltonian withantiferro-

magnetidegs. To maintain the ferromagnetic character of the H=H*+H +H= (13)

in-plane correlations in the Bosonization, it is convenient to nt

implement the multiplicative factor{1)’, introduced by the 7

unitary transformatiori8), directly in the Bosonized expres- L Uy 2 2 1 ——

sions for the transverse components of the spin operators.H _7[((?"0*) (0 4)"]= 27003 8K+ b (%),

Using the standard Bosonization formufag we obtain (14
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M= (80 + b (0T + f—;cosv%Kbe(X)

N (27
+ Ecos [0_(x), (15

2
Hiinﬁj—cos K—Tr<9,(x)cos\/87-rK+ é.(x). (16)

2
Here
u 1 J7
ui:EZU(liE;) (17
K+=K-A+2K(1Ii—i>, (18
- - 27 Jets
and we have introduced the following coupling constants:
Jr=3m, (19
for A=0 and otherwise
T~ (20
VT~ (21
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The two SG models respectively describe the symmetric
() and antisymmetric¢_) degrees of freedom.

The bare values of the dimensionless coupling constants
M. and K. are known only in the weak-coupling limit
|3%1/13,|]A|<1 where they have the values

3
M.=F%—, (24
7TJ
Ki=1 24 . Ji 25
P 9

The scaling dimensions of thepsineterms in Eq.(23) are

d% =2K.=2. Therefore, in the weak-coupling limit, both
SG models have marginal dimension and details of their be-
havior should be determined within the framework of the
renormalization-group analysis. However, a rather straight-
forward estimate indicates that at>4J7/J we haveK ..

>1 and thecosineterms are irrelevant. Therefore in this
case one concludes that the effective model reduces to the
theory of two independent Gaussian fielfls . The effect of

the interleg coupling is extremely weak and is completely
absorbed in the renormalized values of the spin-liquid pa-
rametersK .. characterizing respectively gapless symmetric
and antisymmetric modes. However, it is important to note

with some positive constants of proportionality which cannotthat in the vicinity of the single chain ferromagnetic instabil-

be fixed by symmetry argumenfsontrary to the constant

appearing in Eq(19)].
In deriving Eq.(13), a term

~cosy2m/K_60_cosy8wK_¢_,

which is strongly irrelevant alA>0 (ferromagnetic legs

ity point, at A—1, the effective bandwidth collapse,;
=2(1-A)—0. Therefore in this limit the effect of the in-
terleg coupling becomes very strong. This implies subtle ef-
fects to be discussed later.

The transverse interleg exchangel?) leads to
the appearance of thestrongly relevant operator

was omitted. Thus our approach is tailored to cover ferro—jjycos\/ZTrKjIH, with the scaling dimension d*
magnetic intraleg coupling and can be applied to antiferro= (2K _)~1<1/2 in the theory. Therefore thentisymmetric

magnetic intraleg coupling only fdaA|<1.

C. Effective continuum-limit model

At J7 =JY=0 the Hamiltonian(13) describes two inde-
pendent Gaussian fields, i.e., two gapless fields, each de-
scribing a critical spirS=1/2 Heisenberg chain. Let us first

sector is gapped at arbitrary JJ#0. Fluctuations of the
field 6_(x) are completely suppressed in this sector and
0_(x) is condensed in one of its vacua. The vacuum expec-
tation value of thecosineterm is

(cosy2mK-10 Y= (26)

address the question of whether the interleg exchange leads § R _ . .
to the dynamical generation of a gap in the excitation specwith y~ (| 7113 *-"?"9-)<1 in weak coupling and is
trum. In the case of anisotropic interleg exchange it is ratheof the order of unity at.7}¥|=J.

instructive to study the effect of the longitudinal?() and

transverse J}”) part of the interleg coupling separately.

Therefore the condensation of the figld strongly influ-
ences the coupling between the symmetric and antisymmet-

At JY=0 the effective theory of the original ladder fic modes induced byH . Taking into account that the
model is given by two decoupled quantum sine-Gordorfluctuations of the field) . are stopped, one easily finds that

models

Heti=H +H ", (22

where

1
Hi=u¢f dx(E{[axat(x)]2+[‘9x¢1‘(x)]2}

M .
+2—7;cos\/87-th ¢+ (X)

. (23

at JY#0 infrared behavior of the symmetric field is gov-
erned by the following “effective” sine-GordofSG) theory

1
H;rff: U+f dX( E{(5x0+)2+ [5x¢+(x)]2}

+

M+
zjrffcos\/8rrK+¢+(x)), (27

where

064419-3



T. VEKUA, G. I. JAPARIDZE, AND H.-J. MIKESKA PHYSICAL REVIEW B67, 064419 (2003

M ing a crossover to one of two strong-coupling regimes with a
dynamical generation of a commensurability gap in the ex-
citation spectrum. The flow dfM| to large values indicates
that the M cosy87wK¢ term in the sine-Gordon model
dominates the long-distance properties of the system. De-

2(K-1 pending on the sign of the mass term, the figldgets or-

dered with the expectation values
FIG. 1. Renormalization-group flow diagram; the arrows denote

the direction of flow with increasing length scale. [7/18K at M>0
()= . (32
1 0 at M<O
M= ———(T%+ v |T._]). 28
eff 7TU+( Lty 28 Using this analysis for the excitation spectrum of the SG

model and the behavior of the corresponding fields, &2[S.
and(32), we will now discuss theveak-couplingohase dia-
ram of the spirB=1/2 ferromagnetic laddemodel Eq.(1).

Since the obtained effective Hamiltonian for the symmetric
field is the SG model with thenarginal coupling, the reverse
influence of the symmetric field on the antisymmetric one i
negligible in our leading-order renormalization-gro(RG)
analysis even in the case of the strong-coupling regime in the Ill. PHASE DIAGRAMS
symmetric sector. This mapping of the initial sp8+ 1/2 . . :
ladder model onto the quantum theory of Bose fields de- In th'_s section we discuss s_eparately the ground-state
scribed in terms of an effective sine-Gord¢®8G Hamil- phase dlagram of thterromagr_wetm Iadder_:oupled only by
tonian (23) or (27) will allow us to extract the ground-state the longitudinal part of the interleg spin exchangéec. .
properties of thes=1/2 ladder using the far-infrared proper- IIIA), coupled only by the transverse part of the interleg spin

ti fth tum SG th . exchange(Sec. I B) a_md by an isotropic interleg coupling
1es of the quantum eory (Sec. Il O. At this point we note that from the structure of

the interaction Hamiltonian Eq.3) follows that the phase
diagrams for cas€A) and casgB) will be symmetric with

The infrared behavior of the SG Hamiltonian is describedrespect to the lineg, =0 since a change of sign ih leads
by the corresponding pair of renormalization grolRG)  to a unitary equivalent Hamiltonian. This is in contrast to
equations for the effective coupling constari§l) and case(C) where this unitary equivalence does not exist.
M(1),

D. RG analysis

A. Chains coupled by the longitudinal part

'A;l_l(l) ==2(K()—=1)M(l), (29 of the interleg exchange
In this subsection we consider the weak-coupling phase
dK(1) 1, diagram of the spirb=1/2 ferromagnetic ladder modél)
- M, coupled by a weak longitudinal interchain exchangé” (

=0,J7#0). The Bosonized version of the modef.;
wherel =In(ay) and the bare values of the coupling constants=7 *+ 7 ~ where’{ * are given by Eq(23) and the bare
are £(1=0)=K and M(I=0)=M. The pair of RG equa- values of the corresponding dimensionless coupling con-
tions (29) describes the Kosterlitz-Thouless transitf6iThe  stants are given by Eq&24) and(25). By inspection of the
flow lines lie on the hyperbola initial values of the coupling constants one easily finds that

4(K—1)°— M?=pu’=4(K—-1)>—M? (30) e at A<0 both the symmetric and the antisymmetric sectors
. ) . . . are gappedexcept forJ7 =0);
and exhibit two different regimes depending on the relation, At A>0 the symmetric sector is gappefor J2/3>2A
; ; 1

between the bgre cogpllng constdAtS (see Fig. 1 . >0 while theantisymmetric sector is gappeddr J7/J<

Weak-coupling regimeFor 2(K—1)=|M| we are in the _oA<0Q
weak-coupling regime: the effective masdg—0. The low- '
energy(large distancebehavior of the corresponding gapless _ ) ) o
mode is described by a free scalar field. The vacuum aver- This determines the following three distinct sectors of the

ages of exponentials of the corresponding fields show &hase diagram as traced already in the RG anafgsis also
power-law decay at large distances Fig. 2 below:

» sector A:A<0 corresponds to the phase with gapped ex-
citation spectrum;

whereK* is the fixed-point value of the parametérdeter-  * sector B:A>0 and|J7|>2JA corresponds to the phase

mined from Eq.(30). characterized by the one gapless and one gapped mode in
Strong-coupling regimeFor 2(K—1)<|M| the system the excitation spectrum. In particular}t>0 the symmet-

scales to strong coupling: depending on the sign of the bare ric mode is gapped whereas the antisymmetric mode is

massM, the renormalized mas$1 is driven to* o, signal- gapless and vice versa dt<0;

(/K (0)gIKBY _ (elKUO)g=IKAM)y || —K* 227 31)
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A In sector B(B1) the antisymmetridsymmetrig field is
) gapped with the vacuum expectation valug )=0 ((q§+>
A =0). However, as can be seen from weak-coupling RG
(anthal;(i)xigl;ﬂm AN R G en analysis as well as from the strong-coupling effective spin-
Lefas AT '{{'.:'5 -~ 1/2 model(see beloy, atJ? #0 the lineA=0 is the phase-
Ll :Lsmg L‘i‘c'l'l'li';;-:_:_:_:;_‘__\ tranfsition Iine_ along which the gapped A0 symm_etric
a2l BXY2N G| TR (antisymmetri¢ mode becomes gapless. Therefore in sector
.—_:—j-'spm Liquid I ;;;;_'—::E:E; 33377007 Spin Liquid .31 B (B1) the gapless degrees of freedom corresponding to the
iefeieialeleielelaleiiaieiuieiuiufuinie,  § )b fsisiujeiuiuieiuieiuiuieiueiujuiuiuieiuy symmetric (antisymmetri¢ mode are described by the free
LRO AFM A | Al LRO AFM A Bose field system with the fixed-point value of the param-
(Inphase interchain order) (Antiphase interchain order) etersk* . Using Eq.(30) and the bare values of coupling

constantg24) and (25) it is straightforward to show that at
FIG. 2. The ground-state phase diagram of the two-leg laddefA|,|J%/J|<1,
with a longitudinall? S} ;Sf , coupling between legs. For details see

text. 1
Ki=1+ ?/ZA(ZA FJ3313).

* sector C:A>0 and|J?|<2JA corresponds to the phase
where both modes are gapless. Note that atA=0 the fixed-point values of the spin-liquid

« As we show below, the same phases are present in thearameters ar&’ =1 while atJ?=0 [see Eq.(18)] K%
strong-coupling regime. The only phase which is missed ir=K. Therefore we conclude that along the line=0 the
the weak-coupling RG analysis is the ferromagnetic phasga_pless sector in the system is |Qent|cal to a ;lngle isotropic
it appears only in the strong-coupling regimelat 1 or at ~ SPiNS=1/2 Heisenberg chain, while along the lide=0 we
A<1 but|J?|~1/A>1. reach the limit of two decoupled spif=1/2 Heisenberg

To clarify the symmetry properties of the ground states ofchains. _ o
the system in the different sectors we study the large- '€ Very existence of a gapped excitation mode accom-

distance behavior of the longitudinal panied with ordering of the fieldp_ (or ¢.) implies sup-
pression of the transverse correlations. On the other hand, the

KZZ(r):==(S%(0)S4(1)) (33)  presence of the gapless excitation mode leads to the power-
af (] B
law decay of the longitudinal spin correlations. Therefore we
obtain that in sector B

and the transverse

*
Kah(1)=(Sz(0)S5 (1) (34) KZL()~ K+2+<—{>“,
spin-spin correlation functions for intraleg € B) and inter- 21 ri
leg (a# B) spin pairs. Using the results for the excitation ywhile in sector B1
spectrum and the behavior of the corresponding fields in the
gapless and gapped phases, Eg4) and (32), and the ex- K*  (—=1)
pressions for the corresponding correlation functions from Kip(r)=(—1)“"# m+r7

Bosonization, we now discuss the characteristics of the vari-

ous phases in the different sectors of tiveak-coupling \we denote this phase as thpin liquid | phase. It is inter-

ground-state phase diagram. . esting to note that in sector B the following operator shows
In the sector A §% <0) the vacuum expectation values of quasi-long-range behavior:

the fields aré ¢ )= /8K . and(¢_)=0. Ordering of the . PR B ,
¢. suppresses transverse spin correlations, while the longi- ([S{(N+S;(N]TS;(0)+S,(0)])

tudinal correlations are given by ~4(SF (NS (1S (0)S; (0))
- 1 1

zz r
Kaﬁ(r) ( 1)"-const. :r—llKi_’_(_l)rr—l/Ki—Ki. (35)
Therefore at\ <0 andJ? <0, the long-range-ordergtRO)
antiferromagnetic phase with inphase spin ordering on th%
rungs is realized in the ground state of the system.

In sector A1 (7 <0) the vacuum expectation values o
the fields are given by¢,)=0 and{¢_)=7/8K_. This

immediately implies that in this sector

S{+S5)? for the S=3 ladder corresponds to the operator
S%? in the S=1 chain and we therefore identify sector
B with the XY2 phase for theS=1 chain as described
in Ref. 2.
With increasing interleg ferromagnetic coupling we reach
the lineA =|J7|/2J which marks the transition into the phase
KZZ(r)~(—1)**B.(—1)- const. where both fields are gapless. In sector C of the phase dia-
h gram the system shows properties of talmost independent
Therefore atA<0 and J? >0 the LRO antiferromagnetic spin S=1/2 anisotropic Heisenberg chains with dominating
phase with antiphase intrarung spin ordering is realized irierromagnetic coupling. The transverse correlations in this
the ground state of the system. phase are given by
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Ké)’ﬁ(r):5aﬁ[r—1/4(1ﬁ<i+1/+<i) im(A)=4Je. (41)

4 (= 1) (KK UAC 1) (36 At |J7|>J the boundary of the ferromagnetic instability
] o can be established from the large rung coupling expansion
whered, 4 is the Kronecker symbol. The longitudinal corre- gpproach. Let us first consider the case of strong ferromag-
lations decay faster. In particular the intraleg longitudinalj,qtic intrarung interactiod? <0. In this limit a large gap of

correlations are given by order |J%| exists in the one-magnon excitation spectrum.

x4 K* Projecting the system on the subspace excluding antiparallel
KZ2 (1)~ + 2— (- 1)r_r—(K:+Kt)_ (37) orientatio.n of spins yvithin_ a given rung, in the second-order
2 perturbation expansion with respectd®|J?| and up to the

&glditive constanEq=—No|J?| we obtain the following ef-

The transverse interleg correlations are strongly suppresset . ) . : S
fective spin-1/2XXZ spin chain Hamiltonian:

in this phase, while the longitudinal part of the interleg spin-
spin correlations is given by

1 Xy _+ _— z 7z 7
H:; E}\eff(Tn Tn+l+ H'C-)+)\efanTn+l y (42)

K% —K*
KZ (r)y=———. 38
asl") 2712 8 where
This phase we denote as thpin liquid Il phase. 72 72
Although the analysis as considered above is formally )\§¥f=——z, )\gff:—z—zJA (43
valid in the weak-coupling limit 4,|J%|<J) we can esti- 97 197

mate the upper boundary for tisin liquid Il phase, in the 54 the pseudospin operators are
vicinity of the single chain ferromagnetic instability regime

using the dimensionality analysis. We determine the instabil- =SS, =515,
ity curve corresponding to the transition into the gapped o o

phase from the conditioK .. =1, where the scaling dimen- 1
sion of the correspondingosineterm d..=2K.=2. After Tﬁ=§(5ﬁ,1+ Sﬁ,z)-
some simple algebra one easily obtains thatt@t-0 the
field ¢_ is gapless, while the fielp, becomes massive for  |n agreement with the weak-coupling Bosonization analy-
sis, atA=0 (XY legs the system is equivalent to th®
K-1 =1/2 isotropic antiferromagnetidFM) chain. For arbitrary

7 >3 =27u (39)

A<0 (\%;>\%Yy) the spin chain given by the Hamiltonian
(42) is in thegapped Nel phase This phase corresponds to

For A=1-e with e<1, which implies IK~\2e<1, Eq. the LRO AFM interleg ordering with interleg phase shift
(39) takes the following form: equal to zero. At

o

<A< z
Ji(A)=4Je(1—T. 0<A<J/|J7]

(40)
(= NS <NE<A\3Y;) the spin chain(42) is in agapless pla-

Therefore in the vicinity of the single chain ferromagnetic nar XY phase, corresponding to the “spin liquid 1” phase of

instability point, at :-A<1, the spin liquid | phase with  the Bosonization studies and finally at

only one gaplesghere antisymmetricmode reenters the ,

phase diagram &t >J (A). (We note that the amplitude of A> /137

f[heco_si_neterm in_the limit of the_ single chain ferromagnetic (A2 < —\2,) the transition into the completely polarized

mstap[llty _pomt is nqt determmed. exacply, so the Ph‘f"se‘ferromagnetic phase takes place.

transition line determined by the dimensional analysis is of

qualitative nature in this limit. For J1 <0 the analysis is N

done in exactly the same manner with symmetric and antijhg of spins is antiferromagnetic. Projecting the system on

symmeztric modes changing roles. _ the subspace excludingarallel orientation of spins within
At J; =0 andA>1 each of the decoupled legs is unstablethe same rung, and introducing a new set of spin operators
towards the transition into a ferromagnetic phase.JAt

#0, we can address the problem of the ferromagnetic insta- ?;:3;15;2, Z-rj:sr;lsrfz,

bility in the ladder system studying the velocity renormaliza- o o

tion of the corresponding gapless excitations. In analogy 1

with the single chain case we mark the transition into the Tﬁzi(sﬁ,l— Sh2)

ferromagnetically ordered phase @t =0. Using Eqgs.(6)

and(17) one finds by extrapolation of the result valid up to in the second-order with respecti®&J? we once again map
first order inJ% the following estimate for the ferromagnetic the initial ladder model onto the theory of an anisotropic
transition: spin-1/2 Heisenberg chaii@2). One can perform the analy-

In the case of strong antiferromagnetic interleg coupling
>J>0 analysis is similar. In this case the intrarung order-

064419-6
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sis as discussed above, however, the ferromagnetic orderin
in terms of the effectiveS=1/2 chain at)? >0 corresponds
to an interleg ferromagnetic ordering with a phase shiftrof Anisotropic &_Z Rung
of the order parameter along the rung. ‘Large D’ phase __ee=mmmtm——— Singlets
The results obtained within the Bosonization approach to- / ™\
gether with the results from the strong-coupling expansion
allow us to draw the following phase diagram of the ladder I
with a longitudinal interleg coupling? (see Fig. 2 At A \
<0 the phase diagram consists of two gapped phases de
scribing respectively long-range-orderedeNantiferromag-
netic phases with gapped excitation spectrum and inplzse
J7<0) or (antiphase af? >0) ordering of spins within the Anisotropic Rung 1Y)
same rung. The lind =0 marks the transition into thepin ‘Large D" phase Singlets
liquid | phase characterized by a gapless excitation spectrun
and power-law decay of the spin-spin correlation functions. )
The critical indices for the decay of the corresponding spin- . FIG. 3. The gro“n.d'State phase diagram of the two-leg ladder
spin correlations in the spin liquid | phase aye=1. In the with transverse coupling between legs.
case of strong interleg exchangk |>J, further increase of

"stripe" AA "stripe”

the interleg ferromagnetic exchangeleads to the transition To copclude this subsection we note that the ground-state
71 . : phase diagram of the ferromagnetic ladder system coupled
atAc=J/|Ji| mtq the phase with fe_rromagnetlcally ordered only by the longitudinal part of the spin-spin exchange inter-
legs. However, in the weak-coupling case,|at|<J, an  4ction exhibits a rather rich phase diagram which consist of
increase of the parametdr at givenJ{ leads to the transi- | RO AFM phases, a spin liquid phase with one gapped and
tion into spin liquid 1l at Ac(1)=|JJZ_|/2J. The spin liquid I one gapless mode, a spin liquid phase with two gapless
phase is characterized by a gapless excitation spectrum amngbdes, and a phase with ferromagnetically ordered legs.
power-law decay of the spin-spin correlation functions with
critical indi'ceSyi:ZI. This tran;ition marks the development B. Chains coupled by the transverse part of the ladder
of the regime dominated by intraleg coupling, whereas the
interleg longitudinal exchange plays only a rather moderate ) ) _ .
role. However, with further increase of the intraleg ferromag- !N this subsection we consider the case of two critical
netic exchange, in the vicinity of the ferromagnetic instabil- Heisenberg chains coupled by a transverse interleg exchange
ity line the spin liquid Il phase becomes unstable and theinteractiond? =0 andJ?Y#0. The particular aspects of this
system reentres into thepin liquid | phase. This reentrance limiting case are the following ones:

effect is connected with a sharp reduction of the bandwidth antisymmetric mode is gapped at arbitrafy=0;

n th? vicinity of tfhteh ferrotmatg_;r}enc transﬂflotrrl] ar_1dt al subse-, e low-energy properties of the system are determined by
quent increase of the potential energy of the interleg cou- o yopavior of the symmetric field:

pling. Therefore just before the transition into the ferromag-, the infrared properties of the symmetric field are deter-

netically ordered phase, the short-range interleg fluctuations . . :
get stopped, and as in the case of the strong intrarung cou-mm.ed by th? subtle coupling between the symmetric and
antisymmetric modes.

pling, thespin liquid | phase is unstable toward the transition

into the phase with ferromagnetically ordered legs. We start our analysis from the limiting case of weakly aniso-

However, since the transition into the ferromagnetic phas?ro ‘e XY chains. counled by the weak interleq transverse
is a typical finite bandwidth effect, the parameters deter- P ' P y 9

. " . X
mined quantitatively within the Bosonizatiof.e., infinite exchan_ge, assumld@|,|j_ly|/\]<l (see Fig. 3 At JB’_;&O
band approach strongly depend on the way of regularizationtr1e gnns_yrzlmetrlc”que is gapped and th.e dual antisymmet-
of the continuum theory on small distances. Therefore it id(C field is “pinned” with vacuum expectation value

useful to determine the lowest boundary of the ferromagnetic — X

phase on the phase diagram, starting from the ferromagneti- (0.)= K2 at J'>0 (44)

cally ordered phase and using the standard spin-wave analy- - 0 atJP<0 '

sis (see the Appendix At |J?|<J this approach givedZ)! _ o

—2Je. This discrepancy clearly is the result of the linearizedBehavior of the symmetric field is governed by the SG
expressions used for the parametérs, Eq. (18). However, Hamllton_lan (27). _The standard RG analysis gives that the
as long as the multiplicative renormalization used here foSymmetric mode is gapped at

the parametersi. and K., Egs. (17) and (18), remains

valid, the scenario discussed above, wheresihia liquid | _r.

phase is unstable towards the transition into the phase with A<fa 43 | Tl (45)
ferromagnetically ordered legs, remains qualitatively plau-

sible. For a more quantitative description, sufficiently de- Therefore atA<A; the excitation spectrum of the sys-
tailed numerical studies of this sector of the phase will betem is gapped. The dynamical generation of a gap in the
very helpful. symmetric mode leads to condensation of the figldwith a

exchange
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vacuum expectation valugb, )=0. Since the dual compo- transverse coupling reduces the tendency towards ferromag-
nent of the antisymmetric field is pinned with vacuum expec-netic ordering and leads to the transition into the gapped
tation value given by Eq(44), the so-called “disordered” phase at

phasé s realized in the ground state. &Y>0, spins on the ; va

same rung form a singlet and the ground state corresponds to Je->JL=I1-A)"

the state with a singlet pair on each rung. There is no corregquivalently we have

lation between spins along the ladder. In the case of ferro-

magnetic coupling, al’Y<0 spins on the same rung form a Aop=1—\2(T._ 1%

state corresponding to tf&=0 component of the tripldian

N e T2 To summarize this subsection we note that the ground-state
asymmetric triplet” pain and the ground state corresponds

to the state with an asymmetric triplet pair on each rung. | hase diagram of the ferromagnetic ladder system coupled
y piet p 9- y the transverse part of the spin-spin exchange interaction

ana(ljogy ';O E{?].e phﬁses of t{sfl chai? as_dilscuser:]d in I?ef. 2 only also exhibits a rich phase diagram which consist of the
we eZO:A 'Shp ase as the ahnlsohroplc f}ﬁgp Fa]se. ‘disordered rung singlet” and anisotropic larBephases, the
ForA=Ac, the system is in the phase where the symmet, sy-plane gaplessY1 phase, and the “stripe” ferromag-

ric mode is'gapless. Since the ar.‘“symmetfic mpde is gapp tic phases with dominating intraleg ferromagnetic
the alternating partof the spin-spin correlations sxponen- ;
. . ordering.
tially small, while thesmooth part shows a power-law decay
at large distances. In particular, the in-plane correlations are . . o
given by C. Chains coupled by isotropic interleg exchange
In this subsection we consider the weak-coupling ground-
atp . state phase diagram of the mod#}) in the case of an iso-
) r YA (46)  tropic interleg exchangd’ =J=:7, . In this case the be-
havior of the antisymmetric sector is completely similar to
the above considered case of the ladder with transverse ex-
change: the antisymmetric field is gapped and the vacuum
expectation value of the dual fiel , depends on the sign
of exchange and is given by E(44) after the substitution
Jﬁyﬁ jl .
The far-infrared properties of the symmetric field are gov-
As follows from Eq.(46) the lineJY=0 marks the tran- erned by the effective SG Hamilt.onia(m) with trle bare
sition from a regime with ferromagnetic interleg order into Values of the model parameters giventy andMeyy,
the regime with antiferromagnetic interleg order. In the vi- K
cinity of this critical lineJY=0 the gap in the antisymmetric K,= K( 1— I
mode M _) is tiny, therefore the correlation functions given 2mu
by Egs. (46) and (47) are valid only for distances>L 1
~1/M_. However, at distances<L. fluctuations of the + _ =
antisymmetric mode are strong, andcthe behavior of correla- Meri= WU+$(1+ %) (50
tion functions is the same as in tlpin liquid Il phase Egs.
(36)—(38). Following SchulZz who has discussed a similar
phase in the context of the sp8=1 chain we denote this
phase as apin liquid XYL phase. e at 7, >0, the antiferromagnetic interleg exchange reduces
Let us now discuss the phase diagram of the model in the K, and increaseM };; and therefore supports the tenden-
vicinity of the single chain ferromagnetic instability point cies towards development of a gap in the excitation spec-
A=1. AsA—1, the effective-coupling constant behaves as trum;
e at J, <0, the ferromagnetic interleg exchange increases
Mgrp KT, 1 K., while with increasing|J,| the parameterM
omu 23 € =7, (1-6)—0; therefore we expect an enlargement of
the gapless section in this case.

Nind

N

K’;yﬂ(r):const( -

while the longitudinal correlations decay faster,

*
+

KEp(n=>—. @7

(where 6 is a nonuniversal positive numbeiThe resulting
asymmetry of the model is clearly seen:

wheree=1—A. A rough estimate of the renormalization of

the velocity of the symmetric mode excitatioms and of the We start our analysis from the limiting case of weakly
spin liquid parameteK , at A=1 in second order gives anisotropicXY chains assuminfA|,| 7, |[/J<1. At A=0 we
have K=1 and the system shows a gap in the excitation
ur=u[1+N\K(J,_1d)?], (48 spectrum at7, >0 and is gapless in the case of ferromag-
netic interleg exchangg, <0. Therefore af\ =0, with in-
K. =K[1-\K(T._13)?], (49)  creasing ferromagnetic interleg exchangg €0,J, |—x)

the system continuously evolves into the limit of tBe-1
where\ is a nonuniversal positive constant of the order ofXY model, which is known to be gaple$s*In the case of
unity. As follows from Eqs(48) and(49) the strong effective  antiferromagnetic interleg exchangé >0 the symmetric
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mode is unstable towards the Kosterlitz-Thouless-type tran- A

sition associated with the dynamical generation of a gap in
the excitation spectrum. The weak-coupling RG analysis tells

us that an #0 and.7, >0 the gaplesXY1 phase is realized
for

A

(1+9), (51

whereas in the case of ferromagnetic interrung exchange

J. <0 it is realized for

A

A>A(’;l: — W

"stripe"
FERROMAGNET FM
1
Rung
Singlets
=l
I
Anisotropic Rung
Haldane phase Singlets

Therefore from the RG studies we obtain that the gapless FIG. 4. The ground-state phase diagram of the two-leg ladder
XY1 phase is stable in the case of ferromagnetic exchangg i, an isotropic interleg coupling.
At 7, >0 it is unstable towards the transition into the gapped

rung singlet phase. Ay, <0 the gaplesXY1 phase pen-

romagnetic, and largP phase, in addition we describe here

etrates into the\ <0 sector of the phase diagram. However, |ess conventional phases for ladders: the spin liquid phases
since M J;;—0 with increasing ferromagnetic exchange, atwith (i) one gapless and one gapped mdieluding the

|7, |>J the gapless phase on the antiferromagnetic side ( known XY1 andXY2 phasesand (ii) two gapless modes.
<0) of the phase diagram shrinks up to a narrow stripene have shown moreover that the gapped rung singlet phase

which exponentially disappears ag, |/J— .

found semiclassically to appear for an arbitrarily small iso-

With A—1 the gaplesXY1 phase becomes unstable to- tropic antiferromagnetic interaction between ferromagnetic
wards transition into the ferromagnetically ordered statelegs* continues to exist foS=1/2 ladders andy-like in-

Following the route developed before, we find that\at 1

— e and antiferromagnetic interleg exchangg,>0, the re-

entrance of the gapped rung-singlet phase takes place at
Ju Ju

1- 27 + (9( 27

3/2

A= (52

Thus, in agreement with the quasiclassical stutflese

teractions and actually extends to small valuea of

The neighborhood of the single chain ferromagnetic insta-
bility point turned out to be of particular interest. We inves-
tigated the behavior of the system in this regime using the
multiplicative regularization scheme. This scheme allows us
to extend the Bosonization formalism to the limit when the
bandwidth of the single chain excitations collapses and leads
to the result that upon increasing the strength of ferromag-

obtain that two almost ferromagnetically ordered chainsyetism A at any moderate fixed interleg interaction a se-
coupled by an isotropic interleg exchange are unstable tQyence of two phase transitions occurs before the system

wards formation of the gapped rung singlet phase] at
>J¢>0, wherel{ —0 asA—1. However, in contrast to the
quasiclassical case7°? increases linearly withe in the
guantum spin ladder case.

In the case of ferromagnetic interleg exchange<o,

enters the final ferromagnetically ordered phase.

Preliminary investigations show that the system consid-
ered here displays additional interesting aspects when an ex-
ternal magnetic fieldboth longitudinal and transversés
applied. These investigations will be reported in a subse-

the gaplesXY1 phase becomes unstable towards the transiquent publication.

tion into the ferromagnetically ordered phase whenin-
creases towards 1. In this case the spin-wave apprazch
the Appendix gives that the boundary between &1 and

the ferromagnetic phase #&=1. We summarize our results
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We have studied the ground-state phase diagram of th&Quantum Field Theory Methods in Particle Physics, Gravi-
S=1/2 ladder with ferromagnetically interacting legs usingtational Physics, and Statistical Physics.”
the continuum limit Bosonization approach. The phase dia-

grams for the extreme anisotropic interchain coupling cases

(Ising andXY interleg exchangeas well as for the S(2)

APPENDIX: FERROMAGNETIC INSTABILITY

symmetric case were obtained. These phase diagrams exhibit In this Appendix we considefierromagnetidnterleg cou-
a number of interesting phases, gapped as well as gaplegding, assumingl’’,J? <0, and use the spin-wave approach
some of these are familiar from well known one-dimensionalto determine the critical line corresponding to fleeromag-
models(rung singlet phase, anisotropic Haldane phase, fernetic instabilityin our system. For this purpose we start from
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the region of the phase diagram where we can safely assuntiens of motion in the subspa&,=N—1 and to obtain the
that the ground state is the fully polarized ferromagnetic statéollowing two sets of excitation frequencies:
(that is A>1 andJ, <0). We identify the transition line

from the fully polarized ground state to some other state as o 1 Xy
the line of instability in the spin-wave excitation spectrum. o (q)=—Jcosq+JA—5(J —J1), (A1)
Let us denote the eigenstate of the Hamiltoriancorre-
sponding to the fully polarize¢along theZ axis) ferromag- . 1.,
netic state by0). Then " (q)=—Jcosq+JA— 5(IT+I7). (A2)
S ,|0)=0, forarbitraryj and a. For ferromagnetic interleg exchandd? ,J%Y<0) we have
It is straightforward to obtain that|0)=E,|0) where o (<o’ (q)

N and from the instability conditiom ™ (q=0)=0 we obtain
Eo=— Z(lJl|+2JA).
1
— . Z __ Xy
To construct the lowest excitations in the ferromagnetic A=1+ 2J(Ji I (A3)
phase we act on the ground-state configuration by the spin . o ) _ oy
lowering operatorS, ,. Let us denote by1), (|2),) the In the particular limit of noninteracting chains)(=J}

state obtained by action of the spin lowering operator on thé=0) @s well as in the limiting case of thetationally invari-

nt" site of leg 1(ieg 2: antinterleg coupling {7 =J7") the critical line correspond-
ing to the instability of the ferromagnetic phase is given by
|1 1)n=S,40), [2)n=S,,/0). the condition
It is straightforward to solve the coupled system of equa- A=1. (A4)
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