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Phase diagrams of spin ladders with ferromagnetic legs
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The low-temperature properties of the spinS51/2 ladder with anisotropic ferromagnetic legs are studied
using the continuum limit Bosonization approach. The weak-coupling ground-state phase diagram of the model
is obtained for a wide range of coupling constants and several unconventional gapless ‘‘spin liquid’’ phases are
shown to exist for ferromagnetic coupling. The behavior of the ladder system in the vicinity of the ferromag-
netic instability point is discussed in detail.
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I. INTRODUCTION

A theoretical understanding of the properties of quant
spin ladder systems has attracted a lot of current interes
a number of reasons: on the one hand there is an increa
number of new magnetic materials with a ladderlike str
ture characterized by rich ground-state phase diagrams.1 On
the other hand, spin ladder models pose interesting theo
cal problems. For example, since a spin-S chain can be de-
scribed as a 2S-leg ladder with spinS51/2, provided the
interchain coupling is appropriately chosen2–4 the even- or
odd-leg ladder systems are an excellent demonstration
Haldane’s conjecture6 as generalized toS51/2 ladders: the
antiferromagneticspin ladder with an even number of leg
corresponds to a spin chain with integer spin and is predic
to have a gap, while a ladder with an odd number of legs
a gapless excitation spectrum. The two-leg antiferromagn
ladder is presumably the simplest spin system which allo
us to follow the continuous evolution between spinS51/2
andS51 antiferromagnetic chains nearly exactly.4,5

The two-leg ladder model has been the subject of con
erable theoretical interest,7–35 most of this work, however
concentrated on isotropic or weakly anisotropicantiferro-
magneticchains coupled by an interchain exchange of ar
trary sign. The obvious reason is that antiferromagnetic l
der systems exist in nature and have been experimen
investigated in some detail; the most prominent exampl
the Cu2O3 ladder subsystem of the compound Sr14Cu24O41.
The present work is devoted to the much less studied fiel
ferromagnetic spin ladders and our motivation is mainly t
oretical, since we have found these systems to exhibit in
esting aspects. However, quasi-low-dimensional spin s
tems with ferromagnetic interactions are also realized
real crystals, as exemplified by theS51/2 chain
(C6H11NH3)CuBr3 ~CHAB!,36 and theS51 chain CsNiF3.37

No ladder systems with ferromagnetic interactions
known yet, but considering recent progress in material
ence such systems may well be synthesized in the fut
Theoretically, the ferromagnetic ladder model in the vicin
of the ferromagnetic instability point was recently studied
Kolezhuk and Mikeska within the framework of quasiclas
cal analysis based on a nonlinears-model approach.24 In this
work we extend these studies addressing the problem of
24 in the extreme quantum limit of spins 1/2 and investig
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the weak-coupling ground-state phase diagram of aS51/2
ladder system with ferromagnetic legs and anisotropic in
leg exchange using the continuum limit Bosonization a
proach.

The Hamiltonian of the model under consideration
given by

Ĥ5Hleg
1 1Hleg

2 1H' , ~1!

where the Hamiltonian for lega is

Hleg
a 52J(

j 51

N

~Sa, j
x Sa, j 11

x 1Sa, j
y Sa, j 11

y 1D Sa, j
z Sa, j 11

z !,

~2!

and the interleg coupling is given by

H'5J'
xy(

j 51

N

~S1,j
x S2,j

x 1S1,j
y S2,j

y !1J'
z (

j 51

N

S1,j
z S2,j

z . ~3!

Here Sa, j
x,y,z are spinS51/2 operators at thej th rung, the

index a51,2 denotes the ladder legs. The intraleg coupl
constant is ferromagnetic,J.0, and therefore the limiting
case ofisotropic ferromagneticlegs corresponds toD51,
while the case ofisotropic antiferromagneticlegs is obtained
for D521. Since we study the ground-state phase diagr
of the ladder system with ferromagnetic legs we will restr
ourselves to considerD.0, includinguDu!1 in the limit of
legs with strong in-plane anisotropy.

The outline of the paper is as follows: In Sec. II we deri
the Bosonized formulation of the model in the continuu
limit. In Sec. III we discuss the weak-coupling phase d
grams of the model for three different cases of anisotro
interleg coupling. Finally, we conclude and summarize o
results in Sec. IV. In the Appendix we present the spin-wa
approach to study the transition line related to the ferrom
netic instability in the system.

II. BOSONIZATION

In this section we derive the low-energy effective-fie
theory of the lattice model Eq.~1!. Since the weak-coupling
Bosonization approach to the ladder models is based on
perturbative treatment of the interchain couplings4,12 we start
©2003 The American Physical Society19-1
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from the Bosonization of separate spinS51/2 ferromagnetic
XXZ chains.

A. Separate chains

The anisotropic spinS51/2 Heisenberg chain withuDu
,1 is known to be critical. The long-wavelength excitatio
are described by the standard Gaussian theory38 with the
Hamiltonian

Hleg5
u

2E dx@~]xf!21~]xu!2#. ~4!

f(x) andu(x) are dual Bosonic fields,] tf5u]xu, and sat-
isfy the following commutational relation:

@f~x!,u~y!#5 iQ~y2x!, ~5!

@f~x!,u~x!#5 i /2.

u stands for the velocity of spin excitation and is fixed fro
the Bethe ansatz solution as38

u5J
K

2K21
sin~p/2K !, ~6!

whereK is the Luttinger liquid parameter known from com
parison with the exact solution of theXXZ chain:

K5
p

2 arccosD
. ~7!

Thus the parameterK increases monotonically along th
XXZ critical line 21,D,1 from its minimal valueK
51/2 atD521 ~isotropic antiferromagnetic chain!, is equal
to unity at D50 ~the XY chain!, and K→` at D→1. At
D51 the spin excitation velocity vanishes,u50. This cor-
responds to theferromagnetic instabilitypoint of a single
chain.

To obtain the Bosonized version of the ladder Ham
tonian we need the explicit Bosonized expressions of
spin operators. The Bosonization procedure for the spiS
51/2 Heisenberg chain is reviewed in many places.39–41

However, since we consider the ladder model withferromag-
netic legs, our Bosonization conventions require some co
ments. The unitary transformation

Sa, j
x,y→~21! jSa, j

x,y , Sa, j
z →Sa, j

z ~8!

changes the sign of the intrachain transverse exchange
maps the Hamiltonian~1! to the Hamiltonian withantiferro-
magneticlegs. To maintain the ferromagnetic character of
in-plane correlations in the Bosonization, it is convenient
implement the multiplicative factor (21) j , introduced by the
unitary transformation~8!, directly in the Bosonized expres
sions for the transverse components of the spin opera
Using the standard Bosonization formulas39–41 we obtain
06441
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Sj ,a
x .

c

A2p
:cosAp

K
ua :

1~21! j
ib

A2p
:sinA4pKfasinAp

K
ua :, ~9!

Sj ,a
y .

c

A2p
:sinAp

K
ua :

2~21! j
ib

A2p
:sinA4pKfacosAp

K
ua :, ~10!

Sj ,a
z 5AK

p
]xfa1~21! j

a

p
:sinA4pKfa~x!:. ~11!

Note that the first and the second terms in Eqs.~9! and ~10!
are Hermitian because of Eq.~5!. Furthermore :•••: denotes
the normal ordering with respect to free Bose system~4!, a
is the leg index. The nonuniversal real constantsa, b, andc
depend smoothly on the parameterD, are of the order of
unity at D50,42,43 and are expected to be nonzero at ar
trary D,1.

B. Coupled spin-1Õ2 chains

For coupledS51/2 chains we start with two criticalS
51/2 Heisenberg chains and treat the interleg coupling a
perturbation assuminguJ'

z u,uJ'
xyu!J. Therefore we start with

two free Bose field Hamiltonians~4! and simply attach a leg
index a51,2 to the fields.

Then we introduce the symmetric and antisymmet
combinations of the Bosonic fields:

f65A 1

2L6
~f16f2!, u65AL6

2
~u16u2!, ~12!

where

L65S 17
1

2p

J'
z

Je f f
D

and

Je f f5J
1

2K21
sin

p

2K
.

Using Eqs.~9!–~11!, we finally obtain the following Bosonic
Hamiltonian density:

H5H 11H 21H int
6 , ~13!

H 15
u1

2
@~]xu1!21~]xf1!2#2

J'
z

2p
cosA8pK1f1~x!,

~14!
9-2
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H 25
u2

2
$~]xu2!21@]xf2~x!#2%1

J'
z

2p
cosA8pK2f2~x!

1
J'

xy

2p
cosA2p

K2
u2~x!, ~15!

H int
6 5

J12

2p
cosA2p

K2
u2~x!cosA8pK1f1~x!. ~16!

Here

u65
u

L6
.uS 16

1

2p

J'
z

Je f f
D ~17!

K65K•L6.KS 17
1

2p

J'
z

Je f f
D , ~18!

and we have introduced the following coupling constants

J'
z 5J'

z /p, ~19!

for D50 and otherwise

J'
z ;J'

z , ~20!

J'
xy ,J12;J'

xy , ~21!

with some positive constants of proportionality which cann
be fixed by symmetry arguments@contrary to the constan
appearing in Eq.~19!#.

In deriving Eq.~13!, a term

;cosA2p/K2u2cosA8pK2f2,

which is strongly irrelevant atD.0 ~ferromagnetic legs!
was omitted. Thus our approach is tailored to cover fer
magnetic intraleg coupling and can be applied to antifer
magnetic intraleg coupling only foruDu!1.

C. Effective continuum-limit model

At J'
z 5J'

xy50 the Hamiltonian~13! describes two inde-
pendent Gaussian fields, i.e., two gapless fields, each
scribing a critical spinS51/2 Heisenberg chain. Let us firs
address the question of whether the interleg exchange l
to the dynamical generation of a gap in the excitation sp
trum. In the case of anisotropic interleg exchange it is rat
instructive to study the effect of the longitudinal (J'

z ) and
transverse (J'

xy) part of the interleg coupling separately.
At J'

xy50 the effective theory of the original ladde
model is given by two decoupled quantum sine-Gord
models

He f f5H 11H 2, ~22!

where

H 65u6E dxS 1

2
$@]xu6~x!#21@]xf6~x!#2%

1
M 6

2p
cosA8pK6f6~x! D . ~23!
06441
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The two SG models respectively describe the symme
(f1) and antisymmetric (f2) degrees of freedom.

The bare values of the dimensionless coupling consta
M 6 and K6 are known only in the weak-coupling limi
uJ'

z u/J,uDu!1 where they have the values

M 657
J'

z

pJ
, ~24!

K6511
2D

p
7

J'
z

2pJ
. ~25!

The scaling dimensions of thecosineterms in Eq.~23! are
d6

z 52K6.2. Therefore, in the weak-coupling limit, bot
SG models have marginal dimension and details of their
havior should be determined within the framework of t
renormalization-group analysis. However, a rather straig
forward estimate indicates that atD@4J'

z /J we haveK6

.1 and thecosine terms are irrelevant. Therefore in th
case one concludes that the effective model reduces to
theory of two independent Gaussian fieldsf6 . The effect of
the interleg coupling is extremely weak and is complet
absorbed in the renormalized values of the spin-liquid
rametersK6 characterizing respectively gapless symmet
and antisymmetric modes. However, it is important to n
that in the vicinity of the single chain ferromagnetic instab
ity point, at D→1, the effective bandwidth collapses,Je f f
.2(12D)→0. Therefore in this limit the effect of the in
terleg coupling becomes very strong. This implies subtle
fects to be discussed later.

The transverse interleg exchange (J'
xy) leads to

the appearance of thestrongly relevant operator
J'

xycosA2pK2
21u2 with the scaling dimension d2

xy

5(2K2)21<1/2 in the theory. Therefore theantisymmetric
sector is gapped at arbitrary J'

xyÞ0. Fluctuations of the
field u2(x) are completely suppressed in this sector a
u2(x) is condensed in one of its vacua. The vacuum exp
tation value of thecosineterm is

^cosA2pK2
21u2&5g ~26!

with g;(uJ'
xyu/Je f f)

d2
xy/(22d2

xy)!1 in weak coupling and is
of the order of unity atuJ'

xyu>J.
Therefore the condensation of the fieldu2 strongly influ-

ences the coupling between the symmetric and antisymm
ric modes induced byH int

6 . Taking into account that the
fluctuations of the fieldu2 are stopped, one easily finds th
at J'

xyÞ0 infrared behavior of the symmetric field is gov
erned by the following ‘‘effective’’ sine-Gordon~SG! theory

H e f f
1 5u1E dxS 1

2
$~]xu1!21@]xf1~x!#2%

1
Me f f

1

2p
cosA8pK1f1~x! D , ~27!

where
9-3
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Me f f
1 52

1

pu1
~J'

z 1g•uJ12u!. ~28!

Since the obtained effective Hamiltonian for the symme
field is the SG model with themarginalcoupling, the reverse
influence of the symmetric field on the antisymmetric one
negligible in our leading-order renormalization-group~RG!
analysis even in the case of the strong-coupling regime in
symmetric sector. This mapping of the initial spinS51/2
ladder model onto the quantum theory of Bose fields
scribed in terms of an effective sine-Gordon~SG! Hamil-
tonian ~23! or ~27! will allow us to extract the ground-stat
properties of theS51/2 ladder using the far-infrared prope
ties of the quantum SG theory.

D. RG analysis

The infrared behavior of the SG Hamiltonian is describ
by the corresponding pair of renormalization group~RG!
equations for the effective coupling constantsK( l ) and
M( l ),

dM~ l !

dl
522~K~ l !21!M~ l !, ~29!

dK~ l !

dl
52

1

2
M 2~ l !,

wherel 5 ln(a0) and the bare values of the coupling consta
are K( l 50)[K and M( l 50)[M . The pair of RG equa-
tions ~29! describes the Kosterlitz-Thouless transition.44 The
flow lines lie on the hyperbola

4~K21!22M 25m254~K21!22M2 ~30!

and exhibit two different regimes depending on the relat
between the bare coupling constants45,46 ~see Fig. 1!.

Weak-coupling regime. For 2(K21)>uM u we are in the
weak-coupling regime: the effective massM→0. The low-
energy~large distance! behavior of the corresponding gaple
mode is described by a free scalar field. The vacuum a
ages of exponentials of the corresponding fields show
power-law decay at large distances

^eiKf(0)e2 iKf(r )&;^eiKu(0)e2 iKu(r )&;ur u2K* 2/2p. ~31!

whereK* is the fixed-point value of the parameterK deter-
mined from Eq.~30!.

Strong-coupling regime. For 2(K21),uM u the system
scales to strong coupling: depending on the sign of the b
massM, the renormalized massM is driven to6`, signal-

FIG. 1. Renormalization-group flow diagram; the arrows den
the direction of flow with increasing length scale.
06441
c

s

e

-

d

s

n

r-
a

re

ing a crossover to one of two strong-coupling regimes wit
dynamical generation of a commensurability gap in the
citation spectrum. The flow ofuMu to large values indicates
that the M cosA8pKf term in the sine-Gordon mode
dominates the long-distance properties of the system.
pending on the sign of the mass term, the fieldf gets or-
dered with the expectation values

^f&5HAp/8K at M.0

0 at M,0
. ~32!

Using this analysis for the excitation spectrum of the S
model and the behavior of the corresponding fields, Eqs.~31!
and ~32!, we will now discuss theweak-couplingphase dia-
gram of the spinS51/2 ferromagnetic laddermodel Eq.~1!.

III. PHASE DIAGRAMS

In this section we discuss separately the ground-s
phase diagram of theferromagnetic laddercoupled only by
the longitudinal part of the interleg spin exchange~Sec.
III A !, coupled only by the transverse part of the interleg s
exchange~Sec. III B! and by an isotropic interleg couplin
~Sec. III C!. At this point we note that from the structure o
the interaction Hamiltonian Eq.~3! follows that the phase
diagrams for case~A! and case~B! will be symmetric with
respect to the linesJ'50 since a change of sign inJ' leads
to a unitary equivalent Hamiltonian. This is in contrast
case~C! where this unitary equivalence does not exist.

A. Chains coupled by the longitudinal part
of the interleg exchange

In this subsection we consider the weak-coupling ph
diagram of the spinS51/2 ferromagnetic ladder model~1!
coupled by a weak longitudinal interchain exchange (J'

xy

50,J'
z Þ0). The Bosonized version of the modelHe f f

5H 11H 2 whereH 6 are given by Eq.~23! and the bare
values of the corresponding dimensionless coupling c
stants are given by Eqs.~24! and ~25!. By inspection of the
initial values of the coupling constants one easily finds th

• at D,0 both the symmetric and the antisymmetric sect
are gapped~except forJ'

z 50);
• At D.0 the symmetric sector is gappedfor J'

z /J.2D
.0 while theantisymmetric sector is gappedfor J'

z /J,
22D,0.

This determines the following three distinct sectors of t
phase diagram as traced already in the RG analysis~see also
Fig. 2 below!:

• sector A:D,0 corresponds to the phase with gapped
citation spectrum;

• sector B:D.0 and uJ'
z u.2JD corresponds to the phas

characterized by the one gapless and one gapped mo
the excitation spectrum. In particular atJ'

z .0 the symmet-
ric mode is gapped whereas the antisymmetric mode
gapless and vice versa atJ'

z ,0;

e

9-4
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• sector C:D.0 and uJ'
z u,2JD corresponds to the phas

where both modes are gapless.
• As we show below, the same phases are present in

strong-coupling regime. The only phase which is missed
the weak-coupling RG analysis is the ferromagnetic pha
it appears only in the strong-coupling regime atD.1 or at
D!1 but uJ'

z u;1/D@1.
• To clarify the symmetry properties of the ground states

the system in the different sectors we study the lar
distance behavior of the longitudinal

Kab
zz ~r !ª^Sa

z ~0!Sb
z ~r !& ~33!

and the transverse

Kab
xy ~r !ª^Sa

1~0!Sb
2~r !& ~34!

spin-spin correlation functions for intraleg (a5b) and inter-
leg (aÞb) spin pairs. Using the results for the excitatio
spectrum and the behavior of the corresponding fields in
gapless and gapped phases, Eqs.~31! and ~32!, and the ex-
pressions for the corresponding correlation functions fr
Bosonization, we now discuss the characteristics of the v
ous phases in the different sectors of theweak-coupling
ground-state phase diagram.

In the sector A (J'
z ,0) the vacuum expectation values

the fields arêf1&5Ap/8K1 and^f2&50. Ordering of the
f6 suppresses transverse spin correlations, while the lo
tudinal correlations are given by

Kab
zz ~r !;~21!r

•const.

Therefore atD,0 andJ'
z ,0, the long-range-ordered~LRO!

antiferromagnetic phase with inphase spin ordering on
rungs is realized in the ground state of the system.

In sector A1 (J'
z ,0) the vacuum expectation values

the fields are given bŷf1&50 and^f2&5Ap/8K2. This
immediately implies that in this sector

Kab
zz ~r !;~21!a1b

•~21!r
•const.

Therefore atD,0 and J'
z .0 the LRO antiferromagnetic

phase with antiphase intrarung spin ordering is realized
the ground state of the system.

FIG. 2. The ground-state phase diagram of the two-leg lad
with a longitudinalJ'

z Sj ,1
z Sj ,2

z coupling between legs. For details se
text.
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In sector B~B1! the antisymmetric~symmetric! field is
gapped with the vacuum expectation value^f2&50 (^f1&
50). However, as can be seen from weak-coupling R
analysis as well as from the strong-coupling effective sp
1/2 model~see below!, at J'

z Þ0 the lineD50 is the phase-
transition line along which the gapped atD,0 symmetric
~antisymmetric! mode becomes gapless. Therefore in sec
B ~B1! the gapless degrees of freedom corresponding to
symmetric~antisymmetric! mode are described by the fre
Bose field system with the fixed-point value of the para
etersK6* . Using Eq.~30! and the bare values of couplin
constants~24! and ~25! it is straightforward to show that a
uDu,uJ'

z /Ju!1,

K6* .11
1

p
A2D~2D7J'

z /J!.

Note that atD50 the fixed-point values of the spin-liqui
parameters areK6* 51 while at J'

z 50 @see Eq.~18!# K6*
5K. Therefore we conclude that along the lineD50 the
gapless sector in the system is identical to a single isotro
spinS51/2 Heisenberg chain, while along the lineJ'

z 50 we
reach the limit of two decoupled spinS51/2 Heisenberg
chains.

The very existence of a gapped excitation mode acco
panied with ordering of the fieldf2 ~or f1) implies sup-
pression of the transverse correlations. On the other hand
presence of the gapless excitation mode leads to the po
law decay of the longitudinal spin correlations. Therefore
obtain that in sector B

Kab
zz ~r !.

K1*

2pr 2
1

~21!r

r K1
* ,

while in sector B1

Kab
zz ~r !.~21!a1bF K2*

2pr 2
1

~21!r

r K2
* G .

We denote this phase as thespin liquid I phase. It is inter-
esting to note that in sector B the following operator sho
quasi-long-range behavior:

^@S1
1~r !1S2

1~r !#2@S1
2~0!1S2

2~0!#2&

.4^S1
1~r !S2

1~r !S1
2~0!S2

2~0!&

.r 21/K1
* 1~21!r r 21/K1

* 2K1
* . ~35!

(S1
a1S2

a)2 for the S5 1
2 ladder corresponds to the operat

(Sa)2 in the S51 chain and we therefore identify secto
B with the XY2 phase for theS51 chain as described
in Ref. 2.

With increasing interleg ferromagnetic coupling we rea
the lineD5uJ'

z u/2J which marks the transition into the phas
where both fields are gapless. In sector C of the phase
gram the system shows properties of twoalmost independen
spin S51/2 anisotropic Heisenberg chains with dominati
ferromagnetic coupling. The transverse correlations in t
phase are given by

er
9-5
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Kab
xy ~r !.dab@r 21/4(1/K1

* 11/K2
* )

1~21!r
•r 2(K1

* 1K2
* 11/4K1

* 11/4K2
* )#, ~36!

whereda,b is the Kronecker symbol. The longitudinal corr
lations decay faster. In particular the intraleg longitudin
correlations are given by

Kaa
zz ~r !.

K1* 1K2*

2pr 2
1~21!r

•r 2(K1
* 1K2

* ). ~37!

The transverse interleg correlations are strongly suppre
in this phase, while the longitudinal part of the interleg sp
spin correlations is given by

Kab
z ~r !.

K1* 2K2*

2pr 2
. ~38!

This phase we denote as thespin liquid II phase.
Although the analysis as considered above is forma

valid in the weak-coupling limit (D,uJ'
z u!J) we can esti-

mate the upper boundary for thespin liquid II phase, in the
vicinity of the single chain ferromagnetic instability regim
using the dimensionality analysis. We determine the insta
ity curve corresponding to the transition into the gapp
phase from the conditionK651, where the scaling dimen
sion of the correspondingcosineterm d652K652. After
some simple algebra one easily obtains that atJ'

z .0 the
field f2 is gapless, while the fieldf1 becomes massive fo

J'
z .J1

c 52pu
K21

K2
. ~39!

For D512e with e!1, which implies 1/K;A2e!1, Eq.
~39! takes the following form:

J1
c ~D!54JeS 12

A2e

p D . ~40!

Therefore in the vicinity of the single chain ferromagne
instability point, at 12D!1, the spin liquid I phase with
only one gapless~here antisymmetric! mode reenters the
phase diagram atJ'

z .J1
c (D). ~We note that the amplitude o

thecosineterm in the limit of the single chain ferromagnet
instability point is not determined exactly, so the pha
transition line determined by the dimensional analysis is
qualitative nature in this limit.! For J'

z ,0 the analysis is
done in exactly the same manner with symmetric and a
symmetric modes changing roles.

At J'
z 50 andD.1 each of the decoupled legs is unstab

towards the transition into a ferromagnetic phase. AtJ'
z

Þ0, we can address the problem of the ferromagnetic in
bility in the ladder system studying the velocity renormaliz
tion of the corresponding gapless excitations. In analo
with the single chain case we mark the transition into
ferromagnetically ordered phase atu650. Using Eqs.~6!
and ~17! one finds by extrapolation of the result valid up
first order inJ'

z the following estimate for the ferromagnet
transition:
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JFM
z ~D!54Je. ~41!

At uJ'
z u@J the boundary of the ferromagnetic instabili

can be established from the large rung coupling expans
approach. Let us first consider the case of strong ferrom
netic intrarung interactionJ'

z ,0. In this limit a large gap of
order uJ'

z u exists in the one-magnon excitation spectru
Projecting the system on the subspace excluding antipar
orientation of spins within a given rung, in the second-ord
perturbation expansion with respect toJ2/uJ'

z u and up to the
additive constantE052N0uJ'

z u we obtain the following ef-
fective spin-1/2XXZ spin chain Hamiltonian:

H5(
n

S 1

2
le f f

xy ~tn
1tn11

2 1H.c.!1le f f
z tn

ztn11
z D , ~42!

where

le f f
xy 52

J2

uJ'
z u

, le f f
z 5

J2

uJ'
z u

22JD ~43!

and the pseudospin operators are

tn
15Sn,1

1 Sn,2
1 , tn

25Sn,1
2 Sn,2

2 ,

tn
z5

1

2
~Sn,1

z 1Sn,2
z !.

In agreement with the weak-coupling Bosonization ana
sis, at D50 (XY legs! the system is equivalent to theS
51/2 isotropic antiferromagnetic~AFM! chain. For arbitrary
D,0 (le f f

z .le f f
xy ) the spin chain given by the Hamiltonia

~42! is in thegapped Ne´el phase. This phase corresponds t
the LRO AFM interleg ordering with interleg phase sh
equal to zero. At

0,D,J/uJ'
z u

(2le f f
xy ,le f f

z ,le f f
xy ) the spin chain~42! is in a gapless pla-

nar XY phase, corresponding to the ‘‘spin liquid I’’ phase
the Bosonization studies and finally at

D.J/uJ'
z u

(le f f
z ,2le f f

xy ) the transition into the completely polarize
ferromagnetic phase takes place.

In the case of strong antiferromagnetic interleg coupl
J'

z @J.0 analysis is similar. In this case the intrarung ord
ing of spins is antiferromagnetic. Projecting the system
the subspace excludingparallel orientation of spins within
the same rung, and introducing a new set of spin operat

t̃n
15Sn,1

1 Sn,2
2 , t̃n

25Sn,1
2 Sn,2

1 ,

t̃n
z5

1

2
~Sn,1

z 2Sn,2
z !

in the second-order with respect toJ2/J'
z we once again map

the initial ladder model onto the theory of an anisotrop
spin-1/2 Heisenberg chain~42!. One can perform the analy
9-6
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sis as discussed above, however, the ferromagnetic orde
in terms of the effectiveS51/2 chain atJ'

z .0 corresponds
to an interleg ferromagnetic ordering with a phase shift op
of the order parameter along the rung.

The results obtained within the Bosonization approach
gether with the results from the strong-coupling expans
allow us to draw the following phase diagram of the ladd
with a longitudinal interleg couplingJ'

z ~see Fig. 2!. At D
,0 the phase diagram consists of two gapped phases
scribing respectively long-range-ordered Ne´el antiferromag-
netic phases with gapped excitation spectrum and inphas~at
J'

z ,0) or ~antiphase atJ'
z .0) ordering of spins within the

same rung. The lineD50 marks the transition into thespin
liquid I phase characterized by a gapless excitation spec
and power-law decay of the spin-spin correlation functio
The critical indices for the decay of the corresponding sp
spin correlations in the spin liquid I phase areg i.1. In the
case of strong interleg exchangeuJ'

z u@J, further increase of
the interleg ferromagnetic exchangeD leads to the transition
at Dc.J/uJ'

z u into the phase with ferromagnetically ordere
legs. However, in the weak-coupling case, atuJ'

z u!J, an
increase of the parameterD at givenJ'

z leads to the transi-
tion into spin liquid II at Dc(1)5uJ'

z u/2J. The spin liquid II
phase is characterized by a gapless excitation spectrum
power-law decay of the spin-spin correlation functions w
critical indicesg i.2. This transition marks the developme
of the regime dominated by intraleg coupling, whereas
interleg longitudinal exchange plays only a rather moder
role. However, with further increase of the intraleg ferroma
netic exchange, in the vicinity of the ferromagnetic instab
ity line the spin liquid II phase becomes unstable and t
system reentres into thespin liquid I phase. This reentranc
effect is connected with a sharp reduction of the bandwi
in the vicinity of the ferromagnetic transition and a subs
quent increase of the potential energy of the interleg c
pling. Therefore just before the transition into the ferroma
netically ordered phase, the short-range interleg fluctuat
get stopped, and as in the case of the strong intrarung
pling, thespin liquid I phase is unstable toward the transiti
into the phase with ferromagnetically ordered legs.

However, since the transition into the ferromagnetic ph
is a typical finite bandwidth effect, the parameters de
mined quantitatively within the Bosonization~i.e., infinite
band! approach strongly depend on the way of regularizat
of the continuum theory on small distances. Therefore i
useful to determine the lowest boundary of the ferromagn
phase on the phase diagram, starting from the ferromag
cally ordered phase and using the standard spin-wave an
sis ~see the Appendix!. At uJ'

z u!J this approach givesJFM
SW

52Je. This discrepancy clearly is the result of the lineariz
expressions used for the parametersK6 , Eq. ~18!. However,
as long as the multiplicative renormalization used here
the parametersu6 and K6 , Eqs. ~17! and ~18!, remains
valid, the scenario discussed above, where thespin liquid I
phase is unstable towards the transition into the phase
ferromagnetically ordered legs, remains qualitatively pla
sible. For a more quantitative description, sufficiently d
tailed numerical studies of this sector of the phase will
very helpful.
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To conclude this subsection we note that the ground-s
phase diagram of the ferromagnetic ladder system cou
only by the longitudinal part of the spin-spin exchange int
action exhibits a rather rich phase diagram which consis
LRO AFM phases, a spin liquid phase with one gapped a
one gapless mode, a spin liquid phase with two gapl
modes, and a phase with ferromagnetically ordered legs

B. Chains coupled by the transverse part of the ladder
exchange

In this subsection we consider the case of two criti
Heisenberg chains coupled by a transverse interleg exch
interactionJ'

z 50 andJ'
xyÞ0. The particular aspects of thi

limiting case are the following ones:

• the antisymmetric mode is gapped at arbitraryJ'
xyÞ0;

• the low-energy properties of the system are determined
the behavior of the symmetric field;

• the infrared properties of the symmetric field are det
mined by the subtle coupling between the symmetric a
antisymmetric modes.

We start our analysis from the limiting case of weakly anis
tropic XY chains, coupled by the weak interleg transve
exchange, assuminguDu,uJ'

xyu/J!1 ~see Fig. 3!. At J'
xyÞ0

the antisymmetric mode is gapped and the dual antisymm
ric field is ‘‘pinned’’ with vacuum expectation value

^u2&5HApK2/2 at J'
xy.0

0 at J'
xy,0

. ~44!

Behavior of the symmetric field is governed by the S
Hamiltonian ~27!. The standard RG analysis gives that t
symmetric mode is gapped at

D,Dc15
g

4J
•uJ12u. ~45!

Therefore atD,Dc1 the excitation spectrum of the sys
tem is gapped. The dynamical generation of a gap in
symmetric mode leads to condensation of the fieldf1 with a

FIG. 3. The ground-state phase diagram of the two-leg lad
with transverse coupling between legs.
9-7
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vacuum expectation valuêf1&50. Since the dual compo
nent of the antisymmetric field is pinned with vacuum exp
tation value given by Eq.~44!, the so-called ‘‘disordered’
phase2 is realized in the ground state. AtJ'

xy.0, spins on the
same rung form a singlet and the ground state correspon
the state with a singlet pair on each rung. There is no co
lation between spins along the ladder. In the case of fe
magnetic coupling, atJ'

xy,0 spins on the same rung form
state corresponding to theSz50 component of the triplet~an
‘‘asymmetric triplet’’ pair! and the ground state correspon
to the state with an asymmetric triplet pair on each rung
analogy to the phases of theS51 chain as discused in Ref.
we denote this phase as the ‘‘anisotropic largeD phase.’’

For D>Dc1 the system is in the phase where the symm
ric mode is gapless. Since the antisymmetric mode is gap
the alternating partof the spin-spin correlations isexponen-
tially small, while thesmooth part shows a power-law deca
at large distances. In particular, the in-plane correlations
given by

Kab
xy ~r !.const•S 2

J'
xy

uJ'
xyu D

a1b

r 21/4K1
* ~46!

while the longitudinal correlations decay faster,

Kab
zz ~r !.

K1*

2pr 2
. ~47!

As follows from Eq.~46! the lineJ'
xy50 marks the tran-

sition from a regime with ferromagnetic interleg order in
the regime with antiferromagnetic interleg order. In the
cinity of this critical lineJ'

xy50 the gap in the antisymmetri
mode (M 2) is tiny, therefore the correlation functions give
by Eqs. ~46! and ~47! are valid only for distancesr @Lc
;1/M 2 . However, at distancesr !Lc fluctuations of the
antisymmetric mode are strong, and the behavior of corr
tion functions is the same as in thespin liquid II phase Eqs.
~36!–~38!. Following Schulz2 who has discussed a simila
phase in the context of the spinS51 chain we denote this
phase as aspin liquid XY1 phase.

Let us now discuss the phase diagram of the model in
vicinity of the single chain ferromagnetic instability poin
D51. As D→1, the effective-coupling constant behaves

Me f f
1

2pu
.

p2KJ12

2J
;

1

e

wheree512D. A rough estimate of the renormalization o
the velocity of the symmetric mode excitationsu1 and of the
spin liquid parameterK1 at D.1 in second order gives

u15u@11lK~J12 /J!2#, ~48!

K15K@12lK~J12 /J!2#, ~49!

wherel is a nonuniversal positive constant of the order
unity. As follows from Eqs.~48! and~49! the strong effective
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transverse coupling reduces the tendency towards ferrom
netic ordering and leads to the transition into the gapp
phase at

J12.J12
cr .J~12n !1/4.

Equivalently we have

Dc2.12l2~J12 /J!4.

To summarize this subsection we note that the ground-s
phase diagram of the ferromagnetic ladder system cou
by the transverse part of the spin-spin exchange interac
only also exhibits a rich phase diagram which consist of
‘disordered rung singlet’’ and anisotropic largeD phases, the
easy-plane gaplessXY1 phase, and the ‘‘stripe’’ ferromag
netic phases with dominating intraleg ferromagne
ordering.

C. Chains coupled by isotropic interleg exchange

In this subsection we consider the weak-coupling grou
state phase diagram of the model~1! in the case of an iso-
tropic interleg exchangeJ'

z 5J'
xy5:J' . In this case the be-

havior of the antisymmetric sector is completely similar
the above considered case of the ladder with transverse
change: the antisymmetric field is gapped and the vacu
expectation value of the dual fieldu2 , depends on the sign
of exchange and is given by Eq.~44! after the substitution
J'

xy→J' .
The far-infrared properties of the symmetric field are go

erned by the effective SG Hamiltonian~27! with the bare
values of the model parameters given byK1 andMe f f

1 ,

K15KS 12
J'K

2puD ,

Me f f
1 52

1

pu1
J'~11d! ~50!

~whered is a nonuniversal positive number!. The resulting
asymmetry of the model is clearly seen:

• at J'.0, the antiferromagnetic interleg exchange redu
K1 and increasesMe f f

1 and therefore supports the tende
cies towards development of a gap in the excitation sp
trum;

• at J',0, the ferromagnetic interleg exchange increa
K1 , while with increasing uJ'u the parameterMe f f

1

.J'(12d)→0; therefore we expect an enlargement
the gapless section in this case.

We start our analysis from the limiting case of weak
anisotropicXY chains assuminguDu,uJ'u/J!1. At D50 we
have K51 and the system shows a gap in the excitat
spectrum atJ'.0 and is gapless in the case of ferroma
netic interleg exchangeJ',0. Therefore atD50, with in-
creasing ferromagnetic interleg exchange (J',0,uJ'u→`)
the system continuously evolves into the limit of theS51
XY model, which is known to be gapless.47,48 In the case of
antiferromagnetic interleg exchangeJ'.0 the symmetric
9-8
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mode is unstable towards the Kosterlitz-Thouless-type tr
sition associated with the dynamical generation of a gap
the excitation spectrum. The weak-coupling RG analysis t
us that atDÞ0 andJ'.0 the gaplessXY1 phase is realized
for

D.Dc15
J'

2J
~11d!, ~51!

whereas in the case of ferromagnetic interrung excha
J',0 it is realized for

D.Dc18 52
dJ'

2J
.

Therefore from the RG studies we obtain that the gap
XY1 phase is stable in the case of ferromagnetic excha
At J'.0 it is unstable towards the transition into the gapp
rung singlet phase. AtJ',0 the gaplessXY1 phase pen-
etrates into theD,0 sector of the phase diagram. Howev
since Me f f

1 →0 with increasing ferromagnetic exchange,
uJ'u@J the gapless phase on the antiferromagnetic sideD
,0) of the phase diagram shrinks up to a narrow str
which exponentially disappears asuJ'u/J→`.

With D→1 the gaplessXY1 phase becomes unstable t
wards transition into the ferromagnetically ordered sta
Following the route developed before, we find that atD51
2e and antiferromagnetic interleg exchange,J'.0, the re-
entrance of the gapped rung-singlet phase takes place a

Dc2512
J'

4J
1OS J'

4J D 3/2

. ~52!

Thus, in agreement with the quasiclassical studies,24 we
obtain that two almost ferromagnetically ordered cha
coupled by an isotropic interleg exchange are unstable
wards formation of the gapped rung singlet phase atJ'

.J'
c .0, whereJ'

c →0 asD→1. However, in contrast to the
quasiclassical case,J c2 increases linearly withe in the
quantum spin ladder case.

In the case of ferromagnetic interleg exchange,J',0,
the gaplessXY1 phase becomes unstable towards the tra
tion into the ferromagnetically ordered phase whenD in-
creases towards 1. In this case the spin-wave approach~see
the Appendix! gives that the boundary between theXY1 and
the ferromagnetic phase isD51. We summarize our result
considering the phase diagram of the ladder with ferrom
netic legs and an isotropic interleg exchange in Fig. 4.

IV. CONCLUSIONS

We have studied the ground-state phase diagram of
S51/2 ladder with ferromagnetically interacting legs usi
the continuum limit Bosonization approach. The phase d
grams for the extreme anisotropic interchain coupling ca
~Ising andXY interleg exchange! as well as for the SU~2!
symmetric case were obtained. These phase diagrams ex
a number of interesting phases, gapped as well as gap
some of these are familiar from well known one-dimensio
models~rung singlet phase, anisotropic Haldane phase,
06441
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romagnetic, and largeD phase!, in addition we describe here
less conventional phases for ladders: the spin liquid pha
with ~i! one gapless and one gapped mode~including the
known XY1 andXY2 phases! and ~ii ! two gapless modes
We have shown moreover that the gapped rung singlet ph
found semiclassically to appear for an arbitrarily small is
tropic antiferromagnetic interaction between ferromagne
legs24 continues to exist forS51/2 ladders andxy-like in-
teractions and actually extends to small values ofD.

The neighborhood of the single chain ferromagnetic ins
bility point turned out to be of particular interest. We inve
tigated the behavior of the system in this regime using
multiplicative regularization scheme. This scheme allows
to extend the Bosonization formalism to the limit when t
bandwidth of the single chain excitations collapses and le
to the result that upon increasing the strength of ferrom
netism D at any moderate fixed interleg interaction a s
quence of two phase transitions occurs before the sys
enters the final ferromagnetically ordered phase.

Preliminary investigations show that the system cons
ered here displays additional interesting aspects when an
ternal magnetic field~both longitudinal and transverse! is
applied. These investigations will be reported in a sub
quent publication.
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APPENDIX: FERROMAGNETIC INSTABILITY

In this Appendix we considerferromagneticinterleg cou-
pling, assumingJ'

xy ,J'
z ,0, and use the spin-wave approa

to determine the critical line corresponding to theferromag-
netic instabilityin our system. For this purpose we start fro

FIG. 4. The ground-state phase diagram of the two-leg lad
with an isotropic interleg coupling.
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the region of the phase diagram where we can safely ass
that the ground state is the fully polarized ferromagnetic s
~that is D@1 and J',0). We identify the transition line
from the fully polarized ground state to some other state
the line of instability in the spin-wave excitation spectrum

Let us denote the eigenstate of the Hamiltonian~1! corre-
sponding to the fully polarized~along theZ axis! ferromag-
netic state byu0&. Then

Sj ,a
1 u0&50, for arbitrary j and a.

It is straightforward to obtain thatĤu0&5E0u0& where

E052
N

4
~ uJ'

z u12JD!.

To construct the lowest excitations in the ferromagne
phase we act on the ground-state configuration by the
lowering operatorSn,a

2 . Let us denote byu1&n (u2&n) the
state obtained by action of the spin lowering operator on
nth site of leg 1~leg 2!:

u1&n[Sn,1
2 u0&, u2&n[Sn,2

2 u0&.

It is straightforward to solve the coupled system of eq
B

.

v.

06441
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tions of motion in the subspaceStot
z 5N21 and to obtain the

following two sets of excitation frequencies:

v2~q!52J cosq1JD2
1

2
~J'

z 2J'
xy!, ~A1!

v1~q!52J cosq1JD2
1

2
~J'

z 1J'
xy!. ~A2!

For ferromagnetic interleg exchange(J'
z ,J'

xy,0) we have

v2~q!,v1~q!

and from the instability conditionv2(q50)50 we obtain

D511
1

2J
~J'

z 2J'
xy!. ~A3!

In the particular limit of noninteracting chains (J'
z 5J'

xy

50) as well as in the limiting case of therotationally invari-
ant interleg coupling (J'

z 5J'
xy) the critical line correspond-

ing to the instability of the ferromagnetic phase is given
the condition

D51. ~A4!
ev.
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