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Magnetic domain walls in single-phase and phase-separated double-exchange systems

D. I. Golosov*
Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 13 June 2002; published 6 February 2003!

We investigate the structure of magnetic domain walls in a classical double-exchange ferromagnet, evalu-
ating domain wall energies and charges. Three different cases are studied:~i! a conventional smooth Bloch
wall, ~ii ! an abrupt Ising-type wall, which is shown to have lower energy at small values of carrier concentra-
tion, and ~iii ! stripe wall, corresponding to the two ferromagnetic domains being separated by a stripe of
another, antiferromagnetic, phase. General aspects of energy balance and geometry of phase-separated states
are discussed in this context. It is speculated that domain walls of the latter type may be responsible for the
unusual transport properties of certain manganate films.
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I. INTRODUCTION

The unusual micromagnetic properties of colossal mag
toresistance~CMR! compounds are presently subject to i
tensive experimental investigation.1–11 In these studies, spe
cial attention is paid to the interplay between magne
domain structure and transport properties of the syst
Aside from possible technological applications~associated
with the large low-field magnetoresistance6!, the strong ef-
fect of magnetic domain walls on conduction properties,
found in strained epitaxial films of La0.7Ca0.3MnO3 ~Refs. 5
and 6!, Pr2/3Sr1/3MnO3 ~Ref. 6!, and La0.7Sr0.3MnO3 ~Refs. 6
and 7!, raises a genuine physical problem. Indeed, given
relatively small expected value of the easy-axis magnetic
isotropy, the usual Bloch~or Néel! domain wall would be
rather smooth and broad. Thus, carrier scattering off
Bloch walls could not appreciably affect transport propert
of the system. The measurement of the magnetic dom
wall contribution to the resistivity therefore leads to t
conclusion12 that the domain walls arising in the sampl
studied in Refs. 5–7 have an unusual, non-Bloch structur
has even been suggested6 that the double-exchange intera
tion, which is responsible for the ferromagnetism of dop
manganese oxides, cannot possibly account for such po
conducting magnetic domain walls. While the origins of th
suggestion may be traced to the widespread but ill-foun
notion that the magnetic properties of double-exchange
tems can be adequately described by an effective Heisen
model, the peculiar physics of domain walls in doub
exchange ferromagnets has not yet been addressed the
cally.

In the present article, we consider the standard sin
orbital double-exchange model with the following Ham
tonian:

H52
t

2 (
^ i , j &,a

~cia
† cj a1cj a

† cia!2
JH

2S (
i ,a,b

SW i•sW abcia
† cib

1
J

S2 (
^ i , j &

SW i•SW j2
K

2S2 (
i

~Si
z!2. ~1!

Herecj a ~with a5↑,↓) are the electron annihilation opera
tors, and the vectorsW ab is composed of Pauli matrices.JH is
0163-1829/2003/67~6!/064404~20!/$20.00 67 0644
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the strength of Hund’s rule ferromagnetic coupling betwe

the spins of carriers and the core spinsSW i , which also inter-
act with each other via the direct antiferromagnetic Heis
berg exchangeJ. The core spins are assumed to be class
(S@1), and the easy-axis single-ion anisotropyK/S2 is in-
cluded in order to account for the finite Bloch wall energ
The lattice is assumed to be square, which is thought to
more appropriate than the three-dimensional cubic one
modeling the thin films studied experimentally; the extens
of our analysis to the three-dimensional case is straight
ward but cumbersome, and is expected to yield similar c
clusions. The electron spectrum in the ferromagnetic stat
given by13 ekW

↑,↓
5ekW7JH/2 with ekW52t(cosk11cosk2). We

consider the experimentally relevanthalf-metalliccase, when
owing to a sufficiently large value ofJH , the carrier band in
the ferromagnetic phase is completely spin polarized. T
the value of chemical potential, denotedm2JH/2, must lie
below the bottom of the spin-up subband,m,JH22. We
note thatt in Eq. ~1! corresponds to 2t in a different notation
sometimes used elsewhere in the literature; it should also
pointed out that below, the conduction electron~rather than
hole! density is denoted byx. Throughout the paper we us
units in which hoppingt and the lattice spacing are equal
unity, and we consider the zero-temperature (T50) case.

Below we consider domain walls of three different type
which are relevant for different values of parameters char
terizing the double-exchange magnet at low temperatu
These are conventional Bloch walls, abrupt~Ising! walls, and
stripe walls, formed by a stripe of antiferromagnetic pha
inserted between the two ferromagnetic domains.

We begin in Sec. II with the usual smooth Bloch wall. Th
Bloch wall energy depends on spin stiffnessD and anisot-
ropy strength in a usual way,14 reflecting the fact that the
long-wavelength properties of double-exchange ferrom
nets are adequately captured within an effective Heisenb
description~cf. Ref. 15!. In double-exchange systems, Bloc
walls carry an electric charge, which we also evaluate. O
results suggest that magnetic domain walls arising in hom
geneous~single-phase! double-exchange ferromagnets at t
intermediate doping levels typically have Bloch structu
and therefore cannot significantly affect the resistance of
sample.
©2003 The American Physical Society04-1
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D. I. GOLOSOV PHYSICAL REVIEW B67, 064404 ~2003!
Within the context of recent experiments, the possibil
of sharp changes in magnetization direction within a dom
wall is of particular relevance. This scenario has been
cussed for a long time~see, e.g., Ref. 16! and it is important
to consider it in some detail. Therefore in Sec. III we tre
the extreme case of an abrupt~Ising-type! domain wall, when
the sign of magnetization is reversed over one lattice link
wall of this type, which in theT50, S→` limit is impen-
etrable for carriers, would strongly affect the transport pro
erties of the system. The energy cost of an abrupt wall or
nates from the underlying nonperturbative scatter
problem for conduction electrons. The corresponding phy
is thus completely non-Heisenberg. We derive express
for energies and charges of abrupt domain walls running
two different directions~along a crystal axis and diagonally!
and for all values of the Hund’s rule exchange constantJH .
While for small values of carrier density,x!1, the energy of
an abrupt wall is lower than that of a Bloch wall~which may
be relevant for certain magnetic semiconductors!, this does
not generally hold at the intermediate doping levels. In
latter case, an abrupt domain wall is preferred only for v
large values of anisotropy,K;DS, or for the case of very
finely tuned parameter values, providing for an almost ex
balance between the ferro- and antiferromagnetic tenden
of the system. It would be unrealistic to expect that suc
fine-tuning ~within 1% in the values ofJ, JH , and x in a
single-phase system! can be achieved by different exper
mental groups in a reproducible way.

In addition, it also turns out that these parameter val
typically correspond to the system being unstable with
spect to phase separation. As explained in Sec. IV, the la
phenomenon has a double effect:~i! the carrier density
within the bulk of the ferromagnet is now determined by t
condition that the thermodynamic potentials of the tw
phases must be equal to each other; this condition effecti
pins the parameters of the double-exchange ferromagn
the region where the energy of an abrupt domain wal
relatively low. ~ii ! The energy of an abrupt domain wall ca
be further lowered by inserting a stripe of antiferromagne
phase between the two ferromagnetic domains. Since the
phases are characterized by different values of charge
sity, one cannot treat this situation properly without taki
into account the effects of Coulomb interaction. We us
somewhat simplified treatment to estimate the energy
width of a stripe domain wall. It turns out that within
certain range of parameter values, the energy of a stripe
can be lower than that of a Bloch wall, so that magne
domain walls in a phase-separated system are actually o
stripe type. In particular, this situation is realized when
antiferromagnetic phase occupies an appreciable area o
sample~of the order of 15% of the net area, or possib
more!, provided that the easy-axis anisotropy constantK is
not too small. Due to insulating properties of the antifer
magnetic phase, carrier transport across the stripe wa
strongly suppressed, leading to a substantial domain
contribution to the sample resistance. On the other hand
ferromagnetic area within a single magnetic domain rema
well connected, and phase separation is therefore not
pected to significantly affect theintradomainmetallic con-
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ductivity. Analysis of the data of Refs. 5 and 6 reveals
correlation between the film thickness, dielectric propert
of the substrate, and the appearance of domain wall re
tance, which seems to agree with the anticipated conditi
for the stabilization of the stripe walls.

Details of calculations are relegated to the Appendix
which also include a brief discussion of the thre
dimensional~3D! case.

The relevance of our findings in the context of rece
experiments on manganate films is further discussed in S
V. We suggest that the domain walls observed indirectly
the transport measurements of Refs. 5–7 and directly in R
8 are in fact the stripe walls, introduced in Sec. IV.

II. BLOCH WALL

The structure of domain walls in conventional Heisenbe
ferromagnets was understood long ago.14 These are smooth
long-wavelength Bloch walls,17 and their surface tension~en-
ergy per unit length! SB and widthl B are determined by the
spin stiffnessD of the system:

SB52AK~DS!, l B5ADS/K. ~2!

Since the unusual transport properties of the domain w
are found only in certain strained films at a specific dop
level,5–7 we expect that in most cases, domain walls in t
CMR materials also have Bloch-like structure. We will no
study the relationship between the properties of Bloch w
and the parameters of our model Hamiltonian, Eq.~1!.

The appropriate value ofD can be extracted from the
known spin-wave spectrum of a classical double-excha
ferromagnet18 ~see also Ref. 15!:

vpW5
JH

2NS (
kW

nkW
ekW2ekW1pW

ekW
↑
2ekW1pW

↓ 1
K

S
1

2J

S (
a51

d

~coska21!.

~3!

Here, N is the number of lattice sites, andnpW is the Fermi
distribution function. Equation~3! is valid for any dimen-
sionality d and for an arbitrary electron dispersion lawekW

~with ekW
↑,↓

57JH/21ekW). For the case of the 2D tight
binding model~1!, we obtain

SD52J1S uEu
8

2
1

4JHN (
kW

nkWvkW
2D

52J2
x

4JH
2

m

8p2 S m2
21m2

JH
DY1

1
1

4p2 S 22
3m

JH
DY2 . ~4!

Here and below,Y1 and Y2 denote the following complete
elliptic integrals:

Y15KSA12
1

4
@m~x!#2D , Y25ESA12

1

4
@m~x!#2D ,

~5!
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MAGNETIC DOMAIN WALLS IN SINGLE-PHASE AND . . . PHYSICAL REVIEW B67, 064404 ~2003!
vW kW5]ekW /]kW is the electron velocity, and the kinetic energy
the band is given by

E[
1

N (
k

nkWekW5
m2

p2
Y1~x!2

4

p2
Y2~x!. ~6!

Note that because of the numerical prefactor entering Eq.~4!,
the value ofD is at least an order of magnitude smaller th
that of the band energy,E.

At low doping levelx!1&JH , Eq. ~4! yields

DS52J1
1

4
x2

1

8
px22

px2

2JH
, ~7!

whereas at half-fillingx51, we obtain

DS52J21/~4JH!. ~8!

The second term in Eq.~7!, which is proportional to the band
energy (E'22x at low x), represents the leading-orde
double-exchange~ferromagnetic! contribution. The last
terms in Eqs.~7! and ~8! indicate that the effect of finiteJH
~as opposed toJH→`) is similar to that of an increase in th
value of direct superexchange,J. This conclusion is justified
physically, since at finiteJH an effective antiferromagneti
interaction arises due to virtual transitions between the
components of the spin-split band much like a usual sup
exchange, which is due to transitions between differ
bands. Below we will see how this qualitative analogy19

manifests itself in other properties of the system—its valid
is clearly not restricted to the spin stiffness evaluation. T
in turn suggests that many of the features of~more compli-
cated! finite-JH systems can be modeled by treating theJH
→` case with an appropriately increasedJ.

The doping dependence of the spin stiffness for three
ferent values ofJH (JH→`, JH58, andJH54 for solid,
dashed, and dash-dotted lines, respectively! and J50 is
shown in Fig. 1~a!. For the case of finiteJH , the competition
between effective antiferromagnetism and double-exchan
induced ferromagnetism, taking place at sufficiently sm
12x, is resolved via phase separation.20–23 This means that
the homogeneous ferromagnetic state becomes therm
namically unstable as the electron concentrationx exceeds a
certain critical value. In Fig. 1~a!, the values ofDSwithin the
respective thermodynamically unstable regions are plo
with dotted lines. When the superexchangeJ.0 is present,
this critical value, which depends also onJH , decreases fur-
ther. In addition, another region of phase-separation insta
ties arises at lowelectrondensities.21,22

Within a Bloch wall, misalignment of the neighborin
ionic spins leads to a renormalisation of carrier hopp
coefficient.24 Indeed, the Hamiltonian~1! can be rewritten in
terms of new fermionsdi↑ ~anddi↓), whose spin is aligned
~antialigned! with the classical ionic spinSW i at the same site
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H52
1

2 (
^ i , j &,a,b

~ t i j
abdia

† dj b1t j i
abdj a

† dib!

1
JH

2 (
i

~di↓
† di↓2di↑

† di↑!1
J

S2 (
^ i , j &

SW i•SW j

2
K

2S2 (
i

~Si
z!2. ~9!

Here, the matrixtab is given by

t i j
ab5S C̃i C̃j1ei(f j 2f i )S̃i S̃j 2e2 if j C̃i S̃j1e2 if i S̃i C̃ j

2eif i S̃i C̃ j1eif j C̃i S̃j C̃i C̃j1ei(f i2f j )S̃i S̃j
D ,

C̃i5cos
u i

2
, S̃i5sin

u i

2
, ~10!

andu i ,f i are the polar coordinates of the spinSW i .
In the bulk of the ferromagnetic state,t i j

ab reduces to a
unit matrix, but inside the domain walls, the values of bo
diagonal and off-diagonal elements are changed. Thus,
band structure~and hence the carrier density! within the wall
differs from that in the bulk, and we come to the conclusi
that Bloch walls are charged. We will now evaluate the sur-
face chargesB of a Bloch wall in a double-exchange ferro
magnet.

Let us suppose that the Bloch wall runs along the@11#
direction of the lattice diagonal, and choose they axis to be
perpendicular to the wall. We also choose the coordinate

FIG. 1. Spin stiffnessDS ~a! and the coefficientC @see Eq.~19!#
~b! vs electron densityx for J50 andJH→` ~solid line!, JH58
~dashed line!, and JH54 ~dash-dotted line!. Dotted lines corre-
spond to a regime where the spin stiffness is still positive,D.0,
but the ferromagnetic phase is unstable with respect to phase s
ration.
4-3
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D. I. GOLOSOV PHYSICAL REVIEW B67, 064404 ~2003!
spin space in such a way thatf i[0, and note thatu i does
not depend onx. In other words, the spin configuration
composed of ferromagnetically ordered chains running in
x direction, with the interchain and intrachain distances giv
by 1/A2 and A2, respectively. It is then convenient t
Fourier-transform the fermion operators in thex direction
only, according to

da~x,y!5S 2

ND 1/4

(
kx

eikxx/A2da~kx ,y!, ukxu,p. ~11!

Then the first two terms in Eq.~9! can be rewritten in the
form

H̃52 (
y,kx ,a,b

cos
kx

2 F tabS y,y1
1

A2
D da

†~kx ,y!dbS kx ,y

1
1

A2
D 1H.c.G1

JH

2 (
y,kx

@d↓
†~kx ,y!d↓~kx ,y!

2d↑
†~kx ,y!d↑~kx ,y!#, ~12!

which we will also use in Sec. III below.
In the ferromagnetic state, the subsequent Fourier tra

formation in they direction according to

da~kx ,y!5S 1

2ND 1/4

(
ky

eikyyA2dkWa , ukyu,p, ~13!

yields the spectrum

ekW
↑,↓

57
JH

2
1ekW , ekW522 cos

kx

2
cosky . ~14!

The variation of spin direction within a Bloch wall corre
sponds to the long-wavelength limitl B@1 of continuum mi-
cromagnetic theory. Then one can defineu(y) as a continu-
ous function, and the angle formed by the spinsSW (x,y) and
SW (x8,y11/A2) on the neighboring chains is given b
(]u/]y)/A2. For the case of a constant value of]u/]y!1,
the spin-up fermion spectrumẽkW

↑
52(JH/2)1 ẽkW is obtained

from Eqs.~10!–~12! @upon Fourier transformation, Eq.~13!#.
When]u/]yÞ0, the quantityẽkW is only approximately fac-
torizable,

ẽkW5cos
kx

2
@ey~ky!1dey~kx ,ky!#, ey522 cosky ,

dey5~]u/]y!2S cosky2
4

JH
cos

kx

2
sin2 kyDY8. ~15!

The value of the carrier density at a fixed value of the che
cal potential is then given by25

n5x1dx5E
2m/2

1 2dex

pA12ex
2E

22

m/ex

$ry~ey!

1dry~ex ,ey!%dey . ~16!
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Here,ry51/(pA42ey
2) is the value of the density of state

at fixedkx in the ferromagnetic state, anddry is the correc-
tion arising at]u/]yÞ0. Then the change in the carrier de
sity due to a nonzero value of (]u/]y)!1 can be evaluated
~to leading order indey) as

dx5E
2m/2

1 2dex

pA12ex
2
dnyS m

ex
D ,

dnyS m

ex
D[E

22

m/ex
dry~ex ,ey!dey'2deyryS m

ex
D . ~17!

Using Eq.~15!, we obtain after some algebra

dx5
C
2 S ]u

]yD 2

, C5
1

2p2 F S m

4
2

m2

2JH
DY1~x!1

2

JH
Y2~x!G .

~18!

Finally, given the known profile ofu(y) in a Bloch wall,14

cosu(y)5tanh(y/lB), we find the following expression for the
charge of a Bloch wall per unit length:

sB52eC/ l B , ~19!

wheree is the absolute value of electron charge. In evalu
ing sB as2e*dxdy, we used the adiabatic approximatio
which is valid in the long-wavelength limit ofl B@1. As
expected, a similar calculation for a Bloch wall running pa
allel to a lattice direction yields the same result~19!: Bloch
walls have a well-defined continuum limit, and both the
energy26 and charge are independent of the orientation o
square lattice.

We note that atJ>0, the Bloch wall can be stable only a
long as the chemical potential at the center of the w
~where the band-narrowing effect is most pronounced! lies
above the bottom of the carrier band. In other words,
value of x1dx with dx given by Eq.~18! should remain
positive aty50 ~otherwise, there would be no carriers an
hence no carrier-mediated ferromagnetic interaction near
center of the wall!.27 Since the wall is smooth,l B@1, this
condition is important only at the low-doping limit ofx
!1, when it reads28

16pxDS.K. ~20!

This is clearly violated at sufficiently lowx. We will see that
in this case the domain wall is in fact abrupt@Sec. III, Eq.
~21!#.

According to Eq. ~19!, the charge of the Bloch wall
which is inversely proportional to its width, decreases w
decreasing anisotropy strength:sB}AK. At small values of
electron density,x!1,JH , we find sB5e/(8p l B). The be-
havior of sB at the intermediate doping levels can be i
ferred from Fig. 1~b!, where the quantityC(x) @see Eqs.~18!
and ~19!# is plotted for different values ofJH . We suggest
that the experimental determination ofsB may help to dis-
tinguish Bloch walls from abrupt or stripe domain walls~see
Secs. III and IV below!, which typically carry larger charge
On the theory side, the effect of Bloch wall charge on t
carrier transport across the wall should be considered.
4-4
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MAGNETIC DOMAIN WALLS IN SINGLE-PHASE AND . . . PHYSICAL REVIEW B67, 064404 ~2003!
Throughout this section, we assumed29 that the Debye-
Hückel screening radius is large in comparison tol B . This
appears to be plausible, especially in view of the relativ
large values of dielectric constants, characteristic of
highly polarizable oxides. We will briefly discuss the magn
tude of the Coulomb correction to the Bloch wall energy,SB ,
in Appendix B @Eq. ~B9!#. In the opposite case of stron
screening, the charge of a Bloch wall will vanish.

III. ABRUPT WALL

The appreciable contribution of magnetic domain walls
resistivity, as observed in certain ferromagnetic strain
CMR films,5–7 suggests the possibility of non-Bloch wal
arising in these systems. Indeed, in order to scatter the
riers effectively the domain wall must have a nonsmo
structure, characterized by abrupt changes in the spin d
tion. An abrupt~Ising-type! domain wall, shown in Fig. 2,
represents an extreme example of such a structure.

Unlike the Bloch wall, an abrupt wall represents a latti
problem ~as opposed to a long-wavelength one!. Therefore
the properties of an abrupt wall depend on its orientat
with respect to the lattice, and one has to distinguish
tween, e.g., diagonal@Fig. 2~a!# and vertical @Fig. 2~b!#
walls. We note that a similar feature would also arise
domain walls in an Ising ferromagnet—indeed, the num
of cut ferromagnetic links per unit wall length is different fo
vertical and diagonal walls. In a classical double-excha
ferromagnet, the standard double-exchange mechanism
bids carrier hopping across the abrupt domain wall.30 Owing
to the anisotropy of the carrier spectrum~as manifested in a
nonspherical shape of the Fermi surface!, the carrier contri-
bution to the abrupt wall energy is again orientation dep
dent.

In order to show that abrupt domain walls can actua
arise in double-exchange ferromagnets, we will first turn
the low-doping limit x!1, assuming also thatJH5` and
J50. Since the Fermi momentum is small,pF

254px!1,
carrier dispersion can be approximated by the free-part
dispersion lawekW

↑
'const1(k2/2). The energy of an abrup

wall is therefore equal to that of a partition inserted into
ideal spin-polarized Fermi gas, which can be easily e
mated.

Let the ideal Fermi gas be contained in a rectangular
of size Lx3Ly . According to the uncertainty principle~or

FIG. 2. Diagonal ~a! and vertical ~b! abrupt domain walls
~dashed lines!.
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alternatively to the usual rules of momentum quantizatio!,
the difference between the allowed valuespy

( i ) of the y com-
ponent of momentum can be estimated asdpy;1/Ly . Sup-
pose now that a flat partition perpendicular to they axis has
been introduced, dividing the box in half. This shifts ea
allowed momentum value:py

( i )→py
( i )1dpy

( i ) with udpy
( i )u

;dpy . The signs ofdpy
( i ) are chosen in such a way that th

energy shift of each individual electron level is positive
de(px ,py);upyudpy . The net energy change associated w
the partition is thus given byLxLy*npW upyud2p/Ly , or ;x3/2

per unit length of partition.31

Thus, we find that the energy of abrupt domain wall in
double-exchange ferromagnet is given bySA;x3/2. The nu-
merical coefficient can be obtained by an exact treatm
@see below and Appendix A, Eqs.~A16! and~A17!#, yielding
SA'4Apx3/2/3. Comparing this with the Bloch wall energ
SB'AKx @see Eq.~2!#, we find that the abrupt wall energy i
lower, SA,SB , as long as

x2,9K/16p. ~21!

We note that according to Eq.~20!, Bloch walls become
altogether unstable atx2,K/4p.

It appears to be very difficult to rigorously address t
question whether in the region specified by inequality~21!
the abrupt wall actually represents the optimal spin confi
ration. We are, however, able to verify@see Appendix A, Eqs.
~A16! and ~A17!# that as long asx2,K/p, the abrupt do-
main wall is stable with respect to small ‘‘smearing’’ pertu
bations~shown schematically in Fig. 3! involving spins ad-
jacent to the domain wall on both sides. This provides
strong, albeit variational, argument for the overall stability
abrupt walls.

We now turn to an exact calculation of the energies a
charges of abrupt walls for all values ofx, JH , andJ, begin-
ning with the evaluation of the electronic contribution to t
energy of an abrupt diagonal wall.

Following the Fourier transform, Eq.~11!, the electronic
terms in the Hamiltonian of the uniform ferromagnetic pha
take the form@cf. Eq. ~12!#

FIG. 3. Schematic representation of a one-dimensional prob
which arises in diagonal domain wall calculations, Eqs.~23! and
~24!. The intersite distance is equal to 1/A2, and the numbers are
the same as the subscripts of the fermion operators in Eq.~24!.
Dashed arrows correspond to the perturbed case,cÞ0.
4-5
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H̃5(
kx

Hkx
, ~22!

Hkx
52

Q

2 (
y

H d↑
†S kx ,y1

1

A2
D d↑~kx ,y!

1d↓
†S kx ,y1

1

A2
D d↓~kx ,y!1H.c.J

1
JH

2 (
y

$d↓
†~kx ,y!d↓~kx ,y!2d↑

†~kx ,y!d↑~kx ,y!%,

~23!

whereQ52 cos(kx/2). The abrupt diagonal domain wall pa
allel to thex axis results in a perturbation of the Hamiltonia
~23!, Hkx

→Hkx
1Vkx

, with

2

Q
Vkx

5$d21↑
† d0↑1d21↓

† d0↓1d1↑
† d2↑1d1↓

† d2↓%~12cosc!

1$d0↑
† d1↑1d0↓

† d1↓%~12sin 2c!

1$d0↑
† d1↓2d0↓

† d1↑%cos 2c1$d21↑
† d0↓2d21↓

† d0↑

1d1↑
† d2↓2d1↓

† d2↑%sinc1H.c. ~24!

Here we denotedda(kx ,i /A2) by dia and allowed for a
smearing perturbation,c!1, as shown in Fig. 3. It is con
venient to rewrite the operatorVkx

in a diagonal form:

Vkx
5(

i 51

8

Aiai
†ai , ai

†aj1ajai
†5d i j . ~25!

Expressions for both the eigenvaluesAi and the operatorsai
are given in Appendix A.

In the absence of a domain wall, the electronic contrib
tion to the thermodynamic potential of a double-exchan
ferromagnet at a temperatureT can be evaluated as

V5E Lxdkx

2pA2
E LyA2dky

2p
w@ekW#

5E Lxdkx

2pA2
E den tot~e,Q!w~e!de,

ekW52Q cosky , w~e!52T lnF11expS m2e

T D G .
~26!

Here, Lx and Ly are the dimensions of the sampl
n tot(e,Q)5LyA2/(pAQ22e2) is the total density of state
at a fixed value ofQ @i.e., with kx562 arccos(Q/2)], and
the factorsA2 originate in momentum rescaling implied
Eqs.~11! and ~13!.

When the domain wall perpendicular to they axis is in-
troduced, the associated perturbationVkx

, Eqs.~24! and~25!,
gives rise to a correction32 in the density of states
n tot(e,Q)→n tot(e,Q)1dn(e,Q). Introducing the Lifshits-
06440
-
e

Krein spectral shift function33 j(e,Q) according to dn
52]j/]e, we find, for the electronic contribution to th
domain wall energy,

dV

Lx
5E dkx

2pA2
E dedn~e,Q!w~e!

5E dkx

2pA2
E dej~e,Q! f ~e!. ~27!

Here, the zero-temperature value for the Fermi distribut
function f (e)5u(m2e) can be substituted.

For a given value ofkx , the operatorVkx
represents a

local perturbation of a one-dimensional HamiltonianHkx
.

Thus, the dependence ofj on Q is only parametric,32 and the
value ofj can be found from the standard formula33 ~see also
Ref. 34!

j„e,Q~kx!…52
1

p
Arg DetF 1̂2ĜS e2

1

2
JH2 i0,QDVkxG ,

~28!

whereĜ(z,Q)5(z•1̂2Hkx
)21 is the resolvent operator at

given value ofkx , and 1̂is the identity operator. In the basi
containing the statesai

†u0& ~whereu0& is the vacuum state!,
the determinant on the right-hand side~RHS! of Eq. ~28! is
that of an 838 matrix,d i j 2Mi j Aj , with

Mi j 5 (
a5↑,↓

E dkyA2

2pQ

^0uai uky
a&^ky

auaj
†u0&

Ea1cosky2 i0
. ~29!

Here

E↑5e/Q, E↓5~e2JH!/Q, ~30!

and uky
a& are properly normalized Bloch wave states,

uky
a&5

1

21/4 (
y

e-ikyyA2da
†~kx ,y!u0&,

^ky
auky8

b&52pd~ky2ky8!dab . ~31!

After a straightforward, if somewhat laborious, calcul
tion we obtain

j~e,Q!5j (0)~e,Q!1dj, tanpj (0)5
E↑E↓21

AE↓
221A12E↑

2
,

dj5
4JH

2

pQ2
A12E↑

2
E↑2E↓2AE↓

221

E↓
22E↑

222E↑E↓
c2. ~32!

The final expression for the energy of an abrupt diago
domain wall per unit length is then given by the trace fo
mula, Eq.~27!, with additional contributions from direct su
perexchange and single-ion anisotropy:
4-6
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Sd[Sd
(0)1Zdc2522A2J12A2~2J1K !c2

1
A2

p E
21

1

dE↑E
0

2 QdQ

A42Q2
j~QE↑ ,Q!u~m2QE↑!.

~33!

The energy of a vertical abrupt domain wall is calculat
very similarly ~see Appendix A!, yielding the result

Sv[Sv
(0)1Zvc2522J14~J1K !c2

1
1

pE21

1 de1

A12e1
2E

21

1

de2j̃~e2!u~m2e12e2!.

~34!

Here, j̃(e2) is equal toj(e2 ,Q) as given by Eqs.~32! with
E↑5e2 , E↓5e22JH , andQ51.

The spectral shift function, Eq.~32!, also contains infor-
mation about the abrupt domain wall charges. Indeed,
spectral shift functionj(e) generally measures the numb
of energy levels that cross the given energy valuee as a
result of a perturbation. Thus, the change in electron den
at a fixed value ofkx is given by 2j(m,Q), yielding the
charge of an unperturbed (c50) abrupt diagonal wall:

sd5
A2

p
eE

umu

2

j (0)S m

Q
,QD dQ

A42Q2
. ~35!

For a vertical wall, we likewise obtain

sv5
e

pEumu21

1

j̃ (0)~m2e1sgnm!
de1

A12e1
2

. ~36!

Here the functionj̃(e) is defined in the same way as in E
~34! above.

We have conducted a thorough numerical investigation
Eqs. ~33! and ~34!. The doping dependence of the abru
wall energies for different values ofJH is illustrated in Fig.
4~a!. Comparing these with Fig. 1~a!, we conclude that at the
intermediate doping levels, abrupt wall energies are typic
several times larger than the spin stiffness,DS. Therefore in
the physically relevant case of small anisotropies,K!DS,
Bloch walls will typically have a significantly lower energ
@see Eq.~2!#. We note that including antiferromagnetic s
perexchange,J.0, would lead to a decrease inSd

(0) relative
to Sv

(0) @as follows from Eqs.~33! and ~34!#. In particular,
this can yield35 Sd

(0),Sv
(0) at small values ofx.

The chargessd and sv of the abrupt domain walls ar
plotted in Fig. 4~b!. We see that at the intermediate dopi
values, the electric charge per unit length is of the orde
0.1e, in a marked difference from weakly charged Blo
walls @cf. Fig. 1 and Eq.~19!#.

With increasing antiferromagnetic interactions in the s
tem ~that is, either with increasingJ or with decreasingJH)
the spin stiffness, as well as the abrupt wall energies,
eventually change sign. Near this point, there might b
region whereDS is still positive, while eitherSv

(0) or Sd
(0) is

smaller than the Bloch wall energySB . This is due to the
06440
e

ty
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ly
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fact thatSB andSv,d
(0) depend onJ andJH in different ways.

Such a situation is illustrated in Fig. 4~c!, showing the do-
main wall energies in a double-exchange ferromagnet w
x50.55 andJH54 as functions ofJ. The solid line corre-
sponds to the Bloch wall energySB , whereas the vertica
abrupt wall energySv

(0) is represented by a dashed line. T
value of the easy-axis anisotropy constantK is varied withJ

FIG. 4. ~a! Abrupt wall energies vsx at J50. Solid ~dashed!
lines, top to bottom: diagonal wall energySd

(0) ~vertical wall energy
Sv

(0)) for JH→`, JH58, andJH54. For finite values ofJH , the
lines end at the values ofx corresponding to the sign change of sp
stiffnessD. Immediately below these values, the ferromagnetic s
is unstable with respect to phase separation~see Fig. 1!. For K(x)
5D(x)S/25 ~i.e., l B55), the quantitiesZd,v are negative every-
where outside the low-doping regionsx!1 and 12x!1, except
for the case ofJH58, whenZd becomes positive forx.0.83 ~dot-
ted line!. ~b! Abrupt wall charges in units of electron chargeueu.
Solid and dashed~dash-dotted and dotted! lines representsd andsv
for JH→` (JH54). ~c! Bloch wall energySB ~solid line!, abrupt
vertical wall energySv

(0) ~dashed line!, and the quantityZv ~dotted
line! vs superexchangeJ. Anisotropy constant varies according t
K(J)5DS/25. Conduction electron density and Hund’s rule co
pling strength are given byx50.55 andJH54, respectively, and
the system is unstable with respect to phase separation.
4-7
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in such a way that the Bloch wall widthl B @see Eq.~2!# is
always equal to 5. We see thatSB.Sv

(0).0 for 0.0143,J
,0.0148. Since the quantityZv @see Eq.~34!#, represented
by the dotted line, is positive throughout theSv

(0),SB region,
one is tempted to conclude that the abrupt wall is inde
stable in this region. However, it is easy to verify that forJ
.0.0107, the homogeneous ferromagnetic ground state
comes unstable with respect to phase separation into fe
and antiferromagnetic regions. It appears that this repres
the general situation, i.e., that at the intermediate dop
range the inequalitySB.Sv

(0) ~or SB.Sd
(0)) cannot be satis-

fied within the thermodynamically stable region. In Sec.
below, we will argue that the phenomenon of phase sep
tion can affect the magnetic domain wall structure in a p
found way. Here we merely note that even if phase sep
tion is suppressed due to some mechanism~e.g., enforcing
electric neutrality on the microscopic level!, the parameter
region where eitherSv or Sd is smaller thanSB ~but the
stiffnessD is still positive! would still be very narrow, re-
quiring one to fine-tune the values ofJ, JH , K, and x to
within a fraction of a percent.36 It is therefore very unlikely
that such a situation can be realized experimentally in a
producible way.

Expressions~33!–~36! can be further simplified in the
limiting cases of small carrier density,x!1, or large Hund’s
rule coupling,JH→` ~see Appendix A!. Expressions~A12!–
~A15!, valid in theJH→` limit, can be used to estimate th
values ofSd and Sv at sufficiently largeJH throughout the
entire range of dopant concentrations.

As discussed in the beginning of this section@see Eq.
~21!#, the domain walls become abrupt at the low-dopi
limit of x!1. In this case, the abrupt wall energies a
charges are given by Eqs.~A16!–~A19!. The doping depen-
dence of domain wall energies in this region is illustrated
Fig. 5. The value of Hund’s rule coupling is taken to beJH
50.1, andK(x)5D(x)S/25, again ensuring thatl B55. We
see that the energy of an abrupt vertical wall~dashed line! is
lower than that of a Bloch wall~solid line!, Sv

(0),SB , for all
x,0.0027, and the stability of abrupt domain wall is furth
evidenced by the fact that the quantityZv ~dash-dotted line!

FIG. 5. Bloch wall energySB ~solid line!, abrupt vertical wall
energySv

(0) ~dashed line!, and the quantityZv ~dash-dotted line! vs
electron densityx in the low-density limit without superexchang
(J50). Hund’s rule coupling is fixed atJH50.1, while the anisot-
ropy varies according toK(x)5DS/25, leading to a constant Bloc
wall width l B55. The Bloch wall, however, becomes unstable
lower x ~dotted line!.
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is positive forx,0.0063. For this choice of parameters,37 the
value of Sd

(0) is just above that ofSv
(0) , and we findSd

(0)

,SB at x,0.0026 andZd.0 for all x,0.0074. The Bloch
wall becomes unstable@see Eq.~20!# at x,0.0008 ~dotted
line!. We note that allowing for a larger value ofK would
have broadened the region where abrupt walls have lo
energy; however, Eqs.~2! are valid only in thel B@1 case.

The data shown in Fig. 5 are for a system with no dire
superexchange,J50; including a smallJ.0 would give
rise to a phase-separation instability at smallx,22 which may
or may not cover the entire region ofSv,d

(0),SB . While no
study of domain structure in the electron-doped mangan
has been reported so far, it appears that superexchang
these systems is sufficiently strong to destabilize the ho
geneous ferromagnetic state atx!1.38 The abrupt wall pic-
ture as discussed here is then inapplicable~see Sec. IV be-
low!. We note, however, that this might not be the case
other lightly doped magnetic semiconductors or semimet
Ferromagnetic semiconductors such as Eu-doped EuS
EuO have relatively high values of the Curie temperatureTC
~Ref. 39!, presumably originating from a strong ferroma
netic superexchange,J,0. In this case, even in a lightly
doped sample ferromagnetism is due mostly to supe
change~rather than to double exchange! and one expects tha
the domain walls will be of Bloch type, like in conventiona
Heisenberg ferromagnets. However, other magnetic semi
ductors such as EuSe become ferromagnetic only upon s
electron doping.40 In this case of small positiveJ, domain
walls may in fact be abrupt. This also may be the case i
ferromagnetic semimetal EuB6 ~Ref. 41!. It would therefore
be most interesting to study experimentally the domain w
structure~in particular, the effect of domain walls on th
transport properties! in the ferromagnetic films of these com
pounds.

Throughout our calculation, we neglected the effects
chemical disorder which can lead to localization of electr
states. We note that the overall profile of carrier wave fu
tions does not directly affect the properties of an abrupt w
The assumption essential for our approach is that the elec
wave function can belocally approximated by an energ
eigenfunction of the clean case42 with the same energy. This
is valid provided that the localization length is much larg
than the inverse Fermi momentum; the latter condition
expected to be satisfied in manganates within the meta
regime, as well as in the doped magnetic semiconductors
semimetals discussed above.

IV. PHASE SEPARATION AND STRIPE WALLS

Phase separation is a phenomenon which commonly
curs in the CMR manganese oxides.20,21Although direct evi-
dence is lacking, it appears likely that the films studied
Refs. 5–7 are in fact phase separated. It is therefore im
tant to consider the effect of phase separation on magn
domain wall structure in double-exchange ferromagnets.

Let us first suppose that the values of the parameter
the system~that is, carrier densityx, superexchangeJ,
Hund’s rule coupling strengthJH) lie within the stability
region of the uniform ferromagnetic phase. The thermo

t
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namic potential is then given byVFM5E12J2mx, with
the value ofm5mFM(x) determined by the uniform conduc
tion electron densityx. The electron charge density2ex is
compensated by the combined charge of magnetic and
magnetic ions, resulting in electric neutrality of the syste
on the microscopic level.43 As the values of parameters a
varied~e.g., either the value ofJ is increased or that ofJH is
decreased!, the system eventually becomes unstable with
spect to phase separation into the ferromagnetic phase
another phase which we will call antiferromagnetic.44 In the
absence of a Coulomb interaction, this occurs when the t
modynamic potentials of the two phases become equa
each other:VFM„mFM(x)…5VAFM„mFM(x)…. At this point,
it becomes energetically advantageous to create island
the antiferromagnetic phase within the bulk of the ferrom
net. Since there is a finite energy costW associated with a
unit length of the boundary between the two phases, suc
island should contain a large number of sites in order
reduce the boundary energy per antiferromagnetic site
long as this is the case, the area occupied by the antife
magnetic phase can be arbitrarily small relative to the to
size of the system, so that the carrier densityx within the
ferromagnetic area and hence the value of chemical pote
mFM(x) remain unchanged.

The structure of the boundaries between different pha
has been studied by the present writer in Ref. 22. It w
found that at least in some cases these boundaries are ab
it appears plausible that this property is rather generic.
note that the energy and charge of an abrupt interph
boundary can be evaluated using the approach applie
Sec. III above to the study of an abrupt domain wall.
boundary between ferro- and antiferromagnetic areas ca
perfectly abrupt only if it runs parallel to certain lattic
directions.22 It is therefore likely that within a large region o
parameter values, the emerging islands of the antiferrom
netic phase will have a square~or diamond! shape. Apart
from one case discussed towards the end of this section
latter feature is unimportant for the rather qualitative disc
sion below. We will therefore assume that the islands
circular, which would correspond to the boundary energyW
independent of direction.

While the chemical potentialm5mFM(x) is constant
across the sample, the carrier density within the isla
xAFM , is different from the nominal valuex. We note that
phase separation consists precisely in a redistribution of
carriers with a simultaneous change in magnetic order
and would not be possible had the requirement of cons
carrier density been enforced on the microscopic level. T
island is therefore electrically charged, and it is imperative
take into account the effects of electrostatic Coulomb in
action and screening on phase separation.

In a thin film, the inverse Debye-Hu¨ckel screening radius
is given by45,46 ~see also Appendix B!:

k5
2pe2n0

ē
, ē5

1

2
~ed11ed2!. ~37!

Here n0 is the value of the carrier density of states at t
Fermi level anded1 , ed2 are dielectric constants of the med
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on both sides of the conducting layer. In the 3D case, wh
is discussed in more detail in Appendix B,k (3D)

2

54pe2n0 /ed , where ed is the dielectric constant of the
double-exchange magnet itself. If the size of the island w
large in comparison with the Debye-Hu¨ckel radius, R
@k21, screening within the island would have restored t
carrier density to its nominal valuex ~and charge density to
zero!. In the case when there is no conduction band in
bulk antiferromagnetic phase@e.g., whenxAFM(m) equals
either 0 or 1#, the presence of the electric potentialw ~which
in this case is strongly position dependent! would shift the
carrier band within the island either upwards or downwar
This in turn will ultimately give rise to a Fermi surface
screening, and restoration of the carrier density to its no
nal value on the length scale ofk21. However, as explained
above, when the value of the density is fixed no phase se
ration is possible. We therefore conclude that the format
of an island can be energetically favorable only as long a47

R&k21. We will assume for simplicity that 1!R!k21,
that is, that the carrier density within the island is unifor
and equal to the bulk value ofxAFM(m). This obviously
includes an assumption that Debye-Hu¨ckel radius is large on
the atomic length scale,k!1. The latter is not unphysical, in
view of the relatively large dielectric constantsed reported
for the manganates48 and of the suppression of the carri
density of states at the Fermi leveln0 found in the x-ray
absorption and angle-resolved photoemiss
measurements.49 For a thin film, the situation also depend
on the choice of substrate, as discussed in more detail a
end of this section.

With these assumptions, the change in the thermodyna
potentialV associated with the creation of a single circu
antiferromagnetic island in a 2D system can be evalua
as50

Xi5pR2~VAFM2VFM !12pRW1
1

2E d2rr~rW !w~rW !

1E
(FM )

d2r E
m

m8
de~e2m!n0 . ~38!

Here, the first two terms represent the bulk and bound
contributions, the third term is the electrostatic Coulomb e
ergy, and the last term is the kinetic energy cost of
distributing electrons in the ferromagnet, caused by a shif
the electrochemical potentialm8(rW)5m1ew(rW) ~that is, a
shift of the band energies due to the presence of an ele
field within the screening cloud!. The charge densityr(r )
equals rAFM52e(xAFM2x) within the island and
2edx(rW) outside, wheredx is the change of electron densit
in the screening cloud. The last term in Eq.~38! can be
rewritten as

1

2E(FM )
d2r

~dx!2

n0
5

1

2E(FM )
ewdxd2r 52

1

2E(FM )
rwd2r .

This allows us to render Eq.~38! in the form
4-9
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Xi5pR2~VAFM2VFM !12pRW1
1

2E(AFM)
d2rrw,

~39!

where the integration in the last term is carried out over
area of the island. Evaluating the potentialw to leading order
in 1/(kR)!1 @see Appendix B, Eqs.~B11! and ~B12!#, we
obtain

Xi5pR2~VAFM2VFM !12pRW1
8prAFM

2 R3

3ē
. ~40!

The creation of an island becomes energetically favora
once the minimum value of this expression drops bel
zero. This yields the following threshold condition for pha
separation to occur:

VFM2VAFM.D058urAFMuAW

3ē
~41!

@at VFM5VAFM1D0, the discriminant of the cubic equatio
Xi(R)50 vanishes; the minimum valueXi(R0)50 is then
reached atR05(3ēW)1/2/(2urAFMu)].

Let us now consider a domain wall in a phase-separa
film. We note that in this case the antiferromagnetic and
romagnetic tendencies in the system are approximately
anced against each other; this greatly reduces both the
stiffness@which in turn determines the Bloch wall energy v
Eq. ~2!# and the energy of abrupt domain walls,Sv,d

(0) . This
point is illustrated by Fig. 6, representing the chemical p
tential dependence of spin stiffness~solid line! and abrupt
wall energies~dashed and dash-dotted lines! for a JH→`
system with the value ofJ5J(m) adjusted in such a way51

that VFM5VAFM . The appropriate antiferromagnetic pha
near the end pointsm562 is characterized by the usu
Néel $p,p% (G-antiferromagnetic! spin ordering, whereas in
the vicinity of quarter-filling,m50, theA-antiferromagnetic
phase with the ordering vector$p,0% proves more advanta
geous. The plethora of possible phases arising in the in
mediate case~see Ref. 22! are not considered here, and n

FIG. 6. Chemical potential dependence of spin stiffnessDS
~solid line! and the diagonal and vertical abrupt domain wall en
gies ~dash-dotted and dashed lines! for a JH→` system on the
brink of phase separation. The value ofJ is adjusted in such a way
that VFM5VAFM for any value of carrier densityx. The nature of
the corresponding antiferromagnetic phases is discussed in the
06440
e

le

d
r-
l-

pin

-

r-

value is plotted forDS andSv,d
(0) unless the phase separatio

into the ferromagnetic and eitherG- or A-antiferromagnetic
phases is possible. Comparing Fig. 6 with theJ50 case,
plotted in Figs. 1~a! and 4~a!, we find a drastic reduction o
both spin stiffness and domain wall energies at the interm
diate doping values. In addition, the energies of abrupt
main walls are now of the same order of magnitude as
spin stiffness, in a marked difference with the single-pha
case considered earlier.

We will first discuss the effect of Coulomb forces in th
case when the value ofVFM2VAFM is just above the thresh
old, Eq. ~41!, so that the islands of the antiferromagne
phase arising within each ferromagnetic domain are w
separated from each other, and Eqs.~38!–~40! are valid. As
discussed in Sec. III, the abrupt domain wall shuts the car
hopping in the perpendicular direction, acting as a partit
in the gas of conduction electrons. In the absence of C
lomb forces, the energy cost of creating a stripe of antifer
magnetic phase adjacent to the wall is therefore equal
2(VFM2VAFM)d ~where d is the stripe width! per unit
length of the stripe, and does not include any additio
boundary contribution. This statement~which is equivalent
to saying that the abrupt wall energy is equal to 2W per unit
length! is exact in theJH→` limit ~see Appendix A and Fig.
10!. It is also clear that it provides a reasonable estimate
the case of large but finiteJH ; the details of the situation a
finite JH will be addressed elsewhere. Thus, whenVFM
2VAFM.0, the energy of an abrupt domain wall can
further lowered by inserting alongside it a stripe of antife
romagnetic phase~see Fig. 7!. The width of the stripe is
determined by a trade-off between the bulk and Coulo
energies, i.e., by minimizing the energy of astripe domain
wall per unit length,

Ss~d!52W2~VFM2VAFM!d2
d2

ē
rAFM

2 ln kd ~42!

@see Appendix B, Eqs.~B6!–~B8!#. Since the antiferromag
netic stripe separates two ferromagnetic domains with a

-

xt.

FIG. 7. Schematic representation of a stripe domain wall in
phase-separated double-exchange magnet. The two ferromag
domains with antiparallel directions of magnetization~arrows! are
separated by a stripe of antiferromagnetic phase~shaded!. In addi-
tion, unconnected islands of antiferromagnetic phase are for
within each domain.
4-10
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MAGNETIC DOMAIN WALLS IN SINGLE-PHASE AND . . . PHYSICAL REVIEW B67, 064404 ~2003!
parallel directions of magnetization, the spins at the t
edges of the stripe must point in the opposite directions.
the stripe of anA antiferromagnet (G antiferromagnet! par-
allel to a lattice direction~lattice diagonal!, this means that
the numberd ~the numberA2d) must be odd52; similar con-
ditions should hold for other phases. Since we assumed
the value ofd is sufficiently large,d@1, these requirement
do not affect our estimates. Assuming thatVFM2VAFM
5DV0, we find

ds5
8AēW/3

rAFMln
rAFM

2

k2ēW

, Ss~d0!'2W2
16

3
W

1

ln kds
. ~43!

Equations~42! and ~43! are valid to leading order inkd
!1; even though lnkds is thus large, the relatively larg
coefficient of 16/3 in the second term of Eq.~43! allows for
a significant reduction of domain wall energy due to the pr
ence of a stripe of antiferromagnetic phase. It is not imp
sible that this reduction can make the quantitySs lower than
the Bloch wall energySB , provided that the easy-axis aniso
ropy constantK is sufficiently large. The domain wall
would then have a stripe structure and would strongly in
fere with the transport properties of the system. However,
exact values of quantitiesk andW in Eq. ~43! are not known,
and it is not clear whether this situation can be realized
perimentally.

More importantly, Eq.~43! @and its 3D analog, Eq.~B15!#
refer to the case when phase separation is just beginn
with the islands of antiferromagnetic phase separated
large areas of a ferromagnet. Indeed, our derivation relied
an assumption that the screening clouds formed around
ferent antiferromagnetic islands do not overlap, that is, t
the interisland distance is much larger than the screen
radius. The size of each island, on the other hand, is m
smaller thank21, so only a small part of the net sample ar
is occupied by the antiferromagnetic phase, making ph
separation difficult to detect. The available experimental d
on phase separation in the CMR compounds,21 on the other
hand, correspond to the case when a substantial part o
sample reverts to a nonferromagnetic phase. Within the c
text of the phase separation mechanism considered here
is only possible when neither the size of the antiferrom
netic islands~or stripes! nor the interisland distance is large
than Debye-Hu¨ckel radius. Below we will consider the cas
when screening is negligible~that is, when the interisland
distance is much smaller thank21). Sincek is expected to
be small~see above!, this is not unrealistic; moreover, th
results are expected to provide a reasonable estimate fo
case of intermediate screening strength as well.

The ferro- and antiferromagnetic phases are then cha
terized by uniform values of electron densitiesxFM andxAFM
and charge densities,rFM52e(xFM2x) and rAFM
52e(xAFM2x). The numbers of sites occupied by ferr
and antiferromagnetic phases,

NFM5
N

11d
, NAFM5

Nd

11d
, d[2

rFM

rAFM
~44!
06440
o
or

at

-
-

r-
e

-

g,
y
n

if-
t
g

ch

se
ta

he
n-
his
-

the

c-

~where N is the total number of sites in the system!, are
self-adjusted in such a way that the values of the bulk th
modynamic potentials of the two phases,VFM and VAFM ,
are close to each other. Therefore our observation that b
the spin stiffnessDS and abrupt wall energies are signifi
cantly reduced and are of the same order of magnitude~see
above and Fig. 6! remains applicable.

It is expected that the value of the parameterd can be
determined experimentally.

We are interested in the situation when within each fer
magnetic domain the poorly conducting antiferromagne
phase forms disconnected droplets~so that metallic conduc-
tance through the connected ferromagnetic area is still p
sible!, and we will again assume that these droplets are
cular in shape. The number of droplets in the sample is t
NAFM /(pR2) ~whereR is the radius of a droplet!, and ther-
modynamic potential of the phase-separated system is g
by

V1~R!5
VFM1VAFMd

11d
1

1

pR2

d

11d
~2pRW1E1!

~45!

per site, whereE1 is the Coulomb energy of a single drople
This term cannot be evaluated rigorously; in order to e
mate it, we calculate the energy of the Coulomb interact
within the so-called Wigner cell, composed of the drop
and a surrounding ringR,r ,R8 ~where r is the distance
from the center of the droplet! of the ferromagnetic phase
The value ofR85R@(11d)/d#1/2 is chosen in such a way
that the combined charge of the droplet and ring vanishe
should be emphasized that unlessd is small,d!1, this pro-
cedure, which has been used to treat a similar prob
earlier,53 is not exact54: even though the electrostatic pote
tial of a Wigner cell falls off rapidly with distance,w(r )
}r 23, it does not vanish outside the cell. In addition, diffe
ent Wigner cells overlap with each other. Thus, by using t
approach we essentially replace the Coulomb force w
some model interaction, which, however, captures the es
tial features of the original problem as long as the value od
is not too large ~see below!. We find E1

58p(R8)2RrAFM
2 A1(d)d/(3ē) @see Appendix B, Eq.

~B17!#, where for small values ofd!1 the functionA1(d) is
equal to 1. The thermodynamic potential of the drop
phase, Eq.~45!, has to be minimized with respect to th
droplet radiusR, yielding

V15
VFM1VAFMd

11d
1

8urFMu

A11d
AA1~d!W

3ē
. ~46!

Another possible geometry of phase separation is represe
by the stripe phase@shown in Fig. 8~a!#, formed by the par-
allel antiferromagnetic stripes of widthd embedded into the
ferromagnetic background. The thermodynamic potentia
the stripe phase is given by

V2~d!5
VFM1VAFMd

11d
1

1

d

d

11d
~2W1E2!. ~47!
4-11
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Within the Wigner-cell approximation, the Coulomb ener
per unit length of a single stripe,E2, is calcu-
lated by subdividing the sample into ‘‘Wigner stripes’’ o
width d85d(11d)/d @see Fig. 8~a!#. We find
E252@dd8rAFM

2 A2(d)d/ ē # ln d with A2(d→0)51 @see Ap-
pendix B, Eq.~B19!#. Minimizing the value ofV2 with re-
spect tod, we obtain

d05
1

urAFMu
A 2Wē

~11d!A2~d!u ln du
,

V22V15
urFMu

A11d
AW

ē
S 2A2A2~d!u ln du28AA1~d!

3 D .

~48!
The latter quantity is positive for all values ofd between

0 and 1, indicating that within this model approach, the dr
let phase is always preferred~see below!. The formation of a
stripe domain wall in the droplet phase involves rearrang
spins within a Wigner stripe of widthds85ds(11d)/d into
the stripe phase@see Fig. 8~b!#, that is, forming a single
stripe of antiferromagnetic phase@of width ds(d)] flanked by
two stripes of ferromagnet. The net area occupied by
antiferromagnetic phase,NAFM , is conserved, as is the ove
all electric neutrality. Minimizing the stripe wall energy pe
unit length,Ss5(V2(ds)2V1)ds8 , with respect tods , we
find

ds5
4

A2~d!urAFMln du
AWēA1d

3~11d!
, ~49!

Ss52WB~d!, B~d!512
8

3

A1~d!

A2~d!u ln du
. ~50!

The ratioB(d) of the stripe wall energySs to the abrupt wall
energy, 2W, is plotted in Fig. 9~solid line!. We see that the

FIG. 8. Stripe phase~a! and stripe domain wall within the drop
let phase~b!. The system is phase-separated into ferromagnetic~un-
shaded! and antiferromagnetic~shaded! regions withd'0.4. The
Wigner-cell boundaries of stripe and droplet phases are shown
dashed and dotted lines, respectively. The two connected ferrom
netic domains extending to the left and to the right of the stripe w
in ~b! are magnetized in the opposite directions~not shown!. The
width of antiferromagnetic stripes in~a! and ~b! is given by Eqs.
~48! and ~49!, respectively.
06440
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inclusion of an antiferromagnetic stripe can lower the ene
of an abrupt wall by a factor of 4. Since the spin stiffnessDS
is of the same order as the abrupt wall energy~see Fig. 6!,
the stripe wall energy can be lower than the Bloch wall e
ergy SB already at a moderate value of anisotropy,K
;DS/64 @cf. Eq. ~2!#.

Within the Wigner-cell approach for circular droplets th
other droplet phase, with the ferromagnetic droplets in
antiferromagnetic background, becomes preferred atd.1
~cf. Ref. 53!. While this transition might give rise to new
possible domain wall structures neard51, this is not ex-
pected to be physically relevant due to the intrinsic limi
tions of the method. As the value ofd increases towards
unity, the Wigner-cell estimate for the Coulomb energy b
comes progressively less reliable due to decreasing sep
tion between the droplets. It is perhaps even more impor
that the effects of droplet shape can no longer be ignore

As mentioned above, it is likely that the optimal shape
antiferromagnetic droplets is square; this would be in l
with earlier results for the double-exchange model,22 as well
as with the numerical results for phase separation in o
similar systems.55 In order to calculate the energy of th
square-droplet phase at smalld, one can still use the Wigner
cell approach. Due to the increase in the droplet bound
energy, the combined Coulomb and boundary contribution
the thermodynamic potential of the droplet phase@the last
term in Eq.~46!# increases by some 6%. This in turn leads
a noticeable decrease in the quantityB(d) ~dotted line in Fig.
9!.

As the value ofd increases, the Wigner-cell method b
comes completely unsuitable for the analysis of the squ
droplet phase. Indeed, atd51 ~that is, atNFM5NAFM) the
square-droplet phase corresponds to a checkerboard arra
ment of equal ferro- and antiferromagnetic squares, wh
has nothing in common with the Wigner-cell picture~cf. Fig.
8!. It is therefore clear that the thermodynamic potential
the square-droplet phase at sufficiently larged is well above
the value given by Eq.~46!. Accordingly, Eq.~50! signifi-
cantly overestimates the value ofB(d) and hence the stripe
wall energy,Ss . While leaving this subject for future inves

ith
g-

ll

FIG. 9. The ratioB of the energy of a stripe wall to that of a
abrupt wall@see Eq.~50!# vs the ratiod of antiferro- and ferromag-
netic areas of the sample: solid line, droplet phase; dotted l
square-droplet phase at lowd; dash-dotted line, possible behavio
for the square-droplet phase at largerd; dashed line, 3D result of
Eq. ~B23!.
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MAGNETIC DOMAIN WALLS IN SINGLE-PHASE AND . . . PHYSICAL REVIEW B67, 064404 ~2003!
tigation, we note that it is entirely possible that at a cert
value of d5dc,1 the thermodynamic potential of th
square-droplet phase exceeds that of the stripe phase
~47!. The quantitiesB(d) andSs will vanish at this point,56

as exemplified schematically by the dash-dotted line in F
9. In this case, for any finite value of the anisotropy const
K.0 and sufficiently smalldc2d.0, magnetic domain
walls within the conducting phase would have stripe~as op-
posed to Bloch-like! structure.

We close with a brief comment on the applicability of o
analysis to finite-thickness films. The results of Secs. II a
III for the spin stiffness and abrupt wall energies are va
only as long as the carrier velocity component perpendic
to the film is negligible. However, our conclusion that on t
brink of phase separationDSand the abrupt wall energies a
generally of the same order of magnitude~as illustrated by
Fig. 6! is likely to remain valid in 3D as well. Our assump
tion that the screening has two-dimensional character is v
as long as the film thickness remains small in compari
with the two-dimensional Debye-Hu¨ckel radiusk21. The
film is then thin from the viewpoint of electrostatics@cf. Eq.
~B5!#; that is, there is no electric field in the perpendicu
direction within the film.57 The latter holds provided that th
film itself is homogeneous in this direction, i.e., that char
teristic length scale of a phase-separated sample@the droplet
radius,R;( ēW)1/2/urAFMu] is larger than the film thickness
Given the typical experimental observations21 that phase
separation occurs on the scale of at least 50–100 nm, this
condition is not particularly restrictive.

The Debye radius can be roughly estimated by assum
that n0 is of the order of the inverse bandwidth (4t;5 eV)
divided by the unit cell area (;0.15 nm2). Taking, in Eq.
~37!, ed251 ~dielectric constant of the air!, we then find
k21;(ed111)30.08 nm. The substrate used in the me
surements of Ref. 6, lanthanum aluminate, has the diele
constant58 of ed1'24, resulting ink21;2 nm. It is there-
fore tempting to associate the reported domain w
resistance6 ~large for the thinnest Pr2/3Sr1/3MnO3 films of 4
nm, vanishing for films thicker than 20 nm!, which is observ-
able below the Curie temperatureTC'130 K, with the stripe
walls which arise only as long as the thickness of the c
ducting layer~which is presumably somewhat thinner th
the film itself! is not large59 in comparison withk21. We
note that the film thickness required for the lattice perio
~and hence the anisotropy constantK and Bloch wall energy!
to relax to their bulk values is of the order of 500 nm~cf.
Ref. 7!. Thus, our suggestion provides an~hitherto lacking!
interpretation for the disappearance of domain wall resis
ity in films thicker than only 20 nm.

The experiments of Ref. 5, on the other hand, were p
formed with ~ferroelectric! strontium titanate substrate
with60 ed1'1200 at T5110 K, which yields k21

;100 nm. The La0.7Ca0.3MnO3 ~with Curie temperatureTC
5250 K) film5 was 200 nm thick, and the domain wall co
tribution was observable belowT5110 K. Given the strong
dependence ofed1 on temperature (ed1'24 000 at lowT,
ed1'300 at room temperature!, it appears plausible that do
main walls have stripe structure at low temperatures, w
06440
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the film thickness is not large in comparison withk21. Fur-
thermore, it is not unlikely that the above-mentioned tran
tion at T'110 K is due to the violation of this condition a
larger T and associated change of the domain w
structure.61 We emphasize that this discussion is speculat
at best, as we make no attempt to adequately describe
crossover between two- and three-dimensional screenin
to take into account the peculiar geometry of the sample u
in Ref. 5.

It appears that stripe wall formation is in principle als
possible in the opposite limiting case of a bulk 3D materi
although the Wigner-cell estimates given in Appendix B su
gest that somewhat higher values ofd are required. The val-
ues of the Debye radiusk (3D)

21 and dielectric constanted of
doped manganates are, however, not known, and, cruci
very small values of anisotropy make the Bloch wall ener
very low. It is therefore expected that in the 3D case
energy of the Bloch wall is generally lower than that of
stripe wall, in agreement with the fact that no observa
domain wall contribution to resistivity was reported for th
manganate crystals.

V. DISCUSSION

In this article we showed that there are at least three
ferent possible types of structure of a ferromagnetic dom
wall, all of which can be realized within the double-exchan
model. The energies and charges of Bloch, abrupt, and st
domain walls are also different, as are their anticipated c
tributions to the resistance and magnetoresistance of
sample. The conventional, weakly charged Bloch walls~Sec.
II !, which generally arise in single-phase samples, beco
unstable at low carrier densities, when the abrupt walls~Sec.
III ! are preferred. For a phase-separated system, how
there is a region of parameter values when the domain w
acquire stripe structure~Sec. IV!, characterized by a stripe o
antiferromagnetic phase separating the two domains.

It is not yet known whether all three types of wall ca
occur in the CMR manganate compounds. As follows fro
the discussion in Sec. III, abrupt walls are expected to a
at low values of electron doping,62 x!1, provided that the
homogeneous ferromagnetic phase remains thermodyn
cally stable. We are not aware of any measurements of
domain wall contribution to transport in this regime, and it
not clear whether such a situation~which also requires the
value of direct superexchangeJ to be extremely small! can
be realized in the manganates~however, see the end of Se
III for a discussion of other compounds!. As for the interme-
diate doping values, it appears that domain walls can h
either stripe or Bloch structure.

The effect of Bloch walls on the charge transport prop
ties of a double-exchange ferromagnet has been discu
theoretically.63 The results are consistent with simpl
estimates5–7 suggesting that for a realistic value ofl B and at
an intermediate doping level, carrier scattering off the Blo
wall cannot possibly account for a measured domain w
contribution to the resistivity of the systems studied in Re
5–7. Measurable domain wall contributions to the transp
properties of the CMR manganates, reported in other stu
4-13
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D. I. GOLOSOV PHYSICAL REVIEW B67, 064404 ~2003!
known to us, are attributable to the grain boundary effect
polycrystalline films.9,11,64 In this case, the magneti
structure10,11 of a domain wall arising at a substrate gra
boundary is largely determined by underlying latti
defects.65 It is anticipated that this also holds for the ma
netic pattern appearing in a strained film at the boundary
heavy-ion-irradiated region.66 We note that the effects of lat
tice irregularities of any type are not included in the pres
theoretical treatment.

Our results suggest that magnetic domain walls in mon
rystals or epitaxial films of CMR manganates at the interm
diate doping levels generally have Bloch-like structure, w
a notable exception of certain strained films similar to tho
used in Refs. 5–7. Regarding the latter case, we expect
domain walls may in fact be the stripe walls introduced
Sec. IV above. This suggestion is corroborated by the e
cially strong effect reported in Ref. 6, which shows that d
main walls give a dominant contribution to the resistivity
a thin Pr2/3Sr1/3MnO3 film at low temperatures. The conne
tion between domain wall resistivity and dielectric propert
of the substrate, discussed in the end of Sec. IV, appea
lend further support to the stripe wall scenario. The str
walls appear likely to arise in this case due to the stra
induced increase of the easy-axis anisotropy constanK
~which in turn increases the Bloch wall energy! and also to
phase separation which makes the formation of the st
walls possible. While it is not clear whether phase separa
does occur in the samples used in Refs. 5–7, this would
rather plausible given that phase separation is commonly
served in both manganate crystals and films.21 We suggest
that further measurements~e.g., scanning tunneling spectro
copy! need to be carried out to clarify whether these samp
are in fact phase separated. On the other hand, domain
properties~including possible domain wall contributions t
the resistivity! of those CMR films whichare known to
phase separate21,67 should also be investigated. Synthesis
electron-doped manganate films, if technologically possi
may represent a promising new direction.38 We note that
magnetic domain walls appear only when a substantial f
tion of the film is in the ferromagnetic state, allowing for
low-field metallic conduction.

In the present article, we did not quantitatively address
problem of conduction across a domain wall of either ty
The available theoretical estimates of domain wall cond
tance~Ref. 63 for Bloch walls, Ref. 16 for abrupt walls! are
incomplete in that the Coulomb interaction between the c
rier and~charged! domain wall is not taken into account. A
for the stripe walls, the issue of magnetotransport in this c
has yet to be treated theoretically, although it is clear that
stripe wall contribution to resistivity is much larger than th
of either Bloch or abrupt walls. In the presence of stri
domain walls, magnetoresistance will be affected by
change of their structure under a magnetic field, which
likely to include a field-driven transition from stripe to Bloc
walls. It is therefore expected that the dependence of
domain wall contribution to resistivity on the magnitude
the applied in-plane field can be different for the Bloch a
stripe cases~a smooth decrease for Bloch walls, as oppos
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to possibly steplike features for stripe walls, as seen in R
5!.

Magnetotransport studies are not the only way to inve
gate the properties of magnetic domain walls. Direct pro
of the charge and spin structure of domain walls are poss
in principle ~cf. Ref. 68!, but have not yet been performe
for the manganates. However, Fresnel imaging meas
ments on a thin La0.7Ca0.3MnO3 film were reported recently.8

Domain walls were found to retain a finite width of the ord
of 40 nm, in apparent agreement with Eq.~2! for Bloch
walls. We hope that domain wall widths in the strained film
studied in Refs. 5–7 will also be measured in the near futu
It would be most interesting to try to relate these to the ba
structure, magnetic, and electrostatic properties of the co
sponding compounds and to check the agreement with
estimates~43! and ~49! for the stripe walls.
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APPENDIX A: DERIVATION AND ANALYSIS OF EQS.
„33…–„34…

The key step in the calculation of the spectral shift fun
tion, Eq.~32!, is the diagonalization of perturbation operat
Vkx

@see Eqs.~24! and ~25!#. Its eigenvaluesAi and the cor-

responding fermionic operatorsai are given by

A15A252A352A452
Q

2A2
c2, ~A1!

A55A652A752A852
Q

A2
~12c!, ~A2!

and

8~26A2!1/2a1,35~42c2!~d21↑1d2↑!1@~462A2!c

1~46A2!c2#~d0↑1d1↑!

1~16A2!~42c2!~d21↓2d2↓!

1@72A2c2~263A2!c2#~d0↓2d1↓!,

~A3!

8~27A2!1/2a2,452~42c2!~d21↑2d2↑!1@~472A2!c

1~47A2!c2#~d0↑2d1↑!

1~216A2!~42c2!~d21↓1d2↓!

1@62A2c2~273A2!c2#~d0↓1d1↓!,

~A4!
4-14
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8~27A2!1/2a5,7522A2~c1c2!~d21↑1d2↑!1~A271!

3F462~A261!c2
3

2
c2G~d0↑1d1↑!

6~472A2!~c1c2!~d21↓2d2↓!

1F6422~A271!c7
3

2
c2G~d0↓2d1↓!,

~A5!

8~26A2!1/2a6,852A2~c1c2!~d21↑2d2↑!1~A261!

3F472~A271!c2
3

2
c2G~d0↑2d1↑!

6~462A2!~c1c2!~d21↓1d2↓!

1F7422~A261!c6
3

2
c2G~d0↓1d1↓!.

~A6!

These expressions are then used to form the matrix elem
Mi j ~see Eq.~29!!, for example

M115
22A2

4Q
~4E↑

221!2
21A2

4Q
~4E↓

221!

1~22A2!~113E↑24E↑
3!I ↑

1~21A2!~123E↓14E↑
3!I ↓1O~c!,

I a5
1

8pQE dky

Ea1cosky2 i0
~A7!

@see Eq.~30!#. Note that, owing to the symmetry propertie
of the operatorsai , the quantitiesMi j vanish unless both
indexesi and j are either odd or even. Hence the 838 de-
terminant on the RHS of Eq.~28! reduces to a product of two
434 determinants. After some algebra, one obtains exp
sion~32!, which has to be substituted into Eqs.~33! and~35!.

In the case of a vertical wall we choose the coordin
axesr 1 and r 2 along the lattice directions with ther 2 axis
perpendicular to the wall. After the Fourier transformation

da~r 1 ,r 2!5N21/4(
k1

eik1r 1da~k1 ,r 2!, ~A8!

we find that the unperturbed Hamiltonian has the form

H̃5(
k1

S Hk1
2cosk1(

r 2

da
†~k1 ,r 2!da~k1 ,r 2! D , ~A9!

and the domain wall again results in a local perturbat
Hk1

→Hk1
1Vk1

. This perturbation is still illustrated by Fig
3, although the intersite distance is now equal to unity, rat
than to 1/A2. The operatorsHk1

andVk1
have the same form

as Hkx
and Vkx

@see Eqs.~23! and ~24!#, with the substitu-
06440
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tions Q→1, da(kx ,y11/A2)→da(k1 ,y11), da(kx ,i /A2)
→da(k1 ,i ). Hence Eqs.~A1!–~A6! with the value ofQ set
to unity can be used to diagonalize the perturbation@see Eq.
~25!# in the case of a vertical wall as well.

We note that in the expressions for bothHk1
and Vk1

in

terms of the operatorsda(k1, r 2), the coefficients do not de
pend onk1. Therefore, the only effect of the second term
the RHS of Eq.~A9!, regardless of whether the domain wa
is present, is to shift all of the energy levels by2cosk1.
Thus, Eqs.~26! and ~27! are now replaced by

V5E L1dk1

2p E de2n tot2~e2!w~e21e1!,

dV

L1
5E dk1

2p E de2dn2~e2!w~e21e1!

5E dk1

2p E de2j̃~e2! f ~e21e1!,

e1,252cosk1,2, n tot2~e2!5L2 /~pA12e2
2!.

~A10!

Here,L1 andL2 are the dimensions of the sample, andj̃(e)
is the spectral shift function of the corresponding 1D pro
lem. It is evaluated aspj̃(e)52ArgDet(d i j 2M̃ i j Aj ), with

M̃ i j 5 (
a5↑,↓

E dk2

2p

^0uai uk2
a&^k2

auaj
†u0&

Ea1cosk22 i0
~A11!

and E↑5E↓1JH5e. Taking also into account that th
states uk2

a& are defined in a conventional way,uk2
a&

5( r 2
exp(2 ik2r 2)da

†(k1 ,r 2)u0& @cf. Eq. ~31!#, we conclude

that the value ofM̃ i j coincides with that ofMi j , Eq. ~29!,
calculated atQ51. Thus,j̃(e)5j(e,Q51) @see Eq.~32!#,
and Eqs.~34! and ~36! follow.

The somewhat cumbersome expressions~32!–~36! be-
come much simpler in the case of a large Hund’s rule c
pling JH→`. We then find69

Sd5
1

A2
HA42m2

p
2

umu
p

arccos
umu
2

24J1E2m@x2u~m!#J
12A2H 2J1K1

4

3p2 Fm2

2
Y12S 11

m2

4 DY2G J c2,

~A12!
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Sv5
A2umu2m2

2p
1

12umu
2p

arccos~ umu21!22J1E

2m@x2u~m!#14H J1K2
4

9p2 F S m21
3

8
m4DY1

1S 12
11

4
m2DY2G J c2, ~A13!

sd52
e

pA2
arccos

umu
2

sgnm2
e

A2
@x2u~m!#,

~A14!

sv52
e

2p
arccos~ umu21!sgnm2e@x2u~m!#,

~A15!

whereYi andE are given by Eqs.~5! and~6!. When deriving
thec50 values ofSd andSv above, it is convenient to use
calculation scheme somewhat different from that used in
finite-JH case. Namely, the local perturbation we consid
now ~see Fig. 10! corresponds to inverting the spins along
1D chain, not only shutting the carrier hopping, but a
introducing a single chain of an antiferromagnetic phase.
latter circumstance can easily be accounted for by subtr
ing the difference of thermodynamic potentials between
antiferro- and ferromagnetic phases; the advantage of
method lies in a very simple form of the spectral shift fun
tion, j(e,Q)5(1/2)sgne, corresponding to the perturbatio
shown in Fig. 10.

Another potentially important case when the integrat
in Eqs. ~33!–~36! can be carried out analytically is that o
small electron densitiesx!1. For any value ofJH@x, we
obtain

Sd'
4Ap

3
x3/22pAJH14

2JH
x222A2J

1A2H pJHS 12A11
4

JH
D x214J12KJ c2,

~A16!

FIG. 10. Local perturbation used in the calculation of abru
domain wall energies atJH→` ~for the case of a diagonal wall!.
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Sv'
4Ap

3
x3/22pAJH12

JH
x222J

14H pJHS 12A11
2

JH
D x21J1KJ c2. ~A17!

It is instructive to note that expansion of these expression
the case ofJH@1 shows that the leading 1/JH correction
amounts to a renormalization of the superexchange cons
J→J1(px2)/(2JH). This is another illustration of an effec
tive antiferromagnetism being induced by a finite Hund
rule coupling, as discussed in Sec. II. We also see thatJ
50 and to leading order inx!1, abrupt wall energy does
not depend on the orientation of the wall,Sd

(0)5Sv
(0) , which

is due to the carrier dispersion law being isotropic at lo
densities.

The electric charges of unperturbed abrupt domain w
at x!1,JH are given by

sd'eAx

p
2exAJH14

2JH
2ex3/2

Ap

24
, ~A18!

sv'eAx

p
2exAJH12

JH
1ex3/2

Ap

24
. ~A19!

Finally, we also quote a 3D result for a vertical abrupt d
main wall energy~per unit area! at x!1 andJH→`:

Sv
(3D)'

21/334/3

16
p5/3x4/322J, c50. ~A20!

APPENDIX B: STRIPE WALLS AND SCREENING

In this appendix, we are concerned predominantly w
the investigation of the screening potentials and Coulo
energies of phase-separated states in a two-dimensional
ductor. Let the values of the dielectric constants of the me
on both sides of conducting plane beed1 and ed2. The
method of images enables one to evaluate the potential
point chargeq located at a distancez from a plane separating
the two dielectric media.14 In the limit z→0, we find that
this potential at any point in space is given byq/( ēs), where
s is the distance from the charge andē5(ed11ed2)/2. We
therefore conclude that the electrostatic properties of
system are described by a Poisson’s equation of the form

ē¹2w524pr~rW !d~z!. ~B1!

Here,rW5$x,y% is the 2D radius vector in the plane, thez axis
is perpendicular to the conductor, and¹ is the usual 3D
gradient. It is therefore only the effective dielectric consta
ē that will affect the values of physical quantities in this ca
@cf. Eq. ~37!#.

We begin with evaluating the potential of a charged str
within the film. Assuming that the string coincides with thex
axis, we rewrite Eq.~B1! as

ē¹2w~y,z!5@4pe2w~y,z!n024psd~y!#d~z!. ~B2!

t
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Here,s is the linear charge density of the string, and the fi
term on the RHS accounts for a screening charge ari
from the band energy shift by the electrostatic energ
2ew. This is a standard Thomas-Fermi treatment of scre
ing, valid in the long-wavelength limit. Upon one
dimensional Fourier transformation we obtain

S ]2

]z2
2ky

2D w~ky ,z!5S 2kw~ky ,z!2
4ps

ē
D d~z!.

~B3!

Using the Green’s function for Eq.~B3! ~cf. Ref. 46!,

g~ky ,z!5E
2`

` dkz

2p

eikzz

kz
21ky

2
5

1

2ukyu
e2ukyzu, ~B4!

we obtain

w~ky ,z!5
1

ukyu
e2ukyzuS 2ps

ē
2kw~ky,0!D . ~B5!

Hence, atz50, w(ky)52ps/@ ē(ukyu1k)#, and

w~y!5
22s

ē
~cosky ciky1sinky siky!, ~B6!

where si and ci are sine and cosine integrals. Atky@1, Eq.
~B6! yields w(y)'2s/( ēk2y2). Along with the 1/r 3 decay
of a screened point charge potential,45,46 this is in contrast
with the well-known exponential behaviors found in 3D.

Let us now consider the potential of an antiferromagne
stripe of width d!k21, centered around thex axis. At y
@d, it is given by Eq.~B6! with s5rAFMd, whereas aty
!k21 it should coincide with the unscreened potential of t
stripe,

w~y!52
2rAFM

ē
F S d

2
2yD lnUd2 2yU1S d

2
1yD lnUd2 1yU2dG

1const. ~B7!

At y@d, the latter expression takes the familiar form

w~y!52
2s

ē
lnuyu1const. ~B8!

The two regionsy@d and y!k21 overlap, enabling us to
find the value of const in Eqs.~B7! and ~B8!, 22rAFMd(C
1 ln k)/ ē, whereC'0.577 is Euler’s constant. Substitutin
Eq. ~B7! into Eq. ~39!, we find the leading-order expressio
for the Coulomb energy of the stripe@the last term in Eq.
~42!#. It is also easy to estimate the Coulomb energy o
Bloch wall,

2
1

ē
E E

2`

`

dx~y!lnuk~y2y8!udx~y8!dydy8;
1

ē
sB

2 lnuk l Bu

~B9!

@see Eq.~18!#, assuming thatk l B!1.
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We note that screening affects the value of the potentia
2uyu,d even in the limit ofd!k21 because the unscreene
potential, Eq.~B8!, diverges aty→`. This is also the case
for the potential of a single antiferromagnetic layer of thic
nessd in a phase-separated sample in three dimensions
which case we find, per unit area,

1

2EAFM
rwd3r'

pd2rAFM
2

k (3D)ed
, k (3D)

2 5
4pe2n0

ed
. ~B10!

In the case of a single antiferromagnetic disk in 2D or
antiferromagnetic sphere~ball! in 3D, the unscreened poten
tial vanishes at large distances and the leading-order~in kR)
term in the Coulomb energy does not depend on the scr
ing radius. Indeed, for the 2D case at sufficiently small d
tancesr !k21, the exact screened potential of a point cha
pR2rAFM ~found in Refs. 45 and 46! is to leading order
given bypR2rAFM /( ēr ). For r @R, this clearly matches the
unscreened potential of a charged disk. Therefore scree
does not affect the value ofw within the disk, which enters
Eq. ~39!. Using a Green’s function procedure similar to Eq
~B3! and ~B4! above, we obtain, for an unscreened disk
radiusR,

w~r !5E w~k!eikW•rW
d2k

4p2
, w~k!5

4p2rAFMR

ēk2
J1~kR!

~B11!

~where r is the distance from the island center andJ1 is
Bessel function!, and

1

2E d2k

4p2
r~k!w~k!5

2p2rAFMR2

ē
E

0

`

@J1~kr !#2
dk

k2
,

~B12!

leading to Eq.~40!, whereas for a 3D sphere of radiusR we
readily find

1

2EAFM
rwd3r'

16p2rAFM
2 R5

15ed
. ~B13!

Equation~41!, derived in Sec. III, holds for a thin film. With
the help of Eqs.~B10! and~B13!, it is easy to obtain a simi-
lar phase-separation threshold condition for the 3D~bulk
crystal! case,

VFM2VAFM.D0
(3D)5S 35pW(3D)

2 rAFM
2

5ed
D 1/3

. ~B14!

Here,W(3D) is the energy per unit area of a ferromagnet
antiferromagnetic boundary in three dimensions, which c
be approximated by half the value of the 3D abrupt w
energy@cf. Eq. ~A20!#. The energy of the stripe~layer! do-
main wall at the phase-separation threshold in 3D is th
given by @cf. Eq. ~43!#

Ss
(3D)52W(3D)S 12

27

20
k (3D)R0

(3D)D , ~B15!

per unit area, where
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R0
(3D)5S 15edW(3D)

8prAFM
2 D 1/3

is the radius of antiferromagnetic bubbles appearing imm
diately above the threshold, Eq.~B14!.

We now turn to the other regime of phase separation c
sidered in Sec. IV. In this case, screening is negligible a
our estimates of Coulomb contributions to the thermo
namic potential are based on evaluating the electrostatic
ergy of a single unscreened Wigner cell. In the case of
cular antiferromagnetic islands~‘‘droplet phase’’!, the
Fourier component of the electric potential of a Wigner c
is given by@cf. Eq. ~B11!#

w~k!5
4p2R8

ēk2R
rFM@RJ1~kR8!2R8J1~kR!#. ~B16!

Momentum integration@cf. Eq. ~B12!# then yields the ex-
pression for the Wigner-cell energyE1, given in the text
above Eq.~46!, with

A1~d!

11d
511A d

11dF12
3p

4 2F1S 1

2
,2

1

2
;2;

d

11d D G ,
~B17!

where 2F1 is the hypergeometric function.
For the stripe phase, we find the electric potentialw(y) of

a single ‘‘Wigner stripe,’’

ēw~y!

rAFM
52yd lnUd812y

d822y
U22y~11d!lnUd12y

d22yU
1d8d lnU~d8!224y2

d224y2 U , ~B18!

wherey is the distance from the stripe center. We note t
at y@d8, the potentialw(y) decays as 1/y2. Evaluating
the electrostatic energy per unit length,E2

5*2d8/2
d8/2 w(y)r(y)dy/2, we obtain the expression given

the text following Eq.~47!, where

A2~d!ln d5~11d!ln
4d~11d!

112d
2

112d12d2

2d
ln~112d!.

~B19!
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