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Magnetic domain walls in single-phase and phase-separated double-exchange systems
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We investigate the structure of magnetic domain walls in a classical double-exchange ferromagnet, evalu-
ating domain wall energies and charges. Three different cases are stlifi@cconventional smooth Bloch
wall, (ii) an abrupt Ising-type wall, which is shown to have lower energy at small values of carrier concentra-
tion, and (iii) stripe wall, corresponding to the two ferromagnetic domains being separated by a stripe of
another, antiferromagnetic, phase. General aspects of energy balance and geometry of phase-separated states
are discussed in this context. It is speculated that domain walls of the latter type may be responsible for the
unusual transport properties of certain manganate films.
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I. INTRODUCTION the strength of Hund’s rule ferromagnetic coupling between

_ ) ) the spins of carriers and the core spis which also inter-
The unusual micromagnetic properties of colossal magnesct with each other via the direct antiferromagnetic Heisen-
toresistancéCMR) compounds are presently subject t0 in- perg exchangd. The core spins are assumed to be classical
tensive experimental investigation'! In these studies, spe- (S>1), and the easy-axis single-ion anisotrdpie? is in-
cial attention is paid to the interplay between magneticy) ged in order to account for the finite Bloch wall energy.

domain structure and transport proper_ties_ of the SYSeMrpe |attice is assumed to be square, which is thought to be
Aside from possible technological applicatiofessociated more appropriate than the three-dimensional cubic one for

with the large low-field magnetoresistafigethe strong ef- ) - . . i .
fect of magnetic domain walls on conduction properties, aénodelmg the .thm films StUd'ed. experlmentally, the extgnsmn
of our analysis to the three-dimensional case is straightfor-

found in strained epitaxial films of lkgCa, ;MnO5 (Refs. 5 . . -
and 6, Pr,;sSr,sMnO; (Ref. 6, and La -St, MnO; (Refs. 6 ward but cumbersome, and is expected to yield similar con-
and -0' rafgesllas genaine p'hy,sical proble?h?i Indéed gi\)en th&lusions. The electron spectrum in the ferromagnetic state is

relatively small expected value of the easy-axis magnetic argiven by EE'l: €+ /2 with eg= —t(cosk; +cosky). We
isotropy, the usual Bloctior Neel) domain wall would be consider the experimentally relevarlf-metalliccase, when
rather smooth and broad. Thus, carrier scattering off th@wing to a sufficiently large value df,, the carrier band in
Bloch walls could not appreciably affect transport propertiesthe ferromagnetic phase is completely spin polarized. Thus
of the system. The measurement of the magnetic domaithe value of chemical potential, denotad-J,/2, must lie
wall contribution to the resistivity therefore leads to the below the bottom of the spin-up subband<Jy—2. We
conclusior? that the domain walls arising in the samples note that in Eq. (1) corresponds to®in a different notation
studied in Refs. 5-7 have an unusual, non-Bloch structure. Kometimes used elsewhere in the literature; it should also be
has even been suggestdtiat the double-exchange interac- pointed out that below, the conduction electi@ather than
tion, which is responsible for the ferromagnetism of dopedhole) density is denoted by. Throughout the paper we use
manganese oxides, cannot possibly account for such pooriynits in which hopping and the lattice spacing are equal to
conducting magnetic domain walls. While the origins of thisunity, and we consider the zero-temperatufe=0Q) case.
suggestion may be traced to the widespread but ill-founded Below we consider domain walls of three different types,
notion that the magnetic properties of double-exchange syswhich are relevant for different values of parameters charac-
tems can be adequately described by an effective Heisenbergrizing the double-exchange magnet at low temperatures.
model, the peculiar physics of domain walls in double-These are conventional Bloch walls, abr(ging) walls, and
exchange ferromagnets has not yet been addressed theoretiripe walls, formed by a stripe of antiferromagnetic phase
cally. inserted between the two ferromagnetic domains.

In the present article, we consider the standard single- We begin in Sec. Il with the usual smooth Bloch wall. The
orbital double-exchange model with the following Hamil- Bloch wall energy depends on spin stiffne@sand anisot-

tonian: ropy strength in a usual wdf), reflecting the fact that the
; 3 long-wavelength properties of double-exchange ferromag-
H=—— ot C,a_i_c_‘r Cia _H S . geBet ¢ nets are adequately captured within an effective Heisenberg
2 (i;},a (CiaC; jaCia) 23 i;ﬁ ST i description(cf. Ref. 15. In double-exchange systems, Bloch

walls carry an electric charge, which we also evaluate. Our
J - 2 K results suggest that magnetic domain walls arising in homo-
— Qo Z\ 2 :
+ 2 02” S-S 22 Z (S @) geneougsingle-phasedouble-exchange ferromagnets at the
' o intermediate doping levels typically have Bloch structure,
Herec;, (with a=T1,]|) are the electron annihilation opera- and therefore cannot significantly affect the resistance of the
tors, and the vectar®? is composed of Pauli matriced, is ~ sample.
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Within the context of recent experiments, the possibilityductivity. Analysis of the data of Refs. 5 and 6 reveals a
of sharp changes in magnetization direction within a domaircorrelation between the film thickness, dielectric properties
wall is of particular relevance. This scenario has been disof the substrate, and the appearance of domain wall resis-
cussed for a long timésee, e.g., Ref. J@nd it is important ~ tance, which seems to agree with the anticipated conditions
to consider it in some detail. Therefore in Sec. Il we treatfor the stabilization of the stripe walls.
the extreme case of an abrufging-type domain wall, when I_Details of t_:alculations are relggated_ to the Appendixes,
the sign of magnetization is reversed over one lattice link. AVhich  also include a brief discussion of the three-
wall of this type, which in theT=0, S— limit is impen- ~ dimensional3D) case.
etrable for carriers, would strongly affect the transport prop- The relevance of our findings in the context of recent
erties of the system. The energy cost of an abrupt wall Origi_experlments on manganate fll_ms is further dlscu_ssed in S_ec.
nates from the underlying nonperturbative scatteringV- We suggest that the domain walls observed_lndwe(_:tly in
problem for conduction electrons. The corresponding physici'e transport measurements of Refs. 5-7 and directly in Ref.
is thus completely non-Heisenberg. We derive expression8 are in fact the stripe walls, introduced in Sec. IV.
for energies and charges of abrupt domain walls running in
two different directiongalong a crystal axis and diagonally Il. BLOCH WALL
and for all values of the Hund’s rule exchange consfant
While for small values of carrier density<1, the energy of

an abrupt wall is lower than that of a Bloch walthich may long-wavelength Bloch walls] and their surface tensiden-

be relevant for certain magnetic semicondudtotisis does : . .
not generally hold at the intermediate doping levels. In theergy per unit length Sy and widthlg are determined by the

. . spin stiffnessD of the system:

latter case, an abrupt domain wall is preferred only for very
I_arge values of anisotrop~DS, or f_or the case of very SBIZW, lg= JDSK. )
finely tuned parameter values, providing for an almost exact
balance between the ferro- and antiferromagnetic tendencigsince the unusual transport properties of the domain walls
of the system. It would be unrealistic to expect that such @re found only in certain strained films at a specific doping
fine-tuning (within 1% in the values ofl, J,;, andx in a  level>" we expect that in most cases, domain walls in the
single-phase systentan be achieved by different experi- CMR materials also have Bloch-like structure. We will now
mental groups in a reproducible way. study the relationship between the properties of Bloch walls

In addition, it also turns out that these parameter valuegnd the parameters of our model Hamiltonian, E9.
typically correspond to the system being unstable with re- The appropriate value oD can be extracted from the
spect to phase separation. As explained in Sec. 1V, the lattdgnown spin-wave spectrum of a classical double-exchange
phenomenon has a double effect) the carrier density ferromagnef (see also Ref. 15
within the bulk of the ferromagnet is now determined by the

The structure of domain walls in conventional Heisenberg
ferromagnets was understood long &g@hese are smooth,

. : . d
condition that the thermodynamic potentials of the two L NI¥ & €+p K 2J 2 K —1
phases must be equal to each other; this condition effectively “P~2Ng = Mo T tsts & (cosk,—1).
pins the parameters of the double-exchange ferromagnet in ko “k+p 3)

the region where the energy of an abrupt domain wall is

relatively low. (i) The energy of an abrupt domain wall can Here, N is the number of lattice sites, ang is the Fermi
be further lowered by inserting a stripe of antiferromagneticdistribution function. Equatior{3) is valid for any dimen-
phase between the two ferromagnetic domains. Since the tweionality d and for an arbitrary electron dispersion laay
phases are characterized by different values of charge deqwith eElz FJy/2+€;). For the case of the 2D tight-
sity, one cannot treat this situation properly without takingpinding model(1), we obtain

into account the effects of Coulomb interaction. We use a
El 1 2)

somewhat simplified treatment to estimate the energy and

width of a stripe domain wall. It turns out that within a SD=—J+| 5~ 137N & "k
certain range of parameter values, the energy of a stripe wall Ak
can be lower than that of a Bloch wall, so that magnetic
domain walls in a phase-separated system are actually of the -] =
stripe type. In particular, this situation is realized when the Ay 8x?
antiferromagnetic phase occupies an appreciable area of the

sample(of the order of 15% of the net area, or possibly +i(2_3_M>Y @
more), provided that the easy-axis anisotropy consténs A2 ) %

not too small. Due to insulating properties of the antiferro-

magnetic phase, carrier transport across the stripe wall ilere and belowy; andY, denote the following complete
strongly suppressed, leading to a substantial domain waglliptic integrals:

contribution to the sample resistance. On the other hand, the

ferromagnetic area within a single magnetic domain remains,, _ [, E 2 _ [ } 2
well connected, and phase separation is therefore not ex-Yl_lC 1 4[/'L(X)] » Yo=E 1 4[’U“(X)] ’

pected to significantly affect thmtradomain metallic con- 5)
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DS 1 1 1 1 1 1 1

Jg= ae,;/alz is the electron velocity, and the kinetic energy of
the band is given by

0.04
1 w? 4

E={ 2 MRek= 3 Y100~ —5Y2(0). (6) 0.02

Note that because of the numerical prefactor enterind4q. 0

the value ofD is at least an order of magnitude smaller than
that of the band energ¥.
At low doping levelx<1=<Jy, Eq.(4) yields

0.02
DS= 3+ ix- e X 7
=— +ZX—§7TX—E, ()
-0.02 L
whereas at half-fillingk=1, we obtain =
_004 T T T T T T T B
DS=-J— 1/(4‘JH)- (8) 0 0.25 0.5 075 1

FIG. 1. Spin stiffnes®S (a) and the coefficient [see Eq(19)]
The second term in Eq7), which is proportional to the band (b) vs electron density for J=0 andJy—2 (solid line), J4=8
energy E~—2x at low x), represents the leading-order (dashed ling and J,=4 (dash-dotted ling Dotted lines corre-
double-exchange(ferromagnetiz contribution. The last Spond to a regime where the spin stiffness is still positive;0,
terms in Egs(7) and (8) indicate that the effect of finitd,, but_ the ferromagnetic phase is unstable with respect to phase sepa-
(as opposed td,— ) is similar to that of an increase in the ation:
value of direct superexchangg,This conclusion is justified
physically, since at finitel,; an effective antiferromagnetic
interaction arises due to virtual transitions between the two
components of the spin-split band much like a usual super-

1
_ aBqt aByt
=73 o g (1 Gl 0

exchange, which is due to transitions between different N + + J .
bands. Below we will see how this qualitative analby +? Z (diidii_ddeiTHg UE> S-S
manifests itself in other properties of the system—its validity !
is clearly not restricted to the spin stiffness evaluation. This K
in turn suggests that many of the featureqrmbre compli- - Z (SH2. 9
cated finite-J, systems can be modeled by treating the 25°
—oo case with an appropriately increaséd g @B e i

The doping dependence of the spin stiffness for three dif!_'ere’ the matrix*" is given by
ferent values ofl, (Jy—», J4=8, andJy=4 for solid, A LA e aidi T o e~
dashed, and dash-dotted lines, respectjivelyd J=0 is b= C'_lef l , %?‘ ° JC'$J+e ~,S,ic‘
shown in Fig. 1a). For the case of finitd,; , the competition : —%SCi+€%CS  CCj+eldimdlss
between effective antiferromagnetism and double-exchange-
induced ferromagnetism, taking place at sufficiently small ~ 0, ~ .6
1—x, is resolved via phase separatfdn®3 This means that Ci=cos7, S=sinz, (10

the homogeneous ferromagnetic state becomes thermody-

namically unstable as the electron concentrafi@xceeds a and 6, , ¢, are the polar coordinates of the sgBn

certain critical value. In Fig.(®), the values oDSwithin the In the bulk of the ferromagnetic Staté)j‘ﬁ reduces to a

respective thermodynamically unstable regions are plotteg@init matrix, but inside the domain walls, the values of both

with dotted lines. When the superexchanye0 is present, diagonal and off-diagonal elements are changed. Thus, the

this critical value, which depends also dp, decreases fur- band structuréand hence the carrier densityithin the wall

ther. In addition, another region of phase-separation instabiligiffers from that in the bulk, and we come to the conclusion

ties arises at lovelectrondensities:** that Bloch walls are chargedwWe will now evaluate the sur-
Within a Bloch wall, misalignment of the neighboring face chargerg of a Bloch wall in a double-exchange ferro-

ionic spins leads to a renormalisation of carrier hoppingmagnet.

coefficient?* Indeed, the Hamiltoniafil) can be rewritten in Let us suppose that the Bloch wall runs along faé]

terms of new fermionsl;; (andd; ), whose spin is aligned direction of the lattice diagonal, and choose thaxis to be

(antialigned with the classical ionic spiéi at the same site: perpendicular to the wall. We also choose the coordinates in
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spin space in such a way thgt=0, and note that, does
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Here,py=1/(m\4— ey2) is the value of the density of states

not depend orx. In other words, the spin configuration is at fixedk, in the ferromagnetic state, anip, is the correc-
composed of ferromagnetically ordered chains running in theion arising at76/ dy+ 0. Then the change in the carrier den-
x direction, with the interchain and intrachain distances giversity due to a nonzero value of¢/dy)<1 can be evaluated

by 142 and \2, respectively. It is then convenient to
Fourier-transform the fermion operators in tkedirection
only, according to

1/4
da(x,y)=(ﬁ) 2 &%, (key), [ll<m. (1D

Then the first two terms in Eq9) can be rewritten in the
form

Ky

cos—| t*8
2

Fe- S

Yk @B

1
vyt dl(kx.wdg( Ky, Y

L
V2
_d}-(kx !y)dT(kX!y)]!

which we will also use in Sec. Il below.

+H.c.

J
+ 5 2 [k y)d (key)
y.ky

12

(to leading order irvey) as
1 2de

[ izl
—ul2 m\1— € €x

w ey %
f Opy(ex,e))de,~—Seypy| —|. (17)
-2 6X

o

Using Eq.(15), we obtain after some algebra

2
Hoop

2
i m) Yi(x)+ sz(X)
(18

50 Cla6)\? oo L
"2l Tor

Finally, given the known profile of(y) in a Bloch wal
cosf(y)=tanhf/lg), we find the following expression for the
charge of a Bloch wall per unit length:

|14

0'B=—eC/|B, (19)

In the ferromagnetic state, the subsequent Fourier trans-

formation in they direction according to

1 1/4 .
—) ;ékyy\“‘?dga, ky|<m, (13
y

da(any): ( 2N

yields the spectrum

Kx

I__u
€ 217+e|2, e|;=—ZCOS2

i

cosk,, . (14

The variation of spin direction within a Bloch wall corre-
sponds to the long-wavelength limg>1 of continuum mi-
cromagnetic theory. Then one can defii{g) as a continu-
ous function, and the angle formed by the spfigs,y) and
§(x’,ywL 1/y2) on the neighboring chains is given by
(0619y)1 2. For the case of a constant valuedsf/ dy<1,
the spin-up fermion spectru%fzz — (Ju/2)+ € is obtained
from Egs.(10)—(12) [upon Fourier transformation, EGL3)].
Whend6/ay+0, the quantityei is only approximately fac-
torizable,

- K,
€=C0S> [€y(ky)+ dey(Ky Ky)], €,=—2cosky,

X

K sir? ky)/s. (15)

4
cos

5ey=(a0/¢9y)2<cosky— 3
H

wheree is the absolute value of electron charge. In evaluat-
ing og as —ef oxdy, we used the adiabatic approximation,
which is valid in the long-wavelength limit ofg>1. As
expected, a similar calculation for a Bloch wall running par-
allel to a lattice direction yields the same resul®): Bloch
walls have a well-defined continuum limit, and both their
energy® and charge are independent of the orientation on a
square lattice.

We note that af=0, the Bloch wall can be stable only as
long as the chemical potential at the center of the wall
(where the band-narrowing effect is most pronoundess
above the bottom of the carrier band. In other words, the
value of x+ éx with &x given by Eq.(18) should remain
positive aty=0 (otherwise, there would be no carriers and
hence no carrier-mediated ferromagnetic interaction near the
center of the wajl?’ Since the wall is smoothg>1, this
condition is important only at the low-doping limit of
<1, when it read®

16mxDS>K. (20)

This is clearly violated at sufficiently low. We will see that
in this case the domain wall is in fact abr@ec. lll, Eq.
(21].

According to Eq.(19), the charge of the Bloch wall,
which is inversely proportional to its width, decreases with
decreasing anisotropy strengthgoc K. At small values of
electron densityx<1Jy, we find og=¢/(8mlg). The be-
havior of og at the intermediate doping levels can be in-

The value of the carrier density at a fixed value of the chemiferred from Fig. 1b), where the quantitg(x) [see Eqs(18)

cal potential is then given By

2de,

w2 Tt 1—6)2( -

ml e

1
n=x+ ox= f_ , {py(€y)

+ Opy(€x,€y)}dey . (16

and (19)] is plotted for different values od,;. We suggest
that the experimental determination @ may help to dis-
tinguish Bloch walls from abrupt or stripe domain walee
Secs. Il and IV beloy which typically carry larger charge.
On the theory side, the effect of Bloch wall charge on the
carrier transport across the wall should be considered.
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2y

; 1 2 3
O N

290
(a) (b) FIG. 3. Schematic representation of a one-dimensional problem
which arises in diagonal domain wall calculations, E@3) and
FIG. 2. Diagonal(a) and vertical (b) abrupt domain walls (24). The intersite distange is equal tO\/f/.’ and the num_bers are
(dashed lines the same as the subscripts of the fermion operators in(Z4j.
Dashed arrows correspond to the perturbed case).

—_— = = =
< - = >
- = = =
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- = - =
|
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Throughout this section, we assurfithat the Debye-
Huckel screening radius is large in comparisonlgo This  alternatively to the usual rules of momentum quantization
appears to be plausible, especially in view of the relativelythe difference between the allowed vallp.§,§ of they com-
large values of dielectric constants, characteristic of theyonent of momentum can be estimatedsps~1/L,. Sup-
highly polarizable oxides. We will briefly discuss the magni- pose now that a flat partition perpendicular to thaxis has
tude of the Coulomb correction to the Bloch wall enel8y,  been introduced, dividing the box in half. This shifts each

in Appendix B[Eq. (B9)]. In the opposite case of strong zjlowed momentum Va|uep(i)ﬂp§,i)+ 5p§,i) with |5p§,i)|

. . . ) y
screening, the charge of a Bloch wall will vanish. ~p,. The signs 0f5p§,') are chosen in such a way that the

energy shift of each individual electron level is positive:
ll. ABRUPT WALL 5e(py.py)~|py|dpy . The net energy change associated with

e . . N 2 ,-\., 3/2
The appreciable contribution of magnetic domain walls tothe partition is thus given by,L,fn;[p,|d°p/Ly, or ~x

. gy 1
resistivity, as observed in certain ferromagnetic strained®" Un't Iength of partitiort. . :
CMR films>~7 suggests the possibility of non-Bloch walls Thus, we find that the energy of abrupt domain wall in a

arising in these systems. Indeed, in order to scatter the CaQ_OUPIe-exchgnge ferromagnet is given By~ x%2. The nu-

riers effectively the domain wall must have a nonsmoothmerical coefficient can.be obtained by an exacF trgatment

structure, characterized by abrupt changes in the spin direése€ below and Appendix A, EqeA16) and(A17)], yielding

tion. An abrupt(lsing-type domain wall, shown in Fig. 2, Sa~4\/mx*¥3. Comparing this with the Bloch wall energy

represents an extreme example of such a structure. Sg~ JKx [see Eq(2)], we find that the abrupt wall energy is
Unlike the Bloch wall, an abrupt wall represents a latticelower, Sy<Sg, as long as

problem (as opposed to a long-wavelength nn€herefore

the properties of an abrupt wall depend on its orientation

with respect to the lattice, and one has to distinguish be-

tween, e.g., diagonalFig. 2(a)] and vertical [Fig. 2(b)] X?<9K/164. (22)

walls. We note that a similar feature would also arise for

domain walls in an Ising ferromagnet—indeed, the number

of cut ferromagnetic links per unit wall length is different for We note that according to Eq20), Bloch walls become

vertical and diagonal walls. In a classical double-exchangeltogether unstable af<K/4ar.

ferromagnet, the standard double-exchange mechanism for- |t appears to be very difficult to rigorously address the

bids carrier hopping across the abrupt domain Wawing  question whether in the region specified by inequalgg)

to the anisotropy of the carrier spectruas manifested in a the abrupt wall actually represents the optimal spin configu-

nonspherical shape of the Fermi surfadie carrier contri-  ration. We are, however, able to verflsee Appendix A, Egs.

bution to the abrupt wall energy is again orientation depen(A16) and (A17)] that as long as®<K/ar, the abrupt do-

dent. i main wall is stable with respect to small “smearing” pertur-
Inorder to show that abrupt domain walls can actuallyyaiiong(shown schematically in Fig.)3nvolving spins ad-

arise in douple-gxghange ferroma_lgnets, we will first turn t(ﬁacent to the domain wall on both sides. This provides a

the low-doping limitx<1, assuming also thzaleoo and  strong, albeit variational, argument for the overall stability of

J=0. Since the Fermi momentum is smailz=4mx<1, abrupt walls.

carrier dispersion can be approximated by the free-particle \\e now turn to an exact calculation of the energies and

dispersion |aW€.Tz*00nSH(k2/2)- The energy of an abrupt charges of abrupt walls for all values xfJy,, andJ, begin-

wall is therefore equal to that of a partition inserted into anning with the evaluation of the electronic contribution to the

ideal spin-polarized Fermi gas, which can be easily estienergy of an abrupt diagonal wall.

mated. Following the Fourier transform, Eq11), the electronic
Let the ideal Fermi gas be contained in a rectangular boxerms in the Hamiltonian of the uniform ferromagnetic phase

of size L,XL,. According to the uncertainty principleor  take the form{cf. Eq. (12)]
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- Krein spectral shift functioft &(e,Q) according to év
=2 My, (220 =—-p¢lge, we find, for the electronic contribution to the
domain wall energy,

Q
:__E [ ( X!y+ d(kxvy) 69_] dkx f
2 9 \/— T 22 dedv(e,Q)e(e)
+d]| k y+i)dl(k y)+Hc] dky
X X o = d ,Q)f(e). 2
V2 f 2w¢§f €&(€,Q)f(e) (27)
E {d ke, y)d| (Ky,Y)— dr (kx,)’)UT(kx,y)} Here: the zero-temperature value fo_r the Fermi distribution
function f(e) = 6(u— €) can be substituted.
(23) For a given value ok,, the operatotVy represents a

whereQ=2 cosk,/2). The abrupt diagonal domain wall par- local perturbation of a one-dimensional Hamllzomaﬂ(
allel to thex axis results in a perturbation of the Hamiltonian Thus, the dependence gfon Q is only parametric and the

(23), Hy —Hy +Vy , with value of¢ can be found from the standard formtilésee also
x x oo Ref. 39

Evk ={d";,dg;+d"; dg, +d] dp +dl dy }(1—cosy) 1 L 1

Q —17%01 T U1 Yo T Uy U2 T Uy U2 g(e,Q(kx)):_;Arg Der{l—G(e— EJH—iO,Q)VkJ,

+{dd;dy;+dg,dy }(1—sin2y)
+{d},d;, —d{ dy }cos 2p+{d" ;,dg, —d"; do;

gt i N
+dj;dp —dy dyy}sing+Hec. (24 given value ofk,, and 1is the identity operator. In the basis

Here we denotedi,(ky,i/\2) by d;, and allowed for a containing the stateaﬂo)_ (where|0) is the vacuum staje
smearing perturbation<1, as shown in Fig. 3. It is con- the determinant on the right-hand sitRHS) of Eq. (28) is

(28)

whereG(¢,Q)=({-1—H, )~ is the resolvent operator at a

venient to rewrite the operataf, in a diagonal form: that of an 8<8 matrix, 5;; — M;;A;, with
S . . o dky 2 (0lailky)(kylaf]0) 29
kazizl Aiai ai y ai aj +ajai = 5” . (25) 1] _0( 7 27TQ Ea+COSky_ |0

Expressions for both the eigenvaluksand the operators; Here
are given in Appendix A.

In the absence of a domain wall, the electronic contribu- Ei=€/Q, E;=(e—-Jy)/Q, (30
tion to the thermodynamic potential of a double- exchange

ferromagnet at a temperatufecan be evaluated as nd|kJ) are properly normalized Bloch wave states,

Q_f L.dk, [ Lyv2dk,

: ke e 2d] (ky,y)[0
277\/5 5 ol €] | y> 21,42 o(ky,y)(0),

(gl Py=2m8(ky—k;) S, (31

:f Zw\/_f devio(€,Q)p(€)de,

—Qcosky, ¢@(e)=—TlIn

After a straightforward, if somewhat laborious, calcula-
_ 6) tion we obtain

1+exy{'u

(26) O s )l
£(e,Q)=¢&"(e,Q)+ 68, tanm¢ 7 11

Here, L, and L, are the dimensions of the sample,

Viot( €, Q) Ly\/—/(m/Q2— €%) is the total density of states

at a fixed value oRQ [i.e., with ke=*2 arccosQ/2)], and e 432 E Ei—E,—VE?-1 ) -
the factorsy2 originate in momentum rescaling implied in §= 2V R T m2 2 Y. (32
7Q E’—EZ-2EE,

Egs. (11 and(13).

When the domain wall perpendicular to theaxis is in-  The final expression for the energy of an abrupt diagonal
troduced, the associated perturbafign, Eqs.(24) and(25,  domain wall per unit length is then given by the trace for-
gives rise to a correctidf in the density of states, mula, Eq.(27), with additional contributions from direct su-
Vioi(€,Q)— vioi(€,Q) + Sv(€,Q). Introducing the Lifshits- perexchange and single-ion anisotropy:
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Sy=SPO+ Z4yP=— 223+ 2\2(23+ K) ¢ et ('a)
0.15 - -
V2 f 1 2 QdQ © - -
+—= dEf— E.,Q)6(u—QE,). STav
) 9B ), amge HQE Qo(u—QE) & SN [
(33 1 /72> 0N\ [
The energy of a vertical abrupt domain wall is calculated 0-05 1 ¢ i
very similarly (see Appendix A yielding the result 7 ) g i
0 = —
ES(O)+Z 2 234+ 4(J+K) 2 T T T T T T T
=S LY ( ) 0 0.25 0.5 075 y 1
1 del 1 ~ 1 1 1 I 1 1 1
+;ﬁl ﬁfldfzf(fz)a(ﬂ_fl_fz)- gy /e i
0.05 -
(34) L
~ 0
Here, é(€,) is equal toé(e,,Q) as given by Eqs(32) with B
ET:62’ EL:62_‘]Hi anszl. -0.05 -
The spectral shift function, Eq32), also contains infor- 0.1 T i
mation about the abrupt domain wall charges. Indeed, the e B
spectral shift functioré(e) generally measures the number -0.15 L
of energy levels that cross the given energy vatuas a A
result of a perturbation. Thus, the change in electron density 0 0.25 0-5 075 x 1
at a fixed value ok, is given by — ¢(w,Q), yielding the L ' L ' L
charge of an unperturbeds& 0) abrupt diagonal wall: s 7
Sy
2 2 d 0.002
0'd=£e §(O)<ﬁ,Q) ,—Q > (35
T N 4-Q 0.001
For a vertical wall, we likewise obtain ' 1 L
_et %(0) dey 36 ° \
o= |m—1§ (= €15gNu) T (36) : : : . :

0.012 0.013 0.014 ; 0.015

Here the functioré(e) is defined in the same way as in Eq.
(34) above.

We have conducted a thorough numerical investigation o
Egs. (33) and (34). The doping dependence of the abrupt
wall energies for different values @, is illustrated in Fig.
4(a). Comparing these with Fig.(4), we conclude that at the
intermediate doping levels, abrupt wall energies are typicall
several ti_mes larger than the spin stiffne|§_§ The_refore iN" \Where outside the low-doping regions<1 and 1-x<1, except
the physically relevant case of small anisotropi€ssDS, o the case ofi, =8, whenz, becomes positive fax>0.83 (dot-
Bloch walls will typically have a significantly lower energy teq ling. (b) Abrupt wall charges in units of electron chartzs.
[see Eq.(2)]. We note that including antiferromagnetic su- solid and dashettlash-dotted and dottetines representy ando,
perexchange]>0, would lead to a decrease 8y relative  for J,—o (Jy=4). (c) Bloch wall energySs (solid line), abrupt
to S{% [as follows from Eqs(33) and (34)]. In particular, vertical wall energyS(”’ (dashed ling and the quantitZ, (dotted
this can yield® SP¥< S at small values ok. line) vs superexchangé Anisotropy constant varies according to

The chargesry and o, of the abrupt domain walls are K_(J):DS/25. Condyction electron density and Hund_’s rule cou-
plotted in Fig. 4b). We see that at the intermediate doping Pling strength are given by=0.55 andJy =4, respectively, and
values, the electric charge per unit length is of the order ofn€ System is unstable with respect to phase separation.
0.1e, in a marked difference from weakly charged Bloch
walls [cf. Fig. 1 and Eq(19)]. fact thatS and S{°y depend orJ andJy in different ways.

With increasing antiferromagnetic interactions in the sys-Such a situation is illustrated in Fig(ad}, showing the do-
tem (that is, either with increasing or with decreasingy) main wall energies in a double-exchange ferromagnet with
the spin stiffness, as well as the abrupt wall energies, wilk=0.55 andJ;=4 as functions ofl. The solid line corre-
eventually change sign. Near this point, there might be @aponds to the Bloch wall enerdg$g, whereas the vertical
region whereDSis still positive, while eithelS,(JO) orS{is  abrupt wall energysﬁo) is represented by a dashed line. The
smaller than the Bloch wall enerdyg. This is due to the value of the easy-axis anisotropy constinis varied withJ

FIG. 4. (a) Abrupt wall energies vx at J=0. Solid (dashed
Fnes, top to bottom: diagonal wall energ‘ﬂ” (vertical wall energy
S for Jy—oe, Jy=8, andJy=4. For finite values ofl,, the
lines end at the values afcorresponding to the sign change of spin
stiffnessD. Immediately below these values, the ferromagnetic state
is unstable with respect to phase separata®e Fig. 1 For K(x)
y=D(x)S/25 (i.e., 1g=5), the quantitiesZ, , are negative every-
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Sgy. Z, T B is positive forx<0.0063. For this choice of parametéfshe
410° ’ value of S is just above that o&(”), and we findS{”
<Sg at x<<0.0026 andZ,>0 for all x<<0.0074. The Bloch
7 wall becomes unstablesee Eq.(20)] at x<0.0008 (dotted
2.0 4 line). We note that allowing for a larger value &f would
have broadened the region where abrupt walls have lower
] energy; however, Eq$2) are valid only in thd g>1 case.
0 The data shown in Fig. 5 are for a system with no direct

superexchange]=0; including a smallJ>0 would give

rise to a phase-separation instability at smg# which may

or may not cover the entire region &%<Sg. While no
study of domain structure in the electron-doped manganates
has been reported so far, it appears that superexchange in
(3=0). Hund’s rule coupling is fixed at,=0.1, while the anisot- these systems is suffi.ciently strongSto destabilize the _homo-
ropy varies according t(x) =DS/25, leading to a constant Bloch 9eneous ferromagnetic statexat 1.” The abrupt wall pic-

wall width Ig=5. The Bloch wall, however, becomes unstable atfure as discussed here is then inapplicalslee Sec. IV be-
lower x (dotted ling. low). We note, however, that this might not be the case for

other lightly doped magnetic semiconductors or semimetals.
Ferromagnetic semiconductors such as Eu-doped EuS and
EuO have relatively high values of the Curie temperaige

. i (Ref. 39, presumably originating from a strong ferromag-
<0.0148. Since the quantity, [see Eq.(34)], represented netic superexchange&,<0. In this case, even in a lightly

by the dotted line, is positive throughout tB8)< S, region, doped sample ferromagnetism is due mostly to superex-
one is_tem_pted t_o conclude th_at_ the abrupt V\_/all is indeeq:hange(ratherthan to double exchangend one expects that
stable in this region. However, it is easy to verify that 8or he domain walls will be of Bloch type, like in conventional
>0.0107, the homogeneous ferromagnetic ground state bggeisenberg ferromagnets. However, other magnetic semicon-
comes unstable with respect to phase separation into ferrgy,ctors such as EuSe become ferromagnetic only upon small
and antiferromagnetic regions. It appears that this representsectron dopind® In this case of small positivé, domain
the general situation, i.eb, that at thgz intermediate doping,)is may in fact be abrupt. This also may be the case in a
range the inequalitfs > S (or Sg>S{) cannot be satis-  ferromagnetic semimetal E4BRef. 41. It would therefore
fied within the thermodynamically stable region. In Sec. IV pe most interesting to study experimentally the domain wall
below, we will argue that the phenomenon of phase separagrycture(in particular, the effect of domain walls on the
tion can affect the magnetic domain wall structure in a protransport propertigsn the ferromagnetic films of these com-
found way. Here we merely note that even if phase separgsounds.
tion is suppressed due to some mechanierg., enforcing Throughout our calculation, we neglected the effects of
electric neutrality on the microscopic leyethe parameter chemical disorder which can lead to localization of electron
region where eitheS, or Sy is smaller thanS (but the  states. We note that the overall profile of carrier wave func-
stiffnessD is still positive would still be very narrow, re- tjons does not directly affect the properties of an abrupt wall.
quiring one to fine-tune the values 6f Jy, K, andx to  The assumption essential for our approach is that the electron
within a fraction of a percerit It is therefore very unlikely \wave function can bdocally approximated by an energy
that such a situation can be realized experimentally in a réeigenfunction of the clean cdavith the same energy. This
producible way. is valid provided that the localization length is much larger
Expressions(33)-(36) can be further simplified in the than the inverse Fermi momentum; the latter condition is
limiting cases of small carrier density<1, or large Hund's  expected to be satisfied in manganates within the metallic

rule coupling Jy— (see Appendix A ExpressionsAl2)—  regime, as well as in the doped magnetic semiconductors and
(A15), valid in theJy— limit, can be used to estimate the semimetals discussed above.

values ofSy and S, at sufficiently largely throughout the
entire range of dopant concentrations.

As discussed in the beginning of this sectisee Eq.
(21)], the domain walls become abrupt at the low-doping Phase separation is a phenomenon which commonly oc-
limit of x<1. In this case, the abrupt wall energies andcurs in the CMR manganese oxid@<!Although direct evi-
charges are given by Eq8A16)—(A19). The doping depen- dence is lacking, it appears likely that the films studied in
dence of domain wall energies in this region is illustrated inRefs. 57 are in fact phase separated. It is therefore impor-
Fig. 5. The value of Hund's rule coupling is taken tohe  tant to consider the effect of phase separation on magnetic
=0.1, andK(x) =D(x)S/25, again ensuring thag=5. We  domain wall structure in double-exchange ferromagnets.
see that the energy of an abrupt vertical welished lingis Let us first suppose that the values of the parameters of
lower than that of a Bloch wallsolid line), S\”<Sg, forall  the system(that is, carrier densityx, superexchange,
x<<0.0027, and the stability of abrupt domain wall is further Hund’s rule coupling strengtld,,) lie within the stability
evidenced by the fact that the quant?y (dash-dotted line  region of the uniform ferromagnetic phase. The thermody-

0 0.002  0.004  0.006 , 0.008

FIG. 5. Bloch wall energySg (solid line), abrupt vertical wall
energyS\”) (dashed ling and the quantity, (dash-dotted linevs
electron density in the low-density limit without superexchange

in such a way that the Bloch wall widtly [see Eq.(2)] is
always equal to 5. We see thgg>S">0 for 0.0143<J

IV. PHASE SEPARATION AND STRIPE WALLS
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namic potential is then given bQr,=E+2J— ux, with  on both sides of the conducting layer. In the 3D case, which
the value ofu= ugy(X) determined by the uniform conduc- is discussed in more detail in Appendix B;,<(23D)
tion electron densitk. The electron charge densityexis  =4me?vy/eq, Where ¢4 is the dielectric constant of the
compensated by the combined charge of magnetic and nodlouble-exchange magnet itself. If the size of the island was
magnetic ions, resulting in electric neutrality of the systemlarge in comparison with the Debye-ekel radius, R
on the microscopic levéf As the values of parameters are >, 1, screening within the island would have restored the
varied(e.qg., either the value afis increased or that af is  carrier density to its nominal valuwe (and charge density to
decreased the system eventually becomes unstable with rezerg. In the case when there is no conduction band in the
spect to phase separation into the ferromagnetic phase apdilk antiferromagnetic phasge.g., whenx,gu(u) equals
another phase which we will call antiferromagnéﬁdn the  either 0 or J, the presence of the electric potential(which
absence of a Coulomb interaction, this occurs when the thein this case is strongly position dependewould shift the
modynamic potentials of the two phases become equal tearrier band within the island either upwards or downwards.
each otherQ ey (upm(X))=Qarm(uem(x)). At this point,  This in turn will ultimately give rise to a Fermi surface,
it becomes energetically advantageous to create islands gtreening, and restoration of the carrier density to its nomi-
the antiferromagnetic phase within the bulk of the ferromagnal value on the length scale &f *. However, as explained
net. Since there is a finite energy caStassociated with a above, when the value of the density is fixed no phase sepa-
unit length of the boundary between the two phases, such atation is possible. We therefore conclude that the formation
island should contain a large number of sites in order taf an island can be energetically favorable only as lorfg as
reduce the boundary energy per antiferromagnetic site; aR<x"1. We will assume for simplicity that ¥R<x 1,
long as this is the case, the area occupied by the antiferrahat is, that the carrier density within the island is uniform
magnetic phase can be arbitrarily small relative to the totahnd equal to the bulk value ofygy(w). This obviously
size of the system, so that the carrier densitwithin the  includes an assumption that DebyédKal radius is large on
ferromagnetic area and hence the value of chemical potentighe atomic length scal&<1. The latter is not unphysical, in
em(X) remain unchanged. view of the relatively large dielectric constargs reported
The structure of the boundaries between different phaser the manganaté% and of the suppression of the carrier
has been studied by the present writer in Ref. 22. It wasjensity of states at the Fermi leve} found in the x-ray
found that at least in some cases these boundaries are abruglsorption and angle-resolved photoemission
it appears plausible that this property is rather generic. Weneasurement®. For a thin film, the situation also depends
note that the energy and charge of an abrupt interphasgn the choice of substrate, as discussed in more detail at the
boundary can be evaluated using the approach applied iBnd of this section.
Sec. Il above to the study of an abrupt domain wall. A With these assumptions, the change in the thermodynamic
boundary between ferro- and antiferromagnetic areas can hgtential () associated with the creation of a single circular

perfectly abrupt only if it runs parallel to certain lattice antiferromagnetic island in a 2D system can be evaluated
directions?? It is therefore likely that within a large region of &0

parameter values, the emerging islands of the antiferromag-
netic phase will have a squafer diamond shape. Apart 1
from one case discussed towards the end of this section, the x. — 7R2(() sy — Q) + 27RWH _J d2r p(r) e(r)
latter feature is unimportant for the rather qualitative discus- 2
sion below. We will therefore assume that the islands are ,
circular, which would correspond to the boundary enefgy +f d?r J” de(e—u)vg. (39
independent of direction. (FM) u

While the chemical potentiaju= upy(x) is constant
across the sample, the carrier density within the islandtere, the first two terms represent the bulk and boundary
Xagm . is different from the nominal valug. We note that contributions, the third term is the electrostatic Coulomb en-
phase separation consists precisely in a redistribution of thergy, and the last term is the kinetic energy cost of re-
carriers with a simultaneous change in magnetic orderingdistributing electrons in the ferromagnet, caused by a shift of
and would not be possible had the requirement of constanhe electrochemical potentigt’(r)=u+eq(r) (that is, a
carrier density been enforced on the microscopic level. Thehift of the band energies due to the presence of an electric
island is therefore electrically charged, and it is imperative tdield within the screening cloyd The charge density(r)
take into account the effects of electrostatic Coulomb interequals pary=—e(Xapy—X) Within the island and

action and screening on phase separation. _ —edx(r) outside, whereSx is the change of electron density
In a thin film, the inverse Debye-Hkel screening radius j, the screening cloud. The last term in E@8) can be
is given by>*® (see also Appendix B rewritten as

2
_ 2mew

K

€
2
Here v, is the value of the carrier density of states at the
Fermi level andky,, €4, are dielectric constants of the media This allows us to render E@38) in the form

— 1
. e=gleateq). (37 1f R 1f
(FM) vg  2JFwm)

2 1 2
epoxdr=— = pod-r.
2J(Fm)
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FIG. 6. Chemical potential dependence of spin stiffnB&

(solid line) and the diagonal and vertical abrupt domain wall ener- ) ) ) _ )

gies (dash-dotted and dashed lindsr a J,—o system on the FIG. 7. Schematic representation of a stripe domain wall in a
brink of phase separation. The valueJis adjusted in such a way Phase-separated double-exchange magnet. The two ferromagnetic
that Qg =Qary for any value of carrier density. The nature of domains with antiparallel directions of magnetizati@rows are

the corresponding antiferromagnetic phases is discussed in the teParated by a stripe of antiferromagnetic phasdedl In addi-
tion, unconnected islands of antiferromagnetic phase are formed

within each domain.

1
Xi:WRZ(QAFM_QFM)+27TRW+ _J' dzl’p(p,

2 ) (arwm) value is plotted foDS and Sﬁ?& unless the phase separation
(39 into the ferromagnetic and eith@- or A-antiferromagnetic

where the integration in the last term is carried out over th®hases is possible. Comparing Fig. 6 with the 0 case,
area of the island. Evaluating the potentialo leading order  Plotted in Figs. 1) and 4a), we find a drastic reduction of

in 1/(xR)<1 [see Appendix B, EqsB11) and (B12)], we both spin stiffness and domain wall energies at the interme-
obtain ' ' diate doping values. In addition, the energies of abrupt do-

main walls are now of the same order of magnitude as the

8mp2 .y R3 spin stiffness, in a marked difference with the single-phase
X, =R Qapy— Qpy) + 2mRW+ — 2 (40)  case considered earlier.
3e We will first discuss the effect of Coulomb forces in the

case when the value 6Ir\,— Qary IS just above the thresh-

The creation of an island becomes energetically favorabl%Id Eq. (41), so that the islands of the antiferromagnetic
once the minimum value of this expression drops below_, ' '

s . L phase arising within each ferromagnetic domain are well
zero. Th|s yields thg following threshold condition for phaseseparated from each other, and E@8)—(40) are valid. As
separation to occur:

discussed in Sec. lll, the abrupt domain wall shuts the carrier

hopping in the perpendicular direction, acting as a partition
Ocr— 0 >Ay=8|p | \/E_ (41) in the gas of conduction electrons. In the absence of Cou-
FM SRARMT 0 AFMEN 3¢ lomb forces, the energy cost of creating a stripe of antiferro-
o _ ~ magnetic phase adjacent to the wall is therefore equal to
[atQry=Qaem+Ag, the discriminant of the cubic equation —(Qem—Qarm)d (Whered is the stripe width per unit
Xi(R)=0 vanishes; the minimum valu¥;(Ro)=0 is then  |ength of the stripe, and does not include any additional
reached aRy=(3eW)Y%(2|parm)]. boundary contribution. This statemefthich is equivalent
Let us now consider a domain wall in a phase-separatetb saying that the abrupt wall energy is equal ¥& Per unit
film. We note that in this case the antiferromagnetic and feriength is exact in thely— o« limit (see Appendix A and Fig.
romagnetic tendencies in the system are approximately balt0). It is also clear that it provides a reasonable estimate for
anced against each other; this greatly reduces both the spihe case of large but finitd, ; the details of the situation at
stiffness[which in turn determines the Bloch wall energy via finite J,; will be addressed elsewhere. Thus, wh@p,,
Eq. (2)] and the energy of abrupt domain walg). This  —Qary>0, the energy of an abrupt domain wall can be
point is illustrated by Fig. 6, representing the chemical po-further lowered by inserting alongside it a stripe of antifer-
tential dependence of spin stiffnesolid line) and abrupt romagnetic phasésee Fig. 7. The width of the stripe is
wall energies(dashed and dash-dotted lindsr a J,,— oo determined by a trade-off between the bulk and Coulomb
system with the value ad=J(u) adjusted in such a way  energies, i.e., by minimizing the energy ofstsipe domain
that Qg =Qarm - The appropriate antiferromagnetic phasewall per unit length,
near the end pointge==*=2 is characterized by the usual
Neel {7, 7} (G-antiferromagneticspin ordering, whereas in d? 2
the vicinity of quarter-filling,.=0, the A-antiferromagnetic Sy(d)=2W—(Qep—Qapm)d— ?pAFMln xd (42
phase with the ordering vectder,0} proves more advanta-
geous. The plethora of possible phases arising in the intefsee Appendix B, Eq9B6)—(B8)]. Since the antiferromag-
mediate cas¢see Ref. 2P are not considered here, and no netic stripe separates two ferromagnetic domains with anti-
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parallel directions of magnetization, the spins at the two(where N is the total number of sites in the systgnare
edges of the stripe must point in the opposite directions. Foself-adjusted in such a way that the values of the bulk ther-
the stripe of amA antiferromagnet @ antiferromagnetpar-  modynamic potentials of the two phasészy, and Qapy ,
allel to a lattice directior(lattice diagongl this means that are close to each other. Therefore our observation that both
the numberd (the number/2d) must be ode; similar con-  the spin stiffnesDS and abrupt wall energies are signifi-
ditions should hold for other phases. Since we assumed thaantly reduced and are of the same order of magnitade
the value ofd is sufficiently largeds 1, these requirements above and Fig. 6remains applicable.
do not affect our estimates. Assuming thAgy—Qarm It is expected that the value of the paramefiecan be
=AQ,, we find determined experimentally.

We are interested in the situation when within each ferro-
magnetic domain the poorly conducting antiferromagnetic

dSZSE—W/s, Sq(dg)~2W— EWL (43)  phase forms disconnected dropléts that metallic conduc-
PaEM 3 Inkds tance through the connected ferromagnetic area is still pos-
pAFMIn—Kz?W sible), and we will again assume that these droplets are cir-

cular in shape. The number of droplets in the sample is then
Naem/(7R?) (whereR is the radius of a droplgtand ther-
modynamic potential of the phase-separated system is given

Equations(42) and (43) are valid to leading order ird
<1; even though Ixdg is thus large, the relatively large
coefficient of 16/3 in the second term of E4.3) allows for y
a significant reduction of domain wall energy due to the pres-
ence of a stripe of antiferromagnetic phase. It is not impos- T 1
sible that this reduction can make the quan8fyjlower than Q (R)= M _AFM
the Bloch wall energ\Bg , provided that the easy-axis anisot- 1+46 wR? 1+ 6
ropy constantK is sufficiently large. The domain walls (45
would then have a stripe structure and would strongly inter-
fere with the transport properties of the system. However, th
exact values of quantities andW in Eq. (43) are not known,
and it is not clear whether this situation can be realized ex
perimentally.

More importantly, Eq(43) [and its 3D analog, EqB15)]
refer to the case when phase separation is just beginnin | . )
with the islands of antiferromagnetic phase separated b he value OfR. =R[(1+06)/6]"is chosen m_such a way
large areas of a ferromagnet. Indeed, our derivation relied o at the combined pharge of the d_roplet and ring v_amshes. It
an assumption that the screening clouds formed around dif’zhOUId be e.mpha3|zed that unlesss small,&«l_, t.h'S pro-
ferent antiferromagnetic islands do not overlap, that is, tha?edyregs which has_been used to treat a similar problem
the interisland distance is much larger than the screenin arlier,” is _not exact’: even thoug_h the _elect.rostatlc poten-
radius. The size of each island, on the other hand, is much@ Of & Wigner cell falls off rapidly with distancey(r)
smaller thanc %, so only a small part of the net sample area“r_s'_'t does not vanish o_ut5|de the cell. In addition, _d|ﬁer-_
is occupied by the antiferromagnetic phase, making phasgnt Wigner cells overlap with each other. Thus, by using this
separation difficult to detect. The available experimental dat@PProach we essentially replace the Coulomb force with
on phase separation in the CMR compoufidsn the other ~ S°Me model interaction, which, however, captures the essen-
hand, correspond to the case when a substantial part of tHi! féatures of the original problem as long as the valué of
sample reverts to a nonferromagnetic phase. Within the colS Nt too large (see below. ~We find E,
text of the phase separation mechanism considered here tHis8m(R')?RparyA1(8) 8/(3€) [see Appendix B, Eq.
is only possible when neither the size of the antiferromag{B17)], where for small values af<1 the functionA,(d) is
netic islandgor stripe$ nor the interisland distance is larger equal to 1. The thermodynamic potential of the droplet
than Debye-Hakel radius. Below we will consider the case phase, Eq.(45), has to be minimized with respect to the
when screening is negligibléhat is, when the interisland droplet radiusR, yielding
distance is much smaller thaei 1), Sincex is expected to

(27RW+E;)

er site, wherd=, is the Coulomb energy of a single droplet.
his term cannot be evaluated rigorously; in order to esti-
mate it, we calculate the energy of the Coulomb interaction
within the so-called Wigner cell, composed of the droplet
and a surrounding ringR<r <R’ (wherer is the distance
om the center of the droplebf the ferromagnetic phase.

be small(see abovg this is not unrealistic; moreover, the Qem+Qarmd  8|peul A (W
results are expected to provide a reasonable estimate for the 0,= 17s N 5 (46)
€

case of intermediate screening strength as well.

The ferro- and antiferromagnetic phases are then charagother possible geometry of phase separation is represented
terized by uniform ve}lges of electron densitigg, andxagy by the stripe phaskshown in Fig. 8a)], formed by the par-
and charge densities,ppy=—€(Xem—X) and parwm  gllel antiferromagnetic stripes of widthembedded into the
= —e(Xapm—X). The numbers of sites occupied by ferro- ferromagnetic background. The thermodynamic potential of

and antiferromagnetic phases, the stripe phase is given by
N NS PEM Qe+ Qapnd 1
New==—=, Napm=:—5, 6=— 44 — FM__TARMT |
FM™ 1+ 5 AFM~ 11 5 Py (44 Q,(d) 155 d 1_’_5(2W+E2). (47)
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FIG. 9. The ratioB of the energy of a stripe wall to that of an
abrupt wall[see Eq(50)] vs the ratios of antiferro- and ferromag-

. ) . N netic areas of the sample: solid line, droplet phase; dotted line,
shadegl and antiferromagneti¢shadel regions with5~0.4. The quare-droplet phase at lo# dash-dotted line, possible behavior

Wigner-cell boundar?es of stripe z?md droplet phases are shown wit r the square-droplet phase at largerdashed line, 3D result of
dashed and dotted lines, respectively. The two connected ferroma q. (B23)

netic domains extending to the left and to the right of the stripe wall

in (b) are magnetized in the opposite directidnst shown. The ) _ ) _

width of antiferromagnetic stripes i) and (b) is given by Egqs.  inclusion of an antiferromagnetic stripe can lower the energy
(48) and (49), respectively. of an abrupt wall by a factor of 4. Since the spin stiffnBss

is of the same order as the abrupt wall enefgge Fig. 6,
Within the Wigner-cell approximation, the Coulomb energy the stripe wall energy can be lower than the Bloch wall en-
per unit length of a single stripeE,, is calcu- ergy Sg already at a moderate value of anisotropy,
lated by subdividing the sample into “Wigner stripes” of ~DS/64 [cf. Eq.(2)].
width d'=d(1+8)/6 [see Fig. 8&)]. We find Within the Wigner-cell approach for circular droplets the
E,= _[dd'PiFMAzw) 5/?]“,] 8 with A,(5—0)=1 [see Ap- other droplet phase, with the ferromagnetic droplets in the

pendix B, Eq.(B19)]. Minimizing the value ofQ), with re- antiferromagnetic background, becomes preferred:atl
spect tod, we obtain (cf. Ref. 53. While this transition might give rise to new

possible domain wall structures neé1, this is not ex-

FIG. 8. Stripe phaséa) and stripe domain wall within the drop-
let phasdb). The system is phase-separated into ferromagiatic

1 >We pected to be physically relevant due to the intrinsic limita-
do= \/ , tions of the method. As the value @ increases towards
lparml V (14 8)Ay(8)]In 8] unity, the Wigner-cell estimate for the Coulomb energy be-
comes progressively less reliable due to decreasing separa-
lpeml W, [A1(0) tion between the droplets. It is perhaps even more important
Q- = \/m\/;( 2V2Ay(5)|In 5| -8 3 ) that the effects of droplet shape can no longer be ignored.
(48) As mentioned above, it is likely that the optimal shape of

antiferromagnetic droplets is square; this would be in line

The latter quantity is positive for all values éfbetween . ) i
0 and 1, indicating that within this model approach, the drop-Wlth earlier results for the double-exchange modets well

let phase is always preferrésiee below. The formation of a as with the numerical results for phase separation in other

. . . ; ._similar systems® In order to calculate the energy of the
stripe domain wall in the droplet phase involves rearranging. . - droolet phase at smallone can still use the Wigner-
spins within a Wigner stripe of widthl=d¢(1+ 8)/5 into q petp g

the stri h Fi that is. formi inal cell approach. Due to the increase in the droplet boundary
e stripe p asgsee 9. &), at 1s, forming a singie energy, the combined Coulomb and boundary contribution to
stripe of antiferromagnetic phapef width dy(5)] flanked by the thermodynamic potential of the droplet phétee last
two stripes of ferromagnet. The net area occupied by th

. . . . ferm in Eq.(46)] increases by some 6%. This in turn leads to
antiferromagnetic phas&l,ry , is conserved, as is the over-

. ! ; ticeable d inth B dotted line in Fig.
all electric neutrality. Minimizing the stripe wall energy per g)no iceable decrease in the quanB(p) (dotted line in Fig

unit length, S;=(25(ds) —Q4)ds, with respect tods, we As the value ofé increases, the Wigner-cell method be-

find comes completely unsuitable for the analysis of the square-
— droplet phase. Indeed, a=1 (that is, atNgy=Nagy) the
oz 4 | WeA;6 (49) square-droplet phase corresponds to a checkerboard arrange-
S Ay(8)|papmin 8] ¥ 3(1+6)’ ment of equal ferro- and antiferromagnetic squares, which

has nothing in common with the Wigner-cell pictydd. Fig.
8 A9 8). It is therefore clear that the thermodynamic potential of
Ss=2WB(9), B(9)=1-3 A (3)Ind|" (50)  the square-droplet phase at sufficiently lagyis well above
2 the value given by Eq46). Accordingly, Eqg.(50) signifi-
The ratioB( ) of the stripe wall energ$, to the abrupt wall  cantly overestimates the value B{f §) and hence the stripe
energy, 2V, is plotted in Fig. Ysolid line). We see that the wall energy,S;. While leaving this subject for future inves-
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tigation, we note that it is entirely possible that at a certainthe film thickness is not large in comparison with*. Fur-
value of §=48.<1 the thermodynamic potential of the thermore, it is not unlikely that the above-mentioned transi-
square-droplet phase exceeds that of the stripe phase, Bipn at T~110 K is due to the violation of this condition at
(47). The quantities8(5) and S will vanish at this poinf®  larger T _and associated change of the domain wall
as exemplified schematically by the dash-dotted line in |:ig_structure*?l We emphasize that this discussion is speculative
9. In this case, for any finite value of the anisotropy constan@t best, as we make no attempt to adequately describe the
K>0 and sufficiently smalls,— >0, magnetic domain Crossover between two- and_three-dlmensmnal screening or
walls within the conducting phase would have strigse op- to take into account the peculiar geometry of the sample used
posed to Bloch-likg structure. in Ref. 5. , S

We close with a brief comment on the applicability of our It appears that stripe yva}l! formation is in principle aI;o
analysis to finite-thickness films. The results of Secs. Il ancPOSSIble in the 'opposne I|m|.t|ng case of a bulk 3D mater|al,
[l for the spin stiffness and abrupt wall energies are validalthough the Wigner-cell estimates given in Appendix B sug-

: . . gest that somewhat higher valuesdére required. The val-

only as long as the carrier velocity component perpendlculaues of the Debve radiug-L. and dielectric constant. of
to the film is negligible. However, our conclusion that on the y (3D) d =

. ; ' . doped manganates are, however, not known, and, crucially,
brink of phase separatiddSand the abr.upt wgll energies are very small values of anisotropy make the Bloch wall energy
ggnera!ly .Of the same 'order. Of. magnitugies illustrated by very low. It is therefore expected that in the 3D case the
Fig. 6) is likely to remain valid in 3D as well. Our assump- o410y of the Bloch wall is generally lower than that of a
tion that the screening has two-dimensional character is Val'gtripe wall, in agreement with the fact that no observable
as long as the film thickness remains small in comparnsOlyomain wall contribution to resistivity was reported for the
with the two-dimensional Debye-lkel radius«™~. The  manganate crystals.
film is then thin from the viewpoint of electrostatipsf. Eq.
(B5)]; that is, there is no electric field in the perpendicular
direction within the film>’ The latter holds provided that the V. DISCUSSION
film itself is homogeneous in this direction, i.e., that charac-

teristic length scale of a phase-separated saftipeedroplet  forent possible types of structure of a ferromagnetic domain
radius,R~ (eW)¥|parwl] is larger than the film thickness. wall, all of which can be realized within the double-exchange

Given the typical experimental observatibhshat phase model The energies and charges of Bloch, abrupt, and stripe
separation occurs on the scale of at least 50—100 nm, this lagbmain walls are also different, as are their anticipated con-

In this article we showed that there are at least three dif-

condition is not particularly restrictive. tributions to the resistance and magnetoresistance of the
The Debye radius can be roughly estimated by assumingample. The conventional, weakly charged Bloch wisc.

that vg is of the order of the inverse bandwidthtt45 eV) 1), which generally arise in single-phase samples, become

divided by the unit cell area~0.15 nnf). Taking, in Eq.  unstable at low carrier densities, when the abrupt Wk,

(37), €5,=1 (dielectric constant of the airwe then find |II) are preferred. For a phase-separated system, however,

Kk 1~(€eg1+1)x0.08 nm. The substrate used in the mea-there is a region of parameter values when the domain walls
surements of Ref. 6, lanthanum aluminate, has the dielectrigcquire stripe structurgSec. 1), characterized by a stripe of
constarit® of eg;~24, resulting ink *~2 nm. It is there-  antiferromagnetic phase separating the two domains.

fore tempting to associate the reported domain wall It is not yet known whether all three types of wall can
resistanc (large for the thinnest RESrMnO; films of 4 occur in the CMR manganate compounds. As follows from
nm, vanishing for films thicker than 20 npwhich is observ-  the discussion in Sec. lIl, abrupt walls are expected to arise
able below the Curie temperatufe~130 K, with the stripe  at low values of electron dopirfj,x<1, provided that the
walls which arise only as long as the thickness of the conhomogeneous ferromagnetic phase remains thermodynami-
ducting layer(which is presumably somewhat thinner that cally stable. We are not aware of any measurements of the
the film itself is not largé® in comparison with« 1. We  domain wall contribution to transport in this regime, and it is
note that the film thickness required for the lattice periodsot clear whether such a situatigwhich also requires the
(and hence the anisotropy const&nand Bloch wall energy  value of direct superexchandeto be extremely smallcan

to relax to their bulk values is of the order of 500 rif.  be realized in the manganaté®wever, see the end of Sec.

Ref. 7). Thus, our suggestion provides émtherto lacking Il for a discussion of other compoundg#\s for the interme-
interpretation for the disappearance of domain wall resistivdiate doping values, it appears that domain walls can have
ity in films thicker than only 20 nm. either stripe or Bloch structure.

The experiments of Ref. 5, on the other hand, were per- The effect of Bloch walls on the charge transport proper-
formed with (ferroelectri¢ strontium titanate substrate, ties of a double-exchange ferromagnet has been discussed
with®® €4;~1200 at T=110K, which yields ' theoreticall’®* The results are consistent with simpler
~100 nm. The LgCa MnO; (with Curie temperaturd:  estimate¥’ suggesting that for a realistic value lgf and at
=250 K) film® was 200 nm thick, and the domain wall con- an intermediate doping level, carrier scattering off the Bloch
tribution was observable belolv=110 K. Given the strong wall cannot possibly account for a measured domain wall
dependence o€y, on temperature €4;~24 000 at lowT, contribution to the resistivity of the systems studied in Refs.
€41~300 at room temperatuyeit appears plausible that do- 5-7. Measurable domain wall contributions to the transport
main walls have stripe structure at low temperatures, wheproperties of the CMR manganates, reported in other studies
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known to us, are attributable to the grain boundary effects irio possibly steplike features for stripe walls, as seen in Ref.
polycrystalline films*%®* |In this case, the magnetic 5).

structuré®!! of a domain wall arising at a substrate grain Magnetotransport studies are not the only way to investi-
boundary is largely determined by underlying lattice gate the properties of magnetic domain walls. Direct probes
defects®® It is anticipated that this also holds for the mag- of the charge and spin structure of domain walls are possible
netic pattern appearing in a strained film at the boundary of & principle (cf. Ref. 68, but have not yet been performed
heavy-ion-irradiated regioff.We note that the effects of lat- for the manganates. However, Fresnel imaging measure-

tice irregularities of any type are not included in the presenf€nts on a thin LgCa s;MnO; film were reported recentfy.
theoretical treatment. Domain walls were found to retain a finite width of the order

Our results suggest that magnetic domain walls in monoc?f 40 nm, in apparent agreement W'th. B@) for .BIOCh.
rystals or epitaxial flms of CMR manganates at the interme-WaltljS.' X\(e hop;e that dowalln V‘é)a" widths mdthe rs]tramedfﬂlms
diate doping levels generally have Bloch-like structure, withﬁtl\jvclﬁl dIBeRr?IS.stSi;Ze\rAgst%SOto (tarmt?) arself;?e tlrr:e:[s: tnoe?r:e ubt;rr%
a nc()jtable efxception of cer(;ain srt]railned films similar to thoshes ructure, magnetic, and elgectrogtatic properties of the corre-
used in Refs. 5-7. Regarding the latter case, we expect t ' ’

. : ; . . sponding compounds and to check the agreement with the
domain walls may in fact be the stripe walls introduced in d b g

estimateg43) and(49) for the stripe walls.
Sec. IV above. This suggestion is corroborated by the espe- “3 49 P

cially strong effect reported in Ref. 6, which shows that do-
main walls give a dominant contribution to the resistivity of
a thin Pp;3SrsMnO; film at low temperatures. The connec-  The author takes pleasure in thanking A. Berger, R.
tion between domain wall resistivity and dielectric propertiesBerkovits, L. Brey, Y. F. Hu, K. Levin, P. B. Littlewood, N.
of the substrate, discussed in the end of Sec. IV, appears 2. Mathur, M. R. Norman, Y.-A. Soh, V. K. Vlasko-Vlasov,
lend further support to the stripe wall scenario. The striped. Welp, M. E. Zhitomirsky, and especially J. T. Chalker for
walls appear likely to arise in this case due to the strainenlightening and motivating discussions. This work was sup-
induced increase of the easy-axis anisotropy conskant Ported by EPSRC under Grant No. GR/M04426.

(which in turn increases the Bloch wall eneygynd also to

phase separation which makes the formation of the stripe APPENDIX A: DERIVATION AND ANALYSIS OF EQS.

walls possible. While it is not clear whether phase separation (33-(39

does occur in the samples used in Refs. 5-7, this would be
rather plausible given that phase separation is commonly Oth'o
served in both manganate crystals and fifhsve suggest
that further measurements.g., scanning tunneling spectros-
copy) need to be carried out to clarify whether these sample
are in fact phase separated. On the other hand, domain wall 0
properties(including possible domain wall contributions to Ay=A,=—Ay=—A,= o2, (A1)

ACKNOWLEDGMENTS

The key step in the calculation of the spectral shift func-
n, Eq.(32), is the diagonalization of perturbation operator
Vi, [see Eqs(24) and(25)]. Its eigenvalues\; and the cor-

gesponding fermionic operatoes are given by

the resistivity of those CMR films whichare known to 22

phase separate®’ should also be investigated. Synthesis of

electron-doped manganate films, if technologically possible, o)

may represent a promising new directinWe note that As=Ag=—A,=—Ag=——(1—¢), (A2)
magnetic domain walls appear only when a substantial frac- V2

tion of the film is in the ferromagnetic state, allowing for a
low-field metallic conduction.

In the present article, we did not quantitatively address the
problem of conduction across a domain wall of either type.

and

8(2+\2)Y2ay 5= (4—¢?)(d_1; +dq)) +[(422\2) ¢

The available theoretical estimates of domain wall conduc- +(4=\2)y?](do; +dyy)

tance(Ref. 63 for Bloch walls, Ref. 16 for abrupt wallare

incomplete in that the Coulomb interaction between the car- +(1=x \/5)(4— wz)(d_ll—da)

rier and(charged domain wall is not taken into account. As _ )

for the stripe walls, the issue of magnetotransport in this case [+ 2\/5'/’_ (2= 3\/§)¢ 1(do;—dy)),
has yet to be treated theoretically, although it is clear that the (A3)

stripe wall contribution to resistivity is much larger than that

of either Bloch or abrupt walls. In the presence of stripe g(2x2)Y2, ;= —(4— y2)(d_ 1, —dpy) +[(4F 242)
domain walls, magnetoresistance will be affected by the ' ! !

change of their structure under a magnetic field, which is +(4% \/E)z//z](dOT—le)
likely to include a field-driven transition from stripe to Bloch )
walls. It is therefore expected that the dependence of the t(-1= ﬁ)(“_‘ﬁ )(d_qy+dz))

domain wall contribution to resistivity on the magnitude of e 5
the applied in-plane field can be different for the Bloch and t[£2\29-(2732)y 1(do; +dy)),
stripe casesa smooth decrease for Bloch walls, as opposed (A4)
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8(2I \/5)1/285’7: _2\/5( ¢+ wz)(d*1T+d2T)+(\EI 1)

[ 3
X|4+2(\2+1)yp— Elﬂz}(dm‘*dn)

+(472\2)(p+¢?)(d_y,—dy))

[ 3
+ i4—2(\/511)'/’1591’2}(%1_%0,

PHYSICAL REVIEW B67, 064404 (2003

tions Q—1, d,(ky,y+1/2)—d(ki,y+1), d,(Ky,i/\2)
—d,(kq,i). Hence Eqs(Al)—(A6) with the value ofQ set
to unity can be used to diagonalize the perturbaftsee Eq.
(25)] in the case of a vertical wall as well.

We note that in the expressions for bdhh(l and Vi, in

terms of the operatod,(kq,r5), the coefficients do not de-
pend onk,. Therefore, the only effect of the second term on
the RHS of Eq(A9), regardless of whether the domain wall
is present, is to shift all of the energy levels bycosk;.

(A5) Thus, Eqs(26) and(27) are now replaced by

8(2\2) 8 5= 22(y+ ¢y2)(d 17— dp)) +(\2£1)

L,dk,
Q:f o dethotz(fz)ﬁD(€2+€1),

[ 3
X |47 2(V2F 1) ¢— 5 7| (do;—dyy)

+(4%2\2)(g+§?)(d -1, +dy)) o0 _ (dk,
L_l_fo de,bvy(€er) p(€ext €q)

[ 3
+ :4—2(\/§i1)¢/i§¢2 (dg;+dy).

dk; ~
:fz_f dexé(ex)f(ext€1),
(A6) ™
These expressions are then used to form the matrix elements
M;: (see Eq(29), for example
i ( 9(29) P €1,= —COSK1 5,  Viora(€2) =Lyl (1~ €5).
2—\2 +42 (A10)

2 2 2
M112W(4ET_1)_ W(Z]-El—l)
B 3 Here,L, andL, are the dimensions of the sample, &f{a)
+(2-2)(1+3E,-4EY)1, is the spectral shift function of the corresponding 1D prob-
+(2+ \/5)(1_3EL+4E?)|1+O( W), lem. It is evaluated as&(e) = —ArgDet(éij—MijAj), with
1 dky, ;
Ia—SWQJ E,+cosk,— 0 (A7) i f& (0laj|k3)(kz]a/|0)

T, 4, )] 27 E,+cosk,—i0

(A11)
[see Eq.30)]. Note that, owing to the symmetry properties
of the operatorsa;, the quantitiesM;; vanish unless both
indexesi andj are either odd or even. Hence th&8 de-  gpgd E,=E,+Jy=e. Taking also into account that the
Ele;rzmdar;t on the ?HiﬂOf Eq28) re(liucss toa progltuc_:t Of WO states |kg) are defined in a conventional wayks)

eterminants. After some algebra, one obtains expres= s ayn(—ik,r.)d (k;.r,)|0) [cf. Eq. (31)], we conclude
sion(32), which has to be substituted into E¢33) and(35). f2 P(- ik, 2)~ al 1_ 2)_| al . a. D]

In the case of a vertical wall we choose the coordinatdhat the value oM;; coincides with that oM;;, Eq. (29),
axesr, andr, along the lattice directions with the, axis  calculated aQ=1. Thus,é(e)=¢(€,Q=1) [see Eq(32)],
perpendicular to the wall. After the Fourier transformation and Eqs.(34) and(36) follow.

The somewhat cumbersome expressig82)—(36) be-
AN K come much simpler in the case of a large Hund’s rule cou-
do(r1.r2)=N k21 etd,(ky, ), (A8) pling Jy— . We then fin§®

we find that the unperturbed Hamiltonian has the form

T = - T 1 [ \4—u?
R=2 | My —coska dikurada(kar) |, (A9) sd=ﬁ{ - _@amcosl%l_“w_ﬂ[x_aw]

and the domain wall again results in a local perturbation

Hy,—H, + Vkl' This perturbation is still illustrated by Fig. 4 [p? u?

3, although the intersite distance is now equal to unity, rather 2\/51 2J+K+ ;{7\(1_ ( I+ YZH v,

than to 14/2. The operatorsy, andel have the same form T

as Hy, and Vi, [see Eqgs(23) and (24)], with the substitu- (A12)
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NE" Ju+2
H
2
+4[77JH(1—\/1+—
In

It is instructive to note that expansion of these expressions in
the case ofly>1 shows that the leading Jf correction
amounts to a renormalization of the superexchange constant,
J—J+ (7x?)[(2Jy). This is another illustration of an effec-
tive antiferromagnetism being induced by a finite Hund’s
rule coupling, as discussed in Sec. Il. We also see that at
=0 and to leading order in<<1, abrupt wall energy does
FIG. 10. Local perturbation used in the calculation of abruptnot depend on the orientation of the WES[,O)=S(UO), which

X2+ J+K g2 (AL7)

N N
N N
\ N
N N
—_—_— —= —=
N N
\ N
N N
N N
N N
N N
N N
—_—_ = -=—— —=
N N
\ N
N N
N N
N

domain wall energies aty— (for the case of a diagonal wall is due to the carrier dispersion law being isotropic at low
densities.
V2| | =2 1—|pl The electric charges of unperturbed abrupt domain walls
S,= T . arccos$|u|—1)—2J+E atx<1,Jy are given by
4 3 ~ X ,/‘]H+4_ /2ﬁ
—M[X—ﬂ(u)]+4[~1+ K— F[ uP+ §M4)Y1 UdNe\[n e\ o5, & 2 (A9
s
+<1_ZILL2>Y2}}¢/2' (A13) o,~e = ex I, +ex? 24 (A19)
Finally, we also quote a 3D result for a vertical abrupt do-
e || e main wall energy(per unit areaatx<1 andJy—:
04=— —=arccos=sgnu— —=[x—0(w)],
7T\/E 2 \/E 21/334/3
(A14) S~ —g— ™ x¥-23, y=0. (A20)
e
0=~ 5 arccos|u|—1)sgnu—e[x—0(u)], APPENDIX B: STRIPE WALLS AND SCREENING

(A15) In this appendix, we are concerned predominantly with
whereY; andE are given by Eqs(5) and(6). When deriving  the investigation of the screening potentials and Coulomb
the =0 values ofS; andS, above, it is convenient to use a energies of phase-separated states in a two-dimensional con-
calculation scheme somewhat different from that used in theluctor. Let the values of the dielectric constants of the media
finite-Jy case. Namely, the local perturbation we consideron both sides of conducting plane k&g; and €4,. The
now (see Fig. 1D corresponds to inverting the spins along amethod of images enables one to evaluate the potential of a
1D chain, not only shutting the carrier hopping, but alsopoint chargeg located at a distancefrom a plane separating
introducing a single chain of an antiferromagnetic phase. Théhe two dielectric media? In the limit z—0, we find that
latter circumstance can easily be accounted for by subtracinis potential at any point in space is givendpes), where
ing the difference of thermodynamic potentials between th% is the distance from the charge ad=(ed1+ed2)/2. We

antiferro- and ferromagnetic phases; the advantage of th5:?1erefore conclude that the electrostatic properties of this

method lies in a very simple form of the spectral shift func- : . , :
tion, £(e,Q) = (1/2)sgne, corresponding to the perturbation system are described by a Poisson’s equation of the form

shown in Fig. 10.

Another potentially important case when the integration
in Egs. (33)—(36) can be carried out analytically is that of Here.r =
small electron densities<1. For any value ofl >x, we ’

€V2p=—4mp(r)8(z). (B1)

{x,y} is the 2D radius vector in the plane, thaxis
is perpendicular to the conductor, afMdis the usual 3D

obtain gradient. It is therefore only the effective dielectric constant
- o+ 4 e that will affect the values of physical quantities in this case
Sy~ _g—xw— 7\ ;J x2—22J [cf. Eq.(37)].
H

We begin with evaluating the potential of a charged string

2 within the film. Assuming that the string coincides with the
+ ﬁ{ WJH< 1-/1+ i X2+ 43+ 2K 1 2, axis, we rewrite Eq(B1) as
H
(A16) €V2p(y,2)=[4me?p(y,2) vog—4mad(y)]8(2). (B2)
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Here,o is the linear charge density of the string, and the first

PHYSICAL REVIEW B67, 064404 (2003

We note that screening affects the value of the potential at

term on the RHS accounts for a screening charge arising|y|<d even in the limit ofd< ! because the unscreened
from the band energy shift by the electrostatic energy, potential, Eq.(B8), diverges aty—. This is also the case
—ep. This is a standard Thomas-Fermi treatment of screenfor the potential of a single antiferromagnetic layer of thick-

ing, valid in the long-wavelength limit.
dimensional Fourier transformation we obtain

d? 5 4o
E_ky e(ky,z)= 2K(,D(ky,Z)—T 8(2).

(B3)
Using the Green'’s function for E¢B3) (cf. Ref. 48,
(ky.2) fw . LY
,Z = A = e Yy I}
Pr?™ ) omiene” 2k

we obtain

1 k2l 270
(p(ky,2)=we y T—ch(ky,O). (B5)

Hence, az=0, ¢(k,)=2ma/[(|k/|+«)], and

—20

o(y)= (cosky Ciky+sinky siky), (B6)

€
where si and ci are sine and cosine integralskp®1, Eq.
(B6) yields ¢(y)~2a/(ex?y?). Along with the 1f° decay
of a screened point charge potenfiaf® this is in contrast
with the well-known exponential behaviors found in 3D.

Let us now consider the potential of an antiferromagnetic

stripe of widthd<x~?!, centered around the axis. Aty
>d, it is given by Eq.(B6) with o= pprnd, Whereas ay

<« tit should coincide with the unscreened potential of the

stripe,

.

(B7)

At y>d, the latter expression takes the familiar form

+ const.

20
o(y)=— =In|y|+const. (B8)
€

The two regionsy>d andy<«~! overlap, enabling us to
find the value of const in Eq$B7) and (B8), —2parmd(C

Upon one-

nessd in a phase-separated sample in three dimensions, in
which case we find, per unit area,

2.2
}f P‘:Ddgr”—q-rd PRz K(ap)=
2 ) AFM K(3D)€d (3D)

2
4mecy

. (B10)

In the case of a single antiferromagnetic disk in 2D or an
antiferromagnetic sphei@all) in 3D, the unscreened poten-
tial vanishes at large distances and the leading-didetR)

term in the Coulomb energy does not depend on the screen-
ing radius. Indeed, for the 2D case at sufficiently small dis-
tances <« !, the exact screened potential of a point charge
mR?paen (found in Refs. 45 and 46is to leading order

given by mR2parm/(€r). Forr>R, this clearly matches the
unscreened potential of a charged disk. Therefore screening
does not affect the value @f within the disk, which enters
Eq. (39). Using a Green'’s function procedure similar to Egs.
(B3) and (B4) above, we obtain, for an unscreened disk of
radiusR,

_ 4772PAFMR

r 4K
<p(r)=fqo(k)e ot o (k) =2 J1(kR)

(B11)

(wherer is the distance from the island center afgd is
Bessel functioh and

1 d2k ZWZPAFMRZ o dk
=| ——pk szf Ji(kn]?—,
Zf 47721)( )e(k) - 0[ 1(kn)] 2

(B12)
leading to Eq(40), whereas for a 3D sphere of radiRsve
readily find

1J‘ e
—_ =~
2 )aen”?

Equation(41), derived in Sec. lll, holds for a thin film. With
the help of Eqs(B10) and(B13), it is easy to obtain a simi-
lar phase-separation threshold condition for the @Ik
crysta) case,

16772PiFMR5

The. (B13)

357TW230 P,ZAFM s
QFM_QAFM>A(()3D):(# . (814)

SEd

+In K)/E,' WhereC~O.577.is Euler's constant. Substituti_ng Here, W(sp) is the energy per unit area of a ferromagnetic-
Eq. (B7) into Eq.(39), we find the leading-order expression gntiferromagnetic boundary in three dimensions, which can

for the Coulomb energy of the strig¢he last term in Eq.

be approximated by half the value of the 3D abrupt wall

(42)]. It is also easy to estimate the Coulomb energy of %nergy[cf. Eq. (A20)]. The energy of the stripdayen do-

Bloch wall,

1( (= .
_?J f Sx(y)In| x(y—y")| x(y")dydy ~ =oin] g

(B9)
[see Eq(18)], assuming thaklg<1.

main wall at the phase-separation threshold in 3D is then
given by[cf. Eq.(43)]

27
SED = 2W(3D)< 1= 55K (@D R(()SD)) ;

0 (B15)

per unit area, where
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15€4W,ap 13 It is also possible to evaluate the Coulomb energy of the
R{3P) = 2( ) stripe phase exactly, taking into account the interaction be-
8TPArMm tween different “Wigner stripes.” Numerical calculation

is the radius of antiferromagnetic bubbles appearing immeS1OWs that this leads to an increase of the quarityby
diately above the threshold, E(B14). about 8% até—1 anq _by only 3% at5=0.17 [the _Iatter

We now turn to the other regime of phase separation corc0résponds to the minimum &(5) in Fig. 9], attesting to
sidered in Sec. IV. In this case, screening is negligible andn€ relatively high accuracy of the Wigner-cell method for
our estimates of Coulomb contributions to the thermody-h€ Stripe phase even in 2D.

namic potential are based on evaluating the electrostatic en- Coulomb energies of droplet and layered phase-separated
ergy of a single unscreened Wigner cell. In the case of cirStates in 3D were evaluated in Ref. 53. The sum of boundary

cular antiferromagnetic islandg“droplet phase’), the and Coulomb contributions to the thermodynamic potential
Fourier component of the electric potential of a Wigner cell€auals
is given by[cf. Eq. (B11)]

~ 35 W(SD) 4
AR’ OfP(R)= 17s R S_QRZPiFMA(laD)( 0) 6,
e(k)= ﬁPFM[RJl(kR )—R"J1(kR)]. (B16) (B20)
Momentum integratioricf. Eq. (B12)] then yields the ex- 3 3
pression for the Wigner-cell enerdy;, given in the text APP =1+ 50- 561’3(1+ 528, (B21)

above Eq(46), with
AL(5) [ s
1r6 " V1i¥s

where ,F is the hypergeometric function. o _ _
For the stripe phase, we find the electric potentigy) of ~ for the layered phase. Minimizing expressi®@20) with re-

for the droplet phase, and

L E N S
T4 22 271

26 W, T
20 Weny | ™

= (3D), g
(B17) QD=5 "0 T 6e

dZPiFM ’ (B22)

a single “Wigner stripe,” spect to the radiuR of spherical antiferromagnetic droplets
- and then the 3D stripe wall energy per unit ar&™
P eI d”y‘ — (B (dg ~ DBE)d [whered,=dy(1+ 8)/5], with re-
PAEM -2y d—2y spect to the antiferromagnetic layer thicknegs we find

2 2
+d'sln (Zz)_—44;/ , (B18) OIE§3D)=35/6, \/2—5(A(13D))1/6 Wapy€q 1/3,
y 51/67T1/3| PAFM|2/3 1+6

wherey is the distance from the stripe center. We note that

at y>d’', the potentiale(y) decays as ¥f. Evaluating 6

the electrostatic energy per unit length,E, S3P) =2W(3p)Bap)(9), Bapy(8)=1-3 gA(fD)é.
=f(i,é2,,2<p(y)p(y)dy/2, we obtain the expression given in (B23)
the text following Eq.(47), where

The ratioB3p(6) of the energies of stripe and abrupt walls

46(1+6) 14246+ 25° in 3D is plotted in Fig. Qdashed ling We see that the stripe

Ay(8)In =(1+ 8)In In(1+28).

1+268 28 wall energy vanishes already within the Wigner-cell method
(B19)  as the value o approaches*?)~0.47.
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