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Spin dynamics of a tetrahedral cluster magnet
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We study the magnetism of a lattice of coupled tetrahedral spin-1/2 clusters which might be of relevance to
the tellurate compounds Cu2Te2O5X2, with X5Cl, Br. Using the flow equation method we perform a series
expansion in terms of the inter-tetrahedral exchange couplings starting from the quadrumer limit. Results will
be given for the magnetic instabilities of the quadrumer phase and the dispersion of elementary triplet excita-
tions. In limiting cases of our model of one- or two-dimensional character we show our results to be consistent
with findings on previously investigated decoupled tetrahedral chains and the Heisenberg model on the 1/5-
depleted square lattice.
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I. INTRODUCTION

Unconventional magnetism of frustrated spin systems
received considerable interest recently. Prominent exam
are the one-dimensional~1D! frustrated spin-Peierls com
pound CuGeO3 ~Ref. 1! or the 2D orthogonal spin-dime
system SrCu2(BO3)2 with frustrating interdimer couplings.2

Apart from dimer-based structures, frustrated spin syste
involving triangular or tetrahedral units, e.g., thekagome´,
checkerboard, or the pyrochlore lattices are a focus of cur
research. In the classical limit frustration leads to grou
states with macroscopic degeneracy in these systems.3,4 In
the quantum case low-lying singlets seem to exist both,
the kagome´ and the checkerboard lattice with no long-ran
magnetic order in the former,4,5 and a valence-bond-crysta
~VBC! ground state in the latter case.6,7 Analysis of the 3D
pyrochlore quantum-magnet remains an open issue.8

Recently tellurate compounds Cu2Te2O5X2, with X5Cl,
Br have been found to realize a new class of spin-1/2 s
tems where tetrahedra of Cu21 align in tubes along thec(z)
direction and are separated by lone-pair cations in
ab(xy) plane.9 Both, the effective dimensionality of this sys
tem as well as the relevant magnetic interactions rema
puzzle. Early analysis of thermodynamic data9,10 was based
on the 0D limit of isolated tetrahedral units, i.e., on the e
change pattern of Fig. 1 withj 2, . . . ,650. This resulted in
j 0538.5(43) K andj 1 / j 0;1 for the chlorine~bromide! sys-
tem which has been refined recently intoj 0'47.66 K and
j 1 / j 0'0.66 for the bromide system andj 1 / j 0,0.66 for the
chlorine case.11 Raman spectroscopy,10 however, indicates a
substantial intertetrahedralc axis coupling. This has
prompted studies of 1D tetrahedral spin-chains12,13as in Fig.
1 with j 2,3,4,650. Yet, LDA calculations have given evidenc
of an additionalz-axis exchange pathj 6 and transverse inter
chain couplings as shown in Fig. 1~a! of a magnitude which
cannot be neglected.10 In fact, specific heat data reveals
transition atTC518.2(11.4) K in the chlorine~bromide! sys-
tem. In the chlorine case the entropy change is consis
with 3D antiferromagnetic~AFM! ordering.

Combining Figs. 1~a! and 1~b! a 3D cluster-spin mode
arises, about which very little is known. We believe this to
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an interesting and highly frustrated magnetic system wh
deserves to be investigated. Therefore, the aim of this w
is to shed light onto its excitations and possible magne
instabilities. In addition, our analysis could be of relevan
for the Cu2Te2O5X2 system, in particular, if additional spec
troscopic data becomes available. In the remainder of
paper we first discuss our method of calculation and th
present results on the stability and the triplet dynamics.

II. SERIES EXPANSION

The Hamiltonian, as read off from Fig. 1 can be split in
a bare partH0 and a perturbationH1

H5H01H1 ,

H05(
l

j 0~S1l1S3l!~S2l1S4l!,

H15(
l

F j 1~S1lS3l1S2lS4l!1 j 2~S4lS1l1x1S3lS2l1x

1S2lS1l1y1S3lS4l1y!1 j 3~S3lS1l1x1y1S2lS4l2x1y!

1 j 4~S3lS1l1x1S2lS4l1y!1 j 5~S2l1S4l!~S1l1z1S3l1z!

1 j 6(
i

Si lSi l1zG , ~1!

where the site of each tetrahedral unit is labeled byl with
Si l , i 51, . . . ,4 being the spin-1/2 operators correspondi
to each tetrahedron andl1x(y,z) refers to shifts ofl by one
unit cell along thex, y, or z axis.

As has been pointed out previously9 the spectrum of de-
coupled tetrahedra, i.e., forj 2, . . . ,650, is special in as such
that for j 1, j 0 each tetrahedral ground state is a singlet
volving all four spins, while atj 1. j 0 it is a product of two
S50 dimers on each of thej 1 bonds. In turn, atj 15 j 0 the
decoupled local ground states are doubly degenerate sing
This leads to quantum criticality in the lattice case and be
©2003 The American Physical Society02-1
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WOLFRAM BRENIG PHYSICAL REVIEW B67, 064402 ~2003!
the possibility of low-lying singlet excitations.9,12,13 This
may be relevant for the Bromide system but in the chlor
compoundj 1 seems clearly less thanj 0. Therefore in the
remainder of this paper we focus on thequadrumer limitof
Eq. ~1!, defined by settingj 0[1 and j 1, . . . ,6!1.

The spectrum of each quadrumer consists of fourequidis-
tant levels which can be labeled by spinS and a number of
local energy quantaql , see Table I. The unperturbed Ham
tonianH0 which consists of the sum of quadrumers displa
an equidistant ladder-spectrum labeled byQ5( lql . The Q
50 sector is the unperturbed ground stateu0& of H0, which
is a VBC of quadrumer singlets. TheQ51 sector contains
local S51 single-particle excitations of the VBC withql
51, wherel runs over the lattice. AtQ52 the spectrum of
H0 has totalS50,1, or 2 and is of multiparticle nature. Fo
S50 at Q52 it comprises of one-particle singlets withql
52 and two-particle singlets constructed from triplets w
ql5qm51 andlÞm. The perturbationH1 in Eq. ~1! can be
written as a sum oftwo-siteoperatorsTn,k which, for each
coupling constantj k51, . . . ,6 create ~destroy! n>0 (n,0)
quanta within the ladder spectrum ofH0:

H5H01 (
n52N

N

(
k51

6

j kTn,k ~2!

It has been shown recently7,14–16that problems of type~2!
allow for perturbative analysis using a continuous unita
transformation generated by the flow equation method
Wegner.17 The unitarily rotated effective HamiltonianHeff
reads14,16

Heff5H01 (
n51

`

(
M (m)50

umu5n

C~m!Wm1
Wm2

•••Wmn
, ~3!

wherem5(m1•••mn) with umu5n is ann-tuple of integers,
each in a range of miP$0,61, . . . ,6N% and Wn

5(k51
6 j kTn,k . In contrast toH of Eq. ~1!, Heff conservesthe

total number of quantaQ. This is evident from the constrain
M (m)5( i 51

n mi50. The amplitudesC(m) are rational

FIG. 1. ~a! xy plane and~b! z-axis structure of the 3D tetrahe
dral cluster lattice. Spin-1/2 moments are located on dotted vert
SU~2! type of exchange with strengthj 0, . . . ,6 along the links.
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numbers computed from the flow equation method.14,16 Ex-
plicit tabulation18 of theTn,k shows that for the Hamiltonian
in Eq. ~1! N54.

Q conservation ofHeff leads to a ground state energy
Eg5^0uHeffu0&. Evaluating this matrix element on cluste
with periodic boundary conditions, sufficiently large not
allow for wrap around at graph-lengthn one can obtain serie
expansions~SE’s! for Eg valid to O(n) in the thermody-
namic limit, i.e., for systems of infinite size.Q conservation
also guarantees theQ51 triplets remain genuine one
particle states.A priori single-particle states from secto
with Q.1 will not only disperse viaHeff , but can decay into
multiparticle states. The dispersion of the single-particle
citations is

Em~k!5(
lm

tm,lmei (kxl 1kym), ~4!

where tm,lm5^m,lmuHeffum,00&2d lm,00Eg
OBC are hopping

matrix elements from site (0,0) to site (l ,m) for a quadrumer
excitationm inserted into the unperturbed ground state. F
the thermodynamic limittm,lm has to be evaluated on cluste
with open boundary conditions large enough to embed
linked paths of lengthn connecting sites (0,0) to (l ,m) at
O(n) of the perturbation.Eg

OBC5^0uHeffu0& on thetm,00 clus-
ter.

Previous applications of this method to spin systems w
focused on obtaining high-order SE’s for one and two para
eter dimer16 and quadrumer7 models in 1D or 2D. In the
present case, computational constraints related to the l
number of coupling constants and the 3D nature of the mo
confine the expansion to fourth-order. Moreover, explicit d
play of analytic expressions for the elementary triplet disp
sion has to be limited to second order.18

III. TRIPLET EXCITATIONS AND MAGNETIC
INSTABILITIES

In this section we analyze the triplet dispersionET(k) and
the stability of the quadrumer phase against magnetic or
ing. We begin by considering the result at 1st order inj 1, . . . ,6
for which we find

s.

TABLE I. Energy (E, in units of j 0), spin (S), and quantum-
numberql of the quadrumer spectrum.

E S ql

1 2 3

0 0% 1% 1 2

-1 1 1

-2 0 0
2-2
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SPIN DYNAMICS OF A TETRAHEDRAL CLUSTER MAGNET PHYSICAL REVIEW B67, 064402 ~2003!
ET~k!511
1

3
~ j 422 j 2!@cos~kx!1cos~ky!#

1
j 3

3
@cos~kx1ky!1cos~kx2ky!#

1
4

3
~ j 62 j 5!cos~kz!. ~5!

Interestingly, this expression depends on three, effective
change coupling constants only, i.e.,a5( j 422 j 2)/3, b
5 j 3/3, andc54( j 62 j 5)/3. MoreoverEk is independent of
j 1. In fact we find the dispersion to depend onj 1 starting
only at third order. Due to the competition of the exchan
interactions in Eq.~1! the effective triplet hopping ampli
tudesa andb in Eq. ~5! can be of either sign, even for pure
AFM j 2,4,5,6.

It is instructive to link Eq.~5! to other analytic results
known from related models. In particular, settingj 15 j 2 and
j 3,5,650, the tetrahedral cluster system of Fig. 1 is identi
to a stack of Heisenberg models on the 1/5-depleted sq
lattice.19 Bond operator theory~BOT! has been applied to

FIG. 2. Comparing the triplet dispersion along high-symme
directions of a 2D Brillouin zone as obtained from a sixth-ord
plaquette expansion for the 1/5-depleted square lattice~Ref. 21!
~dashed with error bars! with the fourth-order quadrumer expansio
for the tetrahedral spin-cluster model~solid! at j 15g, j 25lg, j 4

5l, and j 3,5,650, with l51 andg50.1, 0.3, and 0.5 from top to
bottom. ~Upper and lower edges of error bars refer to fourth- a
fifth-order plaquette expansion.!

FIG. 3. Left ~right! panel: rear~front! view of the stability sur-
face of the quadrumer phase at first order. Faces are labeled b
wave vectorskC of the instabilities anda5( j 422 j 2)/3, b5 j 3/3,
andc54( j 62 j 5)/3.
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this model yielding a triplet dispersion ofET(k)5$112( j 4
22 j 2)/3@cos(kx)1cos(ky)#%

1/2 in the quadrumer phase.20 To
1st order this is obviously identical to~5! with the same
setting of parameters. Similarly, forj 2,3,4,650 the quadrumer
limit of Fig. 1 maps onto the ‘‘dimerized spin-1 chain se
tor’’ of the tetrahedral-chain model of the tellurates studi
in Ref. 12,13. BOT has been applied also to that mod
leading toET(k)5@128 j 5/3 cos(kz)#

1/2. Again, the latter is
identical to first order with Eq.~5! with the same choice o
parameters. While this serves as a consistency check fo
series expansion we note that BOT, which is approxim
only, differs from the exact series already at second or
Additional details on this can be found in the appendix.

To test the quality of our perturbative expansion at fou
order we compare to the plaquette series expansion of
fand and collaborators for the 1/5-depleted square lattic21

This is achieved by restricting the parameters in Eq.~1! to
those of Ref. 21, i.e.,j 15g, j 25lg, j 45l, and j 3,5,650.
The plaquette series is aone parameter expansion for a 2D
model, which allows for expansion ofET(k) up to sixth or-
der with respect tol, where the unperturbed Hamiltonia
incorporatesg exactly. In Fig. 2 we contrast the fourth orde
results from oursix parameter expansion for the 3D tetrah
dral spin system with the plaquette expansion by conside
the triplet dispersion. Despite small deviations which set
upon increasingg the overall agreement is satisfying. Sinc
g is treated exactly within the plaquette expansion, o
fourth-order quadrumer series does not coincide with one
the edges of the error bars in Fig. 2 which refer to the four
and fifth-order plaquette series.

Next we analyze the stability of the quadrumer pha
against magnetic ordering by identifying the surface in p
rameter space, closest toj 1, . . . 650 which allows for triplet

r

d

the

FIG. 4. ~a! Top ~bottom! panel: rear~front! view of the stability
surface of the quadrumer phase at fourth order.~b! Top ~bottom!
panel: wave vectors of instability forj 5,(.)0. Labels refer tokC :
15(0,0,p), h5(p,p,0), n5(p,0,p), ,5(p,0,0), s

5(0,0,0), and35(p,p,p). Selected pointsm(p)1, . . . ,5 refer to
Fig. 5
2-3
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WOLFRAM BRENIG PHYSICAL REVIEW B67, 064402 ~2003!
softening, i.e., the occurrence of a wave vectorkC with
ET(kC)50. We emphasize that apart from such instabiliti
the tetrahedral spin system may exhibit other transitio
as e.g., those related to the first-order, local quadru
to dimer-product transition on each of the tetrahedra. H
we focus on the triplet softening only. To begin, in Fig.
we depict the instability surface at first order as obtain
from Eq. ~5! along with the critical wave vectors at whic
softening occurs. Due to the competing interactions sev
ordering patterns are possible, even for AFM couplin
only.

Since the tetrahedral cluster-model contains six excha
coupling parameters we will simplify the stability analysis
fourth order by selecting a subset of them only. This sel
tion is based on the effective exchange constants at firs
der, i.e., we will focus on the stability as a function ofa, b,
andc setting j 1,4,650. Figure 4~a! shows the correspondin
instability surface. It has been obtained from a numeri
search for zeros of the gap of the fourth-order tripl
dispersion using a mesh of 21341 points inab space. For
this purpose we have used the bare series with no Pade´ ap-
proximations applied. The surface is not closed at its
tremal extensions in theab plane, rather the stability analys
has been confined to the range of parameters shown in
figure in order to comply with the finite range of conve
gence of the perturbative result. Only commensurate in
bility wave vectors have been found within the range of p
rameters investigated. The type of these wave vector
shown in Fig. 4~b!. While its shape is deformed with a re
duced volume, the main features of the fourth-order insta
ity surface are still consistent with those at first order. W

FIG. 5. Left ~right! panel: elementary triplet dispersion in th
quadrumer phase forj 5.(,)0 at onset of instability. Solid
~dashed! line refers to fourth~third! order series expansion.x axis
denotes path in Brillouin zone. Subplot labelsm(p)1, . . . 5 indicate
location of exchange parameters on instability surface as in
4~b!. Insets refer to exchange parameters atm(p)1, . . . ,5.
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find that the additional critical wave-vector types with appe
along the ‘‘edge-regions,’’ i.e., atm4,5 andp4,5 occur within a
parameter-range of poor convergence of the perturba
theory. Therefore, these may be subject to change at hi
orders.

Finally we consider the triplet dispersion at critical co
pling strengths. In Fig. 5 we showET(k) for wave vectorsk
along high-symmetry directions of the Brillouin zone. Th
exchange parameters have been selected from the p
p1, . . . ,5 and m1, . . . ,5 on the instability surface of Fig. 4~b!.
The figure demonstrates a rich variety ofk dependencies
possible. Since Cu2Te2O5Cl2 seems to order magnetically
inelastic neutron scattering data on the tellurates would
interesting in order to choose among these dispersions f
set of exchange constants relevant to the chlorine system
check for the convergence of the series expansion Fig
contains both, third- and fourth-order results. On those fa
of the instability surface which appear as continuous de
mations of the first order surface of Fig. 3, i.e., forp(m)1,2,3

the perturbative result is well converged. However, with
the aforementioned edge regions, i.e., forp(m)4,5 the con-
vergence is insufficient. In particular the critical wav
vectors of the instabilities deduced from the fourth-order
sult within this region may be an artifact. This remains to
clarified in future analysis.

To summarize, we have performed a quadrumer ser
expansion for a three-dimensional tetrahedral cluster s
system using the flow-equation method. We have h
shown our results to incorporate and interpolate betw
findings known from previously studied either one-
two-dimensional quantum spin systems which are fou
to be limiting subsets of our model. We have analyz
the dispersion of the elementary triplet excitations and
stability of the quadrumer phase against magnetic order
Future studies will have to contrast this type of orderi
against other transitions possible in this cluster system
order to add more information towards a complete quant
phase diagram. We hope that our results may prompt fur
investigations of the tellurate compounds Cu2Te2O5X2, in
particular inelastic neutron scattering studies in ord
to clarify the relation of the cluster spin model to the
materials.
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APPENDIX

To further clarify and connect to other existing analy
approaches, in this appendix we also list the result to sec
order in j 1, . . . ,6 for the triplet dispersion for which we find

g.
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ET~k!511
145j 2

2

432
2

31j 3
2

864
2

187j 2 j 4

432
2

31j 4
2

864
1

8 j 5
2

27
2

52j 5 j 6

27
1

101j 6
2

108
1S 2 j 3

3
1

7 j 3
2

36
2

1

9
~2 j 22 j 4!2D

3cos~kx!cos~ky!1F2
j 2
2

9
1S 2

1

3
1

5 j 3

27 D ~2 j 22 j 4!1
7 j 4

2

72 G @cos~kx!1cos~ky!#1
1

54
j 3
2 cos~2kx!cos~2ky!

1S 2
j 2
2

27
2

j 3
2

18
1

j 2 j 4

27
1

j 4
2

108D @cos~2kx!1cos~2ky!#1
1

27
j 3~2 j 223 j 4!@cos~2kx!cos~ky!

1cos~kx!cos~2ky!#1S 2
2 j 5

2

3
2

4~ j 52 j 6!

3
1

j 6
2

9 D cos~kz!1
8

9
j 3~ j 52 j 6!cos~kx!cos~ky!cos~kz!

2
4

9
~2 j 22 j 4!~ j 52 j 6!@cos~kx!1cos~ky!#cos~kz!2

4

9
~ j 52 j 6!2 cos~2kz!. ~A1!
om
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In contrast to the first-order result, a dependence on c
bined effective exchange constants only, i.e., (2j 22 j 4) and
( j 52 j 6), is absent. For the case of the 1/5-depleted squ
lattice, i.e., forj 15 j 2 and j 35 j 55 j 650, and rewriting Eq.
~A1! in a form which allows for direct comparison with th
BOT of Ref. 20 we get

ET~k!511
59j 2

2

144
2

73j 2 j 4

144
2

47j 4
2

864

1S 1

3
~ j 422 j 2!2

j 2
2

9
1

7 j 4
2

72 D @cos~kx!1cos~ky!#

2
1

18
~ j 422 j 2!2@cos~kx!1cos~ky!#2

1S 4 j 2
2

27
2

4 j 2 j 4

27
1

2 j 4
2

27 D @cos~kx!
21cos~ky!2# ~A2!
.
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this shows the BOT dispersion, cited after Eq.~5!, to be
correct only to first order. Analogous, for the ‘‘dimerize
spin-1 chain sector’’ of the tetrahedral chain studied in Re
12,13, i.e., forj 2,3,4,650, we may rewrite Eq.~A1! into

ET~k!511
20j 5

2

27
2S 4 j 5

3
1

2 j 5
2

3 D cos~kz!2
8

9
j 5
2cos~kz!

2.

~A3!

Again, the BOT dispersion is correct to first order only.
Ref. 13, perturbation theory up to second order has b
performed using a very different method than presented h
Therefore it is satisfying to realize, that Eq.~A3! is exactly
identical to the corresponding Eq.~9! in Sec. II B 2. of Ref.
13.
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