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High pressure limiting forms of the zero-temperature equations of state of Ta and Pu
from relativistic Thomas-Fermi theory
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There is considerable current interest in the equations of state~EOS! of the two heavy metals, tantalum and
plutonium. For the former, Boettger@Phys. Rev. B64, 035103~2001!# has recently carried out calculations
based on the Dirac relativistic wave equation. Our purpose here is different, namely, it is to work with the
simplest form of relativistic density-functional theory which is the relativistic Thomas-Fermi~TF! method. The
predictions of this approach should come into their own at sufficiently high pressures~we work throughout at
T50) and direct contact has been made, for Ta, with the~lower-pressure! predictions of Boettger’s study.
Similar results for the high-pressure limiting form of theT50 EOS for Pu are presented. Because the relativ-
istic TF method is purely ‘‘local density’’ in character, the results on Ta and Pu are preceded by a full study of
the relativistic homogeneous electron gas, including the relativistic exchange contribution to its EOS. An
important finding there is that in the high-density limit the relativistic exchange contribution to the pressure
becomes proportional to the kinetic contribution, the proportionality constant being linear in the fine-structure
constant.

DOI: 10.1103/PhysRevB.67.064109 PACS number~s!: 71.15.Rf
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I. INTRODUCTION

There is currently considerable interest in the equation
state ~EOS! of the two heavy metals Ta and Pu. For t
former of these materials, Boettger1 has recently reported
calculations~at T50, which is the case also considere
throughout the present paper! based on the Dirac relativisti
wave equation. Our purpose in the present work is differ
in that we shall use the simplest relativistic densi
functional theory~DFT!, namely, the relativistic Thomas
Fermi ~TF! method, originating from the study of Vallart
and Rosen~VR!.2 Boettger’s study will, however, prove in
valuable since the TF method comes into its own in
present context only as a limiting form of the (T50) EOS at
exceedingly high pressures. It is therefore satisfying t
Boettger’s wave-function calculations are found to join re
tively smoothly with our limiting high-pressure results fo
the case of Ta.@A very short preliminary report3 of these
numerical results was given by one of us~F.E.L.! at the High
Pressure Conference in Santander in 2001.#

Important background for the present study goes bac
the investigations of Slater and Krutter4 and Feynmanet al.5

These authors used the nonrelativistic TF method,6,7 and a
number of features of the present study is common to t
work. For example, in both approaches, the detailed cry
lattice is not considered, but rather a spherical~Wigner-Seitz!
cellular approximation8 is adopted. This is clearly best fo
high-symmetry lattices such as face-centered cubic, and
comes less accurate for lower coordination numbers. H
ever, it became clear from the work of So¨nderlindet al.9 that
one can expect all elements, even those exhibiting very l
symmetry structures at normal conditions such as Pu
eventually transform to higher-symmetry structures as
bandwidth of the bonding electrons increases with press
Secondly, it was proved by Slater and Krutter that in t
0163-1829/2003/67~6!/064109~12!/$20.00 67 0641
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original TF method the (T50) pressure-volume relation wa
determined entirely by the boundary electron number d
sity, r(R), say, whereR denotes the radius of the Wigne
Seitz~WS! sphere. And indeed, as one would intuitively th
expect, since the pressure in this model is due to the e
trons bombarding the surface of the WS sphere, the pres
is given by the usual uniform electron-gas relation

p5const3$r~R!%5/3. ~1!

Of course,r(R) must be determined self-consistently, wi
the appropriate boundary condition atr 5R being

]r~r !

]r U
r 5R

50, ~2!

which reflects, in the spherical cell approximation, the ‘‘p
riodicity’’ requirement that the normal gradient of the ele
tron density across the WS polyhedron of the appropr
lattice be zero everywhere. Equation~2! is also, of course, a
basic boundary condition in relativistic TF theory. But E
~1! must naturally be modified to take account of the nonz
value of the fine-structure constanta5e2/\c. Furthermore,
Eq. ~1! as used by Slater and Krutter,4 while a rigorous con-
sequence of the original TF method, must also be correc
in more quantitative work, for electron exchange plus cor
lation interactions.

At the outset of the present study, we emphasize that
shall retain within the relativistic TF framework, the intuitiv
reasoning stressed above in relation to the Slater-Krutter
vestigation, that the boundary densityr(R) is all important
in determining the relativistic TF equation of state. Then
that one must do is to use a careful approximation with
equation of state of a relativistic homogeneous electron
~RHEG!, before replacing the constant density,r0, say, in
that theory for the pressurep, by the boundary densityr(R).
©2003 The American Physical Society09-1
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It is fortunate for our present purposes that the work
MacDonald and Vosko10 on electron exchange within a rela
tivistic framework was already available to us. Therefore,
natural starting point for the present investigations was
make a careful numerical study of the EOS of the RHEG

Thus the outline of the paper is then as follows. In Sec
immediately below, such EOS data for the RHEG are fi
presented. This is followed in Sec. III by an account of t
generalization of the Slater-Krutter approach that we h
adopted to treat the self-consistent relativistic TF meth
Here, as known from earlier workers,11 it is essential to avoid
the point-charge nucleus naturally adopted by Slater
Krutter. This is because, though the electron densityr(r ) is
infinite at such a point nucleus, one still can impose with
the nonrelativistic TF theory the normalization condition

E r~r !dr5Z, ~3!

where Z is the atomic number. But in the Vallarta-Rose
theory with a point nucleus, the divergence is too strong
allow the normalization condition~3! to be imposed. In Sec
IV a full discussion of the numerical results obtained in th
work is presented. An important aspect of Sec. IV is to
amine fully how the boundary densityr(R) is influenced by
the finite size of the nucleus. A check on our procedure w
then be to ‘‘switch off’’ the fine-structure constanta within
VR theory in the presence of a finite-size nucleus and he
compare the boundary density we obtain with the nonrela
istic Slater-Krutter values. Furthermore, detailed results
both theT50 EOS for Ta and Pu, which are, as alrea
emphasized above, to be regarded as limiting forms vali
high pressure, are presented. Contact is then also establ
for Ta with the results of Boettger obtained using the Dir
relativistic wave equation. For both elements, compari
will also be made with predictions from analytic EOS. Se
tion V constitutes a summary, with some possible directio
presented for future work in this area. In an Appendix, so
thermodynamic considerations are set out, with applicati
summarized to both the nonrelativistic and relativistic inh
mogeneous electron gases.

II. EOS OF A RELATIVISTIC HOMOGENEOUS
ELECTRON GAS

A. Analytic form of the EOS

The chemical potentialma of the electron gas is given b

ma5
]ta

]r
1

]«xca

]r
~4!

with ta and «xca , respectively, the kinetic and exchang
correlation contributions to the total-energy density. The
dex a denotes the fact that we consider the general c
where the fine-structure constanta is allowed to be different
from zero. Alternatively, since the chemical potential is t
Gibbs free energy per particle, one has immediately aT
50 the result
06410
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ma5
Ea

N
1

pav
N

, ~5!

whereN andv are, respectively, the total number of fermio
and the total volume they occupy. Combining Eqs.~4! and
~5! one reaches the desired form for the pressurepa ,

pa5Fr ]ta

]r
2taG1Fr ]«xca

]r
2«xcaG . ~6!

Of course, since Eq.~6! is a thermodynamic result, it is im
mediately applicable to both the relativistic and nonrelativ
tic cases.

As an immediate check of Eq.~6! we insert the
well-known12 nonrelativistic results for the kinetic-energ
density, say,t, and the exchange energy density, say,«x ,

t5ckr0
5/3

with

ck5
3h2

10m S 3

8p D 2/3

~7!

and

«x52cxr0
4/3

with

cx5
3

4 S 3

p D 1/3

e2 ~8!

and immediately obtain the nonrelativistic EOS in t
exchange-only approximation

pa505
2

3
ckr0

5/32
1

3
cxr0

4/3 ~9!

in correspondence with the nonrelativistic virial theorem

3pa50v52Ta501Va50 , ~10!

whereTa50 andVa50 denote the total kinetic and potentia
energies, respectively. The total nonrelativistic pressure
its two constituents are plotted in Fig. 1. Some aspects o
relativistic generalization of this virial theorem, within th
approximate theory considered here, are also discussed i
Appendix.

B. Expressions for relativistic energy densities

1. Kinetic

In the general case, we have that

]ta

]n
5Ac2pf

21m0
2c42m0c2, ~11!

where the Fermi momentumpf is related to the uniform
electron densityr0 by the usual phase-space result

r05
8p

3h3
pf

3 . ~12!
9-2
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HIGH PRESSURE LIMITING FORMS OF THE ZERO- . . . PHYSICAL REVIEW B 67, 064109 ~2003!
In writing Eq. ~11! one has replaced the nonrelativistic k
netic energy at the Fermi momentum, namely,pf

2/2m0, by
the special relativity form of the kinetic energy, the rest ma
energym0c2 being subtracted in the usual way. This proc
dure can, in fact, be traced back to Vallarta and Rose2

Following Baltin and March,13 Eq. ~11!, combined with Eq.
~12!, can be integrated to yieldta in the form

ta5aH bS 1

2
1b2D ~11b2!1/22

4

3
b32

1

2
ln@b1~11b2!1/2#J

~13!

with the basic dimensionless variable given byb5br0
1/3 and

the constants

a5S 1

4p2D S m0c

\ D 3

m0c2, b5~3p2!1/3S \

m0cD . ~14!

2. Exchange correlation

The expression for the relativistic exchange energy d
sity «xa obtained by MacDonald and Vosko10 is given in
terms ofb by

exa5«xF~b!

52cxr0
4/3F12

3$b~11b2!1/22 ln@b1~11b2!1/2#%2

2b4 G
~15!

with, of course,

F~b! ——→
a→0

1. ~16!

The importance of correlation effects for the RHEG w
thoroughly studied by Kennyet al.14 using quantum Monte
Carlo simulations. They concluded, however, that correlat
effects become negligible compared to exchange effects
ready at compression values much smaller than the rang

FIG. 1. Pressure of a nonrelativistic uniform electron gas in
exchange-only approximation versus electron density. Kinetic
exchange contributions are shown separately from the total p
sure.
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densities of interest here. We will not, therefore, include
study of the relativistic correlation contribution to the pre
sure here.

C. Discussion of the results

1. Kinetic pressure pk

Figure 2 compares the kinetic contribution to the pressu
say,pk , both for the relativistic and nonrelativistic cases.
terms of the variabler0

5/3 the nonrelativistic result is pre
sented with the straight line, and the effect of relativity
seen to reducepk .

For comparison we have also examined limiting forms
the relativistic correction to the kinetic pressure. Starti
from the expression for the so-called mass-velocity term15

Hmv , which corrects the nonrelativistic kinetic-energy o
erator to ordera2,

Hmv52
p̂4

8m0
3c2

, ~17!

we immediately obtain, for a noninteracting unpolarized h
mogeneous electron gas, a correction to the kinetic pres
given in first-order perturbation theory by

Dpka52Ar0
7/3 ~18!

with the constantA given by

A5
\4

m0
3c2

1

42p2
~3p2!7/3. ~19!

This result is also plotted in Fig. 2 in terms ofr0
5/3. The

first-order correction is seen to eventually lead to an ove
timate of the correction due to relativity that is of the ord
of the correction itself. In the ultrarelativistic limitpfc
@m0c2 the relativistic kinetic-energy density reduces to

ta 5
r0→`

3

4
~3p2!1/3\cr0

4/3, ~20!

e
d
s-

FIG. 2. Nonrelativistic and relativistic kinetic pressures vers
r0

5/3. The result from first-order perturbation theory is also show
9-3
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which immediately yields a pressure from Eq.~6! given by

pka 5
r0→`

1

4
~3p2!1/3\cr0

4/3, ~21!

a result already obtained by, e.g., Landau and Lifshitz.16

2. Exchange pressure px

Figure 3 compares the exchange contribution to the p
sure, say,px , both for the relativistic and nonrelativisti
cases. In terms of the variabler0

4/3 the nonrelativistic result is
presented by the straight line. The exchange contributio
the pressure becomes less negative due to relativity and
positive in the extreme relativistic region. This was expec
since it was already clear from the work of MacDonald a
Vosko10 that the exchange energy density itself changes s
in the ultrarelativistic limit. This is due solely to the tran
verse component of the exchange energy density.

This obviously implies that over a large range of pre
sures, exchange is considerably less important in the rela
istic case. However, once the relativistic exchange pres
pxa has turned positive, the ratio with respect to the rela
istic kinetic pressure was found to level off to a consta
This behavior is, of course, remarkably different from t
nonrelativistic case where everything becomes kinetic
high enough densities. Analysis of the asymptotic behav
of exa yields a power-law behavior similar to the kinetic ca

exa 5
r0→`

2
1

2
«x5

3

8 S 3

p D 1/3

e2r0
4/3, ~22!

which implies an asymptotic contribution to the pressu
given by

pxa 5
r0→`

1

8 S 3

p D 1/3

e2r0
4/3. ~23!

The asymptotic ratio of the relativistic exchange pressure
the kinetic pressure in the limit of very high compressio
then immediately follows from these results to be

FIG. 3. Nonrelativistic and relativistic exchange pressures v
susr0

4/3.
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pka
5

r0→`

1

2p
a ~24!

with a the fine-structure constant as defined above. E
dently for a50 we recover the nonrelativistic result. Th
percentage ratio of the absolute value of the exchange
tribution to the pressurepxa to the kinetic contributionpka is
plotted in Fig. 4.

3. Total relativistic pressure

Figure 5 shows the total relativistic correction percenta
as a function of electron densityr0. A useful parameter to

r-

FIG. 4. Percentage ratio of the~absolute value of the! exchange
contribution to the pressureupxu to the kinetic contributionpk , both
for the nonrelativistic and the relativistic cases. The importance
exchange is seen to decay much more rapidly in the relativi
case, but it levels off to a constant nondiminishing fraction of t
kinetic contribution after turning positive in the ultrarelativist
limit.

FIG. 5. Total relativistic percentage correction versus dens
Corresponding values for compression parameterh for Pu are also
shown, assuming the electrons in Pu form a nonresponsive unif
electron gas. The value forv0 was taken from Table I.
9-4
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HIGH PRESSURE LIMITING FORMS OF THE ZERO- . . . PHYSICAL REVIEW B 67, 064109 ~2003!
understand the physics involved in the range of densi
depicted is the compression parameterh defined as

h5~v/v0!1/3 ~25!

with v here denoting the atomic volume andv0 its value at
normal conditions. Focusing, for instance, on Pu, and ass
ing all electrons form a nonresponsive background for
nuclei, i.e.,r0594/v, one already requires roughly a com
pression of the volume by a factor 103 ~i.e.,h50.1) to reach
a modest relativistic correction of 1%. The value forv0 taken
for Pu is listed in Table I, together with some other releva
experimental data for Ta and Pu used in this work.

III. OBTAINING BOUNDARY DENSITIES FROM
RELATIVISTIC THOMAS-FERMI THEORY

A. Vallarta-Rosen theory

1. Formulas

The Vallarta-Rosen~VR! theory was the first relativistic
TF theory proposed. Its derivation is intuitive and consists
essence of solving the relativistic local Euler equation wh
expresses the fact that the total energy of the fastest elec
is a constant throughout the electron cloud in the solid

ma5
]ta

]n
1V~r … ~26!

with ]ta /]n given by Eq.~11!, simultaneously with Pois-
son’s equation

¹2V524pe2r14pZe2rext , ~27!

whereZerext denotes the external core charge, assumed
malized to the atomic numberZ. Assumingrext to be spheri-
cally symmetric the problem becomes one dimensional in
radiusr, and making the substitution for the screening fun
tion f(x)

@m2V~r !#5
Ze2

r
f~x! ~28!

with

r 5bVRx, bVR5
1

4 F9p2

2Z G1/3

a0 ,

one then obtains the relativistic generalization of the dim
sionless TF equationd2f(x)/dx25f3/2/x1/2, namely,

TABLE I. Experimental data for the equilibrium volumev0,
bulk moduliK0, and the pressure derivative of the bulk modulaeK1

for Ta and Pu. Thermodynamic data on Ta taken from Ref.
Thermodynamic data for Pu taken from Ref. 26 (V0) and Ref. 27
(K0 andK1).

Ta Pu

V0 ~a.u.! 121.75 168
K0 ~Mbar! 1.95 0.42
K1 3.4 10.5
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f~x!5

f3/2

x1/2 F11lS f

x D G3/2

24pxbvr
3 rext~bx! ~29!

with

l5S 4

3p D 2/3

a2Z4/3. ~30!

Within the above framework the radial number density
then obtained as

r~r !drÄZx1/2f3/2F11lS f

x D G3/2

dx. ~31!

2. Short discussion

In essence the TF limit in DFT can be justified by assu
ing that the potential varies slowly compared to the wa
length of electrons on the Fermi surface. In the nonrelativ
tic case imposing this condition on the exact ener
expressions allows one to derive the TF theory from fir
principles theory.17

No such derivation has been given as yet for the full V
theory and given the problem of the non-normalizable div
gent density at the origin when one makes the assumpti

rext~r !5d~0! ~32!

already discussed in the introduction, various different for
for relativistic TF theory have thus far been presented.18 We
wish to emphasize strongly, however, that the lineariz
form of the VR theory has been obtained from firs
principles theory in the work of Baltin and March19 on the
linear response of a relativistic electron gas. To the kno
edge of the authors at the time of writing, no other form
relativistic TF theory can make a similar claim concerning
full and/or asymptotic validity.

B. Solving the Vallarta-Rosen equation

1. Choice of the nuclear profile

We will proceed to solve the equation for the se
consistent potentialV. To obtain a normalizable density w
take into account the finite extension of the nucleus. If o
describes the core charge by a Fermi-Dirac distribution fu
tion, the radius for which the charge drops to half of
maximum value is obtained from experiment to be20

r c51.07A1/310215m ~33!

with A the atomic mass. Following Hillet al.21 we approxi-
mated the nucleus by a homogeneously charged sphere
the relation~33! was used to obtain an estimate for the r
dius. This then yields as an explicit expression for t
nuclear charge profile

rext~r !5
1

4

3
pr c

3

Q~r c2r !

.

9-5
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F. E. LEYS, N. H. MARCH, AND D. LAMOEN PHYSICAL REVIEW B67, 064109 ~2003!
with Q(r c2r ) the Heaviside step function. The term to b
added to the right-hand side of the VR equation then rea

4pxbvr
3 rext~bx!53Q~xc2x!

x

xc
3

.

2. Reduction to an equivalent set of first-order equations

The second-order Vallarta-Rosen Eq.~29! was split up
into two first-order differential equations

df~x!

dx
5y~x!, ~34!

dy~x!

dx
5

f3/2

x1/2 F11lS f

x D G3/2

23Q~xc2x!
x

xc
3

, ~35!

which were solved simultaneously using the numerical Fe
berg fourth–fifth-order Runge-Kutta method. Since the rig
hand side of the second differential Eq.~35! diverges asx
tends to zero, one must use a small-x expansion to get away
from the origin. As discussed below, this expansion is fu
determined by the normalization condition and the spec
form of the nuclear charge distributionrext .

3. Boundary conditions

a. At the origin.Starting from Poisson’s Eq.~27!, one
immediately obtains after integration

E
0

R

4pr 2rdr5ZH lim
x→0

Ff~x!2x
df

dx
~x!G J 1Z ~36!

and so in order to obtain a normalized soluti
(*0

R4pr 2rdr5Z) for the VR equation it is sufficient tha
one has a solution satisfying

lim
x→0

Ff~x!2x
df

dx
~x!G50, ~37!

which implies that the self-consistent field must have an
tremum at the center of the WS sphere

dV

dr U
r→0

50. ~38!

For comparison, note that for the classical TF equation,
only takes account of the Dirac-delta core through
boundary condition and so the normalization condition
comes

lim
x→0

Ff~x!2x
df

dx
~x!G51, ~39!

which is fulfilled by the smallx expansion of Baker.22

b. At small x.At small x, the VR Eq.~29! with a homo-
geneously charged core reduces to

]x
2f5l3/2

f3

x2
23Q~xc2x!

x

xc
3

. ~40!
06410
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Since a normalized solution of the VR equationf(x) goes to
zero at the origin faster thanx2/3, a valid small-x expansion
must satisfy

]x
2f523

x

xc
3

~41!

and a solution of this equation which satisfies the condit
~37! is given by

f~x!5
1

2

x

xc
F32S x

xc
D 2G . ~42!

In order to bring in the remaining integration constantb we
considered the small-x expansion

f~x!5
1

2

x

xc
F32S x

xc
D 2G1bx1 . . . ~43!

as was already obtained by Hillet al.21 Both for the VR
equation and the TF equation with a core this solution w
used up to an arbitrary small value forx taken to be 0.01
times the nuclear radius.

c. At the WS-sphere.In terms of the screening functio
f(x) the boundary condition at the WS sphere with dime
sionless radiusX becomes

f~X!2X
df

dx
~X!50. ~44!

One cannot from the outset solve Eq.~29! for a givenX
due to the complexity of the boundary condition~44!: one
varies instead the independent integration constantb, and the
correspondingX of the solution is then found for a give
value for b as the zero of the functionf(x)2x df/dx (x).
Given the expected smallness of the relativistic correctio
is of crucial importance that we compare relativistic and no
relativistic boundary densities at exactly the same value
X. We therefore did not rely on previously obtained resu
for the nonrelativistic TF theory by Slater and Krutter4 or
Feynmanet al.5 but instead solved the nonrelativistic T
equation again for the same set ofX values as used for the
relativistic VR equation. Interpolation of the nonrelativist
solution to different X values yielded, however, perfec
agreement with the results from earlier work. For the nonr
ativistic TF equation, which needs to be solved only once
a givenX since its solution in terms off(x) is independent
of the element considered, we used Baker’s expansion22 up
to the ninth term.

IV. NUMERICAL RESULTS: EOS FROM RELATIVISTIC
TF THEORY FOR TA AND PU

A. Relativistic corrections to the TF density profile

1. Facts

Table II lists the values obtained for the nonrelativis
screening functionf(X) from nonrelativistic TF theory to-
gether with the values for the integration parameter, termeb
here in analogy with the expansion~43!, of Baker’s22 expan-
9-6
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HIGH PRESSURE LIMITING FORMS OF THE ZERO- . . . PHYSICAL REVIEW B 67, 064109 ~2003!
sion. Tables III and IV list solutions forf(X) for Ta and Pu,
respectively, from VR theory together with the correspon
ing values for the integration constantb appearing in the
small-x expansion~43!. All relevant properties can be calcu
lated from the data presented in these tables.

From Eq.~31!, which encompasses the nonrelativistic r
sult for l50, one can then immediately obtain the corr
sponding values for the boundary density both in the non
ativistic ~TF without core! case, say, denoted byrnr(R), and
in the relativistic case, say,r r(R). The difference between
both densities is plotted in Fig. 6~a! and Fig. 6~b! for Ta and
Pu, respectively, as a function of the compression param
h. The boundary density was, for all compressions con
ered, found to be lowered by relativity.

2. Discussion: Effect of the finite nucleus

To examine the effect of a finite nucleus on the bound
density r(R) we have switched off the fine-structure co

TABLE II. Solution f(x) of the classical Thomas-Fermi equ
tion evaluated at the dimensionless boundary of the WS cellX. b is
the integration constant in Baker’s small-x expansion~Ref. 22!. The
numbers in parentheses denote the uncertainty in the last digit~s!.

X b f(X)

1.0000~1! 20.63870000 1.77878~18!

2.0000~1! 21.46725000 0.75652~4!

3.0000~1! 21.55847000 0.431515~14!

4.0000~1! 21.57829750 0.279347~7!

5.0000~1! 21.58420800 0.194684~4!

6.0000~1! 21.58634380 0.1425562~24!

7.0000~1! 21.58722485 0.1082322~15!

8.0000~1! 21.58762600 0.0844921~10!

9.0000~1! 21.58782325 0.067441~7!

10.000~1! 21.58792645 0.054819~5!

11.000~1! 21.58798325 0.045252~4!

12.000~1! 21.58801590 0.037848~3!

13.000~1! 21.58803540 0.0320050~25!

14.000~1! 21.58804740 0.027337~19!

15.000~1! 21.58805500 0.0235571~16!

TABLE III. Solution f(x) of the Vallarta-Rosen equation for T
evaluated at the dimensionless boundary of the WS cellX. b is the
integration constant in the small-x expansion~43!. The numbers in
parentheses denote the uncertainty in the last digit~s!.

X b f(X)

1.0000~1! 24.415 1.72825~17!

2.0000~1! 25.1822 0.74596~4!

3.0000~1! 25.268458 0.426851~14!

4.0000~1! 25.2873138 0.276719~7!

5.0000~1! 25.292954 0.193018~4!

6.000~1! 25.2949936 0.141387~24!

7.000~1! 25.295865 0.107419~15!

8.000~1! 25.2962491 0.083906~10!

9.000~1! 25.2964385 0.066986~7!

10.000~1! 25.29653766 0.054452~5!
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stant a in the VR calculations for Ta~with a finite-size
nucleus! and compared the resulting charge-density profi
say, rnr

c (r ), with that from the classical TF calculatio
rnr(r ) for an arbitrarily chosen valueX57. Both density
profiles are plotted in Fig. 7~a!. The difference is seen to
manifest itself mainly very close to the origin.

Contrary to the nonrelativistic case, the relativistic dens
profile was found to exhibit a significant charge pileup im
mediately outside the nucleus. The height, width, and po
tion of this pileup were each found to depend strongly on
chosen value for the radius. For comparison, Fig. 7~b! shows
the charge profile for Ta forX57 both for the original core
radiusxc , and for a core taken to be 1.5 timesxc . A large
charge difference manifests itself very near to the nucl
and this is consequently compensated by a very small dif
ence in charge, the two curves lying within graphical acc
racy almost on top of one another, over most of the W
sphere. The difference in density at the boundary becaus
the different radius was finally~even for the highest com
pression we considered,X51) found to be of the order o
1/50 of the difference due to relativity. This is shown in Fi
7~c! for Ta. We conclude that the equation of state, within t
present scheme, is barely affected by~reasonable! different
choices concerning the size of the nucleus. One must, h
ever, be careful when using the charge-density profile to
culate other properties such as the energy. Similar res
were obtained for the case of Pu.

B. EOS for Ta and Pu

We now use the values forrnr(R) andr r(R) to calculate
the nonrelativistic and relativistic EOS from Eq.~6! for a
50 and a51/137, respectively. We note from the discu
sions presented above that the relativistic effects both at
level of the EOS of the uniform electron gas, and at the le
of the boundary electron densityr(R), work ‘‘in the same
direction:’’ both lead to a lowering of the pressure compar
to the nonrelativistic case.

1. Tantalum

a. Results plus comparison with other calculations.Figure
8~a! plots the results obtained from our work for Ta com
pared with the results from Boettger.1 Clearly for low pres-

TABLE IV. Same as Table III, but for Pu.

X b f(X)

1.0000~1! 25.749 1.70877~17!

2.0000~1! 26.4921 0.74171~4!

3.0000~1! 26.576331 0.424914~14!

4.0000~1! 26.5947815 0.275640~7!

5.0000~1! 26.6003054 0.192326~4!

6.0000~1! 26.6023068 0.1409593~23!

7.000~1! 26.60313444 0.1071036~23!

8.00~1! 26.603512151 0.083636~10!

9.000~1! 26.603698 0.066796~10!

10.000~1! 26.603795 0.054345~10!
9-7
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F. E. LEYS, N. H. MARCH, AND D. LAMOEN PHYSICAL REVIEW B67, 064109 ~2003!
sures, the method we have used is not quantitative. How
both curves approach one another quickly with increas
pressure and the results of Boettger seem to lead, quite n
rally, into the region where the EOS can be determined
equately by the relativistic TF theory. A detailed plot expo
ing the relativistic correction to the results fro
nonrelativistic TF theory is given in Fig. 8~b!. As already
discussed earlier, the total correction to the pressure is n
tive.

b. Comparison with analytic EOS.Since Ta has no known
structural phase transitions under pressure, we expect
results to coincide at high compressions with predictio
from analytic parametric EOS, which make use of equil
rium values for the bulk modulus and its derivatives. T
most advanced expressions, nonrelativistic, however,
scribing the very high-pressure regime are given
Holzapfel,23 and we will make specifically use of the so
calledAPL form, whereL denotes an index. The expressio
for the pressure is then given in terms of the compress
parameterh by

P53K0h25~12h!e[c0(12h)]F11h(
k52

L

ck~12h!k21G ,

~45!

FIG. 6. ~a! Difference in boundary electron density from clas
cal TF theory (rnr) and VR theory (r r) for Ta versus compressio
ratio h. For clarity of presentation, the logarithm of the values
a.u. was taken.~b! Same as for~a!, but for Pu.
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whereK0 denotes the bulk modulus at equilibrium andc0
52 ln(3K0 /pka50). If we write the derivative ofK0 with re-
spect to pressure asK1 we immediately obtain from Eq.~45!
that

c25
3

2
~K123!2c0 . ~46!

For our purposes, theAPL EOS with L52, which re-
quires experimental input values only forK0 and K1, will
suffice. The values for Ta are taken from Table I. The res
ing curve is plotted together with the numerical results
this work and those of Boettger also in Fig. 8~a!.

The AP2 equation of state is seen to describe the lo
pressure results of Boettger very well. However, for t
higher-pressure values, theAP2 equation of state underest
mates the predictions from Boettger’s calculations. To illu
trate this further, Fig. 8~c! plots the difference between th
AP2 predictions and Boettger’s results as a function of v
ume. Whereas for compressionsh*0.9 both results are
clearly in good agreement, the difference oscillating wea
around zero, they are seen to diverge quickly for higher co
pressions, say,h,0.9.

Because of this, the clear tendency of Boettger’s result
approach the results from our work, as noted already ab
is less present in the analytic formAP2: theAP2 equation
of state stays on the contrary nearly parallel to our results
a logarithmic plot over a broad pressure range and only te
towards our results in the extreme compression regime.
course, at compressions where the uniform electron-gas l
is reached, theAP2 form will yield the nonrelativisticr5/3

behavior, whereas our pressure results will be proportiona
r4/3. Various other analytic EOS, using, however, the sa
input variables, gave rise to similar conclusions.

From the above discussion, however, it seems fair to
pect our results to become quantitative well before the
treme compression regime as suggested by the compa
with AP2. Further wave-mechanical calculations to confi
this point would clearly be of interest.

2. Plutonium

a. Results plus comparison with other calculations.Figure
9~a! plots the results obtained from our work for the EOS
Pu. To the authors’ knowledge at the time of writing, n
results from wave-mechanical calculations on the hig
pressure EOS have up to now been published, and so a d
comparison, as for Ta, did not prove possible.

b. Comparison with analytic EOS.Contrary to Ta, Pu is
expected to undergo at least one phase transition with
creasing pressure.9 We therefore do not expect any analyt
EOS using equilibrium data as input to tend towards o
limiting predictions from TF theory before both reach th
free-electron-gas limit. TheAP2 result is also plotted in Fig
9~a!. Input values for Pu were taken from Table I. Surpr
ingly the analytic equation of state was found not to diff
too strongly from our numerical results, compared, for
stance, with the results for Ta. Of course, close to the u
form electron-gas limit, all EOS become independent of
chosen values for the parameters for bulk modulus, its
9-8
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FIG. 7. ~a! Radial electron-density profile for Ta forX57 from nonrelativistic TF theory with (rnr
c ) and without (rnr) a finite nucleus.

Profile is only shown very close to the origin of the WS sphere, where the difference is mainly manifested.~b! Radial electron-density profile
for Ta from VR theory for two different values of the nuclear radius,r c , as calculated from Eq.~33! and 1.5 timesr c . ~c! Difference between
the relativistic density at the boundaryR of the WS sphere using the original core sizer c as derived from Eq.~33! @denoted byr r(R)# and
that using a core of radius 1.53r c @denoted byr r

.(R)# as a fraction of the difference due to relativity given by$rnr(R)2r r(R)%. The
results are given for different values of the dimensionless WS radiusX. Reasonably different choices for the core size are seen to lead,
for the highest compressionX51, to only very small corrections~of the order of 2%! compared to the correction due to relativity itself
nl
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Figure 9~b! plots the relativistic corrections to the pre
sure for Pu over a broad range of pressures. The magni
of the corrections was found to depend only very slightly
the change inZ from 73 to 94.

V. FUTURE DIRECTIONS

It would be of clear interest if further wave-mechanic
calculations could be performed to determine more precis
the range of pressures where the relativistic TF method
comes quantitative. Possible improvements of the work p
sented here are to include exchange into relativistic
theory. When solving for the potential it has not proven p
sible to solve the Euler equation including exchange for
density in terms of the potentialV(r ), which is obviously a
necessary prerequisite to obtain a single differential equa
06410
y

de

l
ly
e-
e-
F
-
e

n

for V(r ) from Poisson’s equation. However, one can equa
well solve immediately for the density, and within this rou
a single differential equation for the density which takes e
change into account can be written down.24

Finally, our attention was drawn to the work of Engel a
Dreizler29 in which low-order gradient corrections are intro
duced into relativistic TF theory paralleling the nonrelativ
tic approach of von Weizsa¨cker.30 This would afford an al-
ternative approach to the problem in the original Vallar
Rosen theory that the electron density is not normaliza
because of the enhanced singularity ofr(r ) at a point
nucleus beyond the~normalizable! r 23/2 divergence in the
nonrelativistic TF limit. While that problem has been b
passed here by adopting a nonzero nuclear radius, it wo
be of interest in the future to compare and contrast the En
and Dreizler approach with the present one. This would a
allow direct calculations of ground-state energies, wher
9-9
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FIG. 8. ~a! EOS for Ta from relativistic VR theory~this work!
and from Dirac’s equation~Boettger, Ref. 1!. The solid curve shows
the analyticAP2 equation of state of Holzapfel, Ref. 23 using th
experimental data of Table I as input for the parameters.~b! Differ-
ence in pressure for Ta between nonrelativisticPnr and relativistic
treatmentsPr within fully local DFT versus the compression pa-
rameterh. ~c! Difference in pressure for Ta between the numeric
results of Boettger, Ref. 1, and the predictions from the analy
equation of stateAP2 of Holzapfel, Ref. 23.
06410
the entire focus of our finite nucleus radius treatment has
course, been on the equations of state.
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APPENDIX A: THE ROLE OF THE VIRIAL IN
COMPLETELY LOCAL RELATIVISTIC DFT

1. Introduction

In earlier work by one of us,28 explicit relations were
established revealing the role of the virial in completely loc
relativistic DFT. The theory was written down for heavy a
oms and the aim of this Appendix is to generalize the

l
c

FIG. 9. ~a! EOS for Pu from relativistic VR theory~this work!.
The solid curve shows the analyticAP2 equation of state of Holza-
pfel, Ref. 23, using the experimental data of Table I as input for
parameters.~b! Difference in pressure for Pu between nonrelativ
tic Pnr and relativistic treatmentsPr within fully local DFT versus
the compression parameterh.
9-10
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results to the case of infinite systems with periodic bound
conditions as considered above within the spherical WS
proximation.

2. Results

We start from the Euler equation given generally for
completely local theory by Eq.~26!. For simplicity, we will
leave out the indexa when denoting the kinetic-energy de
sity t.

Writing down the total kinetic energy and applying int
gration by parts yield

T54pE
0

R

tr 2dr ~A1!

5
4p

3
t@r~r !#r 3u0

R2
4p

3 E
0

Rdt

dr
r 3dr. ~A2!

Let’s now examine the behavior of the first term in t
origin. In the VR theory the density is given by Eq.~31!. In
the nonrelativistic case (l50) f goes to 1 asr tends to zero
and so

r~r ! ;
r>0

1

r 3/2
. ~A3!

Since the ‘‘classical’’ kinetic-energy densityt0(r) is given
by

t0~r!5ckr0
5/3, ~A4!

it is clear that the first term of Eq.~A2! tends to zero asAr .
In the relativistic case, with a point nucleus~so f>1 as r
>0) the density already diverges as 1/r 3 and inserting this
into the relativistic kinetic-energy density will lead to a d
vergence of the termt@r(r )#r 3 at the origin in between 1/r 2

~corresponding tot;r0
5/3) and 1/r ~corresponding tot

;r0
4/3). From the small-x expansion~43! it follows straight-

forwardly that this divergency in the origin is removed in t
presence of a finite-size nucleus,t@r(r )#r 3 tending to zero in
the origin, and so we conclude that

4p

3
t@r~r !#r 3u0

R5vt@r~R!# ~A5!

with v now the atomic volume.
Following March28 we put, in the second term on the rig

of Eq. ~A2!,

dt

dr
5

dt

dr

dr

dr
5@m2V~r !#

dr

dr
~A6!

and integrating again by parts gives, for the second term
06410
y
p- 2

4p

3 E
0

R

@m2V~r !#
dr

dr
r 3dr

52
4p

3
@m2V~r !#r 3ru0

R1
4p

3 E
0

R

rm3r 2dr

2
4p

3 E
0

R

rV3r 2dr2
4p

3 E
0

R

rr
dV

dr
r 2dr

52
4p

3
@m2V~r !#r 3ru0

R1Nm2E rVdr1
1

3
^r•F&,

~A7!

where we defineF in the usual manner as2“V. Evaluation
of the first term on the right in the origin again depends
the use of a core. If present, it evaluates to zero in the or
and so

2
4p

3
@m2V~r !#r 3ru0

R52v@m2V~R!#r~R!

52v
dt

dr
@r~R!#r~R!. ~A8!

Combining the above equations now gives

^T&52vFr dt

dr
2t G

R

1Nm2E rVdr1
1

3
^r•F&, ~A9!

which is the central result of this Appendix.
We now use the Euler equation to eliminate the chem

potential m. Multiplying the Euler equation throughout b
the densityr and integrating over the WS cell gives

Nm5E r
dt

dr
dr1E rVdr . ~A10!

Inserting this into Eq.~A9! gives

^T&52vFr dt

dr
2t G

R

1E r
dt

dr
dr1

1

3
^r•F&. ~A11!

Again following March28 by differentiating the Euler equa
tion with respect tor, also the virial of the force can be
reformulated in terms of the kinetic energy, giving

^r•F&5E rr
d

dr F dt

drGdr ~A12!

and so

^T&52vFr dt

dr
2t G

R

1E r
dt

dr
dr1

1

3E rr
d

dr F dt

drGdr .

~A13!

The main merit of this procedure, avoiding the integration
the complicated expression for the relativistic kinetic-ene
9-11
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density ta when evaluating the contribution of the kinet
energy, is not lost since the evaluation ofta is only at one
particular density, namely, the boundary density. Rema
ably, the contribution to the kinetic energy, because of
finite sphere radius, is negative and turns out to be~in mag-
gh

M

od

06410
-
e

nitude! just the volume times the kinetic contribution to th
pressure. Of course, the total kinetic energy will increa
because of confinement but this increase will come from
higher value for the last two terms in the right-hand side
Eq. ~A13!.
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