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There is considerable current interest in the equations of &&§) of the two heavy metals, tantalum and
plutonium. For the former, BoettgéPhys. Rev. B64, 035103(2001)] has recently carried out calculations
based on the Dirac relativistic wave equation. Our purpose here is different, namely, it is to work with the
simplest form of relativistic density-functional theory which is the relativistic Thomas-FHarRiimethod. The
predictions of this approach should come into their own at sufficiently high pressueesork throughout at
T=0) and direct contact has been made, for Ta, with (tbever-pressurepredictions of Boettger’s study.
Similar results for the high-pressure limiting form of thie=0 EOS for Pu are presented. Because the relativ-
istic TF method is purely “local density” in character, the results on Ta and Pu are preceded by a full study of
the relativistic homogeneous electron gas, including the relativistic exchange contribution to its EOS. An
important finding there is that in the high-density limit the relativistic exchange contribution to the pressure
becomes proportional to the kinetic contribution, the proportionality constant being linear in the fine-structure
constant.
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I. INTRODUCTION original TF method theT=0) pressure-volume relation was
determined entirely by the boundary electron number den-
There is currently considerable interest in the equations o$ity, p(R), say, whereR denotes the radius of the Wigner-
state (EOS of the two heavy metals Ta and Pu. For the Seitz(WS) sphere. And indeed, as one would intuitively then
former of these materials, Boettdehas recently reported €xpect, since the pressure in this model is due to the elec-
calculations(at T=0, which is the case also considered trons bombarding the surface of the WS sphere, the pressure
throughout the present papérased on the Dirac relativistic 1S given by the usual uniform electron-gas relation
wave equation. Our purpose in the present work is different
in that we shall use the simplest relativistic density-
functional theory(DFT), namely, the relativistic Thomas- o course,p(R) must be determined self-consistently, with

Fermi (TF) method, originating from the study of Vallarta ¢ appropriate boundary conditionrat R being
and Roser(VR).2 Boettger’s study will, however, prove in-

p=cons {p(R)}*". @

valuable since the TF method comes into its own in the ap(r)
present context only as a limiting form of th&€0) EOS at pr =0, v
exceedingly high pressures. It is therefore satisfying that r=R

Boettger’s wave-function calculations are found to join rela-which reflects, in the spherical cell approximation, the “pe-
tively smoothly with our limiting high-pressure results for ripdicity” requirement that the normal gradient of the elec-
the case of Ta[A very short preliminary repottof these  tron density across the WS polyhedron of the appropriate
numerical results was given by one of ((E.L.) at the High  |attice be zero everywhere. Equatit®) is also, of course, a
Pressure Conference in Santander in 2D01. basic boundary condition in relativistic TF theory. But Eq.
Important background for the present study goes back t91) must naturally be modified to take account of the nonzero
the investigations of Slater and Kruttemd Feynmaret al®>  value of the fine-structure constamt=e?/#%c. Furthermore,
These authors used the nonrelativistic TF methbdnd a  Eq. (1) as used by Slater and Kruttewhile a rigorous con-
number of features of the present study is common to theisequence of the original TF method, must also be corrected
work. For example, in both approaches, the detailed crystdh more quantitative work, for electron exchange plus corre-
lattice is not considered, but rather a spheri¥digner-Seitz  lation interactions.
cellular approximatiohis adopted. This is clearly best for At the outset of the present study, we emphasize that we
high-symmetry lattices such as face-centered cubic, and bshall retain within the relativistic TF framework, the intuitive
comes less accurate for lower coordination numbers. Howreasoning stressed above in relation to the Slater-Krutter in-
ever, it became clear from the work of i@terlindet al® that  vestigation, that the boundary densjiyR) is all important
one can expect all elements, even those exhibiting very lowin determining the relativistic TF equation of state. Then all
symmetry structures at normal conditions such as Pu, tthat one must do is to use a careful approximation with the
eventually transform to higher-symmetry structures as thequation of state of a relativistic homogeneous electron gas
bandwidth of the bonding electrons increases with pressuréRHEG), before replacing the constant densipy, say, in
Secondly, it was proved by Slater and Krutter that in thethat theory for the pressugg by the boundary density(R).
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It is fortunate for our present purposes that the work of E, P
MacDonald and Vosk8 on electron exchange within a rela- Ba=N TN )
tivistic framework was already available to us. Therefore, the
natural starting point for the present investigations was tovhereN andv are, respectively, the total number of fermions
make a careful numerical study of the EOS of the RHEG. and the total volume they occupy. Combining E¢%. and

Thus the outline of the paper is then as follows. In Sec. II(5) one reaches the desired form for the presqyre
immediately below, such EOS data for the RHEG are first
presented. This is followed in Sec. Ill by an account of the
generalization of the Slater-Krutter approach that we have
adopted to treat the self-consistent relativistic TF method
Here, as known from earlier worketit is essential to avoid
the point-charge nucleus naturally adopted by Slater an
Krutter. This is because, though the electron densfty) is
infinite at such a point nucleus, one still can impose within
the nonrelativistic TF theory the normalization condition

at,

I€xca
——t, |+
P ap a P

Po= “op  Sxeal- (6)

Of course, since Eq6) is a thermodynamic result, it is im-
ediately applicable to both the relativistic and nonrelativis-
ic cases.
As an immediate check of Eq(6) we insert the
well-known'? nonrelativistic results for the kinetic-energy
density, sayt, and the exchange energy density, sgy,

— 5/3
f p(rdr=2, 3 £ G0

with
where Z is the atomic number. But in the Vallarta-Rosen 3n2/ 3 \283
theory with a point nucleus, the divergence is too strong to Ck:m(S_) @)
allow the normalization conditio(B) to be imposed. In Sec. m
IV a full discussion of the numerical results obtained in thisand
work is presented. An important aspect of Sec. IV is to ex- s
amine fully how the boundary densip(R) is influenced by €x= ~Cxpg
the finite size of the nucleus. A check on our procedure will ith
then be to “switch off” the fine-structure constaatwithin
VR theory in the presence of a finite-size nucleus and hence 3/3\¥
compare the boundary density we obtain with the nonrelativ- CXZZ(;) e (8)

istic Slater-Krutter values. Furthermore, detailed results for

both theT=0 EOS for Ta and Pu, which are, as alreadyand immediately obtain the nonrelativistic EOS in the
emphasized above, to be regarded as limiting forms valid aéxchange-only approximation

high pressure, are presented. Contact is then also established
for Ta with the results of Boettger obtained using the Dirac
relativistic wave equation. For both elements, comparison
V.V'" also be _made with predlct|0r_15 from analyt!c EO.S' S.ec'in correspondence with the nonrelativistic virial theorem
tion V constitutes a summary, with some possible directions
presented for future work in this area. In an Appendix, some 3P0 =2T 4_0+V,_o0, (10)
thermodynamic considerations are set out, with applications

summarized to both the nonrelativistic and relativistic inho-whereT,—o andV,,_o denote the total kinetic and potential
mogeneous electron gases. energies, respectively. The total nonrelativistic pressure and

its two constituents are plotted in Fig. 1. Some aspects of a
relativistic generalization of this virial theorem, within the

Il. EOS OF A RELATIVISTIC HOMOGENEOUS approximate theory considered here, are also discussed in the
ELECTRON GAS Appendix.

2 1
/ /
pa:o=§0kpg S §CXP33 9

A. Analytic form of the EOS

The chemical potentigk, of the electron gas is given by B. Expressions for relativistic energy densities

1. Kinetic
:%Jr IExca @ In the general case, we have that
Fa=5 " 5, )
@ 22 2.4 2
. . L — =4/C°pF+mgc”—mgCe, 11
with t, and e,.,, respectively, the kinetic and exchange- an Pt 0 0 (1D

correlation contributions to the total-energy density. The in- h the Fermi ¢ . lated to th i
dex a denotes the fact that we consider the general casg€r€ the ermi momenturp; 1S refated 1o the unitorm
where the fine-structure constantis allowed to be different €lectron densityy by the usual phase-space result

from zero. Alternatively, since the chemical potential is the
Gibbs free energy per particle, one has immediatelyT at
=0 the result

8 3
Po:ﬁpf- (12
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FIG. 1. Pressure of a nonrelativistic uniform electron gas in the
exchange-only approximation versus electron density. Kinetic and FIG. 2. Nonrelativistic and relativistic kinetic pressures versus
exchange contributions are shown separately from the total pregg”. The result from first-order perturbation theory is also shown.

sure.

In writing Eq. (11) one has replaced the nonrelativistic ki-
netic energy at the Fermi momentum, naqu§/[2m0, by

densities of interest here. We will not, therefore, include a
study of the relativistic correlation contribution to the pres-
sure here.

the special relativity form of the kinetic energy, the rest mass

energymqc? being subtracted in the usual way. This proce-
dure can, in fact, be traced back to Vallarta and Rdsen.
Following Baltin and March? Eq. (11), combined with Eq.
(12), can be integrated to yield, in the form

ta=a{ﬂ %wz (1+8%)H2- gﬂ’&— %In[ﬁ+<1+ﬁ2>1’2]}

(13
with the basic dimensionless variable given®y bpé’3 and
the constants

1 moc ) ® 2 2,1/3 )
a—(E (T) mpC=, b—(3'77 ) m_oc . (14)

2. Exchange correlation

The expression for the relativistic exchange energy den

sity &,, obtained by MacDonald and Voskbis given in
terms of 8 by

€xa=xF(B)
wd . 3B+ BHMP—In[ B+ (1+ A Y22
=—Cypo | 1— "
2B
(15
with, of course,

a—0

The importance of correlation effects for the RHEG was
thoroughly studied by Kenngt al* using quantum Monte

Carlo simulations. They concluded, however, that correlation
effects become negligible compared to exchange effects al-
ready at compression values much smaller than the range of

C. Discussion of the results
1. Kinetic pressure p

Figure 2 compares the kinetic contribution to the pressure,
say,pi, both for the relativistic and nonrelativistic cases. In
terms of the variablepg’3 the nonrelativistic result is pre-
sented with the straight line, and the effect of relativity is
seen to reducey .

For comparison we have also examined limiting forms for
the relativistic correction to the kinetic pressure. Starting
from the expression for the so-called mass-velocity térm
Hm, » which corrects the nonrelativistic kinetic-energy op-
erator to ordew?,
~4

p

Hunp= — ———,
© 8mic?

(17)

we immediately obtain, for a noninteracting unpolarized ho-
mogeneous electron gas, a correction to the kinetic pressure
given in first-order perturbation theory by

7/3

Apye=—Apg (18)
with the constani given by
h4
- 37T2 7/3. 19)
mac? 42772( ) (

This result is also plotted in Fig. 2 in terms pﬁ/3. The
first-order correction is seen to eventually lead to an overes-
timate of the correction due to relativity that is of the order
of the correction itself. In the ultrarelativistic limipsc
>m,c? the relativistic kinetic-energy density reduces to

4/3

3
t, = 2 (37 %hcpd?,

po—®

(20
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FIG. 4. Percentage ratio of tfabsolute value of theexchange
contribution to the pressute,| to the kinetic contributiorp,, both
1 for the nonrelativistic and the relativistic cases. The importance of
= Z(37)Y3c 4/3’ 21 exchange is seen to decay much more rapidly in the relativistic
Pia ( ) Po @D case, but it levels off to a constant nondiminishing fraction of the

which immediately yields a pressure from E) given by

ro kinetic contribution after turning positive in the ultrarelativistic
a result already obtained by, e.g., Landau and LifsHitz. limit.
2. Exchange pressure p Pxa 1 5
. o — = —a 4
Figure 3 compares the exchange contribution to the pres- Pka pysoo 2@ 24

sure, say,py, both for the relativistic and nonrelativistic

cases. In terms of the variald” the nonrelativistic resultis Wwith « the fine-structure constant as defined above. Evi-
presented by the straight line. The exchange contribution téently for =0 we recover the nonrelativistic result. The
the pressure becomes less negative due to relativity and turipercentage ratio of the absolute value of the exchange con-
positive in the extreme relativistic region. This was expectedribution to the pressurp,,, to the kinetic contributiompy, is
since it was already clear from the work of MacDonald andplotted in Fig. 4.

Vosko' that the exchange energy density itself changes sign

in the ultrarelativistic limit. This is due solely to the trans- 3. Total relativistic pressure

verse component of the exchange energy density. Figure 5 shows the total relativistic correction percentage

This obviously implies that over a large range of pres-a5 a function of electron densipy,. A useful parameter to
sures, exchange is considerably less important in the relativ-

istic case. However, once the relativistic exchange pressure

P« has turned positive, the ratio with respect to the relativ- 1.2
istic kinetic pressure was found to level off to a constant.

This behavior is, of course, remarkably different from the 1.0
nonrelativistic case where everything becomes kinetic at-,
high enough densities. Analysis of the asymptotic behaviorg® o.s
of €, yields a power-law behavior similar to the kinetic case >?§

® 06
1 3(3 1 <
— — 2 4/3 bt
€xa = T 5Tl | €Po (22 > 044
apoﬂx 2 8\ 8 0.4 n=(v/ vo)ua
) ) ) ) ) ) p°=94/v
which implies an asymptotic contribution to the pressure 024 |
given by 0.18 0.14 0.12 0.11 01 =
0.0 T T T T ]
1/3\18 0 100 200 300 400 500
= Z|Z| e2p4s (23) @
Pxa 8\ Po - Py (&,
p0—>oo

FIG. 5. Total relativistic percentage correction versus density.
The asymptotic ratio of the relativistic exchange pressure t@orresponding values for compression parametésr Pu are also
the kinetic pressure in the limit of very high compressionsshown, assuming the electrons in Pu form a nonresponsive uniform
then immediately follows from these results to be electron gas. The value fary was taken from Table I.
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TABLE |. Experimental data for the equilibrium volume, d2 ¢3/2 b 32
bulk moduliKy, and the pressure derivative of the bulk modufge — ()= —5| 1+ _) } _477Xb3rpext(bx) (29
for Ta and Pu. Thermodynamic data on Ta taken from Ref. 25. dx X X

Thermodynamic data for Pu taken from Ref. 26, and Ref. 27

(Ko andKy). with
Ta Pu 4\ 25413
A= 3. @ z", (30
V, (a.u) 121.75 168
Ko (Mbar) 1.95 0.42 Within the above framework the radial number density is
K 34 10.5 then obtained as
¢ 3/2
understand the physics involved in the range of densities p(r)dr=2x*2¢¥4 1+ ;) dx. (31)
depicted is the compression paramegedefined as
77:(Ulvo)llss (25) 2. Short discussion

In essence the TF limit in DFT can be justified by assum-
ning that the potential varies slowly compared to the wave-
éength of electrons on the Fermi surface. In the nonrelativis-
tic case imposing this condition on the exact energy
expressions allows one to derive the TF theory from first-

with v here denoting the atomic volume ang its value at

normal conditions. Focusing, for instance, on Pu, and assu
ing all electrons form a nonresponsive background for th
nuclei, i.e.,pp=94f, one already requires roughly a com-
pression of the volume by a factor®(.e., =0.1) to reach R 7
a modest relativistic correction of 1%. The value dgrtaken principles theory.

for Pu is listed in Table I, together with some other reIevantth No suc(? d_enve;::on hatfl beenf ?r:ven as yet folr_ thsl fu(ljl_ VR
experimental data for Ta and Pu used in this work. eory and given the probiem of the non-normafizable diver-
gent density at the origin when one makes the assumption

Ill. OBTAINING BOUNDARY DENSITIES FROM Pexi(1)=5(0) (32)
RELATIVISTIC THOMAS-FERMI THEORY

already discussed in the introduction, various different forms

for relativistic TF theory have thus far been preserifedle

1. Formulas wish to emphasize strongly, however, that the linearized

The Vallarta-RoserfVR) theory was the first relativistic fOTm_ (?f thﬁ VR_ thﬁory hss beeeIn. obt(ajur'l/?dmfrom hf'rSt'
TF theory proposed. Its derivation is intuitive and consists inr_)rmmp es theory ']f' t elw_or_ 0 Iatln an %I' hn tke |
essence of solving the relativistic local Euler equation which!"€a response of a relativistic electron gas. To the knowl-

expresses the fact that the total energy of the fastest electr(ﬁﬁjgef 9f .the authors at the time Of. writing, no other fqrm .Of
is a constant throughout the electron cloud in the solid relativistic TF theory can make a similar claim concerning its
full and/or asymptotic validity.

A. Vallarta-Rosen theory

at,
Ka™n V(N (26 B. Solving the Vallarta-Rosen equation
with dt,/dn given by Eq.(11), simultaneously with Pois- 1. Choice of the nuclear profile
son’s equation We will proceed to solve the equation for the self-
V2V= —4rep+4nZe?p 27) consistent potential/. To obtain a normalizable density we
- exts

take into account the finite extension of the nucleus. If one
whereZ ep.,; denotes the external core charge, assumed nogescribes the core charge by a Fermi-Dirac distribution func-
malized to the atomic numb@&: Assumingp,, to be spheri- tion, the radius for which the charge drops to half of its

cally symmetric the problem becomes one dimensional in théaximum value is obtained from experiment td"be

radiusr, and making the substitution for the screening func-

tion $(x) re=1.07AY%10 5m (33
2 with A the atomic mass. Following Hittt al?! we approxi-
[u—V(r)]= Tg{)(x) (28 mated the nucleus by a homogeneously charged sphere and
the relation(33) was used to obtain an estimate for the ra-
with dius. This then yields as an explicit expression for the
nuclear charge profile
1 97]_2 1/3
I’=bVRX, bVR:Z f aO’
. N — . Pext(F)= O(re—r)
one then obtains the relativistic generalization of the dimen- - ‘_17”3 ¢
sionless TF equatiod?¢(x)/dx?= ¢>%x*? namely, 3"¢
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with @ (r.—r) the Heaviside step function. The term to be Since a normalized solution of the VR equati#(x) goes to
added to the right-hand side of the VR equation then readszero at the origin faster thax?’®, a valid smallx expansion
must satisfy

X
47XD3 pexi(DX) =30 (X —X) —. x
Xe Rp=—3— (41)

2. Reduction to an equivalent set of first-order equations . . . . o "
a a and a solution of this equation which satisfies the condition

The second-order Vallarta-Rosen EQ9) was split up  (37) is given by
into two first-order differential equations

d(x) b00=5 |3 X>2 42
X X = e — —_ —_— )
o =Y, (34) 2Xe[ X
In order to bring in the remaining integration constanve
dy(x) ¢32 &\ 132 X considered the smak-expansion
——=—|1+\ = —-30(X,—X)—%, (39
dx — y12 X 3 1 x x\2
Cc
. ) . ) d(X)= 5 — 3—(— +bx+ ... (43
which were solved simultaneously using the numerical Fehl- 2 Xc Xc

berg fourth—fifth-order Runge-Kutta method. Since the right-

: . ; . as was already obtained by Hiélt al?! Both for the VR
hand side of the second differential E@S). diverges asc equation and the TF equation with a core this solution was
tends to zero, one must use a smaéxpansion to get away

L . . SO i Il value fartak .01
from the origin. As discussed below, this expansion is fully,ﬁrsneedS E[inl)etﬁu?:?e::t:’g:je}[]ys small value fartaken to be 0.0

determined by the normalization condition and the specific c. At the WS-spherdn terms of the screening function

form of the nuclear charge distributiqn... ¢(X) the boundary condition at the WS sphere with dimen-

3. Boundary conditions sionless radiuX becomes

a. At the origin. Starting from Poisson’s Eq.27), one d¢
immediately obtains after integration #(X) —X&(X)ZO. (44)
fR477I’2pdl’=Z lim ¢(x)—xd—¢(x) +Z  (36) One cannot from the outset solve EQ9) for a givenX
0 Y0 dx due to the complexity of the boundary conditi¢fd): one

i i . . varies instead the independent integration condigand the
angl so.m order to obtain a normalized solution ¢orrespondingX of the solution is then found for a given
(Jo4mrpdr=2Z) for the VR equation it is sufficient that yajye forb as the zero of the functior(x) —x dep/dx (X).

one has a solution satisfying Given the expected smallness of the relativistic correction it
do is of crucial importance that we compare relativistic and non-

lim| ¢(x) —x——(x) |=0, (37) relativistic bounda_ry densities at exa_ctly the same value for

x—0 dx X. We therefore did not rely on previously obtained results

for the nonrelativistic TF theory by Slater and Krufter
Feynmanet al® but instead solved the nonrelativistic TF
equation again for the same setXfvalues as used for the
dv relativistic VR equation. Interpolation of the nonrelativistic
- =0. (38) solution to differentX values vyielded, however, perfect
dr r—0 agreement with the results from earlier work. For the nonrel-

For comparison, note that for the classical TF equation, on@tivistic TF equation, which needs to be solved only once for

only takes account of the Dirac-delta core through the? givenXsince its solution in terms op(x) is independent
boundary condition and so the normalization condition be°f the element considered, we used Baker's expafi&igp

which implies that the self-consistent field must have an ex
tremum at the center of the WS sphere

comes to the ninth term.
i _ d_¢ -1 39 IV. NUMERICAL RESULTS: EOS FROM RELATIVISTIC
X'L“O PX) =X g | =1, (39) TF THEORY FOR TA AND PU
which is fulfilled by the smalk expansion of Bake? A. Relativistic corrections to the TF density profile
b. At small x.At small x, the VR Eq.(29) with a homo- 1. Facts
eneously charged core reduces to , ) L
g y g Table Il lists the values obtained for the nonrelativistic
$° X screening functionp(X) from nonrelativistic TF theory to-
2= )\3’2—2 —30(X.—X) 3. (400  gether with the values for the integration parameter, terimed
X Xe here in analogy with the expansio4d), of Baker's? expan-

064109-6
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TABLE Il. Solution ¢(x) of the classical Thomas-Fermi equa- TABLE IV. Same as Table Ill, but for Pu.
tion evaluated at the dimensionless boundary of the WSxcdilis
the integration constant in Baker’s smalexpansior(Ref. 22. The X b d(X)
numbers in parentheses denote the uncertainty in the lastsgigit
1.000Q1) —5.749 1.70871L7)
X b H(X) 2.000a1) —6.4921 0.7417®)
3.000a1) —6.576331 0.4249144)
1.000Q1) —0.63870000 1.778789) 4.00001) —6.5947815 0.275640)
2.000@1) —1.46725000 0.7565%2) 5.00001) —6.6003054 0.192328)
3.000Q1) —1.55847000 0.4315154) 6.00001) —6.6023068 0.14095923)
4.000Q1) —1.57829750 0.279347) 7.00Q1) —6.60313444 0.10710883)
5.000Q1) —1.58420800 0.194684) 8.001) ~6.603512151 0.0836880)
6.000Q1) —1.58634380 0.14255624) 9.00Q1) —6.603698 0.0667960)
7.000@1) —1.58722485 0.108232D5) 10.00Q1) —6.603795 0.05434%0)
8.000Q1) —1.58762600 0.08449210)
9.000Q1) —1.58782325 0.067447)
10.00a1) —1.58792645 0.054819) stant @ in the VR calculations for Tawith a finite-size
11.00@1) —1.58798325 0.0452%2) nucleug and compared the resulting charge-density profile,
12.00Q1) —1.58801590 0.037843) say, p;(r), with that from the classical TF calculation
13.00@1) —1.58803540 0.03200%25) pnr(r) for an arbitrarily chosen valuX=7. Both density
14.00G1) —1.58804740 0.0273319 profiles are plotted in Fig. (. The difference is seen to
15.00G1) —1.58805500 0.02355716) manifest itself mainly very close to the origin.

Contrary to the nonrelativistic case, the relativistic density
profile was found to exhibit a significant charge pileup im-

respectively, from VR theory together with the correspond—mediafteriy ogltside the HUC|EL;S. Tge héeight,c;/vidth, alnd por?i-
ing values for the integration constabtappearing in the UON Of this pileup were each found to depend strongly on the

smallx expansion(43). All relevant properties can be calcu- chosen value for the radius. For comparison, Fig) hows

lated from the data presented in these tables. the.charge profile for Ta foX=7 both for the original core
From Eq.(31), which encompasses the nonrelativistic re-fadiusx., and for a core taken to be 1.5 times. A large

sult for A=0, one can then immediately obtain the corre-charge difference manifests itself very near to the nucleus

sponding values for the boundary density both in the nonreland this is consequently compensated by a very small differ-

ativistic (TF without core case, say, denoted kpy, (R), and ~ ence in charge, the two curves lying within graphical accu-

in the relativistic case, say, (R). The difference between racy almost on top of one another, over most of the WS

both densities is plotted in Fig(® and Fig. @b) for Ta and  sphere. The difference in density at the boundary because of

Pu, respectively, as a function of the compression parametéhe different radius was finallyeven for the highest com-

». The boundary density was, for all compressions considpression we considere®=1) found to be of the order of

sion. Tables Il and IV list solutions fog$(X) for Ta and Pu,

ered, found to be lowered by relativity. 1/50 of the difference due to relativity. This is shown in Fig.
_ _ o 7(c) for Ta. We conclude that the equation of state, within the
2. Discussion: Effect of the finite nucleus present scheme, is barely affected (pgasonabledifferent

To examine the effect of a finite nucleus on the boundaryehoices concerning the size of the nucleus. One must, how-

density p(R) we have switched off the fine-structure con- ever, be careful when using the charge-density profile to cal-

) _ culate other properties such as the energy. Similar results
TABLE I1l. Solution ¢(x) of the Vallarta-Rosen equation for Ta \yere obtained for the case of Pu.

evaluated at the dimensionless boundary of the WSXcdllis the
integration constant in the smadlexpansion(43). The numbers in
parentheses denote the uncertainty in the last(gigit B. EOS for Ta and Pu

We now use the values far, (R) andp,(R) to calculate

X b 4% the nonrelativistic and relativistic EOS from E) for «
1.000Q1) —4.415 1.72826.7) =0 and a«=1/137, respectively. We note from the discus-
2.000G1) 51822 0.7459@) sions presented above thgt the relativistic effects both at the
3.000G1) —5.268458 0.4268514) level of the EOS of the uniform _electron gas,_and at the level
4.0001) — 52873138 0.276719) of the_ boundary electron dens_lp,(R), work “in the same
5.000G1) —5.992954 0.193018) direction:” both. Iga_d to a lowering of the pressure compared
6.0001) 59949936 0.1413824) to the nonrelativistic case.
7.00Q1) —5.295865 0.1074125) 1. Tantalum
8.0001) —5.2962491 0.0839@®%0) '
9.00G1) —5.2964385 0.066988) a. Results plus comparison with other calculatiofigjure
10.00G1) —5.29653766 0.0544%3) 8(a) plots the results obtained from our work for Ta com-

pared with the results from BoettgeClearly for low pres-
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where K, denotes the bulk modulus at equilibrium aogl
= —IN(3Kg/Pra=0)- If we write the derivative oK, with re-
spect to pressure &5, we immediately obtain from Ed45)
that

3
02:§(K1_3)_Co- (46)

For our purposes, thAPL EOS with L=2, which re-
quires experimental input values only f& and K4, will
suffice. The values for Ta are taken from Table I. The result-
ing curve is plotted together with the numerical results of
this work and those of Boettger also in FigaB

The AP2 equation of state is seen to describe the low-
pressure results of Boettger very well. However, for the
higher-pressure values, theP2 equation of state underesti-
mates the predictions from Boettger’s calculations. To illus-
trate this further, Fig. @) plots the difference between the
AP2 predictions and Boettger’s results as a function of vol-
ume. Whereas for compressiong=0.9 both results are
clearly in good agreement, the difference oscillating weakly
around zero, they are seen to diverge quickly for higher com-
pressions, sayy<0.9.

Because of this, the clear tendency of Boettger’s results to
approach the results from our work, as noted already above,
is less present in the analytic forAP2: the AP2 equation
of state stays on the contrary nearly parallel to our results on
a logarithmic plot over a broad pressure range and only tends
towards our results in the extreme compression regime. Of

course, at compressions where the uniform electron-gas limit
FIG. 6. (a) Difference in boundary electron density from classi- is reached, thé P2 form will yield the nonrelativisticp®?
cal TF theory p,,) and VR theory p,) for Ta versus compression behavior, whereas our pressure results will be proportional to
ratio . For clarity of presentation, the logarithm of the values in p4/3_ Various other analytic EOS, using, however, the same
a.u. was taken(b) Same as fofa), but for Pu. input variables, gave rise to similar conclusions.

From the above discussion, however, it seems fair to ex-
sures, the method we have used is not quantitative. Howevgject our results to become quantitative well before the ex-
both curves approach one another quickly with increasingreme compression regime as suggested by the comparison
pressure and the results of Boettger seem to lead, quite natWith AP2. Further wave-mechanical calculations to confirm
rally, into the region where the EOS can be determined adthis point would clearly be of interest.
equately by the relativistic TF theory. A detailed plot expos-
ing the relativistic correction to the results from 2. Plutonium
nonrelativistic TF theory is given in Fig.(8). As already
discussed earlier, the total correction to the pressure is neg

tive. : "
. : . . Pu. To the authors’ knowledge at the time of writing, no
b. Comparison with analytic EOSince Ta has no known results from wave-mechanical calculations on the high-

férsuuﬁ::r?cl) pcr(])?r?cei dtéagtsnrl](i)ns ggg]errepsr:izil;r%(’it"ﬁ'e fﬁﬁggf fessure EOS have up to now been published, and so a direct
from analytic parametric gEOS w[r)ﬂch make use ?)f e ui”b_comparison, as for Ta, did not prove possible.

. ytic p ' ) o€ o €q b. Comparison with analytic EO®ontrary to Ta, Pu is
rium values for the bulk modulus and its derivatives. The

. LT expected to undergo at least one phase transition with in-
most advanced expressions, nonrelativistic, however, de:

scribing the verv high-pressure regime are given b Creasing pressureWe therefore do not expect any analytic
9 23 y high-p reg 9 YEOs using equilibrium data as input to tend towards our
Holzapfel;® and we will make specifically use of the so-

called APL form, wherel denotes an index. The expression limiting predictions from TF theory before both reach the

: ; ; ._free-electron-gas limit. ThAP2 result is also plotted in Fig.
for the pressure is then given in terms of the compressm@(a) Input values for Pu were taken from Table I. Surpris-
parametery by ' ;

ingly the analytic equation of state was found not to differ

_a. Results plus comparison with other calculatiofigure
@(a) plots the results obtained from our work for the EOS of

L too strongly from our numerical results, compared, for in-
P=3K.» 51— melo-n1| 1+ C(1— )k 1| stance, with the results for Ta. Of course, close to the uni-
o7 ~(1=7) 77122 1= form electron-gas limit, all EOS become independent of the

(45) chosen values for the parameters for bulk modulus, its de-
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FIG. 7. () Radial electron-density profile for Ta fot=7 from nonrelativistic TF theory withdS,) and without p,,,) a finite nucleus.
Profile is only shown very close to the origin of the WS sphere, where the difference is mainly manif@siatlial electron-density profile
for Ta from VR theory for two different values of the nuclear radiys, as calculated from E¢33) and 1.5 times . . (c) Difference between
the relativistic density at the boundaRyof the WS sphere using the original core sizeas derived from Eq(33) [ denoted byp,(R)] and
that using a core of radius 24 . [denoted byp; (R)] as a fraction of the difference due to relativity given fpy(R)—p,(R)}. The
results are given for different values of the dimensionless WS ratlieasonably different choices for the core size are seen to lead, even
for the highest compression=1, to only very small correction®f the order of 2% compared to the correction due to relativity itself.

rivatives, and the equilibrium volume, and they depend onlyfor V(r) from Poisson’s equation. However, one can equally
onZ. well solve immediately for the density, and within this route
Figure 9b) plots the relativistic corrections to the pres- a single differential equation for the density which takes ex-
sure for Pu over a broad range of pressures. The magnitudghange into account can be written doffin.
of the corrections was found to depend only very slightly on  Finally, our attention was drawn to the work of Engel and
the change irZ from 73 to 94. Dreizlef® in which low-order gradient corrections are intro-
duced into relativistic TF theory paralleling the nonrelativis-
tic approach of von Weizsker® This would afford an al-
ternative approach to the problem in the original Vallarta-
Rosen theory that the electron density is not normalizable

V. FUTURE DIRECTIONS

It would be of clear interest if further wave-mechanical

calculations could be performed to determine more precisel ¢ th h 4 sinaulari .
the range of pressures where the relativistic TF method bd2€cause of the enhanced singularity efr) at a point

comes guantitative. Possible improvements of the work prefucleus beyond thenormalizablg r 32 divergence in the
sented here are to include exchange into relativistic TRonrelativistic TF limit. While that problem has been by-
theory. When solving for the potential it has not proven posPassed here by adopting a nonzero nuclear radius, it would
sible to solve the Euler equation including exchange for thde of interest in the future to compare and contrast the Engel
density in terms of the potentis(r), which is obviously a and Dreizler approach with the present one. This would also
necessary prerequisite to obtain a single differential equatiogllow direct calculations of ground-state energies, whereas
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FIG. 8. (a) EOS for Ta from relativistic VR theorythis work)

and from Dirac’s equatio(Boettger, Ref. L The solid curve shows
the analyticAP2 equation of state of Holzapfel, Ref. 23 using the

experimental data of Table | as input for the paramet@sDiffer-
ence in pressure for Ta between nonrelativigtjc and relativistic

treatmentsP, within fully local DFT versus the compression pa-
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FIG. 9. (a) EOS for Pu from relativistic VR theor{this work).
The solid curve shows the analy#dP2 equation of state of Holza-
pfel, Ref. 23, using the experimental data of Table | as input for the
parameters(b) Difference in pressure for Pu between nonrelativis-
tic P,,, and relativistic treatmentB, within fully local DFT versus
the compression parameter

the entire focus of our finite nucleus radius treatment has, of
course, been on the equations of state.
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APPENDIX A: THE ROLE OF THE VIRIAL IN
COMPLETELY LOCAL RELATIVISTIC DFT

1. Introduction

In earlier work by one of u& explicit relations were

rametery. (c) Difference in pressure for Ta between the numericalestablished revealing the role of the virial in completely local
results of Boettger, Ref. 1, and the predictions from the analytigelativistic DFT. The theory was written down for heavy at-

equation of staté P2 of Holzapfel, Ref. 23.

oms and the aim of this Appendix is to generalize these
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results to the case of infinite systems with periodic boundary T (R dp .
conditions as considered above within the spherical WS ap- — ?J [w=V(r) g redr
proximation. 0

_ 4 v 3R+47TJ'R 3r2d
2. Results - ?[,U« ()1rplo 3 0p,u,r r

completely local theory by Eq26). For simplicity, we will
leave out the indexr when denoting the kinetic-energy den-
Sity t.

We start from the Euler equation given generally for a
——f pV3r2dr——f r—r

. L _— 4 1
Writing down the total kinetic energy and applying inte- =— —[M—v(r)]r3p|§+ N,u—f pVdr+ = (r-F),
gration by parts yield 3 3
(A7)
T=47-rthr2dr (A1) where we definé in the usual manner as VV. Evaluation
0 of the first term on the right in the origin again depends on
the use of a core. If present, it evaluates to zero in the origin
4 Rdt and so
=—t[p(r)]r3|0— 3 ), ar Sdr. (A2)

4 3 R
— 5 [r=V(OIriplo=—v[r=V(R)]p(R)
Let's now examine the behavior of the first term in the
origin. In the VR theory the density is given by E®1). In

the nonrelativistic case\(=0) ¢ goes to 1 as tends to zero - E[p(R)]P(R)' (A8)
and so
Combining the above equations now gives
! A3 dt 1
P, A3 (M)==v|pg:~t| +Nu= [ pver+ 3P, 49)
R

Since the “classical” kinetic-energy density(p) is given  which is the central result of this Appendix.

by We now use the Euler equation to eliminate the chemical
potential w. Multiplying the Euler equation throughout by
to(P):CkPg/sy (A4)  the densityp and integrating over the WS cell gives
it is clear that the first term of EqA2) tends to zero asr. _ f dt f
L . . = —dar+ .
In the relativistic case, with a point nucle(®o ¢=1 as r Nu pdpdr pvar (A10)

=0) the density already diverges as3And inserting this

into the relativistic kinetic- energy density will lead to a di- Inserting this into Eq(A9) gives
vergence of the terrt{ p(r)]r® at the origin in between %
(corresponding tot~p ’3) and 1f (corresponding tot
~pd®). From the smalk expansion(43) it follows straight-
forwardly that this divergency in the origin is removed in the
presence of a finite-size nucletfp(r)]r® tending to zero in  Again following Marctt® by differentiating the Euler equa-
the origin, and so we conclude that tion with respect tor, also the virial of the force can be

reformulated in terms of the kinetic energy, giving

dt

(Ty=-v pﬁ—t

f dtd ! F All
R+ Pt 3(rF. (ALD

am 3R=
3 tLp(DIFG=vtlp(R)] (A5) . fpr 3_ 1)

with v now the atomic volume.
Following Marct® we put, in the second term on the right
of Eq. (A2),

and so

T dt J at 1f d|dt dr.
gt dt dp (M="vlpg, 1 Pap %" 3) Pdr|dp
G Vg (n6) (A13)

The main merit of this procedure, avoiding the integration of
and integrating again by parts gives, for the second term, the complicated expression for the relativistic kinetic-energy
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density t, when evaluating the contribution of the kinetic nitude just the volume times the kinetic contribution to the
energy, is not lost since the evaluationtgfis only at one  pressure. Of course, the total kinetic energy will increase
particular density, namely, the boundary density. Remarkbecause of confinement but this increase will come from a
ably, the contribution to the kinetic energy, because of thenigher value for the last two terms in the right-hand side of

finite sphere radius, is negative and turns out tdibenag-

Eq. (A13).
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