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The various approximations used in the construction of a first-principles effective Hamiltonian for 8aTiO
and their effects on the calculated transition temperatures, are discussed. An effective Hamiltonian fgr BaTiO
is constructed not from first-principles calculations, but from the structural energetics of an atomistic shell
model for BaTiQ of Tinte et al. This allows the elimination of certain uncontrolled approximations that arise
in the comparison of first-principles effective Hamiltonian results with experimental values and the quantifi-
cation of errors associated with the selection of the effective Hamiltonian subspace and subsequent projection.
The discrepancies in transition temperatures computed in classical simulations for this effective Hamiltonian
and for the atomistic shell model are shown to be associated primarily with a poor description of the thermal
expansion in the former case. This leads to specific proposals for refinements to the first-principles effective
Hamiltonian method. Our results suggest that there are at least two significant sources of error in the effective-
Hamiltonian treatment of BaTiQin the literature, i.e., the improper treatment of thermal expansion and the
errors inherent in the first-principles approach itself.
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I. INTRODUCTION classical Monte Carlo simulations of the first-principles ef-

fective Hamiltonian give 300, 230, and 200 K, while the
First-principles methods constitute a powerful tool for theshell-model results are 210, 135, and 100 K, respectively. In
study of ferroelectric systents.Ground state structures, both cases a correction for the local-density approximation
phonons, spontaneous polarization, and related propertie@;DA) lattice constant underestimate was included in the

including piezoelectric and dielectric tensors, have been adnodel. _ o o _ _
curately calculated for a wide variety of perovskite oxides as Understanding the origin of this discrepancy with experi-
well as other ferroelectric compounds. ment may help in the development of improved theoretical

Despite advances in algorithms and computer hardwardnethods for the calculation of finite temperature behavior.

the direct calculation of finite temperature behavior, particu-Here’ we focus our attention on the first-principles effective

larly phase transitions, is still far beyond reach, as such Call_—|amllton|an approach. The discrepancies in the transition

culations involve thousands of atoms. However, indirect;[/ear:;gsgast't“gez g;)#]lg ;Zli"ts{;o%;ig?rgsteoircrj?r:s|m(t:rlg(sj:i(fzittjhit
methods have been developed and applied to a large numb P ySIS. b gy

&irors into five t E in th fi i i

. . o4 e 6.7 ypes. Errors in the configuration energies

szysét\?/;nn& giilgd'zglis)-ggz SUZET'%’ SQ?IZFN;)OQ,&Q obtained from first-principles calculations will be designated
—X/) 31

0 1 type I. These generally can be systematically reduced, with
Pb(S@ N5 Os, ™ and K(NQTa,—)Os.™ In Refs. 4, 6, the exception of the uncontrolied approximation in the
and 11, interatomic “shell-model” potentials were param- exchange-correlation functional required for the practical
etrized by fitting to first-principles results, and finite- jjmplementation of density functional theof§LDA error” ).
temperature behavior studied by direct simulation of atomisType 11 errors result from the identification of the relevant
tic systems with forces and energies obtained from thesglegrees of freedom and the projection and approximate rep-
potentials. The results in Refs. 2, 3, 5, and 7-10 were obresentation of the effective Hamiltonian in the corresponding
tained by an effective Hamiltonian construction in which thesubspace, and will be the main focus of our investigation.
full system is mapped by a subspace projection onto a stati€rrors in the statistical-mechanical simulatidigoe Ill) in-

tical mechanical model, with parameters determined frontlude finite-size effects and sampling errors. In the effective
first-principles calculations of total energies for small distor-Hamiltonian studies to date, it has been feasible to make
tions of an ideal crystal with the cubic perovskite structure.these errors relatively negligible. The importance of type IV
The simple form of the resulting effective Hamiltonian al- errors, resulting from the classical treatment of the ions ne-
lows very-large-scale simulations and aids in the conceptuajlecting quantum fluctuations, has been highlighted in a re-
interpretation of the results. The two approaches haveent study of BaTi@ by Iniguez and Vanderbift’ The re-
achieved comparable success in reproducing many essentillts of this study indicate that the classical approximation
features of the phase transitions of ferroelectrics. For exraisesthe transition temperatures. Thus, this is not the origin
ample, for BaTiQ,>™* the experimentally observed cubic- of the underestimate for BaTiO In fact, a correct, fully
tetragonal-orthorhombic-rhombohedral phase sequence guantum-mechanical treatment would increase, not decrease,
correctly reproduced. However, while the experimental valthe transition-temperature discrepancy. Finally, we note that
ues of the transition temperatures are 403, 278, and 183 Khe experimental samples, even in thermodynamic equilib-
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rium, contain defects and local nonstoichiometry which leadn the first-principles effective-Hamiltonian treatments cur-
to deviations of observed properties from those of the asrently in the literature.

sumed ideal crystal@ype V errors. These crystal imperfec-

tions can have variogs effects on the transition temperatures || sHELL-MODEL INTERATOMIC POTENTIAL

that are in general difficult to model.

To separate and quantify the role of the various errors in Of the various types of interatomic potentials, shell mod-
producing the observed discrepancies in transition temper#lS are uniquely well suited to giving a good description of
tures, several different approaches could be applied. Thie lattice dynamics of perovskite oxides. The form of the
analysis of type Il and type IV errors has been discussed i§hell-model potential developed for BaH@ Ref. 4 incor-
the previous paragraph. One way to investigate type | errorgor_ates earlier obser\_/at|ons that t_he oxygen she_ll-core inter-
would be completely to redo the effective Hamiltonian study@ction should be nonlinear and anisotroffic>Each ion(Ba,
replacing the LDA with a generalized-gradient approxima-T1, Or O) is modeled as a massive core linked to a massless
tion (GGA). However, the latter has not been found to giveShell. The core-shell interactions for Ba and Ti are harmonic
systematic improvement in the overall agreement of calcy@nd isotropic. An anisotropic core-shell interaction is consid-
lated properties with experimefitand thus the value of such €red at the O ions, with a fourth-order core-shell interac-

a labor-intensive investigation is unclear. In principle, type I1tion along the O-Ti bond. In addition to the Coulomb inter-
errors could be eliminated by comparing the effective-actions between ion cores and shells, the model contains
Hamiltonian transition temperatures with those obtained in #airwise short-range intershell potentials of the Buckingham
fully ab initio molecular dynamics or Monte Carlo calcula- tyPe, i.e.,V(r)=aexp(-r/p)—c/r®. The Born-Mayer form
tion. However, as noted above, doing this type of direct cal{C=0) is sufficient for the Ti-O and Ba-O short-range po-
culation for sufficiently large systems is so computationallytential, while for the O-O potential the value ofs nonzero.
demanding that it is impossible in practice even for bench-The physically important nonlinearities of the interatomic
marking purposes, and calculations for small supercells antinteractions are thus naturally incorporated into the form of
with reduced sampling would introduce significant finite-sizethe potential.

and statistical errors. The material-specific parameters in the interatomic poten-

In this paper we develop and carry out an alternativdial were determined by adjusting them to fit selected first-
method of isolating and quantifying type Il errors, allowing Principles results computed using the linearized augmented
us to discuss possible refinements of the effective HamilPlanewave(LAPW) method as discussed in detail in Ref. 4.
tonian method to reduce or eliminate them. We use the totdf should be noted, however, that the equilibrium lattice con-
energies computed with the BaTjOshell model” inter- ~ Stant of the cubic phase is fitted to the experimental cubic-
atomic potential of Tinteet al* to construct an effective Phase lattice constant extrapolated to @3095 A), not the
Hamiltonian, and compare the computed transition temperd-APW lattice constant. The double wells for polar distor-
tures with those obtained in direct classical simulations fotions along(001), (011, and(111) are satisfactorily repro-
the “shell model” system. In this comparison, we completely duced, as are the phonon dispersion curves for the cubic
eliminate errors of types I, IV, and V, and can easily makestructure at the experimental lattice constant. The bulk
errors of type IIl negligible. Thus, we can attribute any dis-modulus of the cubic phase and the anomalous Born effec-
crepancies directly to errors of type Il. While such errors will tive charges are also in good agreement with the first-
not be quantitatively identical to the corresponding errordPrinciples results. Reference 4 contains further details about
made in the construction of the effective Hamiltonian di- the construction of the interatomic potential and values of the
rectly fromab initio results, the general accuracy and physi-Parameters.
cal faithfulness of the shell model interatomic potential to ~Finite-temperature properties of the system described by
BaTiO; should render conclusions based on this analysiéhis interatomic potential are investigated by constant-
quite meaningful. pressure molecular dynami@@D) simulations using theL-

The paper is organized as follows. Section Il providesPOLY packagey’ where the adiabatic dynamics of the elec-
technical details of the BaTiQshell-model interatomic po- tronic shells are approximated by assigning small masses to
tential of Tinteet al. that serves as our reference system. Inthem. A Hoover constants(,T) algorithm with external
Sec. Il we describe the construction of the effective Hamil-stress set to zero is employed; all cell lengths and cell angles
tonian and the parameters obtained by fitting to the shelare allowed to fluctuate. The time step is 0.4 fs and the total
model, paying special attention to the approximations andime of each simulation, after 2 ps of thermalization, is 20 ps.
technicalities involved. In Sec. IV we present the results obResults for a K7X7 periodic supercel(1715 ions plus
tained from the effective-Hamiltonian and shell-model clas-1715 shells which are additional degrees of freefdarare
sical statistical-mechanical simulations. The discrepancieseported in Ref. 4. It was shown that the cubic-tetragonal-
are analyzed in Sec. V, and possible improvements on therthorhombic-rhombohedral phase sequence is correctly re-
various effective-Hamiltonian approximations are discussedproduced. Good agreement with experimental data was ob-
Section VI is devoted to the specific issue of modeling thetained for the structural parameters in the various phases as
thermal expansion within the effective-Hamiltonian ap-well as the volume thermal expansion coefficient, showing
proach. Finally, in Sec. VII we present a discussion of thethat the most important nonlinearities have been included in
broader implications of our analysis; in particular, we specuthe model. However, the transition temperatures are rather
late on the relative importance of errors of types I, I, and IVlow compared to experimeri190, 120, and 90 K This dis-
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crepancy does not affect the present analysis of type Il er- TABLE I. Expansion parameters of the effective Hamiltonian
rors. In the present work, we have expanded the supercell fiited to the shell-model BaTigtarget system. The notation is taken
10X 10X 10 primitive cells (10000 degrees of freedgm from Ref. 3. All the parameters are in atomic units.

This yields essentially the same results, except that the cal
culated transition temperatures increase sligklgo, 135, ©On-sitt  «, 00562  «a 0.805  y 0849
and 100 K. Additional MD simulations were performed at Intersite  j;  —0.01424 j, —0.01506

constant volume, using a modified Hoover constaquF() 1:3 0.00422 j, —000240 js 0.01956

algorithm that allows for fluctuations in the cell shape. _ le  0.00100 j;  0.00050
Elastc By 5.42 B1s 2.06 By 207

Coupling By, —4.16 By, —119 B,, -—044
Dipole  z* 8153 e, 5.24

IIl. CONSTRUCTION OF THE EFFECTIVE
HAMILTONIAN

nition to constitute a significant improvement of our effective
Hamiltonian of shell-model BaTiQ

Let u;, denote the local mode amplitude in unit cell
along Cartesian directioa. Let %, denote the strains, where
bIeis a \oigt index. Our effective Hamiltonian can then be
written as

In this section we describe the effective Hamiltonian that
we have constructed using the shell model for BaTd
Tinte et al* as our target system. The form of the effective
Hamiltonian is identical to that proposed by Zhoegal.?
except that the inhomogeneous strain variables found to
unimportant in that study are not included here.

An effective Hamiltonian is a Taylor expansion of the
energy surface of the system around a high-symmetry phase _ 2 . 2 2
in terms of a set of relevant degrees of f?eedi/)m. Fo?lfgrro- Her= Eseﬁ[uia'u‘au‘ﬁH EPuiau; ]+ B uiojg]

_electric pe_rovskites, th_e most convenient reference structure +E®3 2, 7]+ E™M 5U; LU - (1)

is the cubic paraelectric phase. The relevant degrees of free-

dom can be identified by studying the energy changes in-

duced by small(harmonig perturbations of the reference Following Ref. 3, we have written the effective Hamiltonian
structure. The low-energy, typically unstable, distortions areas the sum of four terms: the on-site self-energy of the local
the relevant ones, and are expressed in the form of locanodesE®®" the long-range dipole-dipole interactions be-
modes or lattice Wannier functiodd.The relevant local tween local modeE!, the short-range interactions between
modes are those that add up to produce the distorted ferrdocal modesEs"" the elastic energfg®= and the interac-
electric ground-state structure. Also, we take the homogetion between local modes and strai8'. The dependence of
neous strains as relevant and include them in the Hamileach term on the model variables is indicated in &g It
tonian. should be noted that the form of the Hamiltonian is greatly

There are two possible ways of performing the harmonicsimplified by the cubic symmetry of the reference structure.
analysis that leads to the identification and calculation of thé=or example, there are no odd termsuip .
relevant lattice Wannier functions. One can study either the The relevant phonon branches are described by the har-
force-constant matrikhe matrix of second derivatives of the monic terms inE®, E%', andES"°" Anharmonic terms for
energy with respect to atomic displacemends the corre- the local modes, required to stabilize the low-symmetry
sponding dynamical matrix. While the former choice leads tophases, are included only E® (the “local-anharmonicity
a better description of the lowest-energy states of the systerapproximation’. In bothE®2andE™ only the lowest-order
the latter provides a kinetic decoupling between the relevarterms in the expansion are considered. This constitutes the
andirrelevant (i.e., not considered in the Hamiltonjade-  minimal microscopic model for the description of ferroelec-
grees of freedom. Here we have worked with the forcedricity in BaTiOs. Including higher-order terms in the Hamil-
constant matrix, which is more appropriate for the study oftonian would constitute a systematic improvement of the
equilibrium properties. In any case, we find numerically thatmodel.
the force constant and dynamical matrix descriptions are es- As already mentioned, the Hamiltonian we have just de-
sentially identical. scribed is essentially that of Ref. 3, except the parameters

Once a relevant set of phonon brancfidss been iden- were fitted to a series of shell-model calculations of total
tified, the calculation of the corresponding lattice Wannierenergies and forces, instead alf initio results, for a set of
functions can be done at different levels of approximation. Atdistorted structures. The minimum-energy cubic structure of
the crudest level, they can be constructed from phonons atthe shell model is taken as the reference structure, so that
singlek point? more sophisticated schemes allowing for bet-both share the same relaxed cubic lattice constant. Following
ter descriptions of the relevant phonons throughout the Brilthe notation of Ref. 3, we list in Table | the parameters de-
louin zone!"'°Here, we calculate the local modes from the fining our effective Hamiltonian for shell-model BaTjO
unstable phonons af’, which generate the ferroelectric Monte Carlo(MC) simulations were performed to calcu-
structure, choosing the local modes to be centered on the Tate the finite-temperature properties of the Hamiltonian. We
atom. The resulting local modes reproduce the unstablsimulated a 18 10X 10 supercell with periodic boundary
phonons at zone-boundary poiftsand X with an accuracy conditions, and typically did 30000 MC sweeps to equili-
above 97%. We thus do not expect a better local-mode defbrate the system and 50 000 sweeps more to obtain averages
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transition where the transition temperature is too low by
Effective Hamiltonian ~30%.

This shows that for an effective Hamiltonian of this form,
type Il errors are quite significant, and in fact are comparable
to the discrepancies found when comparing BaTab initio
effective-Hamiltonian results against experimental measure-
o || Aeesstessesar “H-es s ments_on. real BaTig)sampIes. .This strongly suggests that

' errors in first-principles calculations account for at most only

&
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T
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2
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Shell model part of the latter discrepancy. In the following, we will in-
) vestigate the type Il errors in more detail and identify ap-
S 10 proaches for the systematic reduction of these errors, return-
f ing to the discussion of first-principles effective

Hamiltonians in Sec. VII.

0 50 100 150 200 250
Temperature (K)
V. ANALYSIS OF SOURCES OF THE DISCREPANCIES
FIG. 1. Behavior of three Cartesian components of the mean

(supercell averag@dpolarization of BaTiQ as obtained from(a) In this section, we analyze three sources of error in the
MC simulations using the effective Hamiltonian afil MD simu-  construction of the effective Hamiltonian that could possibly
lations directly from the shell model. lead to the calculated underestimates of Thevalues. First,

we focus on the specification of the ferroelectric mode unit

of local-mode variables with a statistical error below 10%.Vector, which determines the precise set of degrees of free-
The temperature was increased in Sma” Steps szg Kle dom described by the eﬁective Hamiltonian. Second, we
monitored the behavior of the homogeneous strain and thgonsider the effect of the truncation of the Taylor expansion
vector order parameter to identify the transitions. The averin the specified degrees of freedom, with particular attention
age local-mode vector is proportional to the polarization.to the neglect of certain higher-order couplings within the

Note that, unless it is indicated, the MC simulations for theeffective Hamiltonian subspace. Third, we consider the con-

present effective Hamiltonian are performed at zero externajequences of omitting the higher-frequency phonon branches
pressure. from the effective Hamiltonian.

A. Specification of ferroelectric local mode vector

IV. FINITE-TEMPERATURE RESULTS One of the first choices that was made in the construction

Figure 1a) shows the three components of the mean po-Of the effective Hamiltonian was the detailed specification of

larization as a function of temperature as obtained from th the ferroelectric local mode vector. As explained in Sec. lll,
MC simulations of the effective Hamiltonian, while Fighi e chose a Ti-centered displacement pattern selected in such

- : ) a way that a uniform superposition of these local mode dis-
shows the corresponding results obtained directly from th%lacements gives a periodic displacement pattern corre-

shell?moqlel MD simulations. It is apparent that the eﬁe‘?t.ivesponding to the unstabléerroelectri¢ mode eigenvector of
Ham_lltoman correctly reproduces th_e sequence of transm_onﬁm force-constant matrix in the cubic structure. This is only
(cubic tq tetragonal to orthorhombic to rhombohedral W|thOne of many possible approaches, and questions may arise as
decreasing). Howgver, t_he agreement is far from pen_‘ect to whether this is the best choice and how much difference it
for the T; values, listed in Table II. Clearly the effective would make if we had made a different choice
Hamiltonian underestimates tfig’s, especially for thec =T One way of addressing these questions is to test how com-
) B ) ~ pletely the chosen local mode vectors span the space of dis-

TABLE II. BaTiOs transition temperatures, in K, between cubic {5 tjons that are actually encountered in the full atomistic

(C), tetragonal ), orthorhombic ©), and rhombohedralR)  finite temperature shell-model simulation. We projected the

phases, as obtained from the shell model and from the eﬁectivghe”_model MD trajectories at a given temperature onto the
Hamiltonian. The last three rows correspond to effective Hamilto-; ,, optical zone-center normal modése., force-constant

nians modlfled_ as indicated in the tex_t. In_ the _flrst column, percentéigenvector)sof the cubic phaséfour sets of threefold de-
age error relative to the shell model is given in parentheses.

generate modes As expected, we found that the mode

Cc-T T-0 O-R branches included in our effective Hamiltonian subspace ac-
count for almost all -90%) of the observed atomic dis-
Shell model 210 135 100 placements. This suggests that the approximation of keeping
Effective Hamiltonian 150 £ 28%) 110 85 only these modes in the effective Hamiltonian is a good one.
Hy different@ and y 150 (—28%) 120 100 A second approach is to try a different procedure for de-
Hegr+ Perr “Dy hand” 185 (—12%) 125 95 fining the identity of the local mode vector. In particular, one
H o5+ computedp 165 (—21%) 120 90 could think of a construction designed to optimize the de-

scription in the neighborhood of the ferroelectric ground
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state. For instance, the local mode vector could be fitted to Higher-order terms irES"°" represent anharmonic cou-
the ground state of the system that is obtained when thplings between neighboring local modes and would provide
atomic positions are fully relaxed. Such a procedure woulda correction to the local-anharmonicity approximation. One
effectively incorporate the effect of the anharmonic cou-can fit such terms by looking at the double-well potentials
plings between included and excluded modes while not inassociated with the antiferroelectric instabilities of shell-
creasing the number of variables considered in the model. Imodel BaTiQ at zone-boundary point$ andM. The fourth-
order to quantify the effect of this change, we assume thabrder terms associated with such wells will be a combination
this alternative local mode definition mainly affects the an-of the parametersr and y in Eg. (2) and the new quartic

harmonic parameters in parameters ifES"°" However, we find that these new quartic
parameters are very small and can be safely neglétted.
gself— K2Ui2+04Ui4+7(Ui2in2y+ ui2yui22+ uiZXuiZZ ) 2) More precisely, they constitute 0.05 and 5% of the total

fourth-order term for theX and M instabilities, respectively,
We thus recalculated and y exactly to reproduce the en- and result in slightly deeper zone-boundary energy wells.
ergy of the fully relaxed tetragonal energy minimum, and toTheir probable effect is a minor decrease in th_e_ transition
get the best compromise for the energies of the orthorhombitemperatures, because of an enhanced competition between
and rhombohedral minima. By “fully relaxed” we mean that ZOne-center and zone-boundary instabilities.
the atomic positions were allowed to relax with the cell con- sr:me above conclusion abogtl the higher-order terms of
strained to be the equilibrium cubic cell; this is consistentE”™ also applies to those dE™, which would manifest
with the fact that we did not recalculate any mode-straintheémselves in a similar way. Neglecting the higher-order
coupling parameter. The new and y are 0.811 and  terms of_Edp'_ |s'essent|ally eqw\(alent to assuming that Fhe
—0.916 a.u. respectively, which are very similar to the val-polarization is linear in the at_omlc dlspla_cements, which is a
ues in Table I. The smallness of the correction reflects th&&asonably good approximation for BaEO _
fact that the fully relaxed energy minima are very close to One could think of improving ofE*"" by including cou-
those described by the original effective Hamiltonian, thePlings between further neighbotfollowing Ref. 3, we in-
differences being of the order of 0.01 mHa. Keeping all otheicluded couplings up to third neighbors in our Hamiltonian
parameters unchanged, we repeated the MC simulations &his would allow us to improve the description of the dis-
finite temperature and found that the transition temperatureersion branches of the relevant modes throughout the Bril-
of the T—O andO—R transitions(see Table |} are sensitive Ipum zone. However, we checked that if our Har_nlltonlan is
to these small changes in parameter values, giving a 109§ted including couplings only up to second neighbors the
improvement compared with our original effective Hamil- transition temperatures change by less than 10 K. Hence, we
tonian. However, the large discrepancy in @e T transiton ~ Can assume our Hamiltonian is well converged in this re-
temperature is unchanged. spect. o . . _
We therefore conclude that a change in the definition of Finally, the description of the interaction between strain
the local-mode displacement pattern is unlikely to be suffi-2nd local modes can be improved by including more terms in
cient to eliminate the discrepancy between the effectiveE™. In particular, we have found that thgu? term is not
Hamiltonian and shell-model results. It is necessary, therenegligible and would modify the effective Hamiltonian so as
fore, to look elsewhere. Nevertheless, the results do sho# Yield higher transition temperatures. Specifically, we find
that the details of the fitting procedure can have a significarithat the coefficient of they,u;, term is negative and would
effect on the transition temperatures. thus favor a state in which the system polarizes and expands
along a Cartesian direction. However, in the next section we
will see that the main type Il error has a different origin, and
so we leave explicit consideration of this correction for fu-
We now return to our initial choice of relevant degrees ofture work.
freedom, but ask whether the corresponding energy land-
scape is sufficiently well described by the truncated Taylor
expansion that defines the effective Hamiltonian. The qua-
dratic elastic energf®® is easily checked to be accurate.  Finally, we consider the original decision to reduce the
Hence, the terms that may require improvement & number of degrees of freedom in the effective Hamiltonian
EYP! EShOt andE™, to one vector degree of freedom per cell to represent ferro-
Higher-order terms ifE*® should aim at a better descrip- electric distortions. Even if an optimal set of local-mode
tion of the double-well potentials associated with the ferro-variables is chose(Sec. V A and all necessary terms in the
electric instabilities. We checked, however, that includingTaylor expansion are kegBec. V B, there still may be er-
sixth- and eighth-order terms does not improve the fit signifi+ors associated with this fundamental approximation. For ex-
cantly. In particular, the well depths, which are the effective-ample, anharmonic couplings between included and ex-
Hamiltonian feature most directly related to the value of thecluded modes are neglected, as are anharmonic couplings
transition temperatures, are very well reproduced by théetween excluded modes and of excluded modes to strain.
quarticEs®". A more accurate description would yield energy  The effects of neglecting these anharmonic couplings are
wells around 1% shallower, which would probably lead to aclearly seen in the thermal expansion. In fact, in raising the
very tiny decrease in th€—T transition temperature. temperature from 0 to 300 K in our simulations, we find that

B. Neglect of higher-order terms in the Taylor expansion

C. Effect of excluded modes: thermal expansion
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shell model(full circles) and by the effective Hamiltonian
(full triangles. Both models exhibit volume anomalies
(“kinks” ) at the ferroelectric phase transition temperatures,

Shell model

4015 S L

= indicative of their first-order character. However, the overall
T et trends in volume vs temperature are quite different.

g 401 A The thermal expansion displayed by the shell model, after
E* : N __A,,A.Awﬁ“"ﬁ' a proper rescaling of temperature and cell parameter, closely
S AR omputedp resembles that of real BaTiG? This virtue of the model is

eff

4,005 related to the fact that it includes all the degrees of freedom
| Effective Hamiltonian \ of the system and a sulfficiently accurate description of their
relevant anharmonicities. The effective Hamiltonian, on the

R T N Y- w— other hand, does not properly account for the thermal expan-

Temperature (K) sion of the system, and actually leads teantractionwith
increasing temperature in the range of the polar phases. The
FIG. 2. Pseudocubic lattice parametea=V*® (V  reason for such a contraction is that the volume is strongly
=cell volume) for BaTiQ as a function of the temperature as pre- coupled to the magnitude of the local dipoles and, as these
dicted by the effective Hamiltoniaffull triangles and by the shell  1ond todecreasavith increasing temperature as the paraelec-
model (full circles). Open squares and triangles correspond to ef'tric phase is approached, the volume tends to decrease as
fective Hamiltonian results under an external pressure adjusted "oy, o) “ Equivalently, the thermal contraction can be attributed
hand” andab initio, respectivelysee text for details to negative Groeisen parameters associated with portions of
the relevant branches; these are overwhelmed by positive

hile that of the effective-Hamiltoni rorie o contributions from higher modes in the shell-model system,
while that of the efiective-ramiltonian SySIeeCrease®y — yt not jn the effective-Hamiltonian system where the higher
0.6%. This indicates that the effective Hamiltonian treatment,, o jes are absent

OT the tEermaIII (Ia(xpansmn |s.qu.a_llltat|\f/elﬁ/ Incorrect. MOreover, = \ve eyt ask what happens if the effective-Hamiltonian
given the well-known sensitivities of the transition tempera'simulations are carried out with a cell volume that is con-

tures to volume, this effect could be substantial. Moreover, ity . 4 “by hand” to have the correct dependence on tem-

;:orrectlyt predicts th‘:ﬁ we WOUI(;’ unddertesumﬁte Itr:.ns't'orgerature as given by the shell-model system. A simple way of
emperatures, since they are reduced at smaller 1atlice COlyying this in practice is to apply @egative external pres-

stants. sure pei to the effective-Hamiltonian systertechnically,
"this is done by adding a.;V term to the effective Hamil-
tonian. This fictitious pressure can be thought of as arising
Y%rom the thermal expansion effects of the excluded modes.
We implement this approximately by takiqm to be linear

in temperature in such a way that the effective-Hamiltonian
equilibrium volume coincides with the shell-model one at
two temperatures, taken to be 10 and 300 K, bracketing the
relevant range. We then find that is required to be

€ 1.8 GPa at 300 K while almost vanishing at 1GKThe
results of MC simulations under this external pressure are
presented in Fig. 2open squargsthe values of the transi-

D. Summary tion temperatures are listed in Table Il. The agreement with

We thus arrive at the important conclusion that the poo,the shell-quel calculations, .in particular.in the case of the
description of thermal expansion effects is the dominanC —T transition temperature, is markedly improved.
source of error in the effective-Hamiltonian description. ~However, such amd hocapproach is not consistent with
These shortcomings in the description of thermal expansioril® SPirit of first-principles based approaches; one would pre-
and some preliminary attempts to correct for them, will befer @ way to calculate the effective presspeg ab initio. We
described in the following section. Smaller errgpsobably ~ have attempted to do so by employing the so-called quasi-
amounting to no more than 5-10% of tfg values are harmonic approximatiorisee Chap. 25 of Ref. 24Within

associated with the other approximations discussed in SectliS approximation, the pressure that develops in a harmonic
VA and VB. crystal with volume-dependent phonon frequenciegsise

Eq. (25.5 of Ref. 24

the volume of the shell-model systemcreasesby 0.4%,

sible for the dominant errors i, we made the following
test. We completely eliminated the volume effect by carryin
out both simulations at fixed volumeof (4.012 A)* while
allowing the strain tensor to change. Using the shell model
we have foundT, values of 190, 130, and 95 K, while the
corresponding effective-Hamiltonian values are 180, 125
and 100 K, respectively. The error in tl@—T transition
temperature, which was around 60 K in the zero-pressur
simulations, is reduced te- 10 K.

VI. IMPROVED TREATMENT OF THERMAL EXPANSION

Given the conclusion of Sec. VD, we are strongly moti- p=-— 2 Ued+ > 1ﬁws(k)>
vated to improve the effective-Hamiltonian treatment of ther- v ks 2
mal expansion. First, we investigate the thermal expansion in T hwa(k 1
more detail. Figure 2 shows the pseudocubic lattice param- +E (_ [fiws( )]) 3)
etera=V*? as a function of temperature as predicted by the ks N | ePhwsk) 1’
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whereU®%is the equilibrium energy of the systemy(k) is  from our constant-volume calculations that this error should
the phonon frequency of branshat pointk of the Brillouin ~ be reduced to 5% if the thermal expansion were properly
zone(BZ), and the summations run over all branches end modeled. We have also seen that including the thermal ex-
points. Now the pressure exerted by the excluded modes jsansion “by hand” allows us to reduce the error to about
obtained from Eq(3) by removingU® and restricting the 12%; in other words, this correction seems to account for
sums to the excluded modes. Taking the classical limit 70% of the total error associated with the thermal expansion.
n—0 in order to compare with the classical shell mogbe}; It is tempting to apply these same percentages in order to
takes the form estimate the sources of error arising in the comparison of the
first-principles effective Hamiltonian transition temperatures
Bor=K Ti 2 In wy (K) @ with real experiment. However, this should be done cau-
eff™ "B v o s' tiously. For example, anharmonicities or thermal-expansion
effects might either be exaggerated or underestimated by the
which is linear in temperature and proportional to the volumeshell model. With this in mind, we consider the effective-
derivative of the phonon frequencies. Hamiltonian study of BaTi@ by Zhonget al. which led to
We must be cautious about the approximations involvedl ct=300 K, 25% below the experimental value of 400 K.
in the use of Eq(4) or its quantum-mechanical version. The This was a classical calculation; should quantum effects be
quasiharmonic approach is not really well suited to deal withconsidered, the calculatdt+ would be smaller by about 30
phase transitions, which are strongly anharmonic phenomi,*? and thus the error would go up t030%.
ena. Using it in the present context relies on the assumption We performed classical MC simulations with the effective
that the excluded modémore precisely, the volume deriva- Hamiltonian of Zhonget al. including the thermal expansion
tives of their frequencigsare not significantly affected by of the system “by hand” under the condition that the com-
the strong fluctuations and phase transitions associated wiputed volume should coincide with the experimental one at
the relevant local modes. T=473 K. This resulted in an error of 18% ifc7, which
In order to assess the utility of the quasiharmonic apwould become~25% if we include the estimated quantum
proach here, we have focused on the cubic-to-tetragonal traeffects. Hence, it seems that the improvement in this case is
sition and calculateg.4 using the volume dependences of not as large as it was for the effective Hamiltonian fitted to
the excluded-mode frequencies in the cubic paraelectrishell-model BaTiQ. If we follow what we have learned
phase?® We find that the BZ sum in Eq4) can be evaluated from the case of shell-model BaTi@nd assume that includ-
with good accuracy using information from the high- ing the thermal expansion “by hand” corrects 70% of the
symmetryk points only, and that the sum of logarithms of the total thermal-expansion error, we can estimate that a quan-
hard-mode frequencies depends linearly with volume in théum first-principles effective-Hamiltonian calculation with
relevant volume range, thus allowing us to takg as inde-  perfect thermal expansion would still result in a 20% under-
pendent of volume. Th@.; calculated in this way shows estimate ofTct. It seems reasonable to assume that type I
improved agreement with the exact shell-model results asrrors other than the thermal expansion, as well as details of
regards both the transition temperatutdenoted by “com- the fitting procedure, are responsible for a further 5% error in
puted p.i” in Table 1) and the thermal expansiopen Tct. This suggests that a calculation free of type Il and IV
triangles in Fig. 2 Note thatp.y is equal to—0.86 GPa at errors would yield & 1 that would still be about 15% below
300 K, approximately one half of the value that correspondexperiment. While this line of reasoning is tenuous, we nev-
to the correction “by hand.” The results are still far from ertheless believe it gives the best current estimate for the
satisfactory, with a substantial error remaining for @eT  magnitude of the error that should be attributed to the first-
transition temperature. These discrepancies are probabjyinciples methods used to construct the effective Hamil-
connected with the shortcomings of the quasiharmonic aptonian (in particular, the LDA.
proximation discussed above. Further investigations along In summary, in this work we have analyzed the errors
these lines are clearly needed, but fall beyond the scope @fssociated with the first-principles effective Hamiltonian
the present paper. method that has been developed for the treatment of the ther-
In summary, the proposed correction based on the quasinodynamics of perovskite ferroelectrics. More specifically,
harmonic approximation of Eq4) accounts correctly for by considering the effective-Hamiltonian description of the
only a fraction(perhaps a thirdof the thermal-expansion shell-model for BaTiQ of Tinte et al, we have been able to
error. Unfortunately, then, we are not yet in a position toisolate and study in detail the errors intrinsic to the effective-
propose a fullyab initio approach to the thermal expansion Hamiltonian approximatioritype Il errors. We have found
problem in the context of effective-Hamiltonian methods. that the main type Il error is associated with a poor descrip-
tion of the thermal expansion of the system. We have dis-
VIl. CONCLUSIONS cussed an easily implemented first-principles correction that
takes into account some contributions of excluded modes.
The main weakness of our effective-Hamiltonian descrip-Unfortunately, this scheme seems to account for only about a
tion of shell-model BaTiQ is the poor description of the third of the total thermal-expansion error. More elaborate
thermal expansion. Focusing on the cubic to tetragonal trarschemeginvolving a more thorough treatment of the cou-
sition temperature 1), we have found that the effective plings of the phonon modes to each other and to strain and
Hamiltonian produces a 28% error, while we can estimateolarization might substantially reduce the error, but it re-
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mains for the future to explore and implement such schemes. ACKNOWLEDGMENT
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