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Quantitative analysis of the first-principles effective Hamiltonian approach
to ferroelectric perovskites
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The various approximations used in the construction of a first-principles effective Hamiltonian for BaTiO3,
and their effects on the calculated transition temperatures, are discussed. An effective Hamiltonian for BaTiO3

is constructed not from first-principles calculations, but from the structural energetics of an atomistic shell
model for BaTiO3 of Tinte et al. This allows the elimination of certain uncontrolled approximations that arise
in the comparison of first-principles effective Hamiltonian results with experimental values and the quantifi-
cation of errors associated with the selection of the effective Hamiltonian subspace and subsequent projection.
The discrepancies in transition temperatures computed in classical simulations for this effective Hamiltonian
and for the atomistic shell model are shown to be associated primarily with a poor description of the thermal
expansion in the former case. This leads to specific proposals for refinements to the first-principles effective
Hamiltonian method. Our results suggest that there are at least two significant sources of error in the effective-
Hamiltonian treatment of BaTiO3 in the literature, i.e., the improper treatment of thermal expansion and the
errors inherent in the first-principles approach itself.
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I. INTRODUCTION

First-principles methods constitute a powerful tool for t
study of ferroelectric systems.1 Ground state structures
phonons, spontaneous polarization, and related proper
including piezoelectric and dielectric tensors, have been
curately calculated for a wide variety of perovskite oxides
well as other ferroelectric compounds.

Despite advances in algorithms and computer hardw
the direct calculation of finite temperature behavior, parti
larly phase transitions, is still far beyond reach, as such
culations involve thousands of atoms. However, indir
methods have been developed and applied to a large nu
of systems, including BaTiO3,2–4 PbTiO3,5 and KNbO3,6,7

and even solid solutions such as Pb(ZrxTi12x)O3,8,9

Pb(Sc0.5Nb0.5)O3,10 and K(NbxTa12x)O3.11 In Refs. 4, 6,
and 11, interatomic ‘‘shell-model’’ potentials were param
etrized by fitting to first-principles results, and finite
temperature behavior studied by direct simulation of atom
tic systems with forces and energies obtained from th
potentials. The results in Refs. 2, 3, 5, and 7–10 were
tained by an effective Hamiltonian construction in which t
full system is mapped by a subspace projection onto a st
tical mechanical model, with parameters determined fr
first-principles calculations of total energies for small dist
tions of an ideal crystal with the cubic perovskite structu
The simple form of the resulting effective Hamiltonian a
lows very-large-scale simulations and aids in the concep
interpretation of the results. The two approaches h
achieved comparable success in reproducing many esse
features of the phase transitions of ferroelectrics. For
ample, for BaTiO3,2–4 the experimentally observed cubic
tetragonal-orthorhombic-rhombohedral phase sequenc
correctly reproduced. However, while the experimental v
ues of the transition temperatures are 403, 278, and 18
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classical Monte Carlo simulations of the first-principles e
fective Hamiltonian give 300, 230, and 200 K, while th
shell-model results are 210, 135, and 100 K, respectively
both cases a correction for the local-density approximat
~LDA ! lattice constant underestimate was included in
model.

Understanding the origin of this discrepancy with expe
ment may help in the development of improved theoreti
methods for the calculation of finite temperature behav
Here, we focus our attention on the first-principles effect
Hamiltonian approach. The discrepancies in the transit
temperatures could result from separate errors introduce
various steps of the analysis. We correspondingly classify
errors into five types. Errors in the configuration energ
obtained from first-principles calculations will be designat
type I. These generally can be systematically reduced, w
the exception of the uncontrolled approximation in t
exchange-correlation functional required for the practi
implementation of density functional theory~‘‘LDA error’’ !.
Type II errors result from the identification of the releva
degrees of freedom and the projection and approximate
resentation of the effective Hamiltonian in the correspond
subspace, and will be the main focus of our investigati
Errors in the statistical-mechanical simulations~type III! in-
clude finite-size effects and sampling errors. In the effect
Hamiltonian studies to date, it has been feasible to m
these errors relatively negligible. The importance of type
errors, resulting from the classical treatment of the ions
glecting quantum fluctuations, has been highlighted in a
cent study of BaTiO3 by Íñiguez and Vanderbilt.12 The re-
sults of this study indicate that the classical approximat
raisesthe transition temperatures. Thus, this is not the ori
of the underestimate for BaTiO3. In fact, a correct, fully
quantum-mechanical treatment would increase, not decre
the transition-temperature discrepancy. Finally, we note
the experimental samples, even in thermodynamic equ
©2003 The American Physical Society06-1
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rium, contain defects and local nonstoichiometry which le
to deviations of observed properties from those of the
sumed ideal crystals~type V errors!. These crystal imperfec
tions can have various effects on the transition temperat
that are in general difficult to model.

To separate and quantify the role of the various errors
producing the observed discrepancies in transition temp
tures, several different approaches could be applied.
analysis of type III and type IV errors has been discusse
the previous paragraph. One way to investigate type I er
would be completely to redo the effective Hamiltonian stu
replacing the LDA with a generalized-gradient approxim
tion ~GGA!. However, the latter has not been found to gi
systematic improvement in the overall agreement of ca
lated properties with experiment,13 and thus the value of suc
a labor-intensive investigation is unclear. In principle, type
errors could be eliminated by comparing the effectiv
Hamiltonian transition temperatures with those obtained i
fully ab initio molecular dynamics or Monte Carlo calcul
tion. However, as noted above, doing this type of direct c
culation for sufficiently large systems is so computationa
demanding that it is impossible in practice even for ben
marking purposes, and calculations for small supercells
with reduced sampling would introduce significant finite-s
and statistical errors.

In this paper we develop and carry out an alternat
method of isolating and quantifying type II errors, allowin
us to discuss possible refinements of the effective Ham
tonian method to reduce or eliminate them. We use the t
energies computed with the BaTiO3 ‘‘shell model’’ inter-
atomic potential of Tinteet al.4 to construct an effective
Hamiltonian, and compare the computed transition temp
tures with those obtained in direct classical simulations
the ‘‘shell model’’ system. In this comparison, we complete
eliminate errors of types I, IV, and V, and can easily ma
errors of type III negligible. Thus, we can attribute any d
crepancies directly to errors of type II. While such errors w
not be quantitatively identical to the corresponding err
made in the construction of the effective Hamiltonian
rectly fromab initio results, the general accuracy and phy
cal faithfulness of the shell model interatomic potential
BaTiO3 should render conclusions based on this analy
quite meaningful.

The paper is organized as follows. Section II provid
technical details of the BaTiO3 shell-model interatomic po
tential of Tinteet al. that serves as our reference system.
Sec. III we describe the construction of the effective Ham
tonian and the parameters obtained by fitting to the s
model, paying special attention to the approximations a
technicalities involved. In Sec. IV we present the results
tained from the effective-Hamiltonian and shell-model cla
sical statistical-mechanical simulations. The discrepan
are analyzed in Sec. V, and possible improvements on
various effective-Hamiltonian approximations are discuss
Section VI is devoted to the specific issue of modeling
thermal expansion within the effective-Hamiltonian a
proach. Finally, in Sec. VII we present a discussion of
broader implications of our analysis; in particular, we spe
late on the relative importance of errors of types I, II, and
06410
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in the first-principles effective-Hamiltonian treatments cu
rently in the literature.

II. SHELL-MODEL INTERATOMIC POTENTIAL

Of the various types of interatomic potentials, shell mo
els are uniquely well suited to giving a good description
the lattice dynamics of perovskite oxides. The form of t
shell-model potential developed for BaTiO3 in Ref. 4 incor-
porates earlier observations that the oxygen shell-core in
action should be nonlinear and anisotropic.14,15Each ion~Ba,
Ti, or O! is modeled as a massive core linked to a mass
shell. The core-shell interactions for Ba and Ti are harmo
and isotropic. An anisotropic core-shell interaction is cons
ered at the O22 ions, with a fourth-order core-shell interac
tion along the O-Ti bond. In addition to the Coulomb inte
actions between ion cores and shells, the model cont
pairwise short-range intershell potentials of the Buckingh
type, i.e., V(r )5a exp(2r/r)2c/r6. The Born-Mayer form
(c50) is sufficient for the Ti-O and Ba-O short-range p
tential, while for the O-O potential the value ofc is nonzero.
The physically important nonlinearities of the interatom
interactions are thus naturally incorporated into the form
the potential.

The material-specific parameters in the interatomic pot
tial were determined by adjusting them to fit selected fir
principles results computed using the linearized augmen
planewave~LAPW! method as discussed in detail in Ref.
It should be noted, however, that the equilibrium lattice co
stant of the cubic phase is fitted to the experimental cub
phase lattice constant extrapolated to 0 K~3.995 Å!, not the
LAPW lattice constant. The double wells for polar disto
tions along~001!, ~011!, and ~111! are satisfactorily repro-
duced, as are the phonon dispersion curves for the c
structure at the experimental lattice constant. The b
modulus of the cubic phase and the anomalous Born ef
tive charges are also in good agreement with the fi
principles results. Reference 4 contains further details ab
the construction of the interatomic potential and values of
parameters.

Finite-temperature properties of the system described
this interatomic potential are investigated by consta
pressure molecular dynamics~MD! simulations using theDL-

POLY package,16 where the adiabatic dynamics of the ele
tronic shells are approximated by assigning small masse
them. A Hoover constant-(s̄,T) algorithm with external
stress set to zero is employed; all cell lengths and cell an
are allowed to fluctuate. The time step is 0.4 fs and the t
time of each simulation, after 2 ps of thermalization, is 20
Results for a 73737 periodic supercell~1715 ions plus
1715 shells which are additional degrees of freedom! were
reported in Ref. 4. It was shown that the cubic-tetragon
orthorhombic-rhombohedral phase sequence is correctly
produced. Good agreement with experimental data was
tained for the structural parameters in the various phase
well as the volume thermal expansion coefficient, show
that the most important nonlinearities have been included
the model. However, the transition temperatures are ra
low compared to experiment~190, 120, and 90 K!. This dis-
6-2
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QUANTITATIVE ANALYSIS OF THE FIRST- . . . PHYSICAL REVIEW B 67, 064106 ~2003!
crepancy does not affect the present analysis of type II
rors. In the present work, we have expanded the superce
10310310 primitive cells ~10 000 degrees of freedom!.
This yields essentially the same results, except that the
culated transition temperatures increase slightly~210, 135,
and 100 K!. Additional MD simulations were performed a
constant volume, using a modified Hoover constant-(s̄,T)
algorithm that allows for fluctuations in the cell shape.

III. CONSTRUCTION OF THE EFFECTIVE
HAMILTONIAN

In this section we describe the effective Hamiltonian th
we have constructed using the shell model for BaTiO3 of
Tinte et al.4 as our target system. The form of the effecti
Hamiltonian is identical to that proposed by Zhonget al.,3

except that the inhomogeneous strain variables found to
unimportant in that study are not included here.

An effective Hamiltonian is a Taylor expansion of th
energy surface of the system around a high-symmetry ph
in terms of a set of relevant degrees of freedom. For fe
electric perovskites, the most convenient reference struc
is the cubic paraelectric phase. The relevant degrees of
dom can be identified by studying the energy changes
duced by small~harmonic! perturbations of the referenc
structure. The low-energy, typically unstable, distortions
the relevant ones, and are expressed in the form of lo
modes or lattice Wannier functions.17 The relevant local
modes are those that add up to produce the distorted fe
electric ground-state structure. Also, we take the homo
neous strains as relevant and include them in the Ha
tonian.

There are two possible ways of performing the harmo
analysis that leads to the identification and calculation of
relevant lattice Wannier functions. One can study either
force-constant matrix~the matrix of second derivatives of th
energy with respect to atomic displacements! or the corre-
sponding dynamical matrix. While the former choice leads
a better description of the lowest-energy states of the sys
the latter provides a kinetic decoupling between the relev
and irrelevant ~i.e., not considered in the Hamiltonian! de-
grees of freedom. Here we have worked with the for
constant matrix, which is more appropriate for the study
equilibrium properties. In any case, we find numerically th
the force constant and dynamical matrix descriptions are
sentially identical.

Once a relevant set of phonon branches18 has been iden-
tified, the calculation of the corresponding lattice Wann
functions can be done at different levels of approximation.
the crudest level, they can be constructed from phonons
singlek point,3 more sophisticated schemes allowing for b
ter descriptions of the relevant phonons throughout the B
louin zone.17,19 Here, we calculate the local modes from t
unstable phonons atG, which generate the ferroelectri
structure, choosing the local modes to be centered on th
atom. The resulting local modes reproduce the unsta
phonons at zone-boundary pointsM andX with an accuracy
above 97%. We thus do not expect a better local-mode d
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nition to constitute a significant improvement of our effecti
Hamiltonian of shell-model BaTiO3.

Let uia denote the local mode amplitude in unit celli
along Cartesian directiona. Let h l denote the strains, wher
l is a Voigt index. Our effective Hamiltonian can then b
written as

Heff5Eself@uia
2 ;uia

2 uib
2 #1Edpl@uiauj b#1Eshort@uiauj b#

1Eelas@h lhm#1Eint@h luiauib#. ~1!

Following Ref. 3, we have written the effective Hamiltonia
as the sum of four terms: the on-site self-energy of the lo
modesEself, the long-range dipole-dipole interactions b
tween local modesEdpl, the short-range interactions betwee
local modesEshort, the elastic energyEelas, and the interac-
tion between local modes and strainsEint. The dependence o
each term on the model variables is indicated in Eq.~1!. It
should be noted that the form of the Hamiltonian is grea
simplified by the cubic symmetry of the reference structu
For example, there are no odd terms inuia .

The relevant phonon branches are described by the
monic terms inEself, Edpl, andEshort. Anharmonic terms for
the local modes, required to stabilize the low-symme
phases, are included only inEself ~the ‘‘local-anharmonicity
approximation’’!. In bothEelasandEint only the lowest-order
terms in the expansion are considered. This constitutes
minimal microscopic model for the description of ferroele
tricity in BaTiO3. Including higher-order terms in the Hami
tonian would constitute a systematic improvement of
model.

As already mentioned, the Hamiltonian we have just d
scribed is essentially that of Ref. 3, except the parame
were fitted to a series of shell-model calculations of to
energies and forces, instead ofab initio results, for a set of
distorted structures. The minimum-energy cubic structure
the shell model is taken as the reference structure, so
both share the same relaxed cubic lattice constant. Follow
the notation of Ref. 3, we list in Table I the parameters d
fining our effective Hamiltonian for shell-model BaTiO3.

Monte Carlo~MC! simulations were performed to calcu
late the finite-temperature properties of the Hamiltonian.
simulated a 10310310 supercell with periodic boundar
conditions, and typically did 30 000 MC sweeps to equ
brate the system and 50 000 sweeps more to obtain aver

TABLE I. Expansion parameters of the effective Hamiltonia
fitted to the shell-model BaTiO3 target system. The notation is take
from Ref. 3. All the parameters are in atomic units.

On-site k2 0.0562 a 0.805 g 20.849
Intersite j 1 20.01424 j 2 20.01506

j 3 0.00422 j 4 20.00240 j 5 0.01956
j 6 0.00100 j 7 0.00050

Elastic B11 5.42 B12 2.06 B44 2.07
Coupling B1xx 24.16 B1yy 21.19 B4yz 20.44
Dipole Z* 8.153 e` 5.24
6-3
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TINTE, ÍÑIGUEZ, RABE, AND VANDERBILT PHYSICAL REVIEW B 67, 064106 ~2003!
of local-mode variables with a statistical error below 10
The temperature was increased in small steps of 5 K.20 We
monitored the behavior of the homogeneous strain and
vector order parameter to identify the transitions. The av
age local-mode vector is proportional to the polarizatio
Note that, unless it is indicated, the MC simulations for t
present effective Hamiltonian are performed at zero exte
pressure.

IV. FINITE-TEMPERATURE RESULTS

Figure 1~a! shows the three components of the mean
larization as a function of temperature as obtained from
MC simulations of the effective Hamiltonian, while Fig. 1~b!
shows the corresponding results obtained directly from
shell-model MD simulations. It is apparent that the effect
Hamiltonian correctly reproduces the sequence of transit
~cubic to tetragonal to orthorhombic to rhombohedral w
decreasingT). However, the agreement is far from perfe
for the Tc values, listed in Table II. Clearly the effectiv
Hamiltonian underestimates theTc’s, especially for theC2T

FIG. 1. Behavior of three Cartesian components of the m
~supercell averaged! polarization of BaTiO3 as obtained from~a!
MC simulations using the effective Hamiltonian and~b! MD simu-
lations directly from the shell model.

TABLE II. BaTiO3 transition temperatures, in K, between cub
(C), tetragonal (T), orthorhombic (O), and rhombohedral~R!
phases, as obtained from the shell model and from the effec
Hamiltonian. The last three rows correspond to effective Hami
nians modified as indicated in the text. In the first column, perce
age error relative to the shell model is given in parentheses.

C2T T2O O2R

Shell model 210 135 100
Effective Hamiltonian 150 (228%) 110 85
Heff different a andg 150 (228%) 120 100
Heff1peff ‘‘by hand’’ 185 (212%) 125 95
Heff1computedpeff 165 (221%) 120 90
06410
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transition where the transition temperature is too low
;30%.

This shows that for an effective Hamiltonian of this form
type II errors are quite significant, and in fact are compara
to the discrepancies found when comparing BaTiO3 ab initio
effective-Hamiltonian results against experimental measu
ments on real BaTiO3 samples. This strongly suggests th
errors in first-principles calculations account for at most o
part of the latter discrepancy. In the following, we will in
vestigate the type II errors in more detail and identify a
proaches for the systematic reduction of these errors, ret
ing to the discussion of first-principles effectiv
Hamiltonians in Sec. VII.

V. ANALYSIS OF SOURCES OF THE DISCREPANCIES

In this section, we analyze three sources of error in
construction of the effective Hamiltonian that could possib
lead to the calculated underestimates of theTc values. First,
we focus on the specification of the ferroelectric mode u
vector, which determines the precise set of degrees of f
dom described by the effective Hamiltonian. Second,
consider the effect of the truncation of the Taylor expans
in the specified degrees of freedom, with particular attent
to the neglect of certain higher-order couplings within t
effective Hamiltonian subspace. Third, we consider the c
sequences of omitting the higher-frequency phonon branc
from the effective Hamiltonian.

A. Specification of ferroelectric local mode vector

One of the first choices that was made in the construc
of the effective Hamiltonian was the detailed specification
the ferroelectric local mode vector. As explained in Sec.
we chose a Ti-centered displacement pattern selected in
a way that a uniform superposition of these local mode d
placements gives a periodic displacement pattern co
sponding to the unstable~ferroelectric! mode eigenvector of
the force-constant matrix in the cubic structure. This is o
one of many possible approaches, and questions may ari
to whether this is the best choice and how much differenc
would make if we had made a different choice.

One way of addressing these questions is to test how c
pletely the chosen local mode vectors span the space of
tortions that are actually encountered in the full atomis
finite-temperature shell-model simulation. We projected
shell-model MD trajectories at a given temperature onto
12 optical zone-center normal modes~i.e., force-constant
eigenvectors! of the cubic phase~four sets of threefold de-
generate modes!. As expected, we found that the mod
branches included in our effective Hamiltonian subspace
count for almost all (;90%) of the observed atomic dis
placements. This suggests that the approximation of kee
only these modes in the effective Hamiltonian is a good o

A second approach is to try a different procedure for d
fining the identity of the local mode vector. In particular, o
could think of a construction designed to optimize the d
scription in the neighborhood of the ferroelectric grou

n

e
-
t-
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QUANTITATIVE ANALYSIS OF THE FIRST- . . . PHYSICAL REVIEW B 67, 064106 ~2003!
state. For instance, the local mode vector could be fitted
the ground state of the system that is obtained when
atomic positions are fully relaxed. Such a procedure wo
effectively incorporate the effect of the anharmonic co
plings between included and excluded modes while not
creasing the number of variables considered in the mode
order to quantify the effect of this change, we assume
this alternative local mode definition mainly affects the a
harmonic parameters in

Eself5k2ui
21aui

41g~uix
2 uiy

2 1uiy
2 uiz

2 1uix
2 uiz

2 !. ~2!

We thus recalculateda and g exactly to reproduce the en
ergy of the fully relaxed tetragonal energy minimum, and
get the best compromise for the energies of the orthorhom
and rhombohedral minima. By ‘‘fully relaxed’’ we mean th
the atomic positions were allowed to relax with the cell co
strained to be the equilibrium cubic cell; this is consiste
with the fact that we did not recalculate any mode-str
coupling parameter. The newa and g are 0.811 and
20.916 a.u. respectively, which are very similar to the v
ues in Table I. The smallness of the correction reflects
fact that the fully relaxed energy minima are very close
those described by the original effective Hamiltonian, t
differences being of the order of 0.01 mHa. Keeping all ot
parameters unchanged, we repeated the MC simulation
finite temperature and found that the transition temperatu
of theT2O andO2R transitions~see Table II! are sensitive
to these small changes in parameter values, giving a 1
improvement compared with our original effective Ham
tonian. However, the large discrepancy in theC2T transition
temperature is unchanged.

We therefore conclude that a change in the definition
the local-mode displacement pattern is unlikely to be su
cient to eliminate the discrepancy between the effecti
Hamiltonian and shell-model results. It is necessary, the
fore, to look elsewhere. Nevertheless, the results do s
that the details of the fitting procedure can have a signific
effect on the transition temperatures.

B. Neglect of higher-order terms in the Taylor expansion

We now return to our initial choice of relevant degrees
freedom, but ask whether the corresponding energy la
scape is sufficiently well described by the truncated Tay
expansion that defines the effective Hamiltonian. The q
dratic elastic energyEelas is easily checked to be accurat
Hence, the terms that may require improvement areEself,
Edpl, Eshort, andEint.

Higher-order terms inEself should aim at a better descrip
tion of the double-well potentials associated with the fer
electric instabilities. We checked, however, that includi
sixth- and eighth-order terms does not improve the fit sign
cantly. In particular, the well depths, which are the effectiv
Hamiltonian feature most directly related to the value of
transition temperatures, are very well reproduced by
quarticEself. A more accurate description would yield ener
wells around 1% shallower, which would probably lead to
very tiny decrease in theC2T transition temperature.
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Higher-order terms inEshort represent anharmonic cou
plings between neighboring local modes and would prov
a correction to the local-anharmonicity approximation. O
can fit such terms by looking at the double-well potenti
associated with the antiferroelectric instabilities of she
model BaTiO3 at zone-boundary pointsX andM. The fourth-
order terms associated with such wells will be a combinat
of the parametersa and g in Eq. ~2! and the new quartic
parameters inEshort. However, we find that these new quart
parameters are very small and can be safely neglecte21

More precisely, they constitute 0.05 and 5 % of the to
fourth-order term for theX andM instabilities, respectively,
and result in slightly deeper zone-boundary energy we
Their probable effect is a minor decrease in the transit
temperatures, because of an enhanced competition betw
zone-center and zone-boundary instabilities.

The above conclusion about the higher-order terms
Eshort also applies to those ofEdpl, which would manifest
themselves in a similar way. Neglecting the higher-ord
terms ofEdpl is essentially equivalent to assuming that t
polarization is linear in the atomic displacements, which i
reasonably good approximation for BaTiO3.

One could think of improving onEshort by including cou-
plings between further neighbors~following Ref. 3, we in-
cluded couplings up to third neighbors in our Hamiltonian!.
This would allow us to improve the description of the di
persion branches of the relevant modes throughout the B
louin zone. However, we checked that if our Hamiltonian
fitted including couplings only up to second neighbors t
transition temperatures change by less than 10 K. Hence
can assume our Hamiltonian is well converged in this
spect.

Finally, the description of the interaction between stra
and local modes can be improved by including more term
Eint. In particular, we have found that theh1uix

4 term is not
negligible and would modify the effective Hamiltonian so
to yield higher transition temperatures. Specifically, we fi
that the coefficient of theh1uix

4 term is negative and would
thus favor a state in which the system polarizes and expa
along a Cartesian direction. However, in the next section
will see that the main type II error has a different origin, a
so we leave explicit consideration of this correction for f
ture work.

C. Effect of excluded modes: thermal expansion

Finally, we consider the original decision to reduce t
number of degrees of freedom in the effective Hamilton
to one vector degree of freedom per cell to represent fe
electric distortions. Even if an optimal set of local-mod
variables is chosen~Sec. V A! and all necessary terms in th
Taylor expansion are kept~Sec. V B!, there still may be er-
rors associated with this fundamental approximation. For
ample, anharmonic couplings between included and
cluded modes are neglected, as are anharmonic coup
between excluded modes and of excluded modes to stra

The effects of neglecting these anharmonic couplings
clearly seen in the thermal expansion. In fact, in raising
temperature from 0 to 300 K in our simulations, we find th
6-5
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TINTE, ÍÑIGUEZ, RABE, AND VANDERBILT PHYSICAL REVIEW B 67, 064106 ~2003!
the volume of the shell-model systemincreasesby 0.4%,
while that of the effective-Hamiltonian systemdecreasesby
0.6%. This indicates that the effective Hamiltonian treatm
of the thermal expansion is qualitatively incorrect. Moreov
given the well-known sensitivities of the transition tempe
tures to volume, this effect could be substantial. Moreove
correctly predicts that we would underestimate transit
temperatures, since they are reduced at smaller lattice
stants.

To check whether the thermal expansion effect is resp
sible for the dominant errors inTc , we made the following
test. We completely eliminated the volume effect by carry
out both simulations at afixed volumeof (4.012 Å)3 while
allowing the strain tensor to change. Using the shell mo
we have foundTc values of 190, 130, and 95 K, while th
corresponding effective-Hamiltonian values are 180, 1
and 100 K, respectively. The error in theC2T transition
temperature, which was around 60 K in the zero-press
simulations, is reduced to;10 K.

D. Summary

We thus arrive at the important conclusion that the p
description of thermal expansion effects is the domin
source of error in the effective-Hamiltonian descriptio
These shortcomings in the description of thermal expans
and some preliminary attempts to correct for them, will
described in the following section. Smaller errors~probably
amounting to no more than 5–10 % of theTc values! are
associated with the other approximations discussed in S
V A and V B.

VI. IMPROVED TREATMENT OF THERMAL EXPANSION

Given the conclusion of Sec. V D, we are strongly mo
vated to improve the effective-Hamiltonian treatment of th
mal expansion. First, we investigate the thermal expansio
more detail. Figure 2 shows the pseudocubic lattice par
etera5V1/3 as a function of temperature as predicted by

FIG. 2. Pseudocubic lattice parametera5V1/3 (V
5cell volume) for BaTiO3 as a function of the temperature as pr
dicted by the effective Hamiltonian~full triangles! and by the shell
model ~full circles!. Open squares and triangles correspond to
fective Hamiltonian results under an external pressure adjusted
hand’’ andab initio, respectively~see text for details!.
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shell model~full circles! and by the effective Hamiltonian
~full triangles!. Both models exhibit volume anomalie
~‘‘kinks’’ ! at the ferroelectric phase transition temperatur
indicative of their first-order character. However, the over
trends in volume vs temperature are quite different.

The thermal expansion displayed by the shell model, a
a proper rescaling of temperature and cell parameter, clo
resembles that of real BaTiO3.22 This virtue of the model is
related to the fact that it includes all the degrees of freed
of the system and a sufficiently accurate description of th
relevant anharmonicities. The effective Hamiltonian, on
other hand, does not properly account for the thermal exp
sion of the system, and actually leads to acontractionwith
increasing temperature in the range of the polar phases.
reason for such a contraction is that the volume is stron
coupled to the magnitude of the local dipoles and, as th
tend todecreasewith increasing temperature as the parael
tric phase is approached, the volume tends to decreas
well. Equivalently, the thermal contraction can be attribut
to negative Gru¨neisen parameters associated with portions
the relevant branches; these are overwhelmed by pos
contributions from higher modes in the shell-model syste
but not in the effective-Hamiltonian system where the high
modes are absent.

We next ask what happens if the effective-Hamiltoni
simulations are carried out with a cell volume that is co
strained ‘‘by hand’’ to have the correct dependence on te
perature as given by the shell-model system. A simple wa
doing this in practice is to apply a~negative! external pres-
sure peff to the effective-Hamiltonian system~technically,
this is done by adding apeffV term to the effective Hamil-
tonian!. This fictitious pressure can be thought of as aris
from the thermal expansion effects of the excluded mod
We implement this approximately by takingpeff to be linear
in temperature in such a way that the effective-Hamilton
equilibrium volume coincides with the shell-model one
two temperatures, taken to be 10 and 300 K, bracketing
relevant range. We then find thatpeff is required to be
21.8 GPa at 300 K while almost vanishing at 10 K.23 The
results of MC simulations under this external pressure
presented in Fig. 2~open squares!; the values of the transi
tion temperatures are listed in Table II. The agreement w
the shell-model calculations, in particular in the case of
C2T transition temperature, is markedly improved.

However, such anad hocapproach is not consistent wit
the spirit of first-principles based approaches; one would p
fer a way to calculate the effective pressurepeff ab initio. We
have attempted to do so by employing the so-called qu
harmonic approximation~see Chap. 25 of Ref. 24!. Within
this approximation, the pressure that develops in a harmo
crystal with volume-dependent phonon frequencies is@see
Eq. ~25.5! of Ref. 24#
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whereUeq is the equilibrium energy of the system,vs(k) is
the phonon frequency of branchs at pointk of the Brillouin
zone~BZ!, and the summations run over all branches ank
points. Now the pressure exerted by the excluded mode
obtained from Eq.~3! by removingUeq and restricting the
sums to the excluded modess8. Taking the classical limit
\→0 in order to compare with the classical shell model,peff
takes the form

peff5kBT
]

]V S (
ks8

ln vs8~k!D ~4!

which is linear in temperature and proportional to the volu
derivative of the phonon frequencies.

We must be cautious about the approximations involv
in the use of Eq.~4! or its quantum-mechanical version. Th
quasiharmonic approach is not really well suited to deal w
phase transitions, which are strongly anharmonic phen
ena. Using it in the present context relies on the assump
that the excluded modes~more precisely, the volume deriva
tives of their frequencies! are not significantly affected by
the strong fluctuations and phase transitions associated
the relevant local modes.

In order to assess the utility of the quasiharmonic
proach here, we have focused on the cubic-to-tetragonal t
sition and calculatedpeff using the volume dependences
the excluded-mode frequencies in the cubic paraelec
phase.25 We find that the BZ sum in Eq.~4! can be evaluated
with good accuracy using information from the hig
symmetryk points only, and that the sum of logarithms of th
hard-mode frequencies depends linearly with volume in
relevant volume range, thus allowing us to takepeff as inde-
pendent of volume. Thepeff calculated in this way show
improved agreement with the exact shell-model results
regards both the transition temperatures~denoted by ‘‘com-
puted peff’’ in Table II ! and the thermal expansion~open
triangles in Fig. 2!. Note thatpeff is equal to20.86 GPa at
300 K, approximately one half of the value that correspon
to the correction ‘‘by hand.’’ The results are still far from
satisfactory, with a substantial error remaining for theC2T
transition temperature. These discrepancies are prob
connected with the shortcomings of the quasiharmonic
proximation discussed above. Further investigations al
these lines are clearly needed, but fall beyond the scop
the present paper.

In summary, the proposed correction based on the qu
harmonic approximation of Eq.~4! accounts correctly for
only a fraction ~perhaps a third! of the thermal-expansion
error. Unfortunately, then, we are not yet in a position
propose a fullyab initio approach to the thermal expansio
problem in the context of effective-Hamiltonian methods.

VII. CONCLUSIONS

The main weakness of our effective-Hamiltonian descr
tion of shell-model BaTiO3 is the poor description of the
thermal expansion. Focusing on the cubic to tetragonal t
sition temperature (TCT), we have found that the effectiv
Hamiltonian produces a 28% error, while we can estim
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from our constant-volume calculations that this error sho
be reduced to 5% if the thermal expansion were prope
modeled. We have also seen that including the thermal
pansion ‘‘by hand’’ allows us to reduce the error to abo
12%; in other words, this correction seems to account
70% of the total error associated with the thermal expans

It is tempting to apply these same percentages in orde
estimate the sources of error arising in the comparison of
first-principles effective Hamiltonian transition temperatur
with real experiment. However, this should be done c
tiously. For example, anharmonicities or thermal-expans
effects might either be exaggerated or underestimated by
shell model. With this in mind, we consider the effectiv
Hamiltonian study of BaTiO3 by Zhonget al. which led to
TCT5300 K, 25% below the experimental value of 400
This was a classical calculation; should quantum effects
considered, the calculatedTCT would be smaller by about 30
K,12 and thus the error would go up to;30%.

We performed classical MC simulations with the effecti
Hamiltonian of Zhonget al. including the thermal expansio
of the system ‘‘by hand’’ under the condition that the com
puted volume should coincide with the experimental one
T5473 K. This resulted in an error of 18% inTCT , which
would become;25% if we include the estimated quantu
effects. Hence, it seems that the improvement in this cas
not as large as it was for the effective Hamiltonian fitted
shell-model BaTiO3. If we follow what we have learned
from the case of shell-model BaTiO3 and assume that includ
ing the thermal expansion ‘‘by hand’’ corrects 70% of th
total thermal-expansion error, we can estimate that a qu
tum first-principles effective-Hamiltonian calculation wit
perfect thermal expansion would still result in a 20% und
estimate ofTCT . It seems reasonable to assume that type
errors other than the thermal expansion, as well as detai
the fitting procedure, are responsible for a further 5% erro
TCT . This suggests that a calculation free of type II and
errors would yield aTCT that would still be about 15% below
experiment. While this line of reasoning is tenuous, we n
ertheless believe it gives the best current estimate for
magnitude of the error that should be attributed to the fi
principles methods used to construct the effective Ham
tonian ~in particular, the LDA!.

In summary, in this work we have analyzed the erro
associated with the first-principles effective Hamiltoni
method that has been developed for the treatment of the t
modynamics of perovskite ferroelectrics. More specifica
by considering the effective-Hamiltonian description of t
shell-model for BaTiO3 of Tinte et al., we have been able to
isolate and study in detail the errors intrinsic to the effectiv
Hamiltonian approximation~type II errors!. We have found
that the main type II error is associated with a poor desc
tion of the thermal expansion of the system. We have d
cussed an easily implemented first-principles correction
takes into account some contributions of excluded mod
Unfortunately, this scheme seems to account for only abo
third of the total thermal-expansion error. More elabora
schemes~involving a more thorough treatment of the co
plings of the phonon modes to each other and to strain
polarization! might substantially reduce the error, but it r
6-7
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mains for the future to explore and implement such schem
Finally, we have argued that in the case of the compariso
the first-principles effective-Hamiltonian calculations o
BaTiO3 with real experiment, type II errors do not seem
be responsible for the entire discrepancy. Our results sug
that the type I errors associated with the use of the LDA a
other first-principles technicalities may be of the same m
nitude as the thermal-expansion error.
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19J. Íñiguez, A. Garcı´a, and J.M. Perez-Mato, Phys. Rev. B61,

3127 ~2000!.
20When the simulations are performed decreasing the tempera

we find the same transition sequence with hysteresis inTc’s of
less than 5 K.

21This approximation is known to be inappropriate for some s
tems. For example, the authors of Ref. 9 found that nonlo
anharmonic couplings involving oxygen octahedron tilting va
ables are essential to reproduce the experimentally obse
phase diagram of Zr-rich PZT.

22G. Shirane and A. Takeda, J. Phys. Soc. Jpn.7, 1 ~1952!.
23Leunget al. ~Ref. 9! also considered an effective pressure varyi

linearly with temperature in order to incorporate thermal exp
sion in their effective-Hamiltonian study of Zr-rich PZT. Inte
estingly, the coefficient they used (25.56 MPa/K) is very simi-
lar to the one that corresponds to the shell model of BaTiO3

(26.21 MPa/K).
24N. W. Ashcroft and N. D. Mermin,Solid State Physics~Saunders

College Publishing, Philadelphia, 1976!.
25One could think of computingpeff for each of the phases of th

system, which should then be treated separately in the sim
tion.
6-8


