PHYSICAL REVIEW B 67, 064103 (2003

Effects of glissile interstitial clusters on microstructure self-organization in irradiated materials
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We analyze the formation and selection of self-organized defect microstructure in irradiated materials within
the framework of a kinetic model for point and clustered defects. We take explicitly into account the influence
of glissile interstitial clusters on the stability and morphology of ordered microstructure. Under void growth
conditions, we find that the anisotropic motion of interstitial clusters provides a key element for microstructure
morphology selection. In particular, it results in the formation of the void lattice in parallel orientation with the
underlying crystal structure, in agreement with experimental observations. We also find that bcc and fcc void
lattices develop in bce and fcc crystals, respectively, while in hcp crystals, voids form ordered arrays parallel
to basal planes. It is also predicted that a fcc void lattice is unstable, explaining the experimental difficulty for
void lattice formation in fcc crystals.
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[. INTRODUCTION rather insensitive to temperature, dose, and displacement
damage rate.

Extensive experimental observations on irradiated materi- Thermodynamic concepts of energy minimization were
als have systematically shown the existence of fully or parused to interpret void lattice structures in irradiated materi-
tially ordered defect populations in materials under energetials, and precipitate ordering during aging of alldy$dow-
particle irradiation, such as irradiation by ions, neutrons orever, the energy minima that are obtained do not correspond
electrons. Various types of defect microstruct(geay., voids, to the observed void lattice parameters or symmetries. In
precipitates, vacancy clusters, stacking fault tetrahedra, gasidition, the elastic interaction between voids is too weak to
bubbles, and interstitial atom clustetgve been experimen- trigger morphological selectioft. An important class of
tally observed to be partially arranged in self-organized spamodels, originating in the early approach of Forentaare
tial patterns. Implantation of metals with energetic heliumbased on the effect of the anisotropic diffusion of self-
results in remarkable self-assembled bubble superlatticdaterstitial (SIA) atoms on voids. There are one and two-
with wavelengths in the range of 5-8 nm. lon and neutrordimensional models of this typgé-'>'In these models, the
irradiation, on the other hand, produce a wide variety of selfimechanism of void ordering is based on a detailed evaluation
assembled three-dimensional defect walls and void latticesf SIA fluxes received by voids as a function of their spatial
with wavelengths that can be tailored in the range of tens t@arrangement. The models predict that the growth rates of
hundreds of nanometetsStriking observations have shown aligned voids are faster than those for isolated ones, which
complete spatial isomorphism between the periodic structuractually shrink. In the same spirit, other models have been
of defect distributions and that of the fundamental atomicproposed, which consider the interaction between interstitial
lattice. These experimental observations are particularly trukbops and voids as the main selection mechanism of the void
for the spatial ordering of bubble and void defect microstructure® This class of models favor equilibrium-type
structure$~" An important aspect of void lattice formation concepts rather than dynamical ones. They also require pre-
in metals is the orientation of void patterns along crystallo-existing random distributions of voids and point defects.
graphic directions. Detailed and systematic observations ofhey depend on defect mobility, but not on defect production
defect ordering under ion irradiated nickel and copper haveates or interactions. Furthermore, it is known that spatially
shown the development of periodic defect wélBormation  uniform point defect and dislocation distributions may easily
of the walls of defect clusters in polycrystalline and single-become unstable under irradiatibiience, the resulting de-
crystalline Cu and Ni were observed at medium temperaturefect microstructure should also affect void distributions.
and high irradiation doses. The experimental observations of Recently, a coherent understanding of the spatial evolu-
Jaeger and co-worker have clearly demonstrated strong atien of the microstructure, including void ordering, has been
isotropic arrangements of stacking fault tetrahedra and vasought within the theoretical framework describing
cancy type clusters in walls along th&00 planes of the fcc irradiation-induced self-organization of material defééts
crystal lattice. Because of the equivalency betwé&a0 this approach, rate equations describing the evolution of each
planes, labyrinth structures were obserVéthese arrange- relevant defect density are derived. These equations are
ments show a periodicity of 60 nm, with the walls having abased on the fundamental elements of defect dynamics,
thickness of less than half the periodicity length and defecthamely, point defect creation, recombination, and migration
free zones are observed in between the walls. One of th® the microstructure. Uniform solutions are searched, and
significant observations is that the spatial wavelength igheir stability versus inhomogeneous perturbations studied.
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Instability criteria that depend on kinetic rate coefficients,the linear stability analysis of uniform solutions and the on-
and thus on material parameters, may then be fdfiid.  set of microstructure formation. We discuss microstructure
The combination of nonlinear interactions, bias, and mobilityselection in the weakly nonlinear regime and compare our
differences between several defect populations easily inducégsults with experimental observations. Finally, conclusions

pattern forming instabilities. Similar to other pattern forming are outlined in Sec. IV

systems(e.g., chemical, hydrodynamic, etcthe derivation
of instability criteria through the linear stability analysis of
uniform defect distributions is not sufficient to determine the

spatial orientations of self-organized patterns. A nonlinealiOr

analysis of the post-bifurcation regime is required to estab
lish the conditions for pattern symmetry and orientation. The
selected microstructure crucially depends on nonlinear inter-
actions between unstable spatial motfeBurthermore, the
microstructure symmetry and orientation may hinge on spa-
tial anisotropies inherent to crystalline materials. In particu-
lar, it has been shown that loop and void patterns have pal
allel orientations with the directions of maximum cluster
mobility.??

In a series of papers, Walgraef and co-workétg?24:25
derived reaction-diffusion models for the coupled evolution
of various families of defects involved in microstructure for-
mation under irradiation. These models were analyzed fro
the point of view of nonlinear dynamics and pattern forma-
tion theory. They first considered point and line defects only,
and the spatial ordering of vacancy loops. Then, in order to
describe microstructure formation and evolution in general,
they extended the dynamical model to include volume de-
fects such as voids or stacking fault tetrahedra and discussed

how the presence of such defects could affect microstructure dic

evolution. The only mobile defects in this model are the
point defects. They showed how different mobilities and bias
in point defect evolution could trigger instabilities in uniform
defect distributions and induce the formation of self-
organized defect microstructuféBased on these theoretical
approaches and on experimental findings, the following con-
ditions appear to be necessary for the formation of ordered
defect microstructure:

(1) Direct formation of vacancy clusters by collision cas-
cades;

(2) preferential absorption of interstitials over vacancies
at preexisting dislocations;

(3) a degree of anisotropy influencing the evolution of
clustered defects. This could either be a result of point defect
diffusional anisotropy, or the anisotropic elastic interaction
between defect clusters.

Recent molecular-dynamics computer simulations of col-
lision cascades have shown that SIA clusters can also be
directly produced in the neighborhood of cascadeslissile
clusters of this type may be absorbed at void sinks, and im-
plications of this phenomenon to swelling and other macro-
scopic phenomena have been recently discussed? It
would thus be important to study the effects of glissile SIA
clusters on the dynamics of microstructure formation in the
framework of the dynamical approach described so far. The
aim of this paper is to generalize the dynamical model intro-
duced in Ref. 22 by incorporating the direct production of
glissile clusters in collision cascades, and their subsequent

Il. THE DYNAMICAL MODEL

We generalize here our mod@lpy explicitly accounting
glissile SIA clusters, which are directly produced in cas-
cades and diffuse one dimensionally along close-packed
crystallographic directions. Such clusters may be absorbed at
immobile sinks such as network dislocations, vacancy or in-
terstitial loops, voids, etc. They are characterized by a Bur-
gers vector parallel to one of the close-packed directions of
the crystal and we will consider the situation where the fre-
Guency of changing their Burgers vector direction during
motion between sinks is equivalent in all motion directions,
thus their populations along motion directions are equal.
Glissile SIA clusters are divided into families characterized
by their Burgers vector and represented by partial concentra-
tions that satisfy different kinetic equations. With these re-
Mtrictions, the model is then based on the following kinetic
equations:

8¢ =K(1—¢)— acic,+ D;VZc;

—Dici(Zinpt Zive, + Ziip, T Zicp ),
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. ) . : 2_ 2
dynamics. In Sec. Il we introduce and discuss this generalhere 1g=(Zgnp +Zgvp, +Zqip,+Zgcpc)” is the total
ized model and its uniform solutions. In Sec. lll, we presentsink strength for one-dimensional diffusing SIA clusters. Its
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quadr_atic depgndenpe in the defgct densitigs is_ due to the fact N,=D,Z,np. D =D N,
that, in one dimension, the motion of a diffusing cluster is N o
confined between two neighboring sinks, as discussed in
Refs. 32 and 33. The notations are similar to the ones used in
Ref. 22:c, corresponds to the concentration of vacancies and
Ci to SIA's, while the new variableg represents the concen- « _Puic _

tration of glissile SIA clustersp  is the network dislocation Puic™ 5 0 KT Vi
density,pv is the vacancy loop densityo,I is the sessile in-

terstitial loop density ang_ is the void sink density £_ Xon{ (X=X 1 =Xy 0 =Xy,

=47N.R, with N being the void number density ariRL

begin the mean void radiusK is the displacement damage Zyc D, DgZSNpN

rate, e;pK and e,K are the glissile and sessile interstitial Z=Z—, r=5 v=—ph T=N,t,
cluster production rates, respectively. labels individual gN v v

close-packed directions among thiepresent in the crystal )
(explicit examples will be considered later )one;= e baPN 0 apy
+3)_18p€6q,, ande, is the cascade collapse efficienayis n=2aND,. VT br,p,, TC:(47TNC)2DU :

the recombination coefficienh is the Burgers vector, is 2

the mean vacancy loofor clustej radius, andZ are the ) o )

bias factors(which may usually be approximated kg, !t may then be written in dimensionless form, and the result-
=Zy=Zy=1+B and Z,,=Z,y=Z,y=Z,c=Zic=1, B N9 dynamics is given by

being the excess network bjas,y, ¢c,v, C,/, andc,c are . =~ >
the concentrations of thermally emitted vacancies from net- 9% =P(1- €)= XX, + uD, VX

work dislocations, vacancy and i_nterstitia! I_oops, and voids, — ux[(1+B)(1+ p* + p* )+ p*)],
respectivelyZ,y v are cross-section coefficients for absorb- vl ¢
ing glissile SIA clusters, and are proportional to the typical

alk\,=vy,

P=vyK/\,,

absorption distance for each type of sink. In particuly 9%, =P(1=€,) =X, — XX, +D,V?x,
:(1/167TNO) (Ref 33 (ZgszgV:Zm#:ch). (Dg)p is —
the diffusion coefficient of glissile SIA clusters along the = (%=X, ) (14 pf +pf +p7),

direction anda, is the fraction of absorbed SIA in the o
direction. Let us recall that the basic processes responsible IXgp= €gP— vXgp(1+ p* + p* +Zp*)%+ ngzxgp,
for defect density evolution remain unchanged. Their net Vo ¢ .
production rate results from the balance between displace-
ment damage rate, responsible for the generation of Frenkel
pairs, and loop production rates. Vacancy and interstitial
loops are assumed to be produced directly by cascades, and +av(l+p* +p* +2p*)D x
their production rate is proportional to the corresponding vl e
cascade collapse efficiency. Point defects are annihilated

T10,p* = €P+ (14 B)X — (X, ~X,1)

through pair recombination or absorption at ligéslocations . . —
and loop$ or volume (voids or bubbles defects. The sink vy = €P—pj | m(1+B)Xi— (X, =X,1)
strengths for point defect absorption ﬂ@px andZUXpX for

interstitials and vacancies, respectively (epresenting the Tav(l+p* +o* +Zo* X
type of line or volume defegt The difference betweek, , vte e pc)% gp e

Z,,,» andZ,, introduces new bias in defect evolution.

The main element in the present model is thus the pres- .
ence of glissile SIA clusters, which has not been previously Tcdpe :p_*
analyzed. SIA clusters are produced directly by a cascade ¢

(Xv - XvL) — MX

effect and interact with all microstructural sinks in Hd).

For each sink, their absorption cross section is proportional —av(1+pr+p*+2p*) 2 Xgp|. (3

to the mean radius and the sink density. Their motion is P

highly anisotropic, following well-defined crystallographic

directions. These directions correspond, for example, to B. Uniform solutions

(111) directions in bcc lattices an(l10) directions in fcc As discussed in Ref. 22, point defect densities evolve
lattices. much more rapidly as compared to the microstructure, and

may be adiabatically eliminated from the dynamics. Since
glissile SIA clusters have also very high diffusivity, their

Let us first simplify model1) on taking into account the dynamics will likewise be adiabatically eliminated. Their
equivalence of close-packed direction@,,=€4,(Dg), ~ cONcentrations may thus be expressed as functions of dislo-
=Dy,a,=a) and on introducing the following scaling rela- cation, loop and void densities. In the case of uniform defect
tions: densities, one has, in the sink dominated regimé&1).%

A. Model equations in scaled variables
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0 — P(1—¢,)—A turbations. As shown in Ref. 22, point defect perturbations
(XU—XUL)ZA—. may be expressed as an expansion in powers of the loop
0 density perturbations, and their Fourier transform may be
o_ P(1-¢) written, in vectorial form, as
i _—1
#(1+B)Bg - ,
SXg= 2 fdk...jdkn,l(—l)wog“) c . Tq
n=>1 e
X0 =0 @
9~ C2 X Spgk- - Spi,_t o ®)
where A=X, —X,n=X,L, Ag=1+py+p+pd, Bo=1 Wwhere
+pytpr+pe/ (1+B), andCo=1+pd+p%+Zp°. S
Hence, the uniform steady states for point defect and SIA b4
cluster densities are given by OXy q
2 .
) P(1-¢) P(l—¢)—A NaegP XK= | il |, @
T0.p = €P+ - + ,
! Bo Ao Co
(1-€) P(1-¢)-A Vs
P(1—¢ P(l—e€,)— Nae,P
0_ - 1 . v g 0
Tvd.p,= €,P { B, Aq + Co Py P(1—¢)
un(1+B)By
T &poz—i P(1—¢) _P(l—ev)—A+NaegP P(l—¢,)—A
e p2l(1+B)Bg Ao Co | Ao
(5) Ty= ae,P , ®)
C
I1l. SPATIAL INSTABILITIES AND MICROSTRUCTURE 0
FORMATION
The stability of uniform defect distributions may be stud- aeqP
ied through the linear evolution of small inhomogeneous per- Co
|
! 0 0
Bq' . Bkn—l
0 ! 0
Ay Ay
DY = o 9
(o B (2C0)n ’
0 0 e .
14 qu' . Ckn711
2Cy)"
0 0 __(2C”
14 CqN' . .Ckn—lN
|
and and
5Pq:P055q (10 5p
with ) v
0 Spg=| 9P, (12
0 0 C )
p, P p
V' 1+B e
p°=| o o o (1)
p, P, Pe g o=
Furthermore, B;=By+q°D,/(1+B), A;=A;+q°D,,
p° p® 2zp% C. =C 2% g * _ 1y
v F c ap=Cot+ 0Dy , with (Dyg —Dg/\/a), and
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5Xi:Xi_Xi0’ é\Xuzxv_(XS_;UL): &gpzxgp_xgpv 00 -»
14
0 * 0 * 0 J—
Py =P, Py, PP, 0 0 —
op = , Op = , Op_.= , P= p (19
v op) " p? < pd L
(13 00 -——
wherex?, x, p2, p°, andp? are the uniform defect densi- c
ties. with
This adiabatic elimination of point defect and SIA cluster P(l-€) P(1—e)—A aNeP
densities leads thus to a reduction in the dynamics of sessile = - + ,
interstitial clusters, dislocation loops and void densities, Bo Ao Co

which govern the evolution of the whole system. The evolu-

tion equations of nonuniform loop and void densities may T=

then be cast in the following vectorial form:

71,054~ L opgt Mok | dkoge (No¥,

P(1-¢) P(l—Ev)—A+aNng
(1+B)By Ay Co '’
and supplemented with equatio(®.

A. The onset of spatial instability of the microstructure
In order to determine the possible development of spatial

+f dkéﬁq,kPéﬁkJr _— (14)  instability in the system, one has to know, in the first place,
the evolution of the uniform loop and void defect densities,
Where which may be evaluated through E@6) and (14).
Consider first the growth rate of the void density. It is
0 0 easy to see that, when the net contribution of interstitials and
v SIA clusters to the void growth rate exceeds the net contri-
=0 7 0], (15) bution of vacancies to the void growth rate, the asymptotic
microstructure evolution is restricted to the evolution of dis-
0 0 7, location loops only. Of course, due to the weak coupling
between the loops and void densities, any spatial instability
€,P in loop densities will eventually induce transient structures in
0 0 0 the void density. This condition is consistent with the experi-
v mental condition of irradiation at low temperatuiésss than
(esP+T) one-third of the melting point
L= 0 T o , (16) On the other hand, under conditions conducive for void
Py growth (temperatures above one-third of the melting point
2 _ the situation is quite different, since a dimensional analysis
0 0 —021“ of the evolution equation&®) shows that both loop and void
Pe densities increase first with time or irradiation dose, but may
reach a steady state, thanks to the effect of the one-
—u(1+B) 1 —vCy —vCy dimensional motion of glissile SIA clustets.
The stability of uniform dislocation densities may be ana-
p(1+B) _ i V_CO V_CO lyzed through the linear part of the evolution equation for
M= p° p° p° p° their inhomogeneous perturbations. This evolution is ob-
: ! ! : : tained by combining Eqg6) and (14). Its linear part reads
ILL 1 VCO VCO > - > >
% % o -~ 79,8pq=[L —MD Tqp°18pq= Qqdpq. (20
Pe Pe Pe Pe 17 where
" e 0 i - -
-u(1+B) 1 —wCy —vCy — +Agp? Agp, Agp?
\%
vC vC
0 o —= ... = oy (eP+T) _n
N: pl pl Qq: _Aq_O - 0 - q - q_O ,
) 1 vCy vCy P P P
_ - ... = o o
2 2 0 pY " T, Py : P 25, x, 1
i pY? p%? Py P
and (21)
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where
P(l—-¢) P(l—¢,)—A 222
Aq: ( |)_ ( ) +aegP2 pC,
BoB, AdA, ' CoCqp
(22)
_ P(1-¢ P(l—¢,)—A 272
Aq: ( |) ( ) Tae PE pC ,
(1+B)BgB, AdA, 9" < CoCqp
(23
— P(1—e¢ P(l—e¢,)—A 2702
Aq: ( , |) . ( v) +a€gpz pC .
(1+B)?ByB, Ao, ' CoCqp
(24)

The determination of the instability threshold is com- FIG. 1. Representation of positive growth rateg>0, in the
pletely similar to the one made in Ref. 22. At the same leveldy.q,) plane in the absence of glissile SIA clusterg;<0),
of approximation, one finds that the linear growth rate ofshowing the orientation degeneracy of unstable modes2p.,

Fourier modes of wave vectay is proportional to Ge=1, &=1, £=0).
b—b, 5 q2—q§ 2 5 1 wave vectors perpendicular to the directions of SIA motion.
wq* 5 60 2 +§g2 15D o2 (25  Their growth rates, and thus the anisotropy effect, increase
¢ € P 19 both with SIA and void density. More precisely, the modes

On writing this expression in unscaled variables, one find§Vith maximum growth rate, which are expected to build the

that the bifurcation parameteér, is given by structure beyond instability, correspond to the wave vectors
that maximize the total glissile cluster contributian1/(1
ps 2\/5,,_8 +qu§). Since this contribution depends on crystal struc-
be=T7207,0| = B (26)  ture, let us consider a few explicit examples.
Py P c Btetx For the simplest case of easy axis anisotropy, where glis-

1+B sile clusters move along thedirection, their diffusion con-
tribution is1/(1+ q)z(DL). This implies that the fastest grow-

c—€ —€ + =p%(1+p°+p9). - : :
wheree=e,~ €+ (A/P) and« pC/(l Py pl) Further ing fluctuations are such thgg= 0 or that their wave vectors

more, are perpendicular to the direction, as illustrated in Figs.
140940 n = — 1-3. As a result, at least for the early stages of microstruc-
o= PyTP B—e—k(2B+e) (27  ture evolution, the domains of maximum defect density are
2 s
D, —
+et
Breteiis
and
— 2 0
L
8Bz ' Y ¢ (1+Zk)? t Co ]

(28)

o and &4 characterize the set of unstable wave vectors be
yond instability p>b.), and provide a linear selection 1
mechanism for microstructures. In isotropic systems, a banc ?-5
of wave numbers, such thalqg[l— \/(b—bc)/gozbc] S “, X
X(qX(qZ[1+/(b— bc)lgozbc] is unstable, and, defines the R ) #a;,,:;:}
width of this band at a given value of the bifurcation param- g i S,
eterb. For large&,, the unstable band is sharp and the wave
number of the microstructure is expected to be closg.to
while for small&,, the unstable band is wide and the micro-
structure is expected to be less regular, with a high content of £ 5 Representation of positive growth rateg>0, in the
harmonics. o o (dx,y) plane, in the presence of glissile SIA clusteeg# 0), with

On the other hand, glissile cluster dynamics introducesigh mobility along thex axis. Fastest growing unstable modes
new terms, proportional tgy, which affect the linear selec- haveq,=0 and correspond to spatial modulations parallel to the
tion of growing spatial modes. Effectivel§, breaks the ori-  high mobility axis of glissile clustersb(=2b., q.=1, &=1,
entation degeneracy and favors the growth of modes witl§,=0.5, D, =4).
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Y
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FIG. 4. Representation of positive growth rateg>0, and its
maxima, in the §,=X, q,=Y) plane, in the presence of glissile
SIA clusters €4#0), with high mobility along the close-packed
direction of a hcp lattice. The fastest growing unstable modes cor-
respond to spatial modulations parallel to the high mobility axis of
glissile clusterslf=b., q.=1, {=2, §5=1, D, =5).

FIG. 3. Representation of positive growth rateg>0, in the
(ax.0y) in the presence of glissile SIA clustersy0), with high For bcc crystals, the close-packed directions are the
mobility along thex axis. The fastest growing unstable modes<11]>, <1T1>, <11T>, and(ll_l> directions and the glissile

hf’;\ve qx=(.).and (;orrespgnq to spatial modulations parallel to theclusters contribution to the linear growth rate is
high mobility axis of glissile clustersb=2b., q.=1, &=1,

&=11/2,D, =4). 1 1

+

expected to be parallel to thedirection, or to the direction 1+D, (gt dy+a,)* 1+D,(ge—0y+0,)?
of motion of the SIA clusters. Furthermore, the instability 1 1
threshold is lowered tb=b (1— gg). To know if the micro- + + )
structure saturates in this orientation, one nevertheless needs 1+D, (gy+ qy_qz)2 1+ Di(qx_Qy_qz)z
to perform the post-bifurcation analysis. In the case of hcpl-
crystals, glissile SIA clusters preferentially move on basal
planes, or X,y) planes, along close-packed directions, de-,. ; P _ o —

fined as thex direction and the directions makingn23 U:quvitz (:hi +o(;|)g|n(aal jg‘;«ﬂg qo’iz+(q_)?y(5(;eql):’ig(q§
angles with it. Their contribution to the linear growth rate of 72— X = 7/ Yz = mAy T e
unstable modes is then

(31)

his expression is maximum for the six pairs of wave vec-
ors that precisely define a bcc lattice in parallel orienta-

1 4 4
+ +
1+D,q? 4+D,(q,+3aq,)? 4+D,(q,—3q,)?
3+12D, g% +9D%q?
~ (1+6D,¢2+9D%q* +D3q2q’q?)’

(29

where 47 =q;+q; and q,=0dy, 0= (dx+30,)/2, 03 ¢
= (94— 309,)/2. Hence, the modes that maximize the s o [ 4]
growth rate are such thaf,=q,=0, or q,=0 and q,
=i\/§qy (see Fig. 4 These modes define a hcp structure in ® - b had @
parallel orientation with the original lattice. The correspond-
ing critical wavelength and instability thresholds are slightly
modified as:

0 a 0 2n

FIG. 5. Representation of the growth rate, >0, of critical

2 19D g2 §4 modes, and its maxima, as a function of orientation, i.e., in the (
qﬁ =q2 1—(é) —ch —g , ¢, Ox=dc cosdsing, g,=d. sindsing, g,=d. cos¢) plane, in
e €o (4+ 3qu§)2 & the presence of glissile SIA clustersy¢-0), with high mobility

along the close-packed direction of a bcc lattice. The fastest grow-
ing unstable modes correspond to spatial modulations parallel to the
12+ 3qu§ ( gé) H high mobility axis of glissile clusters, which generate a bcc micro-
—_— - (30 structure in parallel orientation with the crystal lattide<(b., .
£ =1, £=2,&,=1,D,=5).

_ 2
Phep= b°| 178 05 3D, ¢
C
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2+4D,q? &

- ;+o(—g . (39
1+4D, qf &

Hence, the one-dimensional motion of SIA glissile clusters
provides a linear selection mechanism, favoring the growth
of structures that are in parallel orientation with the host

lattice. One has now to check whether or not these structures
are stable in the nonlinear domain beyond the instability.

Dfec= bc[ 1- 35;

=) g : ) B. Microstructure selection in the weakly nonlinear regime
¢ Once again, we follow the method used in Ref. 22, which
is based on the adiabatic elimination of fast relaxing vari-
5] & 1 ables. In a first step, point defect densities have been ex-

pressed as series expansions in powers of void and loop den-
sities. Furthermore, as discussed in Ref. 22,7,>7y.
0 T 0 27 Hence, interstitial loop and void densities evolve on shorter
) - time scales than vacancy loop density, and may be expressed
FIG. 6. Representation of the growth rate, >0, of critical 35 |inear combinations of the eigenmodes of the linear evo-
modes, and its maxima, as a function of orientation, i.e., in the (' |ution matrix. This leads to the following relations that ex-

¢, Gx=0dccososing, q,=qcsin#sin g, q,=0.cos¢) plane, in the  press how they are linked to the vacancy loop density:
presence of glissile SIA clustergd#0), with high mobility along

the close-packed direction of a fcc lattice. The fastest growing un- €

stable modes correspond to spatial modulations parallel to the high Op1g* — 0—U5pvq, Spcyl€g)* pyq- (35
mobility axis of glissile clusters, which generate a fcc microstruc- PvEi

ture in parallel orientation with the crystal lattice€b., q.=1,
£=2, £=1,D,=5).

The fact thatr> 7> 7y also implies that the elements of
the matricedM andN are such that their lower components
decrease with time or dose, and that the dynamics remains
driven by the vacancy loops. For weak deviations from the
uniform density, and at leading order &+ (b—b.)/b. and

The corresponding critical wavelength and instability thresh-
olds are also slightly modified, and

2 4 (g—49e)/qc, the vacancy loop density plays thus the role of
2= 1 ( fg) 4D, qc 4 (ﬁ) the order-parameter-like variable of the system. According to
bee He o/ (1+4D,g?)? & the general methods of nonlinear dynamics and instability
theory, its dynamics may be expressed, in Fourier space, as a
2+4D, 2 £2 power—;eries_gxpan_sion_“in the manner of I_.andéﬁ(:l_ose .
byee=be| 1— S —L;_i_ (_g)) (32)  to the instability point, in the weakly nonlinear regime, it
1+4D, q; & may be limited to cubic nonlinearities, and is given by

For fcc crystals, the close-packed directions are(thk0),
(110), (101), (101), (011), and(011) directions and the 70970pvq= @qOpvqt f dkug, 6pva-kIpvi
glissile clusters contribution to the linear growth rate is

+J dkf dkqUqg Opvg-kOPvk-k, OPVk,»

1 1 1
1+Di(qx+qy)2+ 1+DL(Qx_qy)2+ 1+DL(qy_QZ)2 (36)
1 1 1 where the Iinea}r grpwth rate, is given in Eq.(25). At this
+ + + ) level of approximation, the other constanig, anduqc, cal-
1+D,(q,+0d,)* 1+D, (a+q,)? 1+D, (q—0,)? culated in Ref. 22, in the absence of SIA clusters, are only

(33 modified by small corrections proportional &/C.

Equation(36) has the generic structure of order-parameter
In this case also, this expression is maximum for the fourequations describing reaction-diffusion systems close to a

pairs of wave vectors that precisely define a fcc lattice inpattern forming instability of the Turing type. It allows one

parallel orientation with the original onegf=+q,=+q, to analyze pattern selection and stability. It is now well
=*q) (see Fig. & The corresponding critical Wavelength knowr?* that, in three-dimensional systems, this equation ad-
and instability thresholds are modified as follows: mits, near threshold, and for scalar nonlinear interactions be-
tween dynamical modes, which is the case here, stable solu-

£\2 6D, g2 & tions corresponding to hcp and bcc lattices. fcc solutions are

0%..=0q? B ——= =2 only marginally stable and planar arrays may develop well
cc el T 1 &) (144D, ¢?)? 3 in fini

1Yc 0 beyond threshold. These structures are stable in finite do-
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mains around the instability, and the width of these domaingliffusion dynamics, net anisotropy effects result not only
is proportional to the intensity of the nonlinear dynamicalfrom the anisotropy of diffusion coefficients, but also from
couplings®® As a result, the linearly selected structures arenonlinear couplings between the different dynamical vari-
compatible with the weakly nonlinear dynamics that governsables of the syster®. The instability may be enhanced or
the system beyond instability, in agreement with experimenfreduced along specific directions, which are not necessarily
tal observations. Furthermore, a very natural difference bethe high mobility ones. In the present case, the resulting
tween the dynamics of void lattice formation in bcc and fccanisotropy is determined by the fact that, close to the insta-
crystals appears in our description. Effectively, bcc latticesoility, the behavior of the system is governed by vacancy
appear through a subcritical bifurcation or first-order-like cluster dynamics. This leads to a series of results that are in
transition, and are dynamically stable, while fcc lattices ap-good agreement with experimental observations. For ex-
pear supercriticallycf. the Appendix, and are only margin- ample, bcc and fcc void lattices should develop in bcc and
ally stable. As a result, the bcc structures grow and reackcc crystals, while in HCP crystals, voids should be ordered
steady state on much shorter time scales and are much magparallel to the basal planes. Furthermore, our weakly nonlin-
robust than the fcc structures, which develop long-livedear analysis predicts the instability of fcc microstructure, and
long-range perturbations. Furthermore, the SIA density ighis effect, coupled with the low observed SIA density in fcc
much lower in the fcc materials than in the bcc ones, whictcrystals, could be related to the experimental difficulty for
strongly reduces the anisotropy effect in the first ones. Thisuch lattices to form, in comparison with the easily obtained
aspect may explain the experimental difficulty in forming fcc bcc ones. One should also note that the importance of this
void lattices. selection mechanism depends Dn, which decreases for

In summary, glissile SIA clusters only weakly affect in- increasing void density. Hence, a less regular void micro-
stability threshold, but strongly affect the symmetry and ori-structure may be expected at high void density.
entation of the microstructure. The selected microstructure In summary, we find that the incorporation of glissile SIA
has its domains of high defe@specially void density ori-  clusters, with their particular anisotropic motion, in our ki-
ented parallel to the directions, or planes, of high clustenetic rate theory model confirms their essential role in deter-
mobility. In three-dimensional crystals, this results in a mi-mining the void lattice orientation and symmetry, and con-
crostructure in parallel orientation with the underlying lat- sistently reproduces experimentally observed microstructure
tice. However, the stability of the microstructure may vary,selection and stability.
according to its symmetry. For example, the hcp and bcc
structures may appear subcritically and are stable, while the
fcc structures are supercritical and are only marginally ACKNOWLEDGMENTS
stable. At sufficiently high irradiation dose, these structures

may become unstable and disappear in favor of planar wall Reséarch was supported by the U.S. Department of En-
arrangements. ergy, Office of Fusion Energy, through Grant No. DE-FG03-

98ER54500 and DOE Grant No. DE-FG03-01ER54626 with
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In this paper, we extend our previous analysis of micro-

structure formation and evolution in irradiated metals and
alloys, to the case where glissile SIA clusters are formed by APPENDIX
cascade effect and participate in the dynamics. Hence a dy-
namical model has been derived, based on the coupled evo- The order-parameter-like variab&) may be written, in
lution of three mobile defect populations, point defects an
SIA clusters, and three immobile ones, vacancy and mters;{—h{ fase of fec lattices, a§p =2i- 1(A explq,r+A, exp
tial loops and voids. Point defects are assumed to diffuse-icir), where theg; vectors are defined asg(==*q,
isotropically in the crystal, while SIA clusters move on =*0dy=*0s). The corresponding amplitude equations
close-packed directions or planes of the host crystal. may be derived from the order-parameter dynan@ and

In particular, we find that the presence of glissile SIAWith appropriate scalings, can be written as
clusters only slightly affects critical values of the bifurcation
parameter and wavelength. These quantities are sensitive to
the void density that decreases the instability threshold and ;
wavelength. Furthermore, the microstructure spatial instabil-
ity originates from vacancy cluster dynamics, as in our pre-
vious model. However, in agreement with earlier propo¥als,
the anisotropic mobility of SIA clusters is an essential ele-
ment of the selection of the microstructure, since it lifts the
orientation degeneracy of unstable modes. We find that the

Cc
be

1=

(&N)Z}Al—Al(lAll%2|A2|2+2|A3|2

+2|A42) — AAAL

C

+4(a2€)2}A2—A2(|A2|2+ 2|Aq12+2|Aql?

high defect mobility along close-packed directions results in 2= b,
the alignment of the microstructure pattern with the host .
crystal lattice. This finding is not obvious, since, in reaction- +2|A4%) — ALAAS
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. [b—b, o] where ®,=®,+d,—dP,— D5 A linear stability analysis
As=|—p +4(03V)? |Ag— Ag(|Ag|®+2|Ag*+2|Ag|? shows that, from the two solutions®,=0R=R,
- e : =+(b—b.)/8b, and ®y==,R=R_=+(b—b.)/6b., only
+2|A41%) — ALALAS the latter is stable. The stability of this solution versus uni-
) ) form amplitude perturbationsa;(A;=R,+3a;), is studied
. |D—Dbc - = 5 ) 5 through their linear evolution equations, which may be writ-
As= b +4(04V)% | A= Ag(|A4+ 2[Ag]*+ 2| A ten as
+2[A,]%) — AAZAT . (A1) _ 4
. - . . . éi:—(ﬁ) > 3 (A3)
Since theg; vectors do not form equilateral triangles, there is 2b. J=1 !

no contribution from quadratic nonlinearities to the dynam-

ics, and the bifurcation is thus supercritical. Furthermore, The roots of the corresponding evolution matrix ase
there is an extra contribution to the cubic nonlinearity, since= —2[(b—b,)/b.] andw=0. As a result, uniform fcc struc-
the q; vectors satisfy the conditiog, +q,—qs—q,=0. For  tures are marginally unstable. Although, and =;|A;| are
symmetry reasons, one may expect uniform steady state setable modesthe corresponding eigenvalues are finite nega-

lutions of the typeA;=R expi®,;, such that

b—b
( °> R-7R3—R3 cos®,,
be

0=R? sin®,. (A2)

tive), the marginally unstable ones are the amplitude and
phase difference$A|—|A;| and ®;—®;. Furthermore, if
one considers spatially dependent amplitude equations, it is
easy to see that the marginally unstable modes may develop
long-ranged spatial fluctuations, which lead to long-lived de-
formations or distortions of the lattice structure.
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