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Numerical results for ground states of mean-field spin glasses at low connectivities
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An extensive list of results for the ground-state properties of spin glasses on random graphs is presented.
These results provide a timely benchmark for currently developing theoretical techniques based on replica
symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing
replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on
fixed-connectivity graphs~Bethe lattices! exhibit a richer phenomenology than has been anticipated by theory.
Our data prove to be sufficiently accurate to speculate about some exact results.
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A theoretical understanding of the intricate dynamics
disordered systems has been a major goal of statistical p
ics at least since the introduction of the Edwards-Ander
spin-glass model.1 Already the study of the equilibrium a
low temperature, a state that real disordered materials ra
achieve,2 reveals a stunning range of new phenomena, e
in the simplest models such as the Sherrington and K
patrick model ~SK! where all spins are mutually
connected.3–6As an intermediate step in extending the mea
field techniques toward finite-dimensional models, s
glasses on random graphs are an area of active rese
Those systems have been of interest from early on bec
they combine infinite-range connections~such as SK! with a
finite, decidedly low connectivity. But those earlier studi
have focused either on temperatures at the glass transit7

on purely replica symmetric~RS! solutions,8 or on perturba-
tive approaches in the~SK!limit of large connectivity.9–11

Simultaneously, the formal similarity between spin-gla
Hamiltonians and the objective function of combinatorial o
timization problems has been realized12 and exploited to
make RS predictions, for instance, for the bipartitioni
problem on random graphs.13–15 This connection, with the
discovery of phase transitions in combinatorial optimizat
problems16 and the application of replica techniques to th
study,17 has recently rejuvenated interest in spin glasses
random graphs. But to obtain quantitatively valuable pred
tions for NP-hard problems required the application of re
lica symmetry breaking~RSB!5 to those problems at finite
connectivities and low temperatures which was acco
plished recently.18–20 Finally, these RSB methods are no
being applied to spin glasses on random graphs, produ
quantitatively valuable results18,21 at accuracies below 0.1%
At this level of accuracy, a comparison between theoret
and simulation results becomes valuable at least in two
spects: Convergence of the numerical with the RSB re
can verify the assumptions underlying RSB as well as
quality of the numerical method used to approximate an N
hard problem.

In this communication we apply the extremal optimiz
tion ~EO! heuristic22,23 to investigate the ground-state pro
erties of spin glasses on random graphs. With this method
have sampled system sizes up ton54096 on low-
connectivity graphs. We have obtained high-accuracy res
for the ground-state energies of spin glasses on ordinary
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dom graphs~ORG! with fluctuating connectivities, and fo
Bethe-lattice graphs~BL! with fixed connectivities. On a
smaller sample of BL, we have also obtained results for
entropy of such graphs. The energies are in excellent ag
ment with RSB predictions for low-connectivity BL.21 Both,
the energies and entropies reveal a sensitivity to the e
oddness of the BL, which may explain inconsistencies w
results in the SK limit.9 No such inconsistency arises fo
ORG and the numerical extrapolation is in good agreem
with analytic results for the large-connectivity limit in RSB9

The BL energies seem to fall~within 0.2%) on a simple line
ranging from the two-connected graphs to the SK limit, b
only for even-integerconnectivities, without any obvious in
terpolation. The BL entropies decrease linearly with the
verse connectivity for odd connectivities, but are alrea
consistent with zero~within accuracy! at small even connec
tivity. More details of the numerical procedure is give
elsewhere.24,25

Of the two types of random graphs are considered for
study, the BL are regular random graphs.26 These graphs con
sist ofn vertices where each vertex possesses a fixed num
k11 of bonds13,18,21with randomly selected other vertice
Alternatively, ORG are obtained by randomly connecti
any pair of vertices with a specified probabilityp5c/(n
21), leading to a graph of average connectivityc but where
the connectivities of individual vertices are Poissoni
distributed.26 Note that the connectivity of each vertex, an
thusk11, is inherently discrete, whilec can take on any rea
value.

Once a graph of connectivityc is generated, randomly
chosen quenched couplingsJi , jP$21,11% are assigned to
existing bonds between neighboring verticesi and j. Each
vertex i is occupied by a spin variablexiP$21,11%. The
energy of the system is defined as the difference in num
between violated bonds and satisfied bonds,H5
2($bonds%Ji , j xixj , and we will focus on the energy and en
tropy per spin, respectively,

ec5
1

n
H, sc5

1

n
ln V, ~1!

whereV is the degeneracy of the configurations exhibiti
the ground-state energy.
©2003 The American Physical Society03-1
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For our numerical procedure, we used the followi
implementation of EO:22,23For a given spin configuration o
a graph, assign to each spinxi a ‘‘fitness’’ l i5
2No. v iolated bonds520,21,22, . . . ,2ci , so thatec
52( il i /(2n) is satisfied. Here,ci is the integer connectiv
ity of vertex i, and ci[k11 for every vertex in BL. If
cmax5maxi$ci% , each spin falls into one of onlycmax11 pos-
sible states. Say, currently there arencmax

spins with the

worst fitness,l52cmax, ncmax21 with l52cmax11, and so

on up to n0 spins with the best fitnessl50, where( jnj
5n. Now draw a ‘‘rank’’ l according to the distribution
P( l ); l 2t. Then, determine 0< j <cmax such that( i 5 j 11

cmax ni

,l<(i5j
cmaxni . Finally, select any one of thenj spins in statej

and reverse its orientationunconditionally.As a result, it and
its neighboring spins change their fitness. After all the
fectedl ’s andn’s are reevaluated, a new spin is chosen
an update.

The arguments given in Ref. 27 and a few experime
indicate thatt51.3 is a satisfactory choice to find groun
states efficiently on either type of graph. Our implementat
restarts for each instance at leastr max54 times with new
random initial spin assignments, executing'0.1n3 updates
per run. If a new, lower-than-previous energy state is enco
tered in runr, we adjustr max5212r for that instance so tha
EO runs at least twice as many restarts as were necessa
find the lowest state in the first place. Especially for smaln,
r max hardly ever exceeds 4; for largern a few graphs require
up to 30 restarts before termination. Since EO perpetu
explores new configurations it is well suited to explore a
the degeneracyV of low-energy states. In these runs, w
used a similar approach to the above, except for set
r max5812r, wherer is the latest run in which a new con
figuration of the lowest energy was located.

We have simulated spin glasses on BL with this algorit
for k11 between 3 and 26, and graph sizesn52l for l
55,6, . . . ,10 toobtain results for ground-state energies.24 In
particular, fork1153 we have used the methods describ
in Ref. 25 to reach system sizes ofn54096. In a separate
simulation, usingt51.4, we have explored BL of sizen
P@16, . . .,256# to determine their entropy. We have used t
same algorithm, preceded by a graph reduction procedu25

to study ORG ranging fromn<215 for c52 to n<29 at c
525. Amazingly, as is shown in Refs. 24 and 25, in all the
cases our data can be extrapolated forn→` via

ec~n!;ec1
A

n2/3
~n→`!. ~2!

Deviations from these scaling corrections are gener
small24 and we assume Eq.~2! to be exact here. There doe
not appear a theoretical justification for Eq.~2!, but in Fig. 1,
we show representatively the large-n extrapolation of our
data fork1153. Both, finite-n energies and entropies, ap
pear to scale linearly when plotted for 1/n2/3. The extrapola-
tion results for the energies of BL and ORG are given
Table I. The extrapolation results for the BL entropies a
given in Table II. Variation in the~estimated! errors reflect
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differences in computational effort~number of instances
largestn) and in the quality of the extrapolation.24

We can compare our results with existing theoretical p
dictions at the RS and the 1RSB level at least for the cas
BL at k1153. For this case, Ref. 21 reproducede35
21.2777 at the RS level, and yieldede3521.2717 at the
1RSB level ~further replica corrections are expected to

FIG. 1. Extrapolation plot for the BL energies~above! and en-
tropies~below! for k1153 obtained with EO for finiten ~Ref. 24!.
The data is plotted versus 1/n2/3 and is fitted according to Eq.~2!.
~Data points were weighted with respect ton and the inverse of the
error.! For n→` the extrapolation for the energy givese35
21.2716(1), wayabove the RS result but consistent with the 1RS
result ~Ref. 21!, both indicated by horizontal lines. The extrapol
tion for the entropy givess350.0102(10).

TABLE I. Extrapolated energies per spin for BL~left! and ORG
~right!. Although only integer values of the average connectivityc
were considered, it can take on any real value, unlikek11.

k11 ek11 k11 ek11 c ec

3 21.2716(1) 12 22.6127(9) 2 20.9192(2)
4 21.472(1) 14 22.8287(5) 3 21.2059(2)
5 21.673(1) 15 22.935(1) 4 21.4311(10)
6 21.826(1) 16 23.0268(9) 5 21.6224(10)
7 21.991(3) 18 23.212(2) 10 22.356(3)
8 22.1213(9) 20 23.389(1) 15 22.906(5)
9 22.2645(5) 25 23.806(4) 20 23.373(5)
10 22.378(3) 25 23.775(8)
3-2
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small!. These values and our extrapolation result ofe35
21.2716(1) are indicated in Fig. 1. Clearly, the extrapo
tion result is extremely close to the 1RSB results, but inc
sistent with the RS result.

We have also used EO to sample the degeneracyV of the
lowest-energy states found for BL. In these simulations
focused on smaller system sizes ofn<256 for k11
53, . . . ,9 and10,14, . . . ,26only. As a test for the accurac
of our implementation, we have run the simulation fork
1153 a second time on identical instances, using differ
initial conditions andn/5 more updates, obtaining identic
resultsfor each instance.

When plotted for 1/(k11) in Fig. 2, the BL entropies for
even connectivities decrease about linearly toward zero.
entropies for odd connectivities, clearly nonzero atk11
53 ~see Fig. 1!, drop more rapidly and are essentially indi
tinguishable from zero already atk1159. While any rapid,
smooth decay could easily escape our limited accuracy,
plot still raises the question whether there may be a fin
connectivity beyond which odd entropies vanish. The qu
tative difference between even and odd BL entropies can
understood in the presence or absence, respectively, of ‘
spins,’’ a finite fraction of spins in the ground state whi
violate exactly half of their bonds and may flip at no cost24

We have also plotted all BL and ORG energies asec /Ac
vs 1/c ~where c5k11 for BL! in Fig. 3. We expect tha

TABLE II. Extrapolated entropies per spin for BL.

k11 sk11 k11 sk11

3 0.0102~10! 4 0.0381~15!

5 0.0048~10! 6 0.0291~10!

7 0.0020~10! 8 0.0218~10!

9 0.0002~15! 10 0.0198~10!

14 0.0126~10! 15 0.0002~15!

18 0.0095~10! 22 0.0076~10!

26 0.0063~15!

FIG. 2. Asymptotic plot of the extrapolated entropies from Ta
II as a function of 1/(k11). The data for evenk11 seems to
vanish linearly with 1/(k11) ~dashed line!. The data for oddk
11 drops more precipitously, and can not reasonably be fitte
this level of accuracy.
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ec /Ac5ESK520.763 21 for RSB.6,28 All energies

for ORG appear to fall on a single smooth curve. We can
those energies with a parabola, projectingESK

ORG'20.761.
In contrast, the BL energies split into even and odd valu
each located apparently on a simple line. Each line se
rately extrapolates very close to the exact value:ESK

even'
20.763 andESK

odd'20.765. Amazingly, the trivial value of
e2521 is very close to the linear fit for the even resul
Clearly, a function that would interpolate continuouslyall
the BL energies will have to be very complicated~oscilla-
tory!. But we may speculate that its envelope for the ev
ek11 is a simple line, passinge2521 and the SK result:

Ek115ESKAk112
2ESK1A2

Ak11
. ~3!

at

FIG. 3. Plot of the rescaled extrapolated energiesec /Ac as a
function of 1/c for ORG ~squares! and BL ~circles!, where
c5k11. The BL data appears to fall on two separate strai
lines for even and for oddk11, including the trivial result,e2

521 ~diamond!. In all cases, the fits~dashed lines! provide
an reasonable estimate forESK520.763 21 ~horizontal line! at
infinite connectivity.

FIG. 4. Plot of the deviatione of the BL energies for evenk
11 ~circles! relative to Eq.~3! as a function of 1/(k11). All BL
data deviatesat worst by 0.2%. The point atk1152 ~diamond! is
exact. Energies from the interpolating graphs~crosses! do not
smoothly interpolate the BL data. Dashed lines are derived from
secantsek1112p5pek131(12p)ek11 , k1152,4 and 0<p<1,
and clearly trace the interpolating data.
3-3
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In Fig. 4, we plot the deviatione5ek11 /Ek1121 of the
extrapolated energies from Eq.~3! for evenk11. While the
extrapolated values do not fall exactly onto the propo
function, they areall within about 0.2% of it. In fact, all
points are slightly too high, which may indicate a more co
plex functional correction to Eq.~3!, or a systematic error
say, in the extrapolation due to higher-order corrections.

It has been pointed out29 that Eq.~3! would imply that a
first-order perturbation around the trivialk1152 solution
would be exact and give the RSB result for the SK mod
But the obvious continuation of BL off the even integers fa
to interpolate the data smoothly. If we ‘‘interpolate’’ BL fo
each k1152,4,6, . . . with a fraction (12p) of
(k11)-vertices and a fractionp of (k13)-vertices for 0
<p<1, the resulting energies only provide a set ofsecants,
ek1112p5pek131(12p)ek11, to the even-integer data. W
have also plot-ted our~somewhat less accurate! extrapolation
results for those interpolating graphs in Fig. 4. On this sc
the singular behavior of this continuation at the even integ
becomes obvious.
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