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An extensive list of results for the ground-state properties of spin glasses on random graphs is presented.
These results provide a timely benchmark for currently developing theoretical techniques based on replica
symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing
replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on
fixed-connectivity graphéBethe latticesexhibit a richer phenomenology than has been anticipated by theory.
Our data prove to be sufficiently accurate to speculate about some exact results.
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A theoretical understanding of the intricate dynamics ofdom graphs(ORG) with fluctuating connectivities, and for
disordered systems has been a major goal of statistical phyBethe-lattice graph$BL) with fixed connectivities. On a
ics at least since the introduction of the Edwards-Andersoismaller sample of BL, we have also obtained results for the
spin-glass modél.Already the study of the equilibrium at entropy of such graphs. The energies are in excellent agree-
low temperature, a state that real disordered materials rarefjent with RSB predictions for low-connectivity BE.Both,
achieve? reveals a stunning range of new phenomena, evetfie energies and entropies reveal a sensitivity to the even
in the simplest models such as the Sherrington and Kirkoddness of the BL, which may explain inconsistencies with
patrick model (SK) where all spins are mutually results in the SK limi No such inconsistency arises for
connected:®As an intermediate step in extending the mean-ORG and the numerical extrapolation is in good agreement
field techniques toward finite-dimensional models, spinwith analytic results for the large-connectivity limit in RSB.
glasses on random graphs are an area of active researdie BL energies seem to falivithin 0.2%) on a simple line
Those systems have been of interest from early on becauganging from the two-connected graphs to the SK limit, but
they combine infinite-range connectiofstich as SKwith a  only for even-integeconnectivities, without any obvious in-
finite, decidedly low connectivity. But those earlier studiesterpolation. The BL entropies decrease linearly with the in-
have focused either on temperatures at the glass transitiorerse connectivity for odd connectivities, but are already
on purely replica symmetri(RS) solutions® or on perturba- ~ consistent with zergwithin accuracy at small even connec-
tive approaches in th€SK)limit of large connectivity’ 1! tivity. More details of the numerical procedure is given

Simultaneously, the formal similarity between spin—glass,<'3‘|SGWhefé-“’25
Hamiltonians and the objective function of combinatorial op-  Of the two types of random graphs are considered for this

timization problems has been reali22dind exploited to Study, the BL are regular random grapfighese graphs con-
make RS predictions, for instance, for the bipartitioningSist ofn vertices where each vertex possesses a fixed number

problem on random grapf&:2® This connection, with the k+1 of bonds>'®*'with randomly selected other vertices.
discovery of phase transitions in combinatorial optimizationAlternatively, ORG are obtained by randomly connecting
problems® and the application of replica techniques to theirany pair of vertices with a specified probabilify=c/(n
study!’ has recently rejuvenated interest in spin glasses on- 1), leading to a graph of average connectiatyut where
random graphs. But to obtain quantitatively valuable predicthe connectivities of individual vertices are Poissonian
tions for NP-hard problems required the application of rep.distributed’:76 Note that the connectivity of each vertex, and
lica symmetry breakindRSB)® to those problems at finite thusk+1, is inherently discrete, whilecan take on any real
connectivities and low temperatures which was accomvalue.
plished recently®=2° Finally, these RSB methods are now Once a graph of connectivitg is generated, randomly
being applied to spin glasses on random graphs, producinghosen quenched couplingsje{—1,+1} are assigned to
quantitatively valuable resulé?! at accuracies below 0.1%. existing bonds between neighboring vertideand j. Each
At this level of accuracy, a comparison between theoreticavertexi is occupied by a spin variabbg e {—1,+1}. The
and simulation results becomes valuable at least in two reenergy of the system is defined as the difference in number
spects: Convergence of the numerical with the RSB resulbetween violated bonds and satisfied bonds,=
can verify the assumptions underlying RSB as well as the-2;,,nq4Ji jXiXj, and we will focus on the energy and en-
quality of the numerical method used to approximate an NPtropy per spin, respectively,
hard problem.

In this communication we apply the extremal optimiza- 1 1
tion (EO) heuristi¢®?*to investigate the ground-state prop- e.=—H, s.=-InQ, )
erties of spin glasses on random graphs. With this method we n n
have sampled system sizes up t©=4096 on low-
connectivity graphs. We have obtained high-accuracy resultwhere() is the degeneracy of the configurations exhibiting
for the ground-state energies of spin glasses on ordinary rathe ground-state energy.
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For our numerical procedure, we used the following ' ' ' '
implementation of EG%?3For a given spin configuration on '« EO k+1=3 o
a graph, assign to each spin; a “fitness” \;= -1.25F |---- fit .
—No. violated bonds-—-0,-1,-2,...,—¢;, so thate, | |— 1RSB =
=—3;\;/(2n) is satisfied. Hereg; is the integer connectiv- - RS el
ity of vertex i, and c,=k+1 for every vertex in BL. If -1.261 = iy
Cmax=Max{c;}, each spin falls into one of onlg,.+1 pos- : -
sible states. Say, currently there ang spins with the =

127, -7 .
worst fithess\ = — Cray. Ne 1 with A = —Chaxt 1, and so

on up tong spins with the best fitness=0, whereZn; O i
=n. Now draw a “rank” | according to the distribution 1288 ' s L ‘ L

-7 ; H Cmax '
P(1)~I"". Then, determine €j=<c,,, Such thatEi:Hlni 1/n2/3

<|s2f;"jaXni. Finally, select any one of the, spins in statg . . .
and reverse its orientatiamconditionallyAs a result, it and 0.04F k+1=3 E
its neighboring spins change their fithess. After all the ef- | EO s
fected\’s andn’s are reevaluated, a new spin is chosen for - -
an update. 0.03 ko iy
The arguments given in Ref. 27 and a few experiments - I ,,*?I
indicate thatr=1.3 is a satisfactory choice to find ground- 2 ook i
states efficiently on either type of graph. Our implementation | -
restarts for each instance at leagf,,=4 times with new e
random initial spin assignments, executing.1n® updates 001 T
per run. If a new, lower-than-previous energy state is encoun-
tered in runr, we adjustr,,,x=2+2r for that instance so that 0 s 5 s ' s .
EO runs at least twice as many restarts as were necessary to ' 23 ’ '
find the lowest state in the first place. Especially for small lin
I max hardly ever exceeds 4; for largera few graphs require FIG. 1. Extrapolation plot for the BL energig¢above and en-
up to 30 restarts before termination. Since EO perpetuallyropies(below) for k+1=3 obtained with EO for finitax (Ref. 24.
explores new configurations it is well suited to explore alsoThe data is plotted versusntf® and is fitted according to Eq2).
the degeneracy) of low-energy states. In these runs, we (Data points were weighted with respectrtand the inverse of the
used a similar approach to the above, except for settingrror) For n—o the extrapolation for the energy gives=
Imax=8+2r, wherer is the latest run in which a new con- —1.271€1), wayabove the RS result but consistent with the 1RSB
figuration of the lowest energy was located. result(Ref. 21, both indicated by horizontal lines. The extrapola-
We have simulated spin glasses on BL with this algorithmtion for the entropy gives;=0.0102(10).
for k+1 between 3 and 26, and graph sizes?2' for |
=5,6, . ..,10 toobtain results for ground-state energiéén differences in computational effofnumber of instances,
particular, fork+1=3 we have used the methods describediargestn) and in the quality of the extrapolatidh.
in Ref. 25 to reach system sizes w#4096. In a separate e can compare our results with existing theoretical pre-
simulation, usingr=1.4, we have explored BL of size  dictions at the RS and the 1RSB level at least for the case of
€[16, .. .,256] to determine their entropy. We have used theBL at k+1=3. For this case, Ref. 21 reproduced=
same algorithm, preceded by a graph reduction procedure,—1.2777 at the RS level, and yielded=—1.2717 at the
to study ORG ranging froon<2'>for c=2 ton<2% atc  1RSB level(further replica corrections are expected to be
=25. Amazingly, as is shown in Refs. 24 and 25, in all these
cases our data can be extrapolatedrfer~ via

TABLE I. Extrapolated energies per spin for Bleft) and ORG
(right). Although only integer values of the average connecticity

A were considered, it can take on any real value, uriikel.
ec(nN)~et —5 (n—ox). 2

n k+1 ki1 k+1 €1 c e
Deviations from these scaling corrections are generally —1.2716(1) 12 -2.6127(9) 2 —0.9192(2)
smalf* and we assume E@2) to be exact here. There does 4 —1.472(1) 14 -2.8287(5) 3 —1.2059(2)
not appear a theoretical justification for Eg), butin Fig. 1, 5 —1.673(1) 15 —2.935(1) 4 -—1.4311(10)
we show representatively the largeextrapolation of our 6 —1.826(1) 16 —3.0268(9) 5 —1.6224(10)
data fork+1=3. Both, finiten energies and entropies, ap- 7 —1.991(3) 18 —3.212(2) 10 —2.356(3)
pear to scale linearly when plotted fom#F. The extrapola- g —2.1213(9) 20 —3.389(1) 15 —2.906(5)
tion results for the energies of BL and ORG are given ing —2.2645(5) 25 —3.806(4) 20 —3.373(5)
Table I. The extrapolation results for the BL entropies arejg —2.378(3) 25 —3.775(8)

given in Table Il. Variation in th€estimated errors reflect
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TABLE Il. Extrapolated entropies per spin for BL.

-0.70
k+1 Sk+1 k+1 Sk+1
3 0.010210) 4 0.038115) o 072
5 0.004810) 6 0.029110) )
7 0.002010) 8 0.021810) o
9 0.000215) 10 0.019810) 0.74
14 0.012610) 15 0.000215)
18 0.009510) 22 0.007610) '
26 0.006815) 0.76

smal). These values and our extrapolation resultegt=
—1.2716(1) are indicated in Fig. 1. Clearly, the extrapola-fun
tion result is extremely close to the 1RSB results, but incon

sistent with the RS result.

We have also used EO to sample the degenefhoy the
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FIG. 3. Plot of the rescaled extrapolated energa'gls\/E as a
ction of 1t for ORG (squares and BL (circles, where
c=k+1. The BL data appears to fall on two separate straight

lines for even and for odd+ 1, including the trivial result,e,

=—1 (diamond. In all cases, the fitsdashed lines provide

lowest-energy states found for BL. In these simulations Weyn reasonable estimate fdis,= —0.763 21 (horizontal ling at

focused on smaller system sizes af256 for k+1

=3,...,9andl0,14 ... ,260nly. As a test for the accuracy

of our implementation, we have run the simulation for

lim

+1=3 a second time on identical instances, using differen} e

initial conditions andn/5 more updates, obtaining identical

resultsfor each instance

When plotted for 1+ 1) in Fig. 2, the BL entropies for

infinite connectivity.

e./\Jc=Esx=—0.76321 for RSE:?® All energies

or ORG appear to fall on a single smooth curve. We can fit
those energies with a parabola, projectiBgR®~—0.761.
In contrast, the BL energies split into even and odd values,

even connectivities decrease about linearly toward zero. Thgach located apparently on a simple line. Each line sepa-

entropies for odd connectivities, clearly nonzerokat 1
=3 (see Fig. 1, drop more rapidly and are essentially indis- —0.763 andEg
tinguishable from zero already kt-1=9. While any rapid,

(o]

rately extrapolates very close to the exact valggie"~
dd~ —0.765. Amazingly, the trivial value of
e,=—1 is very close to the linear fit for the even results.

smooth decay could easily escape our limited accuracy, thelearly, a function that would interpolate continuously
plot still raises the question whether there may be a finitdhe BL energies will have to be very complicatéabcilla-
connectivity beyond which odd entropies vanish. The qualifory). But we may speculate that its envelope for the even
tative difference between even and odd BL entropies can b1 IS @ simple line, passing,= —1 and the SK result:
understood in the presence or absence, respectively, of “free
spins,” a finite fraction of spins in the ground state which
violate exactly half of their bonds and may flip at no ctst.
We have also plotted all BL and ORG energiesegb\/c

vs 1k (wherec=k+1 for BL) in Fig. 3. We expect that
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Il as a function of 1/k+1). The data for evelk+1 seems to
vanish linearly with 1/k+1) (dashed ling The data for oddk
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FIG. 4. Plot of the deviatiore of the BL energies for evek
+1 (circles relative to Eq.(3) as a function of 1K+1). All BL
FIG. 2. Asymptotic plot of the extrapolated entropies from Tabledata deviateat worst by 0.2%The point atkk+1=2 (diamond is

exact. Energies from the interpolating graptwosses do not
smoothly interpolate the BL data. Dashed lines are derived from the

+1 drops more precipitously, and can not reasonably be fitted atecantsey, 1, p,=pP&;3+(1—p)€c 1, K+1=2,4 and Gsps<1,
and clearly trace the interpolating data.

this level of accuracy.
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In Fig. 4, we plot the deviatiom=¢y /& 1—1 of the We can further compare our extrapolated energies with
extrapolated energies from E@) for evenk+1. While the  perturbative calculations in the SK limit of infinite
extrapolated values do not fall exactly onto the proposedonnectivity’** A recent RSB calculation indicates acl/
function, they areall within about 0.2% of it. In fact, all ~correction for the ground-state energyfgt~ —0.32 for BL
points are slightly too high, which may indicate a more com—andf?RG~O.17 for ORG(see Figs. 3 and 4 of Ref).9Nhile
plex functional correction to Eg3), or a systematic error, our (crude fit in Fig. 3 predicts a slope at the origin of
say, in the extrapolation due to higher-order corrections. ~0.16 for ORG, the slopes for either even or odd BL data

It has been pointed otftthat Eq.(3) would imply that a  would predict~0.11-0.10, or 0.1122 from Eq23), far from
first-order perturbation around the trivieh-1=2 solution the perturbative result. It appears that the oscillation between
would be exact and give the RSB result for the SK modeleven and oddk+1 complicates also the analytic continua-
But the obvious continuation of BL off the even integers failstion of the BL problem for large connectivities.
to interpolate the data smoothly. If we “interpolate” BL for It will be most interesting to see how well upcoming RSB
each k+1=24,6... with a fraction (1-p) of calculations aff=0 for evenk+1 will correspond to the
(k+1)-vertices and a fractiop of (k+3)-vertices for O proposed function in Eq.3), or to the extrapolated energies
<p=1, the resulting energies only provide a sesetants in Table I, in general. While the EO algorithm in itself can
€kr1+2p= PEy3t+(1—p)eg 1, to the even-integer data. We not provide information about the physics Bt-0, the re-
have also plot-ted oulsomewhat less accuratextrapolation  sults presented in this communication are sufficiently prom-
results for those interpolating graphs in Fig. 4. On this scaleising to apply EO also to sample other mod&land more
the singular behavior of this continuation at the even integersomplicated properties of the ground states, such as overlap
becomes obvious. distributions and excitations.
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