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Multiple flux jumps and irreversible behavior of thin Al superconducting rings
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An experimental and theoretical investigation was made of flux jumps and irreversible magnetization curves
of mesoscopic Al superconducting rings. In the small magnetic-field region the change of vorticity with
magnetic field can be larger than unity. This behavior is connected with the existence of several metastable
states of different vorticities. The intentional introduction of a defect in the ring has a large effect on the size
of the flux jumps. Calculations based on the time-dependent Ginzburg-Landau model allows us to explain the
experimental results semiquantitatively.
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I. INTRODUCTION

Recently, Pedersenet al.1 observed jumps in the magne
tization of superconducting rings which corresponds
changes of the vorticity larger than unity. This is in contra
to the behavior of superconducting disks where only chan
of the vorticity with unit size were observed.2 In some re-
spect the observed behavior in rings is similar to vortex a
lanches which were observed in superconductors with str
bulk pinning3,4 or to jumps in the magnetization when se
eral vortices~in the form of a chain! enter into a supercon
ducting film of width comparable to the coherence length5,6

The occurrence of such jumps in a defect-free supercond
ing ring originates from the fact that several metastable st
with different vorticitiesL are stable at a given magnet
field. However the existence of such multiple stable state
not a sufficient condition to explain changes in the vortic
larger than unity~e.g., they also exist in the case of sup
conducting disks!. An additional important requirement is t
find the stability condition for those metastable states an
determine the state to which the system relaxes. This requ
the study of the transition process from one state to anot
i.e., it requires analyzing time-dependent processes.

The stability condition was studied numerically in Ref.
for the case of a hollow cylinder, and in a number of wor
~see, for example, Refs. 8 and 9, and references therein! for
superconducting disks and rings by using the sta
Ginzburg-Landau~GL! equations. Unfortunately no analyt
cal results were presented due to the rather general char
of the studied systems in the above works.

Recently, we studied the transition process10 between
states with different vorticities using the time-depend
Ginzburg-Landau equations. It was shown that transiti
between different metastable states in a mesoscopic su
conducting ring are governed by the ratio between the t
relaxation of the phase of the order parametertf ~which is
inversely proportional to the Josephson frequency! and the
time relaxation of the absolute value of the order param
t ucu . We found that if the ratiot ucu /tf is sufficiently large
the system will always transit from a metastable state to
ground state. This leads to an avalanche-type variationL
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when the vorticity of the metastable state differs apprecia
from the vorticity of the ground state. In contrast to the ca
of a superconducting film, in a ring the ‘‘vortex’’ entry oc
curs through a single point and the vorticity increases one
one during the transition. In low-temperature supercondu
ors such as In, Al, and Sn the ratiot ucu /tf is very large for
temperatures far below the critical temperatureTc and hence,
if such systems are driven far out of equilibrium they w
always relax to the ground state.

In this work we investigate the conditions under which
state with a given vorticity becomes unstable in a finite wid
ring and we find how the superconducting order paramete
the ring changes with increasing applied magnetic field.
are able to find an analytical expression for the depende
of the order parameter on applied magnetic field, and he
for the upper critical field at which superconductivity va
ishes in such a sample. We provide a direct comparison
the theoretical and experimental results on aluminum rin
Our theoretical calculations are based on a numerical s
tion of the time-dependent Ginzburg-Landau equations.

The paper is organized as follows. In Sec. II the theor
ical formalism is presented and the two-dimensional tim
dependent GL equations are solved. In Sec. III the exp
mental results are presented and compared with our the
In Sec. IV we present our conclusions and our main resu

II. THEORY

We consider sufficiently narrow rings such that we c
neglect screening effects. This is allowed when the width
the ringw is less than max(l,l2/d), wherel is the London
penetration length andd is the thickness of the ring. In orde
to study the response of such a ring on the applied magn
field we use the time-dependent Ginzburg-Landau equat

uS ]c

]t
1 iwc D5~¹2 iA!2c1~12ucu2!c, ~1a!

Dw5div$Im@c* ~¹2 iA!c#%, ~1b!
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where all the physical quantities~order parameterc
5ucueif, vector potentialA, and electrostatical potentialw)
are measured in dimensionless units: the vector potentialA is
scaled in unitsF0 /(2pj) ~whereF0 is the quantum of mag
netic flux!, and the coordinates are in units of the cohere
length j(T). In these units the magnetic field is scaled
Hc2 and the current density,j, by j 05cF0/8p2l2j. Time is
scaled in units of the Ginzburg-Landau relaxation timetGL
54psnl2/c2, and the electrostatic potential,w, is in units
of cF0/8p2jlsn (sn is the normal-state conductivity!. Here
the time derivative is explicitly included which allows us
determine the moment at which the state with given vortic
L becomes unstable. The coefficientu governs the relaxation
of the order parameter. For example, the time relaxation
the absolute value of the order parameter varies ast ucu
;u0.6 and the time relaxation of the phase of the order
rameter~which is inversely proportional to the time of th
charge imbalancetQ;1/Atf) astf;u0.22 ~see Ref. 10!.

It is essential to include the electrostatic potential~which
is responsible for the appearance of the Josephson tim
frequency! in order to account for multivortex jumps. First,
is connected with the conversion of superconducting cur
into normal current and vice versa, which implies for the f
current density in the superconducting ring that div(j s1 j n)
50, which reflects conservation of the total current in spa
@with j s5Im$c* (¹2 iA)c% the superconducting andj n
52¹w the normal current density#. Secondly, it leads to
different time relaxation scales for the phase and magnit
of the order parameter. As a result multivortex jumps in
ring become possible if the ratio10 t ucu /tf@1. In some pre-
vious studies~see, for example, Refs. 11 and 12! w50 was
assumed and as a consequence only transitions with unit
ticity jumps, i.e.,DL51, are possible in the ring10 because
in this caset ucu /tf;1 at any value of the parameteru and
radii of the ring. In our calculations we choose the valueu
548 which ensures the conditiont ucu /tf@1.

We assume that the width~w! of the ring is less than two
coherence lengthsj, because~i! all experimental results pre
sented here were performed for such samples and~ii ! only in
this case it is possible to obtain simple analytical expr
sions. For instance, this is the case for the dependence o
order parameter on the applied magnetic field and the up
critical field Hmax.

For w<2j the order parameter is practically independe
of the radial coordinate. This is demonstrated in Fig. 1 wh
the dependence of the order parameter in the middle of
ring is compared with its value at the inner and outer bou
aries of the ring, i.e.,r 5R6w/2 (R are the mean radii of the
rings!, for two different rings. Notice that these two nume
cal examples correspond already to relatively wide me
scopic rings, i.e.,R/w;122. For the fieldHmax we are able
to fit our numerical results to the expression

Hmax53.67
F0

2pjw
. ~2!

For rings withw<2j andw/R,1 this analytical expression
is within 2% of the numerical results. It is interesting to no
that Hmax does not depend on the radii of the ring. But t
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value of the vorticity of the system depends onR. For ex-
ample, forR55.5j(16.5j) we haveL555(501) forw5j at
H5Hmax.

Note that Eq.~2! has the same dependence on the sup
conducting parameters as the case of a thin plate with th
nessd,A5l placed in a parallel magnetic field.13,14 Even
the numerical coefficient is quite close, i.e., for a thin plate
is equal to 2A3.3.46. Furthermore, we found that the tra
sition to the normal state of our rings at the critical fieldHmax
is of second order as is also the case for a thin plate
possible reason for this close similarity is that for a thin pla
with thicknessd,A5l the screening effects are also ve
small. In the calculations of Refs. 13 and 14 an average va
for the order parameter was used independent of the coo
nate. Note that this is similar to ourucu which is practically
independent of the radial coordinate~see Fig. 1!.

The absolute value of the order parameter~in the middle
of the ring! is, to a high accuracy, given by the expressio

ucu2512~H/Hmax!
22p~L,H !2, ~3!

with p(L,H)5L/R2HR/2, where the vorticityL depends
on the history of the system. This result is similar to the o
obtained in Refs. 13 and 14 with the exception of the l
term in Eq.~3! which appears due to the closed geometry
the ring and hence leads to a nonzeroL.

All the above results were obtained for a ring which is
the ground state at any value of the magnetic field. Howe
such a system can exhibit several metastable states at a
magnetic field, and consequently this may lead to hyster
behavior when one sweeps the magnetic field up and do

FIG. 1. Dependence of the absolute value of the order param
ucu on the applied magnetic field for two different sizes of the rin
in the ground state. Dashed curves correspond toucu(R2w/2,H),
solid curves to ucu(R,H), and the dotted curve toucu(R
1w/2,H).
6-2
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Furthermore, with changing field the vorticity may jum
with DL.1. An important question which arises is the co
dition of stability of the state with given vorticity. This ques
tion was studied earlier for one-dimensional rings,12,15 i.e.,
rings with zero width. It turns out that the system transits
a state with another vorticity when the value of the gau
invariant momentump5¹f2A reaches the critical value

pc5
1

A3
A11

1

2R2
. ~4!

Physically, it means that at this value the kinematical ene
of the Cooper pairs becomes similar to their binding ene
Using Eq.~4! it is easy to find the value of the magnetic fie
for the first ‘‘vortex’’ entry,

Hen /Hc252pc /R5
2

A3R
A11

1

2R2
. ~5!

We will now generalize the results of Refs. 12 and 15
the case of rings with finite width but such thatw&2j. First
we will neglect the dependence ofc on the radial coordinate
in which case the GL equations reduce to one-dimensio
expressions. But in order to include the suppression of
order parameter by an external field for a finite width ring
add the term2(H/Hmax)

2c to the right-hand side of Eq
~1a!, where Hmax is given by Eq.~2!. Using the stability
analysis of the linearized Ginzburg-Landau equations ne
specific metastable state as presented in Ref. 15 we ob
the modified critical momentum

pc5
1

A3
A12S H

Hmax
D 2

1
1

2R2
. ~6!

Note that nowpc decreases with increasing magnetic fie
This automatically leads to a decreasing value of the jum
the vorticityDL at high magnetic field, because in Ref. 10
was shown that

DLmax5Nint~pcR!, ~7!

where Nint(x) returns the nearest integer to the argumen
In order to check the validity of Eq.~6! we performed a

numerical simulation of the two-dimensional Ginzbur
Landau equations, Eqs.~1a! and ~1b!, for a ring with R
55.5j and w51.5j ~these parameters corresponds to
experimental situation—see the following section!. In Fig. 2
the magnetization, the order parameter, and the ga
invariant momentump are shown as functions of the applie
magnetic field. The magnetic field was cycled up and do
from H,2Hmax to H.Hmax. The condition~6! leads to a
hysteresis ofM (H) and to a changing value of the jump
the vorticity in accordance with the change inpc . The main
difference between our theoretical prediction~6! and the re-
sults of our numerical calculations appears at fields clos
Hmax. Apparently it is connected with the fact that for th
considered ring the distribution of the order parameter al
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the width of the ring is appreciably nonuniform atH
.Hmax and as a consequence the one-dimensional m
breaks down~see Fig. 1!.

Finally, we also considered the same ring with a defe
The effect of the defect was modeled by introducing in t
right-hand side of Eq.~1a! the term2r(s)c (s is the arc
coordinate! wherer(s)521 inside the defect region with
sizej andr(s)50 outside. This leads to the results shown
Fig. 3 for M (H), ucu(H), andp(H). Due to the presence o
the defect,pc differs from Eq.~6! already at low magnetic
field @pc(H50).0.33 at a given ‘‘strength’’ of the defect!
and as a result only jumps withDL51 are possible in such a
ring. In this case thepc and ucu also depend on the applie
magnetic field with practically the same functional depe
dence onH as Eq.~6!.

III. COMPARISON WITH EXPERIMENT

The measurements were performed on individual
superconducting rings by using ballistic Ha
micromagnetometry.16,17 The technique employs small Ha
probes microfabricated from a high-mobility two
dimensional electron gas. The rings—having radiiR
.1 mm and widthw ranging from 0.1 to 0.3mm—were

FIG. 2. Magnetic-field dependence of the magnetization~a!, the
order parameter~b!, and the gauge-invariant momentum~c! in the
middle of the ring. Dotted curve in~b! is the expression
A12(H/Hmax)

2. Dotted curve in ~c! is the expression
A12@(H2H0)/Hmax#

2/A3, whereH0.13G is the displacement of
the maximum ofM (H) from theH50 line.
6-3
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placed directly on top of the microfabricated Hall cross
which had approximately the same widthb of about 2mm
~see micrograph in Fig. 4 for a ring with an artificial defec!.
These experimental structures were prepared by multis

FIG. 3. Magnetic-field dependence of the magnetization~a!, the
order parameter~b!, and the gauge-invariant momentum~c! ~in the
middle of the ring! of a ring containing a single defect. Dotte
curve in ~b! is the expressionA12(H/Hmax)

2.

FIG. 4. A micrograph of the superconducting ring placed on
of a Hall bar. An artificial defect~narrowing of the ring cross sec
tion! is intentionally made by electron-beam lithography.
05450
,

ge

electron-beam lithography with the accuracy of alignme
between the stages better than 100 nm. The rings studie
this work were thermally evaporated and exhibited a sup
conducting transition at about 1.25 K. The superconduct
coherence length wasj(T50).0.18mm. The latter was
calculated from the electron mean free pathl .25 nm of
macroscopic Al films evaporated simultaneously with the
rings. The Hall response,Rxy , of a ballistic cross is given by
the amount of magnetic flux*Bds through the central squar
areab3b of the cross.16,18 For simplicity, one can view the
ballistic magnetometer as an analog of a microsupercond
ing quantum interference device, which would have a squ
pickup loop of sizeb and superconducting rings placed in i
center. We present our experimental data in terms of the
magnetizationM5^B&2H which is the difference betwee
the applied fieldH and the measured field̂B&;Rxy . Previ-
ously, we have studied individual superconducting and fer
magnetic disks and found excellent agreement with
above formula.17,19 For further details about the techniqu
we refer the reader to our earlier work.16–18

Rings with and without an artificial defect were studie
Let us consider first the ring without an artificial defect.
Fig. 5~a! the full magnetization loop of such a ring wit
parameters R51.060.1 mm and w50.2560.05mm is
shown. In Fig. 6~solid curve! the low-field part of the virgin
curve is presented. From the virgin traceM (H) we can find
the magnetic field for the first vortex entry,Hen , and hence

p

FIG. 5. Magnetic-field dependence of the magnetization of
ring without ~a! and with ~b! an artificial defect atT.0.4 K. Pa-
rameters of the rings~width and radii! are the same to within ex
perimental accuracy.
6-4
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MULTIPLE FLUX JUMPS AND IRREVERSIBLE . . . PHYSICAL REVIEW B 67, 054506 ~2003!
we estimate j.0.19mm at the given temperature (T
.0.4 K) using Eq.~5! ~this value ofj is in agreement with
the above experimental valuej(0).0.18mm obtained from
the mean free path!. Furthermore, we know from Fig. 5~a!
that the vorticity changes withDL53 for H.0. This agrees
with the fact that the radii of the ring are larger than 4.j
@see Eq.~7!#. Another important piece of information whic
may be extracted from the virgin curve is that at the fi
vortex entry the magnetization drops considerably but it d
not change sign. If we recall that at every vortex entryp
decreases on 1/R ~and hence the current densityj and M
;*@ j3r #dV also changes proportionally! we can conclude
that the radii of our ring should be in the range 5.5j&R
&6.5j. This agrees with the experimental valueR/j.5.3
60.5.

If we take the above value forj andw.1.5j we obtain
the maximum field ofHmax.223 G. This value is slightly
smaller than the value obtained from Figs. 2 and 3,Hmax
.240 G, which we attribute to the large coordinate step t
we used in our numerical calculations of Eqs.~1a! and~1b!.
The value is also larger than the experimental valueHmax
.185 G. This disagreement between theory and experim
is most likely connected to the semiquantitative applicabi
of the Ginzburg-Landau equations in the conside
temperature range. The range of applicability of t
Ginzburg-Landau equations~even the stationary ones! for
this specific superconductor is very narrow. Neverthel
based on previous comparison between experiments
theory for mesoscopic superconducting disks20,21 it was
found that the GL equations provided a rather good desc
tion of the superconducting state even deep inside the (H,T)
phase diagram.

Figures 2~a! and 5~a! are qualitatively very similar.
For example, our theory describes~i! the hysteresis;~ii ! the
nonunity of the vorticity jumps, i.e.,DL53 in the low
magnetic-field region,DL52 in the intermediateH region,
and DL51 near Hmax. Theoretically ~experimentally! we
found 6~5!, 13~21!, and 22~18! jumps with, respectively,
DL53, 2, and 1.~iii ! Last, we found the nonsymmetri

FIG. 6. Magnetic-field dependence of the virgin magnetizat
of a ring without~solid curve! and with ~dotted curve! an artificial
defect. The dotted curve is shifted for clarity by 0.6.
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magnetization near6Hmax for magnetic-field sweeps up an
down.

In the ring with approximately the same mean radii a
width but containing an intentionally introduced artificial d
fect, jumps withDL51 are mostly observed@see Fig. 5~b!#.
The reason is that an artificial defect considerably decrea
the critical valuepc ~and hence the fieldHen—see dotted
curve in Fig. 6!. From Figs. 2~c! and 3~c! it is clear that the
maximum values arepc

id.0.54 for a ring without a defec
and pc

d.0.35 for a ring with a defect. The ratiopc
d/pc

id

.0.65 is close to the ratio of the field of first vortex ent
Hen

d /Hen
id .0.67 obtained from experiment~see Fig. 6!. From

Fig. 2~c! it is easy to see that for a ring without a defect
p.0.35 there are only jumps withDL51. But if we slightly
increasep then jumps withDL52 can appear in the system
So we can conclude thatp50.35 is close to the border valu
which separates regimes with jumps in vorticity ofDL51
and DL52. From our experimental data it follows that th
maximum value ofpc is very close to this border. Therma
fluctuations may influence the value ofDL, in particular for
a pc value close to this border value. This is probably t
reason that in the experiment@Fig. 5~b!# occasional jumps
with DL52 are observed which are absent in our simulat
@Fig. 3~a!#.

IV. CONCLUSION

We studied multiple flux jumps and irreversible behav
of the magnetization of thin mesoscopic Al superconduct
rings. We have shown experimentally and theoretically t
at low magnetic fields and for rings with sufficiently larg
radii the vorticity may change by values larger than uni
With increasing magnetic field the order parameter gradu
decreases and thus leads to a decrease of the size o
jumps in the vorticity. For rings with width less than 2j
analytical expressions were obtained for the dependenc
the order parameter on the applied magnetic field. We h
found that a state with a given vorticity becomes unsta
when the value of the gauge-invariant momentum reach
critical value pc which decreases with increasing magne
field. This is responsible for the fact thatDL decreases
with increasingH. The introduction of an artificial defec
in the ring leads to a decrease ofpc in comparison to the cas
of a ring without a defect and also results in a decrease
DL.
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