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Multiple flux jumps and irreversible behavior of thin Al superconducting rings
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An experimental and theoretical investigation was made of flux jumps and irreversible magnetization curves
of mesoscopic Al superconducting rings. In the small magnetic-field region the change of vorticity with
magnetic field can be larger than unity. This behavior is connected with the existence of several metastable
states of different vorticities. The intentional introduction of a defect in the ring has a large effect on the size
of the flux jumps. Calculations based on the time-dependent Ginzburg-Landau model allows us to explain the
experimental results semiquantitatively.
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[. INTRODUCTION when the vorticity of the metastable state differs appreciably
from the vorticity of the ground state. In contrast to the case
Recently, Pederseet al! observed jumps in the magne- of a superconducting film, in a ring the “vortex” entry oc-
tization of superconducting rings which corresponds tocurs through a single point and the vorticity increases one by
changes of the vorticity larger than unity. This is in contrastone during the transition. In low-temperature superconduct-
to the behavior of superconducting disks where only change@'s such as In, Al, and Sn the ratig, /7, is very large for
of the vorticity with unit size were observédn some re- temperatures far below the critical temperatligeand hence,
spect the observed behavior in rings is similar to vortex avaif such systems are driven far out of equilibrium they will
lanches which were observed in superconductors with stronglways relax to the ground state.
bulk pinning** or to jumps in the magnetization when sev-  In this work we investigate the conditions under which a
eral vortices(in the form of a chaipenter into a supercon- State with a given vorticity becomes unstable in a finite width
ducting film of width comparable to the coherence lertfth. ring and we find how the superconducting order parameter in
The occurrence of such jumps in a defect-free superconductbe ring changes with increasing applied magnetic field. We
ing ring originates from the fact that several metastable stated'® able to find an analytical expression for the dependence
with different vorticitiesL are stable at a given magnetic Of the order parameter on applied magnetic field, and hence
field. However the existence of such multiple stable states i§r the upper critical field at which superconductivity van-
not a sufficient condition to explain changes in the vorticityishes in such a sample. We provide a direct comparison of
larger than unity(e.g., they also exist in the case of super_the theoretical and experimental results on aluminum rings.
conducting disks An additional important requirement is to Our theoretical calculations are based on a numerical solu-
find the stability condition for those metastable states and téon of the time-dependent Ginzburg-Landau equations.
determine the state to which the system relaxes. This requires The paper is organized as follows. In Sec. Il the theoret-
the study of the transition process from one state to anothei¢al formalism is presented and the two-dimensional time-
i.e., it requires analyzing time-dependent processes. dependent GL equations are solved. In Sec. Il the experi-
The stability condition was studied numerically in Ref. 7 mental results are presented and compared with our theory.
for the case of a hollow cylinder, and in a number of works!n Sec. IV we present our conclusions and our main results.
(see, for example, Refs. 8 and 9, and references thefiain
superconducting disks and rings by using the static
Ginzburg-LandauGL) equations. Unfortunately no analyti- l. THEORY
cal results were presented due to the rather general character\ye consider sufficiently narrow rings such that we can

of the studied systems in the above works. neglect screening effects. This is allowed when the width of
Recently, we studied the transition proc@sbetween ihe ringw is less than max(,\2/d), where\ is the London

states with different vorticities using the time-dependentyenetration length andis the thickness of the ring. In order

Ginzburg-Landau equations. It was shown that transitiongg study the response of such a ring on the applied magnetic

between different metastable states in a mesoscopic supgfa|d we use the time-dependent Ginzburg-Landau equations
conducting ring are governed by the ratio between the time

relaxation of the phase of the order parametgr(which is
inversely proportional to the Josephson frequéerayd the
time relaxation of the absolute value of the order parameter
74 - We found that if the ratior|, /7, is sufficiently large
the system will always transit from a metastable state to the
ground state. This leads to an avalanche-type variatidn of Ap=div{Im[4*(V—iA)y]}, (1b)

u

d
§—‘f+i<pw)=(V—iA)2w+<1—|¢lz>¢, (13
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where all the physical quantitiegorder parameterys
=|y|e'®, vector potentialA, and electrostatical potentiai)
are measured in dimensionless units: the vector potehil
scaled in unitsb,/(27¢) (whered is the quantum of mag-
netic flux), and the coordinates are in units of the coherence
length £(T). In these units the magnetic field is scaled by
H., and the current density, by jo=c®,/87°\2¢. Time is
scaled in units of the Ginzburg-Landau relaxation timg
=47o,N%/c?, and the electrostatic potentia, is in units
of cdy/8m%éN o, (o, is the normal-state conductivityHere
the time derivative is explicitly included which allows us to
determine the moment at which the state with given vorticity
L becomes unstable. The coefficiengoverns the relaxation
of the order parameter. For example, the time relaxation of
the absolute value of the order parameter variesrgs
~u%® and the time relaxation of the phase of the order pa-
rameter(which is inversely proportional to the time of the
charge imbalancey~ 1/\/74) as7,~u®? (see Ref. 1

It is essential to include the electrostatic potentiahich
is responsible for the appearance of the Josephson time or

\"!

[l

0.0 . .

frequency in order to account for multivortex jumps. First, it 00 02 04 06 08 1.0

is connected with the conversion of superconducting current H/H

into normal current and vice versa, which implies for the full max

current density in the superconducting ring that @iv(j,,) FIG. 1. Dependence of the absolute value of the order parameter

=0, which reflects conservation of the total current in spacé| on the applied magnetic field for two different sizes of the rings
[with js=Im{4*(V—iA)y} the superconducting angl,  in the ground state. Dashed curves corresponti/foR—w/2 H),
=—V¢ the normal current density Secondly, it leads to solid curves to |¢|(R,H), and the dotted curve td#|(R
different time relaxation scales for the phase and magnitude w/2,H).

of the order parameter. As a result multivortex jumps in the -
ring become possible if the rafﬂarwlrdPl. In some pre- value of the vorticity of the system depends BnFor ex-
vious studiegsee, for example, Refs. 11 and)1@=0 was amMPle, forR="5.5(16.%) we havel =55(501) forw=¢ at

assumed and as a consequence only transitions with unit vor= NH maX'h Eq(2) has th q q h
ticity jumps, i.e.,AL=1, are possible in the rif§because ote that Eq.(2) has the same dependence on the super-

in this caser|,;/7,~1 at any value of the parameterand conducting parameters as the case of a thin plate with thick-

radii of the rigg. In our calculations we choose the value 1€SSd<y5\ placed in a parallel magnetic fied* Even

= 48 which ensures the conditian, /7,5 1. the numerical coefficient is quite close, i.e., for a thin plate it
We assume that the widlw) of the ring is less than two 1S equal to 2/3=3.46. Furthermore, we found that the tran-

coherence lengths becauseéi) all experimental results pre- _smon to the normal state_ of our rings at the critical _f|blgtax

sented here were performed for such samples(@ndnly in is of_second order as is also_th_e case for a thin plate. A

this case it is possible to obtain simple analytical exprespc_’ss'bl_e reason for this close 5|m|I_ar|ty is that for a thin plate

sions. For instance, this is the case for the dependence of théth thicknessd< 5\ the screening effects are also very

order parameter on the applied magnetic field and the upp@mall. In the calculations of Refs. 1_3 and 14 an average valug

critical field H .y for the order parameter was used independent of the coordi-
Forw=2¢ the order parameter is practically independenthate. Note that this is similar to olis| which is practically

of the radial coordinate. This is demonstrated in Fig. 1 wherdndependent of the radial coordinafeee Fig. 1 _

the dependence of the order parameter in the middle of the The absolute value of the order paraméterthe middle

ring is compared with its value at the inner and outer bound®f the ring is, to a high accuracy, given by the expression

aries of the ring, i.er =R=w/2 (R are the mean radii of the 2_4_ 2 2

rings), for two different rings. Notice that these two numeri- |917= 1= (H/Hma)—p(L,H)®, ©)

cal examples correspond already to relatively wide mesowith p(L,H)=L/R—HR/2, where the vorticityL depends

scopic rings, i.e.R/'w~1—2. For the fieldH ., we are able on the history of the system. This result is similar to the one

to fit our numerical results to the expression obtained in Refs. 13 and 14 with the exception of the last
term in Eq.(3) which appears due to the closed geometry of
Dy the ring and hence leads to a nonzero
Himax= 3'672775\,\,' 2 All the above results were obtained for a ring which is in

the ground state at any value of the magnetic field. However,
For rings withw=2¢ andw/R<1 this analytical expression such a system can exhibit several metastable states at a given
is within 2% of the numerical results. It is interesting to note magnetic field, and consequently this may lead to hysteretic
that H o« does not depend on the radii of the ring. But thebehavior when one sweeps the magnetic field up and down.
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Furthermore, with changing field the vorticity may jump T
with AL>1. An important question which arises is the con-
dition of stability of the state with given vorticity. This ques-
tion was studied earlier for one-dimensional rifg%° i.e.,
rings with zero width. It turns out that the system transits to
a state with another vorticity when the value of the gauge-
invariant momentunp=V ¢— A reaches the critical value

1 1
pc:ﬁ 1+ E (4)

Physically, it means that at this value the kinematical energy
of the Cooper pairs becomes similar to their binding energy.
Using Eq.(4) it is easy to find the value of the magnetic field
for the first “vortex” entry,

-t n
o o
T T

-M(arb.units)
o

[yl

2 1
Hen/Heo=2p/R= —

1+ —.
J3R 2R?

We will now generalize the results of Refs. 12 and 15 to
the case of rings with finite width but such thats2¢. First
we will neglect the dependence @fon the radial coordinate

©)

in which case the GL equations reduce to one-dimensional oelb—u o 1 1 R
expressions. But in order to include the suppression of the -200 -100 0 100 200
order parameter by an external field for a finite width ring we H(G)

add the term— (H/H») %% to the right-hand side of Eq.

(1a), where Hp,y is given by Eq.(2). Using the stability FIG. 2. Magnetic-field dependence of the magnetizatinthe
analys_|s of the linearized Glnzburg-Land_au equations near grder parametetb), and the gauge-invariant momentuu in the
specific metastable state as presented in Ref. 15 we obtagiddle of the ring. Dotted curve in(b) is the expression

the modified critical momentum V1—(H/Hp.)% Dotted curve in (c) is the expression
V1—[(H—Hg)/Hmad?/\3, whereH,=13G is the displacement of
1 \/ H \2 1 the maximum ofM(H) from theH=0 line.
SV AN CRE N
¢ \/§ Hma 2R?

the width of the ring is appreciably nonuniform &t

Note that nowp, decreases with increasing magnetic field. =Hmax @nd as a consequence the one-dimensional model
This automatically leads to a decreasing value of the jump iffréaks downsee Fig. 1

the vorticity AL at high magnetic field, because in Ref. 10 it _ Finally, we also considered the same ring with a defect.
was shown that The effect of the defect was modeled by introducing in the

right-hand side of Eq(la) the term—p(s)¢ (s is the arc
— N coordinateé where p(s)=—1 inside the defect region with
AL max=Nint(pcR), @ size& andp(s) =0 outside. This leads to the results shown in

where Nint§) returns the nearest integer to the argument. Fig. 3 forM(H), [#|(H), andp(H). Due to the presence of
In order to check the validity of Eq6) we performed a the defect,p differs from Eq.(6) already at low magnetic
numerical simulation of the two-dimensional Ginzburg- field [p((H=0)=0.33 at a given “strength” of the defekt
Landau equations, Eq$la and (1b), for a ring with R and as a result only jumps withL = 1 are possible in such a
=55 and w=1.5 (these parameters corresponds to the'ing. In this case th@. and|y| also depend on the applied
experimental situation—see the following secjiom Fig. 2 ~ magnetic field with practically the same functional depen-
the magnetization, the order parameter, and the gaugélence orH as Eq.(6).
invariant momentunp are shown as functions of the applied
magnetic field. The magnetic field was cycled up and down
from H<—H, . to H>H .. The condition(6) leads to a
hysteresis oM (H) and to a changing value of the jump in ~ The measurements were performed on individual Al
the vorticity in accordance with the changegp. The main  superconducting rings by using ballistic  Hall
difference between our theoretical predicti@ and the re- micromagnetometrif’ The technique employs small Hall
sults of our numerical calculations appears at fields close tprobes microfabricated from a high-mobility two-
Hmax- Apparently it is connected with the fact that for the dimensional electron gas. The rings—having radRi
considered ring the distribution of the order parameter along=1 um and widthw ranging from 0.1 to 0.3xm—were

IIl. COMPARISON WITH EXPERIMENT
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FIG. 3. Magnetic-field dependence of the magnetizat®nthe FIG. 5. Magnetic-field dependence of the magnetization of the

order parameteb), and the gauge-invariant momentdm (in the  iny without (a) and with (b) an artificial defect af=0.4 K. Pa-

middle of the ring of a ring containing a single defect. Dotted rameters of the ringéwidth and radij are the same to within ex-
curve in(b) is the expression/I— (H/H mg)>. perimental accuracy.

placed directly on top of the microfabricated Hall crosses, . ) .
which had approximately the same widthof about 2 zm electron-beam lithography with the accuracy of alignment

(see micrograph in Fig. 4 for a ring with an artificial defect between the stages better than 100 nm. The rings studied in

These experimental structures were prepared by multistad!S Work were thermally evaporated and exhibited a super-
conducting transition at about 1.25 K. The superconducting

coherence length wag(T=0)=0.18 um. The latter was
calculated from the electron mean free p&th25 nm of
macroscopic Al films evaporated simultaneously with the Al
rings. The Hall respons®&,, of a ballistic cross is given by
the amount of magnetic flukBdsthrough the central square
areabx b of the crosg®8 For simplicity, one can view the
ballistic magnetometer as an analog of a microsuperconduct-
ing quantum interference device, which would have a square
pickup loop of sizéb and superconducting rings placed in its
center. We present our experimental data in terms of the area
magnetizatiorM =(B)—H which is the difference between
the applied fieldd and the measured fiel®)~R,,. Previ-
ously, we have studied individual superconducting and ferro-
magnetic disks and found excellent agreement with the
above formuld”!® For further details about the technique,
we refer the reader to our earlier wofk:*®

Rings with and without an artificial defect were studied.
Let us consider first the ring without an artificial defect. In
Fig. 5a) the full magnetization loop of such a ring with
parametersR=1.0=0.1 um and w=0.25+0.05um is

FIG. 4. A micrograph of the superconducting ring placed on topshown. In Fig. 6(solid curve the low-field part of the virgin
of a Hall bar. An artificial defectnarrowing of the ring cross sec- curve is presented. From the virgin traggH) we can find
tion) is intentionally made by electron-beam lithography. the magnetic field for the first vortex entty,.,,, and hence
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magnetization neat H,,,, for magnetic-field sweeps up and
down.

In the ring with approximately the same mean radii and
width but containing an intentionally introduced artificial de-
fect, jumps withAL =1 are mostly observelgee Fig. B)].
The reason is that an artificial defect considerably decreases
the critical valuep. (and hence the fieldH.—see dotted
curve in Fig. 6. From Figs. 2c) and 3¢) it is clear that the
maximum values arep'cdzo.54 for a ring without a defect
and p§20.35 for a ring with a defect. The ratipglpicd
=0.65 is close to the ratio of the field of first vortex entry
HY /H!Y =~0.67 obtained from experimefgee Fig. 6. From
Fig. 2(c) it is easy to see that for a ring without a defect at
p=0.35 there are only jumps withL = 1. But if we slightly

FIG. 6. Magnetic-field dependence of the virgin magnetization"Creasep then jumps withAL =2 can appear in the system.

of a ring without(solid curve and with (dotted curve an artificial
defect. The dotted curve is shifted for clarity by 0.6.

we estimate é=0.19um at the given temperatureT(
=0.4 K) using Eq.(5) (this value of¢ is in agreement with
the above experimental valyg¢0)=0.18 xm obtained from
the mean free paghFurthermore, we know from Fig.(&

that the vorticity changes withL =3 for H=0. This agrees

So we can conclude that=0.35 is close to the border value
which separates regimes with jumps in vorticity &t =1
andAL=2. From our experimental data it follows that the
maximum value ofp. is very close to this border. Thermal
fluctuations may influence the value &t , in particular for

a p. value close to this border value. This is probably the
reason that in the experimeffig. 5b)] occasional jumps
with AL=2 are observed which are absent in our simulation

[Fig. 3@].

with the fact that the radii of the ring are larger than&.6
[see Eq(7)]. Another important piece of information which
may be extracted from the virgin curve is that at the first

vortex entry the magnetization drops considerably but it does IV. CONCLUSION

not change sign. If we recall that at every vortex erpry
decreases on R/(and hence the current densityand M
~ [[jXr]dV also changes proportionallyve can conclude
that the radii of our ring should be in the range &R
=6.5¢. This agrees with the experimental vali¢{=5.3
+0.5.

If we take the above value faf andw=1.5¢ we obtain
the maximum field ofH,,,=223 G. This value is slightly
smaller than the value obtained from Figs. 2 andH3,ax

We studied multiple flux jumps and irreversible behavior
of the magnetization of thin mesoscopic Al superconducting
rings. We have shown experimentally and theoretically that
at low magnetic fields and for rings with sufficiently large
radii the vorticity may change by values larger than unity.
With increasing magnetic field the order parameter gradually
decreases and thus leads to a decrease of the size of the
jumps in the vorticity. For rings with width less than 2
analytical expressions were obtained for the dependence of

=240 G, which we attribute to the large coordinate step thaihe order parameter on the applied magnetic field. We have

we used in our numerical calculations of E¢ka and(1b).
The value is also larger than the experimental vatyg,,

found that a state with a given vorticity becomes unstable
when the value of the gauge-invariant momentum reaches a

=185 G. This disagreement between theory and experimeggitical value p, which decreases with increasing magnetic
is most likely connected to the semiquantitative applicabilityfie|d. This is responsible for the fact thatL decreases
of the Ginzburg-Landau equations in the consideredyith increasingH. The introduction of an artificial defect
temperature range. The range of applicability of thejy the ring leads to a decreasemfin comparison to the case

Ginzburg-Landau equation@ven the stationary onegor

of a ring without a defect and also results in a decrease of

this specific superconductor is very narrow. Neverthelesg |
based on previous comparison between experiments and

theory for mesoscopic superconducting df8i it was

found that the GL equations provided a rather good descrip-

tion of the superconducting state even deep inside ktha
phase diagram.

Figures 2a) and Ha) are qualitatively very similar.
For example, our theory describés the hysteresis(ii) the
nonunity of the vorticity jumps, i.e.AL=3 in the low
magnetic-field regionAL=2 in the intermediatéd region,
and AL=1 nearH.,. Theoretically (experimentally we
found €5), 1321), and 2718) jumps with, respectively,
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