PHYSICAL REVIEW B 67, 054505 (2003

Multicritical phenomena in O (n;)® O(n,)-symmetric theories

Pasquale Calabre$&, Andrea Pelissett) and Ettore Vicar*
IScuola Normale Superiore and INFN, P.za Cavalieri 7, 1-56126 Pisa, Italy
°Dip. Fisica dell'Universitadi Roma “La Sapienza” and INFN, P.le Moro 2, I-00185 Roma, ltaly
3Dip. Fisica dell'Universitadi Pisa and INFN, V. Buonarroti 2, 1-56127 Pisa, Italy
(Received 3 October 2002; published 18 February 2003

We study the multicritical behavior arising from the competition of two distinct types of ordering charac-
terized by Of) symmetries. For this purpose, we consider the renormalization-group flow for the most general
0O(n1) ®O(n,)-symmetric Landau-Ginzburg-Wilson Hamiltonian involving two fiells and ¢, with n,; and
n, components, respectively. In particular, we determine in which cases, approaching the multicritical point,
one may observe the asymptotic enlargement of the symmetry N @{th N=n,+n,. By performing a
five-loop e-expansion computation we determine the fixed points and their stability. It turns out thist for
=n,;+n,=3 the O(N)-symmetric fixed point is unstable. Fhir=3, the multicritical behavior is described by
the biconal fixed point with critical exponents that are very close to the Heisenberg ond$¢=Hoand any
n,,n, the critical behavior is controlled by the tetracritical decoupled fixed point. We discuss the relevance of
these results for some physically interesting systems, in particular for anisotropic antiferromagnets in the
presence of a magnetic field and for hih-superconductors. Concerning the (S0theory of superconduc-
tivity, we show that the bicritical (&) fixed point is unstable with a significant crossover expongpj
~0.15; this implies that the () symmetry is not effectively realized at the point where the antiferromagnetic
and superconducting transition lines meet. The multicritical behavior is either governed by the tetracritical
decoupled fixed point or is of first-order type if the system is outside its attraction domain.
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I. INTRODUCTION which both types of ordering coexist and which is bounded
by two critical lines meeting at the MCP; see Fig. 2. It is also
The competition of distinct types of ordering gives rise topossible that the transition at the MCP is of first order. A
multicritical behavior. More specifically, a multicritical point possible phase diagram is sketched in Fig. 3. In this case the
(MCP) is observed at the intersection of two critical lines two first-order lines, which start at the MCP and separate the
characterized by different order parameters. MCP’s arise idlisordered phase from the ordered phases, end in tricritical
several physical contexts. The phase diagram of anisotropieoints and then continue as critical lines.
antiferromagnets in a uniform magnetic figtt} parallel to If the order parameters have, respectivalyandn, com-
the anisotropy axis presents two critical lines in theponents and the interactions are invariant undem;@nd
temperatured plane, belonging to thXY and Ising univer-  O(ny), the critical behavior at the MCP can be studied by
sality classes, which meet at a MEB.A MCP is also ob- starting from the most general Landau-Ginzburg-Wilson
served in*He. It arises from the competition of crystalline (LGW) Hamiltonian that is symmetric under @) ® O(n,)
and superfluid ordering in the temperature-pressure phageansformations and contains up to quartic tétms
diagram®* MCP’s are also expected in the temperature-
doping phase diagram of high: superconductors. Within - a1 ) . 1 ) )
the S@5) theory® of high-T.. superconductivity, it has been H‘f A% 5[0, 1) "+ (0, ¢2) "]+ 5 111+ 1263)
speculated that the antiferromagnetic and superconducting
transition lines meet at a MCP in the temperature-doping 1
phase diagram, which is bicritical and shows an effective +E[ul(¢§)2+u2(¢§)2+zw¢i¢§] ' 1.9)
enlarged @) symmetry. On the other hand, the recent ex-
perimental evidence of a coexistence region between the amlere, the two fieldsp, and ¢, haven, andn, components,
tiferromagnetic and superconducting phases is suggestive oéspectively. The critical behavior at the MCP is determined
a tetracritical behaviot.A MCP should also appear in the by the stable fixed pointFP) of the renormalization-group
temperature baryon-chemical-potential phase diagram dRG) flow when bothr; andr, are tuned to their critical
hadronic matter, within the strong-interaction theory withvalue. An interesting possibility is that the stable FP has
two massless quarks. O(N) symmetry,N=n;+n,, so that the symmetry gets ef-
Different phase diagrams have been observed close tofactively enlarged when approaching the MCP. This picture
MCP. If the transition at the MCP is continuous, one mayhas been put forward for the multicritical behavior of aniso-
observe either a bicritical or a tetracritical behavior. A bicriti- tropic antiferromagnets in an external magnetic freldor
cal behavior is characterized by the presence of a first-ordesystems with quadratic and cubic anisotrépy-> and for
line that starts at the MCP and separates the two differerttigh-T, superconductorg®314
ordered low-temperature phases; see Fig. 1. In the tetracriti- The phase diagram of the model with Hamiltonignl)
cal case, there exists a mixed low-temperature phase inas been investigated within the mean-field approximation in
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FIG. 1. Phase diagram in the plaflieg presenting a bicritical T
point. Here,T is the temperature argla second relevant parameter.  FIG. 3. Phase diagram with a first-order MCP. The thick lines
The thick line(“flop line” ) represents a first-order transition. represent first-order transitions.

Ref. 4(see also Ref. 15This analysis predicts the existence Piliy: AS we shall see, the above-reported hypotheses on the

of a bicritical or tetracritical point, as observed experimen-thrée-dimensional systems wit, =1, n,=2 andn,=2,

tally. The nature of the MCP depends on the sign of the12=3 will b_e. both cont.radicted by a higher-order analysis.
quantity A =u,u,—w?, which is relevant in the study of the The stability properties of the DFP can be established us-

stability domain of the Hamiltoniafi. 1). If A>0, the MCP N9 nonperturbative argumerits,**which allow us to com-

. . 2 2
is tetracritical as in Fig. 2, while fok <0 it is bicritical as in ~ PUte the RG dimensioy,, of the operatow¢i¢; at the
Fig. 1. DFP. The stability of the DFP depends on the sigrypf if

The critical behavior of the model has been investigatedw<0. the DFP is stable. It turns out that in three dimen-
in the framework of thee expansiof® A low-order  Sionsy,>0 for N<3 andy, <0 for N=4 for anyn, and

calculatioR® shows that the isotropic ®f)-symmetric FP N2, Showing that the DFP is stable fii=4. We should note
(N=n;+n,) is stable fortN<N.=4—2e+O(€2). With in- that the stability of the DFP does not allow us to exclude the
creasingN, a new FP named cbiconal RBFP), which has €xistence of another stable FP. This possibility, which is usu-
only O(n,)@O(n,) symmetry, becomes stable. Finally, for @lly considered rather unlikel§, has been put forwafito
largeN, the decoupled FEDFP) is the stable FP. In this case, €XPlain the Monte Carlo results of Refs. 14 and 20, which
the two order parameters are effectively uncoupled at th@Pparently support the stability of a multicritical® FP.

MCP. The extension of thes®(e) results to three dimen- The phase diagram of the modgl1) was studied in Refs.
sions suggests that for;=1 andn,=2, the case relevant 1_Q,11, _and 21. .The_DFP is expected to be generically tetrac-
for anisotropic antiferromagnets, the MCP belongs to thditical: indeed, in this case the MCP should correspond to a
O(3) universality class, while fon,=2 andn,=3, of rel- generic intersection of the two critical lines with Q) and.
evance for the S@) theory of highT, superconductivity, ©O(2) Symmetry. The stable Q) FP—as we shall see, this

the stable FP is the BFP. THa(e) computations provide is the case only foN=2-—can be either bicritical or tetrac-

useful indications on the RG flow in three dimensions, but gitical. The pogsibility of two different phase diagrams fpr
controlled extrapolation te=1 requires much longer series the same FP '51‘3“9 to .the presence of a dangerously irrel-
evant operatot®!! Little is known for the BFP, although a

and an accurate resummation exploiting their Borel summa= : X k
phenomenological extension of the mean-field arguments
would predict a tetracritical behavidiWhen the initial pa-
g rameters of the Hamiltonian are not in the attraction domain
O(n) of the stable FP, the transition between the disordered and
1 ordered phases should be of first order in the neighborhood
of the MCP??~2* However, the transition along the critical
lines may become continuous sufficiently far from the
disordered MCPZ>28 A possible phase diagram is sketched in Fig. 3.
phase In this paper we extend the analysis of the multicritical
RG flow to O(€°). The stability of the OK) FP is also
discussed in the framework of fixed-dimension expansion in
three dimensions, for which six-loop series have been com-
O(n2) puted. These calculations allow us to obtain a rather conclu-
sive picture of the multicritical RG flow in three-dimensional
T systems. In particular, the ®f FP is stable only forN
=2. Therefore, the symmetry enlargement occurs only when
FIG. 2. Phase diagram with a tetracritical point. the competing order parameters have Ising symmetry. For

ordered phase 1

mixed
phase

ordered phase 2
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N=3, the O(N) FP is unstable and therefore the enlarge-where the primitive divergent parts of all integrals appearing
ment of the symmetry to @) at the MCP requires an ad- In our computation are reported. We determined the renor-
ditional tuning of the parameters: beside tuningandr,, a  Malization constantZ, andZ, associated with the fields
third parameter must be properly fixed to decouple the addie»; and¢,, respectively, the &3 renormalization matrizﬂ
tional relevant interaction. The crossover exponent assocef the quartic couplings defined bg'B,iz,ufZ?ng,j where

ated with this RG instability isp,4~0.01 for N=3, ¢4 9s.i=(U1,Up,W), and the %2 renormalization matrizﬁ?z

~0.08 forN=4, ¢4,~0.15 forN=5, and¢,4—~1 for N ;"0 quadratic operatorgh? and ¢2. The B functions
—o0, For N=3 the stable FP is the BFP. The critical expo- au ¢ op i €>.1 2 p ¢2u I
gr,j) and the RG dlmensmn%l, Yeby andyj; are de-

nents are, however, very close to the Heisenberg ones, so tHai
distinguishing experimentally the(® FP and the BFP is a termined using the relations

very hard task, taking also into account the very small cross-

over exponent governing the unstable flow from tH&)FP. Bi(gri)=u I9Ri , 2.9
The caseN=5, n,;=2, n,=3 is relevant for the S®) ’ I

theory® of high-T, superconductors, which proposes a de-
scription in terms of a three-component antiferromagnetic 9Zy

order parameter anddawave superconducting order param- Y, (Ori) = > B; e (2.2
eter with U1) symmetry, with an approximate(&®) symme- ' J I9R |

try. ForN=5 the only stable FP is the DFP which predicts, if 2

the trr_:msition is continuous, atetrac;ritical behavior. This may 9?2( _):E 5 _"'(Zd>2)—_1
explain a number of recent experimerigee, e.g., Refs. 7 Yij (ORii S PRogR -
and 27-32that provided evidence of a coexistence region of . o .

the antiferromagnetic and superconducting phases. T O The zerosgg; of the 8 functions provide the FP’s of the
FP is unstable with a crossover exponent,~0.15, which, ~theory. In the framework of the expansion, they are ob-
although rather small, is nonetheless sufficiently large not téained as perturbative expansionseirand are then inserted
exclude the possibility of observing the RG flow towards thein the RG functions to determine the expansion of the
eventual asymptotic behavior for reasonable values of théfitical exponents. The stability of each FP is controlled by
reduced temperaturé,even in systems with a moderately the 3x3 matrix

small breaking of the &) symmetry, for instance in those 9B

described by the projected &) model discussed in Refs. QHZM . (2.4)
6,34, and 35. Of course, when the effective Hamiltonian pa- IgR,j
rameters are outside the attraction domain of the stable FP, .
the transition at the MCP is expected to be of first-order typeThe two exponentsy; and »,, related to the short-distance
Some of the results concerning the stability properties of thé&ehavior of the two-point functions of the fields and ¢,,

O(N) FP were already presented in Ref. 36. are given by ;= 1y, (9r;) and 7,=v4,(dx;). From the

Tr_\e paper is 0rganized_ as follows. In Sec. Il we presenbigenvalues:q and v, of the matrix 7{1-’2, if v,>v,, one
our five-loop calculations |n.the framework of_tllaeexpan— obtainsy=1v, and ¢=1v,/v,, whered is the crossover ex-
sion. In Sec. Il we discuss the stability of the honent associated with the quadratic instability.
O(N)-symmetric FP under generic perturbations. The resultS \ye performed several checks of the perturbative series. In
are then applied to establish the stability properties of the,,ticylar, the critical-exponent series agree with the existing
O(N) FP. In Sec. IV the multl_cntlcal RG _flow is ana_llyzed. In O(€5) ones for the OK)-symmetric theors*°in the proper
Sec. V we draw our conclusions and discuss their relevancgyit ‘Moreover, as we shall discuss in the following section,
for some physical systems. we can also compare with some results for th&Dtheory

in the presence of cubic anisotroflyfinding agreement.
Some of the five-loop perturbative series will be reported in
Il. € EXPANSION OF THE O (n;)®0(n;) THEORY the following sections. The complete list of series is avail-
t able on request.

Since thee expansion is asymptotic, the series must be
properly resummed to provide results for three-dimensional
systems. We used the PaBerel method except for the se-
ries at the O) FP. In this case, we applied the conformal-
mapping method? which takes into account the known
large-order behavior of the expansion. See, e.g., Refs. 43 and
44 for reviews of resummation methods.

9B,j

2.3

IR k= IRk

We extended the expansion of the critical exponents a
the different FP’s for the Q{(;) @ O(n,)-symmetric theory to
O(€®). For this purpose, we considered the minimal subtrac
tion (MS) renormalization schent®.We computed the diver-
gent part of the irreducible two-point functions of the fields
¢, and ¢, of the two-point correlation functions with inser-
tions of the quadratic operatoaﬁ and ¢§, and of the three
independent four-point correlation functiong ¢, - ¢,
b1 $1), (b1 b1 b2 $2), ANA(P5- b2 $5py). The dia- ll. STABILITY OF THE O (N) FIXED POINT
grams contributing to this calculation are a few hundreds. We
handled them with a symbolic manipulation program, which In this section we discuss the stability of the NQ(FP,
generated the diagrams and computed the symmetry arnwhere N=n;-+n,, to establish in which cases the enlarge-
group factors of each of them. We used the results of Ref. 38nent of the symmetry @(;) ®O(n,) to O(N) is realized at
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the MCP without the need of further tunings.

Let us consider the general problem of an
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m,|=5; i.e., the only relevant operators hanel<4. We
will assume this property to hold up ®=1. We notice that

O(N)-symmetric Hamiltonian in the presence of a perturba-t is certainly incorrect in two dimensions where perturba-

1
—u

L 0,0)24 Sro2y
2 (9uP)"H ST+ o

tion P, i.e.,
H=f d’x (D)2 +h,P|,
(3.1

where ® is an N-component field andh, an external field
coupled toP. AssumingP to be an eigenoperator of the RG
transformations, the singular part of the Gibbs free energ
for the reduced temperatute-0 andh,—0 can be written
as

Feind t.hp) ~[t| " F(hy|t] = %), (3.2

whereg,=y,v is the crossover exponent associated with th

perturbationP, y, is the RG dimension oP, and F(x) is a
scaling function. Ify,>0, the perturbation is relevant and its
presence causes a crossover to another critical behavior or
a first-order transition.

In order to discuss the stability of the @) FP in general,
we must consider any perturbation of theN)(FP. We shall
first consider perturbations that are polynomials of the fiel
®2. Any such perturbation can be writt€ras a sum of terms
P;ﬂ 4 m=1, which are homogeneous §? of degreem
and transform as thlespin representation of the Qf group.
Explicitly, we have

P

m,|

..... a|=(q)2)m*|Qial*""a|' (33)

where Qf‘l """ % is a homogeneous polynomial of degree

that is symmetric and traceless in théndices. The lowest-
order even polynomials are

1
Q3°= 0P — = 5702, (3.9

N+4
+ 829PPPC S CPAPI SPPAPC 5CUPAPD)

QideZCI)aCDbCI)CCI)d— (DZ((Sab(I)Cq)d+ 5aCCI)b(I)d

2\2 b ocd c chd d cbe
+—(N+2)(N+4)(<b)(5356+535 + 6295°9).,

(3.5

The classification in terms of spin values is particularly

convenient, since polynomials with different spin do not mix

under RG transformations. On the other hand, operators WitgXponent by

different m but with the samé do mix under renormaliza-

tions are relevantN=3) or marginal N=2) for all values

of 1.¢ In principle, we should also consider terms with de-
rivatives of the field, but again, using power counting, one
can show that they are all irrelevant or redundant. Therefore,
beside the Ofl)-symmetric termsb? and @?)? there are
only three other perturbations that must be considd?ég,

P35, andP3%°%. Note that, according to the above-reported

discussionP3 and P35 are RG eigenoperators, whik

Ynust be in general properly subtracted; i.e., the RG eigenop-

erator isP§%+zP3Y for a suitable value of. The determi-
nation of the mixing coefficiert represents a subtle point in
the fixed-dimension expansidh,but is trivial in the MS
scheme in 4 € dimensions, in which operators with differ-

£nt dimensions never mix so that0.

According to the above-presented general analysis, the
stability properties of the @) FP can be obtained by deter-
mining the RG dimensions of the five operators reported
Bove. of course, the result does not depend on the specific
values of the indices and thus one can consider any particular
combination. We now show that such dimensions determine
he crossover exponegt and the eigenvalues of the stability

atrix () at the O() FP for the Of,) @ O(n,) theory. Start-
ing from the general expressions, one can construct combi-
nations that are invariant under the symmetry groump®(
®O0(n,). Explicitly, they are given by

Ny
n
Py o= D2, 7’2,2:2 Pyo= - WCDZ,
a=1
734,02(‘1’2)21 734,2:‘1)2732,2,

Ny N2
734,4:2: 2 Piibb

a=1b=n;+1
AN +N,8])  nyny(d?)?
N+4 " (N+2)(N+4)°
(3.6)

= pip5—

Here ® is the N-component field ¢4, ®,). The RG dimen-
sions of P, and of P, o are well known and can be com-
puted directly in the OY)-invariant theory. In particular,
Yo0=1/v andy, o= —w, Wherew is the leading irrelevant
exponent in the QY)-invariant theory. The RG dimension
Y2, 0f P, 5, and therefore of the operaté’(;b, provides the
crossover exponenp=y, v at the MCP. We denote such
to stress the fact that it is associated with the
tensorquadratic operator. Setting

tion. At least near four dimensions, we can use standard

power counting to verify that the perturbation with indices
m,| mixes only withP, |, m’<m. In particular,P, | renor-

malizes multiplicatively and is therefore a RG eigenoperator.

Moreover, ifyy,, is the RG dimension of the appropriately
subtracted®,, |, one can verify that for smad, y, <0, for

¢T=1+i§1 pie, 3.7

we obtain at five loops
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N ~ N(N?+ 24N +68)
PrmoNTe) P 4Ne)e

 N(N*+48N°+788N%+ 347N +5024  6N(5N+22){(3)

P 8(N+8)5 (N+8)*
~ N(N®+72N°+2085N"+ 28 41N+ 147 108\?+ 337 15N+ 306 240
Pa 16(N+8)7
. N(—N*+13N3—544N?— 4716\ — 8360 £(3) N(5N+22)7T4+ 20N(2N?+ 55N+ 186)£(5)
(N+8)8 20(N+8)* (N+8)°
~ N(17 677 824- 28 388 0961+ 19 390 6282+ 6 723 90N+ 1 177 480N*+ 95 668N°+ 4154N6+ 96N + N8)
Ps 32(8+N)?
N(8360+ 4716\ +544N%— 13N>+ N*) 7 . 5N(186+ 55N+ 2N?) 7®
1208+ N)® 1898+N)°®
N(554 064+ 465 59N + 125 23N+ 75843 — 661IN*+ 9N®) £(3)
(8+N)8
. 2N(24 528+ 14 468\ + 20282+ 39N3+ 4N*) £(3)? . N(466 016+ 280 596N+ 33 83N?—285MN3—230N*){(5)
(8+N)’ 2(8+N)”’
44IN(526+ 18N+ 14N?)((7)

2(8+N)°8 S

This series extends the three-loop results of Ref. 48 and thia this basis() is diagonal and the eigenvalues 9f are
four-loop results of Ref. 49. In the appropriate limit, it is in simply given by

agreement with th©(N~2) expression of Ref. 50. In Table
| we report the estimates of, , and ¢+ for N=2,3,4,5 ob- 05(90 92,04)
tained from the analysis of the five-loop perturbative expan- 0=

sion (3.8). As expected, sincg,,>0 in all cases, the qua- 99 90=0} .9,=09,=0,
dratic perturba’ciorP;b2 is always relevant. The results are

compared with the estimates obtained from the analysis of ity/here1 =0,2,4, B, are theg functions associated with the
six-loop fixed-dimension expansﬁfna_nd of its largeN ex-  coyplingsg,, andg}, is the FP value of the quartic coupling
pansion to O(1/N?),*® and by using high-temperature iy the ON)-symmetric theory. The critical exponeu, is
tgchmquei‘r’ and Monte Carlo S'mU|""_t'°H§- We also men-  he |eading irrelevant operator in the K)-symmetric
tion that consistent results were obtained from the analysis chweory. ItsO(€5) expansion can be found in Refs. 39 and 40;

the four-loop series ofr (Ref. 49 ¢r=1.177 forN=2 and  geyeral estimates are reported in Refs. 52 and 44. The RG
¢>T=1.259 forN=3. Some experimental results fg can dimensiony,, of the perturbatiorP,, is given by
be found in Ref. 44. ' ’

The perturbative expansions of the RG dimensions of the _ (3.11)
operatorsP,,, and therefore of the more general operators Yo=—or. '
P4, can be obtained from the eigenvalues of the stabilityWe report here the five-loop expansion ofy, , and
matrix Q) at the ON) FP. For this purpose, it is convenient to Sett P P Exp 42 Yaa-

. . ) etting
perform a change of variables, replacimg, u,, andw with
0, 1=0,2,4, which are the quartic couplings associated with
the operatorsP,, | and are explicitly defined by the relation y4":2’1 Cl’iei, (3.12

(3.10

Uz ()24 Ua( $3) %+ 2W T h5=0oPs ot 92Ps 2+ 94 P a-
(3.9 we have
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TABLE |. Estimates of the RG dimensions ,, Y40, Y42, andy, 4 and of the crossover exponents
=y, v and ¢, =Y, 4v as obtained by various approachesxpansion € exp), fixed-dimension expansion
(d=3 exp), high-temperature expansidHT exp, Monte Carlo simulationgMC), and 1N expansion
(1/N exp). Their values in the largd-limit (see, e.g., Ref. §lare also reported.

N Method Y22 b7 Y40 Ya2 \ baa

2 eexp 1.7666) 1.17412)  —0.802(18f% —0.624(10) —0.114(4f  —0.077(3)
d=3exp 1.18412° —0.789(11} —0.103(8¥ —0.069(5)
HT exp 1.17%15¢°
MC —0.795(9% —-0.17(2)

3 eexp 1.7903) 1.26011) —0.794(18}% —0.550(14) 0.00@)H° 0.0023)
d=3exp 1.272)° —0.782(13% 0.0136)° 0.0094)
HT exp 1.25015)¢
MC -0.773 —0.0007(29)
1/N exp 1.187

4 eexp 1.818%) 1.32916) —0.795(30f —0.493(14) 0.108%)" 0.0795)
d=3exp 1.3%4)° —0.774(20% 0.1114)° 0.0833)
MC —-0.76% 0.13024)
1/N exp 1.328

5  eexp 1.8328) 1.403) —0.783(26) —0.441(13) 0.1961) 0.1519)
d=3exp 1.404°  —0.790(15) 0.180.0) 0.1448)
MC 1.38730)
1/N exp 1.42%

0 2 2 -1 0 1 1

%Reference 52. Reference 57.

bReference 53. 9Reference 58.

‘Reference 54. f‘Reference 50.

dreference 55. fReference 36.

®Reference 56. IReference 14.

8 _ 336+ 68N+ 7N?

Cot=— g, Coo=
21~ T N+8 2,2 (8+N)°

76 544+ 26 176N+ 3264N%+ 28N3—N*  12(352+ 82N+ 7N?){(3)
4(8+N)° (8+N)*

C23=

(20 796 416-10 251 5200+ 2 207 74M2+271 3283+ 24 82MN*+ 820N°+5N6)  (352+ 82N+ 7N?) 7r#
16(8+N)’ 10(8+N)*

Coa=

2(—92 928-34 776N — 7544N%— 928N — 6 7N*+ N°) /(3) . 80(2232+ 632N+ 60N%+ N3)£(5)
(8+N)® (8+N)°

Cas

6019 366 912 3 720 851 458!+ 994 704 38M+ 135 243 2643+ 6 891 584N*—590 816N°— 60 520N®— 173 N7 — 13N8
64(8+N)°
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. (92 928+ 34 776N+ 7544N%+ 928N°3+ 67N — N°) 7r# . 20(2232+ 632N+ 60N2+ N3) 78

60(8+N)° 1898+ N)°
(117 872 64662 925 18M+ 14 334 91N?+ 1 577 39N3+ 67 848N*— 187N+ 200N®— 7N") (3)
4(8+N)®
. 8(104 832+ 100 31N+ 24 99N+ 257IN3+ 83N*+2N°)/(3)2
(8+N)’
(7 263 744+ 3 733 728+ 1 095 516I%+ 170 28N>+ 14 0354+ 322N°) {(5)
(8+N)’
441(16 832+ 559N+ 631IN2+23N3)£(7) (313
(8+N)® '
and
N—4 152+ 14N+ 5N?
Ci1m g Capm—————F
417 8¥N 4,2 (8+N)3
17 024- 156N — 1464N%—398N3— 13N*  48(46+ 7N+ N?){(3)
S _
4,3 4(8+N)5 (8+ N)4
(2 995 712+ 402 30N + 223 328N%+ 112 8503+ 27 27N*+ 1516N°+ 29N6)  2(46+ 7N+ N?)7*
Cy4=— -
a4 16(8+N)’ 5(8+N)*
3(—21 568+ 166N+ 159N+ 256N3— 8N*+ N°) £(3) . 120712+ 130N+ 13N?){(5)
(8+N)6 (8+N)° '
Cas

~ —365 813 766-95 377 4081+ 75 546 62M%+35 042 81613+ 11 477 47N*+2 184 4885+ 148 60N®+ 471 N7+ 61IN®

64(8+N)°
(—21 568+ 166N+ 159N2+ 256N3— 8N4+ N°) 774 . 10(712+ 130N+ 13N?) 78
40(8+N)8 63(8+N)°
(37827 072-13 773 568 + 3 633 344?+ 689 7283+ 54 184N*— 327N+ 188N —5N")£(3)
4(8+N)8
. 12(11 456+ 24 11N+ 664aN%+ 790N +5N%)£(3)?  2(1 018 944+ 128 15N —306(N2— 9018N°3+ 347N*+ 12N%) /(5)
(8+N)? (8+N)?
26461268+ 272N+ 25N%+N2%) £(7) (314
(8+N)® ' '

At one loop, these results agree with those reported in Remarginally positive, suggesting the instability of th€3DFP.
45. The results of the analyses of these series are reportedTis fact will be confirmed by the more accurate results dis-
Table I. They show thay, , is always negative, so that the cussed below. The corresponding crossover exponggis
corresponding spin-2 perturbaticﬁ”ﬁ,b2 is always irrelevant. =y, v can be determined using the following estimates of
On the other hand, the sign f , depends om: itis clearly ~ »: »=0.67155(27) forN=2,¢ »=0.7112(5) forN=3,>°
negative forN=2 and positive forN=4. ForN=3 it is  »=0.749(2) for N=4,%® and »=0.762(7) for N=5.%°
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Other estimates of can be found in Ref. 44. field-theory expansions, which predis;<2.9 in three di-
The RG dimensiory, 4 can also be obtained starting from mensions. In particular, different analyses of the six-loop
the cubic-symmetric LGW Hamiltonian fixed-dimension series yielded the estimatés=2.89(4)

N (Ref. 53, andN.=2.862(5) (Ref. 62; similar results were
o 11 5 ) also obtained from shorter series; see, e.g., Refs. 63 and 64.
Hc:f d"x 2 Zl [(9,P)"+rd7] These results have been confirmed by the analysis of the
. O(€°) series’ 53 A constrained analysis taking into ac-
N 2 N count the two-dimensional value bf,, N.=2, provided the
U( > DE| +vY Of J (3.19  estimateN,=2.875),% which makes the evidence support-
' ' ing y,,>0 for N=3 stronger than the estimatg,,
(see, e.g., Ref. J6and in particular from the results for the =0.003(4) obtained from the direct analysis of @e®)
stability properties of the Q) FP in the presence of a S€rles.
cubic-symmetric anisotropy. The point is that the cubic- In conclusion, these results provide a rather robust evi-
symmetric perturbation is a particular combination of thedence that foN=3 the ON) FP is unstable with respect to

1
o

spin-4 operator®22¢% and of the spin-0 termd?)2. Indeed, ~ SPin-4 perturbation3%°* and, as a consequence, that the
one may rewrite ’ O(N) FP is a unstable MCP fad=3.
N N
3 IV. RG FLOW AT THE MULTICRITICAL POINT
D o= PiYer m(q,z)z_ (3.1
i=1 a=1 '

As already shown by th©(e) computations of Ref. 3,

Thus, the Stablllty of the 04) EP against the cubic- the O(n1)®0(n2) theory at the MCP has six FP’s. Three of

symmetric perturbatiols,®? is controlled by the RG dimen- hém—i.e., the Gaussian and therG( and Ofr) FP's—are
Y ¥ o abcd Y always unstable. The other three FP’s are th&l)Ofixed

siony, 4 of the spin-4 operatoP;,". . : . . . .
v T . point, the biconal fixed point, and the decoupled fixed point.
The RG flow for the cubic-symmetric theory has been he stability of these FP’s depends opandn,. In particu-

investigated by employing field-theoretical methods, base ar, in the preceding section we have established that the

; f AH.S‘53,61—66 R H
on pert.urbatwe expansio ~69 or approxmat_e solutions O(N) FP is stable foN=2 and unstable foN=3, for any
of continuous RG equatior?$; ®°and lattice techniques, such . andn
1 2

as Monte Carlo simulation§ and high-temperature . . .
expansion@; see, e.g., Ref. 44 for a recent review. In par- _The stability pro_pertles .Of the DFPJrﬁ(ES%' be determined
ticular, the RG functions have been computed to five loops i sing nohperturbgtlve Scalng Zargume - At the DFP,
the e expansiofit and to six loops in a fixed-dimension ex- he quartic (_:oupllng ternw¢l¢_2 scales as the_ prOdl.JCt of
pansion in powers of the zero-momentum quartictWO energylike operators, which h_a_ve RG dimensions (1
couplings®® In these perturbative schemes, —a;)/v; wherea; and v; are the critical exponents of the

O(n;) universality classes. Therefore, the RG dimension re-

4B, (u,v) lated to thew perturbation is given by
44= T T , (3.17
v o o
u—gN =0 al Ct’z 1 l

ywzgﬁ‘g:v—'i‘y—_d. (41)
where 3, is the 8 function associated with the quartic cou- ! 2 o
pling v, andgy, is the FP value of the quartic coupling in the Note that this relation is satisfied order by order in the
O(N)-symmetric theory. This allows us to determiig, us-  expansion. Indeed, the expansion ofy,, obtained from the
ing the five-loop expansions reported in Ref. 41. We reobtairstability matrix () at the DFP coincides with the series ob-
again Eq.(3.14), confirming the correctness of our calcula- tained from the right-hand side of E.1), using the five-
tion. Moreover, using Eq(3.17) and the results reported in |oop expansions of; for the O(n;) universality classes. Tak-
Ref. 53, one can also compuyg 4 in the framework of the ing into account that the DFP is stable with respect to the
fixed-dimension expansion to six loops. The resulting estiother two RG directions, one can determine the stability
mates, obtained by using the conformal-mapping method, angroperties of the DFP from the sign gf,. Using the esti-
reported in Table I. They show that the spin-4 perturbationmates of the critical exponents of the three-dimensional
P44 is relevant for allN=3. In Table | the Monte Carlo O(n;) universality classessee, e.g., Ref. 44 for a revigw
results of Ref. 57 are also shown; they were obtained by, turns out to be negative fad=n,+n,=4 and positive
simulating the standartll-vector model and computing the for N=2,3.”* Three-dimensional estimates vf, for N<5
RG dimension of the cubic-symmetric teEmsi“, wheres; is  are reported in Table II. These results show that the tetrac-
the N-component spin variable. We may also consider thaitical DFP is stable foN=4 for anyn,,n,.
value N. such that forN>N, the cubic-symmetric anisot- The results concerning the 8 FP and the DFP suggest
ropy, and therefore the spin-4 perturbatiB@iCd, becomes that the stable FP fal=3 is the BFP. This is substantially
relevant at the Q) FP. All studies reported in the literature confirmed by the five-loop analysis of the stability matlx
indicate N.~3 and definitely N.<4; see, e.g., Refs. atthe BFP. Below we report the expansions of the critical
53,41,62—-64,66—69,57, and 70. The most accurate resulexponents at the BFP for;=1 andn,=2. The eigenvalues
have been provided by analyses of high-order perturbativef the stability matrix() are
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TABLE II. Estimates of the RG dimensioy, at the DFP. They
are obtained by using E¢4.1) and the estimates of the N criti-
cal exponentr reported in Refs. 72, 73, 56, 59, and 58.

N= n1+ Ny ng Ny Yw
2 1 1 0.17408)
3 1 2 0.07617)
4 1 3 —0.0069(11)
2 2 —0.0218(12)
5 1 4 —0.078(4)
2 3 —0.1048(12)

wpi1= €—0.579 3642+ 1.344 81%°— 4.058 162*
+14.526 42@°+ O( €°),
wpi2=0.491 10%—0.084 14@°+0.361 174°
—0.776 74%*+2.593 212°+ O(€°),
wpi 3= —0.130 19%+0.278 7822—0.379 71%°
+0.868 88G*—2.656 984°+ O(€°).

The expansions of the critical exponents are

4.2)

7pi1=0.020 830 @+0.018 294 ¥*—0.007 773 28*
+0.0210 296°+ O(€9),

7pi2=0.0200 80&°+ 0.0195 184°—0.00848 02€*
+0.0236 398°+ O( €),
1
vhig=7 +0.1114 875+0.0667 684°—0.00616 19@°

+0.0779 498*—0.193 362°+ O(€°),

1
vhi2=7 +0.0234 148+0.0289 67@%—0.00547 548°
+0.0381 4823*—0.106 07&°+ O(€),

e
¢bi=Vl‘1= 1+0.176 142+ 0.0673 54%°—0.0147 3183
bi,2

+0.0783 198*—0.190 098°+ O(€°). 4.3

We analyzed these series using the PRdeel resummation

PHYSICAL REVIEW B 67, 054505 (2003

the Heisenberg ones, whose best estimates are
=0.037%5), vy=0.71125), and ¢y=1.250(15) from
high-temperature  techniqué¥®® ,,=0.0355(25), vy
=0.7073(35), andpy=1.27(2) from the six-loop fixed-
dimension expansiott®® and 7,=0.0375(45), vy
=0.7045(55), and¢y=1.260(11) from the five-loope
expansior’? Rather stringent bounds on the differences be-
tween the biconal and Heisenberg exponents can be obtained
by considering the expansions of their differences, which
have much smaller coefficients. Their analysis yields

| 7pi,1— 11| =0.0005,
| 71,2~ 71| =0.0001,
| vpi— vy|=0.001,

| poi— Bl =0.005. (4.4

We have also studied the stability of the BFP for larger
values ofN. For N=4, and in both cases=1, n,=3 and
n,=n,=2, the five-loop calculation gives the expansions of
the critical exponents at the BFP only @(e*), because of
the additional degeneracy of thg4) FP and of the BFP at
O(e€). In particular, for the smallest eigenvalue we obtain

1 ) 5
wpiz(N=1n,=3)= 56 —0.3306 439

+0.7376 49%*+ O( €°),

1, ,
wpiz(N=2n,=2)= 5€ —0.319872

+0.696 458%+ O( €°). (4.5

It is difficult to extract reliable estimates from these series. In
both cases, we find thai, 5 is small, but we are unable to
determine reliably its sign.
ForN=5 we find that the BFP is unstable for all values of
n, andn,. In particular, forN=5, n;=2, n,=3, and for the
smallest eigenvalue we obtain
wpi3=0.052 584+ 0.0331 40¥*—0.242 1793
+0.358 964*—1.242 10@°+ O(€°), (4.6)

which giveswpi 3= —0.075).

V. CONCLUSIONS AND DISCUSSION

method. The estimates of the eigenvalues of the stability ma- We have studied the multicritical behavior at a MCP,

trix are Wpi1= 07q2), Wi = 057(4), andwbil3=0.0](1).

where two critical lines with Of;) and Of,) symmetry

They are all positive, supporting the stability of the BFP, meet. It has been determined by studying the RG flow of the
although the result fowy, 3 is not sufficiently precise to defi- most general Qf;) ®O(n,)-symmetric LGW Hamiltonian
nitely exclude the opposite sign. Concerning the critical ex4involving two fields¢, and ¢, with n; andn, components,

ponents, we obtainedy,; ;=0.0315), 7, ,=0.03715), vy
=1p1=0.70(3), and ¢p;=1.251). Note first that 7,

respectively. We have extended ta@xpansion of the criti-
cal exponents and of the stability matrix of the FP’s, previ-

~ npi2, as can be directly guessed by looking at the coeffi-ously known to one-loop order, to five loops. The stability of
cients of their expansions. A direct analysis of their differ-the ON) FP has also been discussed in the framework of the
ence gives the bounfhyy, ;— 712/ =0.0005. Second, note fixed-dimension expansion in three dimensions to six loops.
that, within the errors, the BFP exponents are very close to The main properties of the RG flow of the &
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@ O(n,)-symmetric system at the MCP can be summarizectorrelation-length exponent differs by less than 0.001 in
as follows. the two cases. However, one may still hope to distinguish the
(i) The ON) FP is stable only foN=2, i.e., when two twq FP’s by m'eagL.Jring some universal amplitude ratio that
Ising-like critical lines meet. It is unstable in all other varies more S|gn'|f|cantly in the two cases. Th? crossover
cases, i.e., for alh; and n, such thatn;+n,=N exppnept describing Fhe crossover from th@)rritical b-e-
=3. Beside being unstable with respect to the Spm_dﬂawor is very small, i..¢5,4~0.01, so that systems with a
and spin-2 quadratic perturbations, foéi=3 the small effective b realgng of th_e © symmetry Cross very
O(N) FP is also unstable with respect to quartic per__slowly _towards the bl_conal crltl_cal behavior or, if the system
. . . ) s outside the attraction domain of the BFP, towards a first-
turbations belohgmg to the sp|n—4_ rep.resentatlon Olorder transition; thus, they may show the eventual
T\Ti ?q\tlr)leg“;ﬂférgngeqﬁt(&?f' :—hhelzs ;r;‘ﬂﬁzt:;ag;’r gsymdptotic behavior only for very small values of the re-
= ‘ . uced temperature.
®0(n) to O(N) requires an additional parameter o |sotropic antiferromagnets in a magnetic field are quite a
be tuned, beside those associated with the quadratighecial case. Indeed, the critical transitiorHat 0 is a MCP
perturbations; andr in the LGW Hamiltonian. The  wjth O(3) symmetry, as observed experimentally; see, e.g.,
associated crossover exponems,;=ys4 v are ¢4  Ref. 77. As we discussed, fét#0, two relevant perturba-
~0.01 forN=3, ¢, 4~0.08 forN=4, ¢,4~0.15for  tions are switched on, and they can give rise in principle to a
N=5, and¢,4—1 for N—= (see Table)l more complex phase diagram. Finally, it should be noted that
(i)  ForN=3, i.e., forn;=1 andn,=2, the critical be- in real antiferromagnets additional nonisotropic interactions
havior at the MCP is described by the BFP, whoseare present, giving rise to lower-symmetry MCP’s. In Ref. 78
critical exponents turn out to be very close to those ofthe magnetic phase diagram of NJ&AH,O was studied.
the Heisenberg universality class; see Eg4). The orthorombic symmetry of the crystal gives rise to Ising
(i) ForN=4 and for anyn,;=1 andn,=1, the tetracriti- transition lines both for small and lardg#, so thatn,;=n,
cal DFP is stable. This has been inferred using non=1. As predicted by the theory, the MCP is a bicritic&¥
perturbative argumeni&*°that allow us to write the Point. A similar experiment is reported in Ref. 79. A tetrac-
re'evant Stab”'ty eigenva'uﬁN in terms Of the Critica' I’itical XY MCP iS Qbs_erve_d in aniSOtropiC antifel’l’omagnets
exponents of the @) universality classes; cf. Eq. Wh_en the magnetic field is perpen(_j|cular to the symmetry
(4.1). The e-expansion analysis shows that the BFP is@XiS; S€e, e.g., Ref. 74 for an experimental study. _
unstable for all cases witN=5, while it is not con- High-T. superconductors are other interesting physical
clusive for the cases witN=4. systems in which MCP’s may arise from the competition of
(iv)  When the initial parameters of the Hamiltonian ared.Ifferent _or_der parameters_. At low temperatures the_se mate-
rials exhibit superconductivity and antiferromagnetism de-

not in the attraction domain of the stable FP, the tran- , . 6 .
sition between the disordered and ordered phase%endIng on doping. The 6) theory"® attempts to provide a

. . . Unified description of these two phenomena, involving a
should be .Of first order n bl nelghbprhood _Of t_he three-component antiferromagnetig order parameter a?\d a
MCP In this case, a possible phase d_|§gram IS VeRY \vave superconducting order parameter witti)usymme-
in Fig. 3. Close to the MCP all transition lines are try, with an approximate (3) symmetry. This theory predicts
first-order ones. However, far from the MCP, the 5°\cp arising from the competition of these two order pa-
high-temperature transitions may become continuousiameters when the corresponding critical lines meet in the
belonging to the Qf;) and Ofy) universality temperature-doping phase diagram. Neglecting the fluctua-
classes. tions of the magnetic field and the quenched randomness
introduced by dopingsee, e.g., Ref. 19 for a critical discus-
As already mentioned in the Introduction, a multicritical sion  of this point, one may consider the

behavior has been observed in several systems. 0O(3)80(2)-symmetric LGW Hamiltonian to infer the criti-
Anisotropic antiferromagnets in a uniform magnetic field cal behavior at the MCPsee, e.g., Refs. 80,34,13,26,14, and
H) parallel to the anisotropy axis present a MCP inThEl| 15). In particular, the analysis of Ref. 34, which uses the

phase diagram, where two critical lines belonging toX¥e  projected S@) modef as a starting point, shows that one
and Ising universality classes méétThe results presented can use Eq(1.1) as an effective Hamiltonian. Different sce-
above predict a multicritical BFP. The mean-field approxima-narios have been proposed for the critical behavior at the
tion assigns a tetracritical behavior to the MOyt a more  MCP. In Refs. 5,13, and 14, it was speculated that the MCP
rigorous characterization, which requires the computation ofs a bicritical point where the B) symmetry is asymptoti-
the corresponding scaling free energy, is needed to draw @ally realized. On the other hand, on the basis of @e)
definite conclusion. Experimentally, the MCP appears to beesults of Refs. 2 and 3, Refs. 80 and 26 predicted a tetrac-
bicritical (see, e.g., the experimental results of Refs. 74 anditical behavior governed by the BFP. However, since it was
75); numerical Monte Carlo results hint at the same behaviorexpected that the BFP is close to thé5DFP, it was sug-
although with much less confiden&eOur results contradict gested that at the MCP the critical exponents were in any
the O(€) calculations of Refs. 2 and 3, suggesting the stabilcase close to the ) ones.

ity of the O(3) FP. Notice that it is very hard to distinguish ~ The Q5)-symmetric scenario would require the stability
the biconal from the (3) critical behavior. For instance, the of the O5) FP. Evidence in favor of this picture has been
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recently claimed using Monte Carlo simulations for a five-served both numerically and experimentalsee, e.g, Refs.
component O(3% O(2)-symmetric spin modéf?°The nu- 44 and 82 for reviews—the pure Ising fixed point is un-
merical results show that, within the parameter ranges corstable with crossover exponeri~0.11, which is even
sidered, the scaling behavior at the MCP is consistent with asmaller than the above-reported estimate for tt{6) @ase.
O(5)-symmetric critical behavior. Similar results have beenTherefore, contrary to some recent claithg, cannot be ex-
obtained in Ref. 35 by a quantum Monte Carlo study of thecludeda priori that experiments are able to observe the un-
guantum projected S®) model in three dimensions. On the stable flow out of the () fixed point, even in those systems
other hand, the interpretation of these numerical results as amith a moderately small breaking of th&%) symmetry, such
evidence for the stability of the B) FP (Refs. 14 and 20is  as the projected SG) model. Evidence in favor of a tetrac-
untenable, because the results discussed in this paper daifitical behavior has been recently provided by a number of
nitely show that the @) FP is unstable, and that the experimentgsee, e.g., Refs. 27—B®&hich seem to show the
asymptotic approach to the MCP is characterized by a decowexistence of a coexistence region of the antiferromagnetic
pled critical behavior or by a first-order transition. Thé&&D and superconductivity phases. The possible coexistence of
symmetry can be asymptotically realized only by tuning athe two phases has been discussed in Refs. 7,15, and 83.
further relevant parameter, beside the double tuning required Finally, we mention that a multicritical behavior with two

to approach the MCP. We note that the crossover exponerkY order parameters is expected in liquid crystals, at the
¢44, related to the spin-4 perturbation of théSDFP, ¢,,  nematic—smectic-A—smectic-C multicritical poihtand in
~0.15, is much larger than it®(e) approximation, i.e., the presence of ferromagnetic and nematic interacfions.
b4.4~ 35 € from which one would obtainp, ,~0.04 setting
e=1. It is of the same order of the crossover exponent ap-
pearing in many other physical systems. For instance, in ran-
domly dilute uniaxial magnetic materials—a class of systems We gratefully acknowledge useful correspondence with
whose asymptotic critical behavior has been precisely obSubir Sachdev.
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