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Multicritical phenomena in O „n1…ŠO„n2…-symmetric theories
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We study the multicritical behavior arising from the competition of two distinct types of ordering charac-
terized by O(n) symmetries. For this purpose, we consider the renormalization-group flow for the most general
O(n1) % O(n2)-symmetric Landau-Ginzburg-Wilson Hamiltonian involving two fieldsf1 andf2 with n1 and
n2 components, respectively. In particular, we determine in which cases, approaching the multicritical point,
one may observe the asymptotic enlargement of the symmetry to O(N) with N5n11n2. By performing a
five-loop e-expansion computation we determine the fixed points and their stability. It turns out that forN
5n11n2>3 the O(N)-symmetric fixed point is unstable. ForN53, the multicritical behavior is described by
the biconal fixed point with critical exponents that are very close to the Heisenberg ones. ForN>4 and any
n1 ,n2 the critical behavior is controlled by the tetracritical decoupled fixed point. We discuss the relevance of
these results for some physically interesting systems, in particular for anisotropic antiferromagnets in the
presence of a magnetic field and for high-Tc superconductors. Concerning the SO~5! theory of superconduc-
tivity, we show that the bicritical O~5! fixed point is unstable with a significant crossover exponentf4,4

'0.15; this implies that the O~5! symmetry is not effectively realized at the point where the antiferromagnetic
and superconducting transition lines meet. The multicritical behavior is either governed by the tetracritical
decoupled fixed point or is of first-order type if the system is outside its attraction domain.

DOI: 10.1103/PhysRevB.67.054505 PACS number~s!: 64.60.Kw, 05.70.Jk, 74.25.Dw, 75.50.Ee
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I. INTRODUCTION

The competition of distinct types of ordering gives rise
multicritical behavior. More specifically, a multicritical poin
~MCP! is observed at the intersection of two critical lin
characterized by different order parameters. MCP’s aris
several physical contexts. The phase diagram of anisotr
antiferromagnets in a uniform magnetic fieldH i parallel to
the anisotropy axis presents two critical lines in t
temperature-H i plane, belonging to theXY and Ising univer-
sality classes, which meet at a MCP.1–3 A MCP is also ob-
served in4He. It arises from the competition of crystallin
and superfluid ordering in the temperature-pressure ph
diagram.4 MCP’s are also expected in the temperatu
doping phase diagram of high-Tc superconductors. Within
the SO~5! theory5,6 of high-Tc superconductivity, it has bee
speculated that the antiferromagnetic and superconduc
transition lines meet at a MCP in the temperature-dop
phase diagram, which is bicritical and shows an effect
enlarged O~5! symmetry. On the other hand, the recent e
perimental evidence of a coexistence region between the
tiferromagnetic and superconducting phases is suggestiv
a tetracritical behavior.7 A MCP should also appear in th
temperature baryon-chemical-potential phase diagram
hadronic matter, within the strong-interaction theory w
two massless quarks.8,9

Different phase diagrams have been observed close
MCP. If the transition at the MCP is continuous, one m
observe either a bicritical or a tetracritical behavior. A bicri
cal behavior is characterized by the presence of a first-o
line that starts at the MCP and separates the two diffe
ordered low-temperature phases; see Fig. 1. In the tetra
cal case, there exists a mixed low-temperature phas
0163-1829/2003/67~5!/054505~12!/$20.00 67 0545
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which both types of ordering coexist and which is bound
by two critical lines meeting at the MCP; see Fig. 2. It is al
possible that the transition at the MCP is of first order.
possible phase diagram is sketched in Fig. 3. In this case
two first-order lines, which start at the MCP and separate
disordered phase from the ordered phases, end in tricri
points and then continue as critical lines.

If the order parameters have, respectively,n1 andn2 com-
ponents and the interactions are invariant under O(n1) and
O(n2), the critical behavior at the MCP can be studied
starting from the most general Landau-Ginzburg-Wils
~LGW! Hamiltonian that is symmetric under O(n1) % O(n2)
transformations and contains up to quartic terms2:

H5E ddxH 1

2
@~]mf1!21~]mf2!2#1

1

2
~r 1f1

21r 2f2
2!

1
1

4!
@u1~f1

2!21u2~f2
2!212wf1

2f2
2#J . ~1.1!

Here, the two fieldsf1 andf2 haven1 andn2 components,
respectively. The critical behavior at the MCP is determin
by the stable fixed point~FP! of the renormalization-group
~RG! flow when bothr 1 and r 2 are tuned to their critical
value. An interesting possibility is that the stable FP h
O(N) symmetry,N[n11n2, so that the symmetry gets e
fectively enlarged when approaching the MCP. This pictu
has been put forward for the multicritical behavior of anis
tropic antiferromagnets in an external magnetic field,2,3 for
systems with quadratic and cubic anisotropy,10–12 and for
high-Tc superconductors.5,6,13,14

The phase diagram of the model with Hamiltonian~1.1!
has been investigated within the mean-field approximation
©2003 The American Physical Society05-1
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Ref. 4~see also Ref. 15!. This analysis predicts the existenc
of a bicritical or tetracritical point, as observed experime
tally. The nature of the MCP depends on the sign of
quantityD5u1u22w2, which is relevant in the study of th
stability domain of the Hamiltonian~1.1!. If D.0, the MCP
is tetracritical as in Fig. 2, while forD,0 it is bicritical as in
Fig. 1.

The critical behavior of the model has been investiga
in the framework of thee expansion.2,3 A low-order
calculation2,3 shows that the isotropic O(N)-symmetric FP
(N[n11n2) is stable forN,Nc5422e1O(e2). With in-
creasingN, a new FP named biconal FP~BFP!, which has
only O(n1) % O(n2) symmetry, becomes stable. Finally, fo
largeN, the decoupled FP~DFP! is the stable FP. In this case
the two order parameters are effectively uncoupled at
MCP. The extension of theseO(e) results to three dimen
sions suggests that forn151 andn252, the case relevan
for anisotropic antiferromagnets, the MCP belongs to
O~3! universality class, while forn152 andn253, of rel-
evance for the SO~5! theory of high-Tc superconductivity,
the stable FP is the BFP. TheO(e) computations provide
useful indications on the RG flow in three dimensions, bu
controlled extrapolation toe51 requires much longer serie
and an accurate resummation exploiting their Borel sum

FIG. 1. Phase diagram in the planeT-g presenting a bicritical
point. Here,T is the temperature andg a second relevant paramete
The thick line~‘‘flop line’’ ! represents a first-order transition.

FIG. 2. Phase diagram with a tetracritical point.
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bility. As we shall see, the above-reported hypotheses on
three-dimensional systems withn151, n252 and n152,
n253 will be both contradicted by a higher-order analysi

The stability properties of the DFP can be established
ing nonperturbative arguments,16–19 which allow us to com-
pute the RG dimensionyw of the operatorwf1

2f2
2 at the

DFP. The stability of the DFP depends on the sign ofyw : if
yw,0, the DFP is stable. It turns out that in three dime
sionsyw.0 for N<3 andyw,0 for N>4 for any n1 and
n2, showing that the DFP is stable forN>4. We should note
that the stability of the DFP does not allow us to exclude
existence of another stable FP. This possibility, which is u
ally considered rather unlikely,18 has been put forward20 to
explain the Monte Carlo results of Refs. 14 and 20, wh
apparently support the stability of a multicritical O~5! FP.

The phase diagram of the model~1.1! was studied in Refs.
10,11, and 21. The DFP is expected to be generically tet
ritical: indeed, in this case the MCP should correspond t
generic intersection of the two critical lines with O(n1) and
O(n2) symmetry. The stable O(N) FP—as we shall see, thi
is the case only forN52—can be either bicritical or tetrac
ritical. The possibility of two different phase diagrams f
the same FP is due to the presence of a dangerously i
evant operator.10,11 Little is known for the BFP, although a
phenomenological extension of the mean-field argume
would predict a tetracritical behavior.3 When the initial pa-
rameters of the Hamiltonian are not in the attraction dom
of the stable FP, the transition between the disordered
ordered phases should be of first order in the neighborh
of the MCP.22–24 However, the transition along the critica
lines may become continuous sufficiently far from t
MCP.25,26A possible phase diagram is sketched in Fig. 3.

In this paper we extend the analysis of the multicritic
RG flow to O(e5). The stability of the O(N) FP is also
discussed in the framework of fixed-dimension expansion
three dimensions, for which six-loop series have been co
puted. These calculations allow us to obtain a rather con
sive picture of the multicritical RG flow in three-dimension
systems. In particular, the O(N) FP is stable only forN
52. Therefore, the symmetry enlargement occurs only w
the competing order parameters have Ising symmetry.

FIG. 3. Phase diagram with a first-order MCP. The thick lin
represent first-order transitions.
5-2
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N>3, the O(N) FP is unstable and therefore the enlarg
ment of the symmetry to O(N) at the MCP requires an ad
ditional tuning of the parameters: beside tuningr 1 andr 2, a
third parameter must be properly fixed to decouple the a
tional relevant interaction. The crossover exponent ass
ated with this RG instability isf4,4'0.01 for N53, f4,4
'0.08 for N54, f4,4'0.15 for N55, andf4,4→1 for N
→`. For N53 the stable FP is the BFP. The critical exp
nents are, however, very close to the Heisenberg ones, so
distinguishing experimentally the O~3! FP and the BFP is a
very hard task, taking also into account the very small cro
over exponent governing the unstable flow from the O~3! FP.
The caseN55, n152, n253 is relevant for the SO~5!
theory5,6 of high-Tc superconductors, which proposes a d
scription in terms of a three-component antiferromagne
order parameter and ad-wave superconducting order param
eter with U~1! symmetry, with an approximate O~5! symme-
try. ForN55 the only stable FP is the DFP which predicts
the transition is continuous, a tetracritical behavior. This m
explain a number of recent experiments~see, e.g., Refs. 7
and 27–32! that provided evidence of a coexistence region
the antiferromagnetic and superconducting phases. The~5!
FP is unstable with a crossover exponentf4,4'0.15, which,
although rather small, is nonetheless sufficiently large no
exclude the possibility of observing the RG flow towards t
eventual asymptotic behavior for reasonable values of
reduced temperature,33 even in systems with a moderate
small breaking of the O~5! symmetry, for instance in thos
described by the projected SO~5! model discussed in Refs
6,34, and 35. Of course, when the effective Hamiltonian
rameters are outside the attraction domain of the stable
the transition at the MCP is expected to be of first-order ty
Some of the results concerning the stability properties of
O(N) FP were already presented in Ref. 36.

The paper is organized as follows. In Sec. II we pres
our five-loop calculations in the framework of thee expan-
sion. In Sec. III we discuss the stability of th
O(N)-symmetric FP under generic perturbations. The res
are then applied to establish the stability properties of
O(N) FP. In Sec. IV the multicritical RG flow is analyzed. I
Sec. V we draw our conclusions and discuss their releva
for some physical systems.

II. e EXPANSION OF THE O „n1…ŠO„n2… THEORY

We extended thee expansion of the critical exponents
the different FP’s for the O(n1) % O(n2)-symmetric theory to
O(e5). For this purpose, we considered the minimal subtr
tion ~MS! renormalization scheme.37 We computed the diver
gent part of the irreducible two-point functions of the fiel
f1 andf2, of the two-point correlation functions with inse
tions of the quadratic operatorsf1

2 andf2
2, and of the three

independent four-point correlation functionŝf1•f1
f1•f1&, ^f1•f1 f2•f2&, and ^f2•f2 f2•f2&. The dia-
grams contributing to this calculation are a few hundreds.
handled them with a symbolic manipulation program, wh
generated the diagrams and computed the symmetry
group factors of each of them. We used the results of Ref.
05450
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where the primitive divergent parts of all integrals appear
in our computation are reported. We determined the ren
malization constantsZf1

and Zf2
associated with the fields

f1 andf2, respectively, the 333 renormalization matrixZi j
g

of the quartic couplings defined bygB,i5meZi j
g gR, j where

gB,i[(u1 ,u2 ,w), and the 232 renormalization matrixZi j
f2

of the quadratic operatorsf1
2 and f2

2. The b functions

b i(gR, j ) and the RG dimensionsgf1
, gf2

, andg i j
f2

are de-
termined using the relations

b i~gR,i !5m
]gR,i

]m U
gB, j

, ~2.1!

gf i
~gR,i !5(

j
b j

]Zf i

]gR, j
, ~2.2!

g i j
f2

~gR,i !5(
kl

bk

]Zkl
f2

]gR,i
~Zf2

! l j
21 . ~2.3!

The zerosgR,i* of the b functions provide the FP’s of the
theory. In the framework of thee expansion, they are ob
tained as perturbative expansions ine and are then inserted
in the RG functions to determine thee expansion of the
critical exponents. The stability of each FP is controlled
the 333 matrix

V i j 5
]b i~gR,k!

]gR, j
U

gR,k5g
R,k*

. ~2.4!

The two exponentsh1 andh2, related to the short-distanc
behavior of the two-point functions of the fieldsf1 andf2,
are given byh15gf1

(gR,i* ) and h25gf2
(gR,i* ). From the

eigenvaluesn1 and n2 of the matrix g i j
f2

, if n1.n2, one
obtainsn5n1 andf5n1 /n2, wheref is the crossover ex-
ponent associated with the quadratic instability.

We performed several checks of the perturbative series
particular, the critical-exponent series agree with the exist
O(e5) ones for the O(N)-symmetric theory39,40 in the proper
limit. Moreover, as we shall discuss in the following sectio
we can also compare with some results for the O(N) theory
in the presence of cubic anisotropy,41 finding agreement.
Some of the five-loop perturbative series will be reported
the following sections. The complete list of series is ava
able on request.

Since thee expansion is asymptotic, the series must
properly resummed to provide results for three-dimensio
systems. We used the Pade´-Borel method except for the se
ries at the O(N) FP. In this case, we applied the conforma
mapping method,42 which takes into account the know
large-order behavior of the expansion. See, e.g., Refs. 43
44 for reviews of resummation methods.

III. STABILITY OF THE O „N… FIXED POINT

In this section we discuss the stability of the O(N) FP,
whereN5n11n2, to establish in which cases the enlarg
ment of the symmetry O(n1) % O(n2) to O(N) is realized at
5-3
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the MCP without the need of further tunings.
Let us consider the general problem of

O(N)-symmetric Hamiltonian in the presence of a perturb
tion P, i.e.,

H5E ddxF1

2
~]mF!21

1

2
rF21

1

4!
u~F2!21hpPG ,

~3.1!

whereF is an N-component field andhp an external field
coupled toP. AssumingP to be an eigenoperator of the R
transformations, the singular part of the Gibbs free ene
for the reduced temperaturet→0 andhp→0 can be written
as

Fsing~ t,hp!'utudnF̂~hputu2fp!, ~3.2!

wherefp[ypn is the crossover exponent associated with
perturbationP, yp is the RG dimension ofP, andF̂(x) is a
scaling function. Ifyp.0, the perturbation is relevant and i
presence causes a crossover to another critical behavior
a first-order transition.

In order to discuss the stability of the O(N) FP in general,
we must consider any perturbation of the O(N) FP. We shall
first consider perturbations that are polynomials of the fi
Fa. Any such perturbation can be written45 as a sum of terms
Pm,l

a1 , . . . ,al , m> l , which are homogeneous inFa of degreem
and transform as thel -spin representation of the O(N) group.
Explicitly, we have

Pm,l
a1 , . . . ,al5~F2!m2 lQl

a1 , . . . ,al , ~3.3!

whereQl
a1 , . . . ,al is a homogeneous polynomial of degreel

that is symmetric and traceless in thel indices. The lowest-
order even polynomials are

Q2
ab5FaFb2

1

N
dabF2, ~3.4!

Q4
abcd5FaFbFcFd2

1

N14
F2~dabFcFd1dacFbFd

1dadFbFc1dbcFaFd1dbdFaFc1dcdFaFb!

1
1

~N12!~N14!
~F2!2~dabdcd1dacdbd1daddbc!.

~3.5!

The classification in terms of spin values is particula
convenient, since polynomials with different spin do not m
under RG transformations. On the other hand, operators
different m but with the samel do mix under renormaliza
tion. At least near four dimensions, we can use stand
power counting to verify that the perturbation with indic
m,l mixes only withPm8,l , m8<m. In particular,Pl ,l renor-
malizes multiplicatively and is therefore a RG eigenopera
Moreover, if ym,l is the RG dimension of the appropriate
subtractedPm,l , one can verify that for smalle, ym,l,0, for
05450
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m,l>5; i.e., the only relevant operators havem,l<4. We
will assume this property to hold up toe51. We notice that
it is certainly incorrect in two dimensions where perturb
tions are relevant (N>3) or marginal (N52) for all values
of l .46 In principle, we should also consider terms with d
rivatives of the field, but again, using power counting, o
can show that they are all irrelevant or redundant. Theref
beside the O(N)-symmetric termsF2 and (F2)2 there are
only three other perturbations that must be considered,P2,2

ab ,
P4,2

ab , andP4,4
abcd. Note that, according to the above-report

discussion,P2,2
ab andP4,4

abcd are RG eigenoperators, whileP4,2
ab

must be in general properly subtracted; i.e., the RG eigen
erator isP4,2

ab1zP2,2
ab for a suitable value ofz. The determi-

nation of the mixing coefficientz represents a subtle point i
the fixed-dimension expansion,47 but is trivial in the MS
scheme in 42e dimensions, in which operators with differ
ent dimensions never mix so thatz50.

According to the above-presented general analysis,
stability properties of the O(N) FP can be obtained by dete
mining the RG dimensions of the five operators repor
above. Of course, the result does not depend on the spe
values of the indices and thus one can consider any partic
combination. We now show that such dimensions determ
the crossover exponentf and the eigenvalues of the stabilit
matrix V at the O(N) FP for the O(n1) % O(n2) theory. Start-
ing from the general expressions, one can construct com
nations that are invariant under the symmetry group O(n1)
% O(n2). Explicitly, they are given by

P2,05F2, P2,25 (
a51

n1

P2,2
aa5f1

22
n1

N
F2,

P4,05~F2!2, P4,25F2P2,2,

P4,45 (
a51

n1

(
b5n111

n2

P4,4
aabb

5f1
2f2

22
F2~n1f2

21n2f1
2!

N14
1

n1n2~F2!2

~N12!~N14!
.

~3.6!

HereF is theN-component field (f1 ,f2). The RG dimen-
sions ofP2,0 and of P4,0 are well known and can be com
puted directly in the O(N)-invariant theory. In particular,
y2,051/n and y4,052v, wherev is the leading irrelevant
exponent in the O(N)-invariant theory. The RG dimensio
y2,2 of P2,2, and therefore of the operatorP2,2

ab , provides the
crossover exponentf5y2,2n at the MCP. We denote suc
exponent byfT to stress the fact that it is associated with t
tensorquadratic operator. Setting

fT511(
i 51

pie
i , ~3.7!

we obtain at five loops
5-4
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p15
N

2~N18!
, p25

N~N2124N168!

4~N18!3
,

p35
N~N4148N31788N213472N15024!

8~N18!5
2

6N~5N122!z~3!

~N18!4
,

p45
N~N6172N512085N4128 412N31147 108N21337 152N1306 240!

16~N18!7

1
N~2N4113N32544N224716N28360!z~3!

~N18!6
2

N~5N122!p4

20~N18!4
1

20N~2N2155N1186!z~5!

~N18!5

p55
N~17 677 824128 388 096N119 390 624N216 723 904N311 177 480N4195 668N514154N6196N71N8!

32~81N!9

2
N~836014716N1544N2213N31N4!p4

120~81N!6
1

5N~186155N12N2!p6

189~81N!5

2
N~554 0641465 592N1125 232N217584N32661N419N5!z~3!

~81N!8

1
2N~24 528114 468N12028N2139N314N4!z~3!2

~81N!7
1

N~466 0161280 596N133 832N222857N32230N4!z~5!

2~81N!7

2
441N~5261189N114N2!z~7!

2~81N!6
. ~3.8!
t
in
e
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RG
This series extends the three-loop results of Ref. 48 and
four-loop results of Ref. 49. In the appropriate limit, it is
agreement with theO(N22) expression of Ref. 50. In Tabl
I we report the estimates ofy2,2 andfT for N52,3,4,5 ob-
tained from the analysis of the five-loop perturbative exp
sion ~3.8!. As expected, sincey2,2.0 in all cases, the qua
dratic perturbationP2,2

ab is always relevant. The results a
compared with the estimates obtained from the analysis o
six-loop fixed-dimension expansion54 and of its large-N ex-
pansion to O(1/N2),50 and by using high-temperatur
techniques55 and Monte Carlo simulations.14 We also men-
tion that consistent results were obtained from the analysi
the four-loop series offT ~Ref. 49! fT51.177 forN52 and
fT51.259 forN53. Some experimental results forfT can
be found in Ref. 44.

The perturbative expansions of the RG dimensions of
operatorsP4,l , and therefore of the more general operat
P4,l , can be obtained from the eigenvalues of the stabi
matrixV at the O(N) FP. For this purpose, it is convenient
perform a change of variables, replacingu1 , u2, andw with
gl , l 50,2,4, which are the quartic couplings associated w
the operatorsPm,l and are explicitly defined by the relation

u1~f1
2!21u2~f2

2!212wf1
2f2

25g0P4,01g2P4,21g4P4,4.
~3.9!
05450
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In this basisV is diagonal and the eigenvalues ofV are
simply given by

v l5
]b̄ l~g0 ,g2 ,g4!

]gl
U

g05g
N* ,g250,g450 ,

~3.10!

where l 50,2,4, b̄ l are theb functions associated with th
couplingsgl , andgN* is the FP value of the quartic couplin
in the O(N)-symmetric theory. The critical exponentv0 is
the leading irrelevant operator in the O(N)-symmetric
theory. ItsO(e5) expansion can be found in Refs. 39 and 4
several estimates are reported in Refs. 52 and 44. The
dimensiony4,l of the perturbationP4,l is given by

y4,l52v l . ~3.11!

We report here the five-loope expansion ofy4,2 and y4,4.
Setting

y4,l5(
i 51

cl ,ie
i , ~3.12!

we have
5-5
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c2,152
8

N18
, c2,25

336168N17N2

~81N!3
,

c2,352
76 544126 176N13264N2128N32N4

4~81N!5
2

12~352182N17N2!z~3!

~81N!4

c2,45
~20 796 416110 251 520N12 207 744N21271 328N3124 824N41820N515N6!

16~81N!7
2

~352182N17N2!p4

10~81N!4

2
2~292 928234 776N27544N22928N3267N41N5!z~3!

~81N!6
1

80~22321632N160N21N3!z~5!

~81N!5

c2,5

52
6 019 366 91213 720 851 456N1994 704 384N21135 243 264N316 891 584N42590 816N5260 520N621732N7213N8

64~81N!9

TABLE I. Estimates of the RG dimensionsy2,2, y4,0, y4,2, andy4,4 and of the crossover exponentsfT

[y2,2n andf4,4[y4,4n as obtained by various approaches:e expansion (e exp), fixed-dimension expansion
(d53 exp), high-temperature expansion~HT exp!, Monte Carlo simulations~MC!, and 1/N expansion
(1/N exp). Their values in the large-N limit ~see, e.g., Ref. 51! are also reported.

N Method y2,2 fT y4,0 y4,2 y4,4 f4,4

2 e exp 1.766~6! 1.174~12! 20.802(18)a 20.624(10) 20.114(4)b 20.077(3)
d53 exp 1.184~12!c 20.789(11)a 20.103(8)b 20.069(5)
HT exp 1.175~15!d

MC 20.795(9)e 20.17(2)f

3 e exp 1.790~3! 1.260~11! 20.794(18)a 20.550(14) 0.003~4!b 0.002~3!

d53 exp 1.27~2!c 20.782(13)a 0.013~6!b 0.009~4!

HT exp 1.250~15!d

MC 20.773g 20.0007(29)f

1/N exp 1.187h

4 e exp 1.813~6! 1.329~16! 20.795(30)a 20.493(14) 0.105~6!b 0.079~5!

d53 exp 1.35~4!c 20.774(20)a 0.111~4!b 0.083~3!

MC 20.765g 0.130~24!f

1/N exp 1.323h

5 e exp 1.832~8! 1.40~3! 20.783(26) 20.441(13) 0.198~11! 0.151~9!

d53 exp 1.40~4!c 20.790(15) 0.189~10!i 0.144~8!

MC 1.387~30!j

1/N exp 1.422h

` 2 2 21 0 1 1

aReference 52. fReference 57.
bReference 53. gReference 58.
cReference 54. hReference 50.
dReference 55. iReference 36.
eReference 56. jReference 14.
054505-6
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1
~92 928134 776N17544N21928N3167N42N5!p4

60~81N!6
1

20~22321632N160N21N3!p6

189~81N!5

2
~117 872 640162 925 184N114 334 912N211 577 392N3167 848N421872N51200N627N7!z~3!

4~81N!8

1
8~104 8321100 312N124 994N212571N3183N412N5!z~3!2

~81N!7

2
~7 263 74413 733 728N11 095 516N21170 284N3114 035N41322N5!z~5!

~81N!7

2
441~16 83215590N1631N2123N3!z~7!

~81N!6
~3.13!

and

c4,15
N24

81N
, c4,25

152114N15N2

~81N!3
,

c4,352
17 02421568N21464N22398N3213N4

4~81N!5
2

48~4617N1N2!z~3!

~81N!4
,

c4,452
~2 995 7121402 304N1223 328N21112 856N3127 272N411516N5129N6!

16~81N!7
2

2~4617N1N2!p4

5~81N!4

2
3~221 56811664N11592N21256N328N41N5!z~3!

~81N!6
1

120~7121130N113N2!z~5!

~81N!5
,

c4,5

5
2365 813 760195 377 408N175 546 624N2135 042 816N3111 477 472N412 184 488N51148 600N614712N7161N8

64~81N!9

2
~221 56811664N11592N21256N328N41N5!p4

40~81N!6
1

10~7121130N113N2!p6

63~81N!5

2
~37 827 072113 773 568N13 633 344N21689 728N3154 184N423272N51188N625N7!z~3!

4~81N!8

1
12~11 456124 112N16648N21790N315N4!z~3!2

~81N!7
2

2~1 018 9441128 152N23060N229018N31347N4112N5!z~5!

~81N!7

2
2646~12681272N125N21N3!z~7!

~81N!6
. ~3.14!
e
ed
e

is-

of
At one loop, these results agree with those reported in R
45. The results of the analyses of these series are report
Table I. They show thaty4,2 is always negative, so that th
corresponding spin-2 perturbationP4,2

ab is always irrelevant.
On the other hand, the sign ofy4,4 depends onN: it is clearly
negative forN52 and positive forN>4. For N53 it is
05450
f.
in
marginally positive, suggesting the instability of the O~3! FP.
This fact will be confirmed by the more accurate results d
cussed below. The corresponding crossover exponentsfm,l

[ym,l n can be determined using the following estimates
n: n50.67155(27) forN52,56 n50.7112(5) forN53,59

n50.749(2) for N54,58 and n50.762(7) for N55.60
5-7
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Other estimates ofn can be found in Ref. 44.
The RG dimensiony4,4 can also be obtained starting fro

the cubic-symmetric LGW Hamiltonian

Hc5E ddx H 1

2 (
i 51

N

@~]mF i !
21rF i

2#

1
1

4!FuS (
i

N

F i
2D 2

1v(
i

N

F i
4G J ~3.15!

~see, e.g., Ref. 16! and in particular from the results for th
stability properties of the O(N) FP in the presence of
cubic-symmetric anisotropy. The point is that the cub
symmetric perturbation is a particular combination of t
spin-4 operatorsP4,4

abcd and of the spin-0 term (F2)2. Indeed,
one may rewrite

(
i 51

N

F i
45 (

a51

N

P4,4
aaaa1

3

N12
~F2!2. ~3.16!

Thus, the stability of the O(N) FP against the cubic
symmetric perturbation( iF i

4 is controlled by the RG dimen
sion y4,4 of the spin-4 operatorP4,4

abcd.
The RG flow for the cubic-symmetric theory has be

investigated by employing field-theoretical methods, ba
on perturbative expansions41,53,61–66or approximate solutions
of continuous RG equations,67–69and lattice techniques, suc
as Monte Carlo simulations57 and high-temperature
expansions70; see, e.g., Ref. 44 for a recent review. In pa
ticular, the RG functions have been computed to five loop
the e expansion41 and to six loops in a fixed-dimension ex
pansion in powers of the zero-momentum quar
couplings.53 In these perturbative schemes,

y4,452
]bv~u,v !

]v U
u5g

N* ,v50

, ~3.17!

wherebv is theb function associated with the quartic co
pling v, andgN* is the FP value of the quartic coupling in th
O(N)-symmetric theory. This allows us to determiney4,4 us-
ing the five-loop expansions reported in Ref. 41. We reob
again Eq.~3.14!, confirming the correctness of our calcul
tion. Moreover, using Eq.~3.17! and the results reported i
Ref. 53, one can also computey4,4 in the framework of the
fixed-dimension expansion to six loops. The resulting e
mates, obtained by using the conformal-mapping method,
reported in Table I. They show that the spin-4 perturbat
P4,4 is relevant for allN>3. In Table I the Monte Carlo
results of Ref. 57 are also shown; they were obtained
simulating the standardN-vector model and computing th
RG dimension of the cubic-symmetric term( isi

4 , wheresi is
the N-component spin variable. We may also consider
value Nc such that forN.Nc the cubic-symmetric anisot
ropy, and therefore the spin-4 perturbationP4,4

abcd, becomes
relevant at the O(N) FP. All studies reported in the literatur
indicate Nc'3 and definitely Nc,4; see, e.g., Refs
53,41,62–64,66–69,57, and 70. The most accurate re
have been provided by analyses of high-order perturba
05450
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field-theory expansions, which predictNc&2.9 in three di-
mensions. In particular, different analyses of the six-lo
fixed-dimension series yielded the estimatesNc52.89(4)
~Ref. 53!, andNc52.862(5) ~Ref. 62!; similar results were
also obtained from shorter series; see, e.g., Refs. 63 and
These results have been confirmed by the analysis of
O(e5) series.41,66,53 A constrained analysis taking into ac
count the two-dimensional value ofNc , Nc52, provided the
estimateNc52.87(5),53 which makes the evidence suppor
ing y4,4.0 for N53 stronger than the estimatey4,4
50.003(4) obtained from the direct analysis of itsO(e5)
series.

In conclusion, these results provide a rather robust e
dence that forN>3 the O(N) FP is unstable with respect t
spin-4 perturbationsP4,4

abcd and, as a consequence, that t
O(N) FP is a unstable MCP forN>3.

IV. RG FLOW AT THE MULTICRITICAL POINT

As already shown by theO(e) computations of Ref. 3,
the O(n1) % O(n2) theory at the MCP has six FP’s. Three
them—i.e., the Gaussian and the O(n1) and O(n2) FP’s—are
always unstable. The other three FP’s are the O(N) fixed
point, the biconal fixed point, and the decoupled fixed po
The stability of these FP’s depends onn1 andn2. In particu-
lar, in the preceding section we have established that
O(N) FP is stable forN52 and unstable forN>3, for any
n1 andn2.

The stability properties of the DFP can be determin
using nonperturbative scaling arguments.16–19 At the DFP,
the quartic coupling termwf1

2f2
2 scales as the product o

two energylike operators, which have RG dimensions
2a i)/n i wherea i and n i are the critical exponents of th
O(ni) universality classes. Therefore, the RG dimension
lated to thew perturbation is given by

yw5
a1

2n1
1

a2

2n2
5

1

n1
1

1

n2
2d. ~4.1!

Note that this relation is satisfied order by order in thee
expansion. Indeed, thee expansion ofyw obtained from the
stability matrix V at the DFP coincides with the series o
tained from the right-hand side of Eq.~4.1!, using the five-
loop expansions ofn i for the O(ni) universality classes. Tak
ing into account that the DFP is stable with respect to
other two RG directions, one can determine the stabi
properties of the DFP from the sign ofyw . Using the esti-
mates of the critical exponents of the three-dimensio
O(ni) universality classes~see, e.g., Ref. 44 for a review!,
yw turns out to be negative forN[n11n2>4 and positive
for N52,3.71 Three-dimensional estimates ofyw for N<5
are reported in Table II. These results show that the tet
ritical DFP is stable forN>4 for anyn1 ,n2.

The results concerning the O(N) FP and the DFP sugges
that the stable FP forN53 is the BFP. This is substantiall
confirmed by the five-loop analysis of the stability matrixV
at the BFP. Below we report the expansions of the criti
exponents at the BFP forn151 andn252. The eigenvalues
of the stability matrixV are
5-8
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vbi,15e20.579 364e211.344 815e324.058 162e4

114.526 420e51O~e6!,

vbi,250.491 105e20.084 149e210.361 174e3

20.776 741e412.593 212e51O~e6!,

vbi,3520.130 195e10.278 782e220.379 711e3

10.868 886e422.656 984e51O~e6!. ~4.2!

The expansions of the critical exponents are

hbi,150.020 830 6e210.018 294 1e320.007 773 25e4

10.0210 296e51O~e6!,

hbi,250.0200 806e210.0195 184e320.00848 020e4

10.0236 398e51O~e6!,

nbi,15
1

2
10.1114 875e10.0667 684e220.00616 190e3

10.0779 498e420.193 367e51O~e6!,

nbi,25
1

2
10.0234 143e10.0289 670e220.00547 548e3

10.0381 483e420.106 076e51O~e6!,

fbi5
nbi,1

nbi,2
5110.176 147e10.0673 541e220.0147 318e3

10.0783 198e420.190 099e51O~e6!. ~4.3!

We analyzed these series using the Pade´-Borel resummation
method. The estimates of the eigenvalues of the stability
trix are vbi,150.79(2), vbi,250.57(4), andvbi,350.01(1).
They are all positive, supporting the stability of the BF
although the result forvbi,3 is not sufficiently precise to defi
nitely exclude the opposite sign. Concerning the critical
ponents, we obtainedhbi,150.037(5), hbi,250.037(5), nbi
5nbi,150.70(3), and fbi51.25(1). Note first that hbi,1
'hbi,2 , as can be directly guessed by looking at the coe
cients of their expansions. A direct analysis of their diffe
ence gives the bounduhbi,12hbi,2u&0.0005. Second, note
that, within the errors, the BFP exponents are very close

TABLE II. Estimates of the RG dimensionyw at the DFP. They
are obtained by using Eq.~4.1! and the estimates of the O(N) criti-
cal exponentn reported in Refs. 72, 73, 56, 59, and 58.

N5n11n2 n1 n2 yw

2 1 1 0.1740~8!

3 1 2 0.0761~7!

4 1 3 20.0069(11)
2 2 20.0218(12)

5 1 4 20.078(4)
2 3 20.1048(12)
05450
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to

the Heisenberg ones, whose best estimates arehH
50.0375(5), nH50.7112(5), and fH51.250(15) from
high-temperature techniques,59,55 hH50.0355(25), nH
50.7073(35), andfH51.27(2) from the six-loop fixed-
dimension expansion,52,54 and hH50.0375(45), nH
50.7045(55), andfH51.260(11) from the five-loope
expansion.52 Rather stringent bounds on the differences b
tween the biconal and Heisenberg exponents can be obta
by considering the expansions of their differences, wh
have much smaller coefficients. Their analysis yields

uhbi,12hHu&0.0005,

uhbi,22hHu&0.0001,

unbi2nHu&0.001,

ufbi2fHu&0.005. ~4.4!

We have also studied the stability of the BFP for larg
values ofN. For N54, and in both casesn51, n253 and
n15n252, the five-loop calculation gives the expansions
the critical exponents at the BFP only toO(e4), because of
the additional degeneracy of the O~4! FP and of the BFP a
O(e). In particular, for the smallest eigenvalue we obtain

vbi,3~n151,n253!5
1

6
e220.3306 439e3

10.7376 491e41O~e5!,

vbi,3~n152,n252!5
1

6
e220.319 872e3

10.696 458e41O~e5!. ~4.5!

It is difficult to extract reliable estimates from these series
both cases, we find thatvbi,3 is small, but we are unable to
determine reliably its sign.

For N>5 we find that the BFP is unstable for all values
n1 andn2. In particular, forN55, n152, n253, and for the
smallest eigenvalue we obtain

vbi,350.052 584e10.0331 401e220.242 179e3

10.358 964e421.242 100e51O~e6!, ~4.6!

which givesvbi,3520.07(5).

V. CONCLUSIONS AND DISCUSSION

We have studied the multicritical behavior at a MC
where two critical lines with O(n1) and O(n2) symmetry
meet. It has been determined by studying the RG flow of
most general O(n1) % O(n2)-symmetric LGW Hamiltonian
involving two fieldsf1 andf2 with n1 andn2 components,
respectively. We have extended thee expansion of the criti-
cal exponents and of the stability matrix of the FP’s, pre
ously known to one-loop order, to five loops. The stability
the O(N) FP has also been discussed in the framework of
fixed-dimension expansion in three dimensions to six loo

The main properties of the RG flow of the O(n1)
5-9
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% O(n2)-symmetric system at the MCP can be summariz
as follows.

~i! The O(N) FP is stable only forN52, i.e., when two
Ising-like critical lines meet. It is unstable in all othe
cases, i.e., for alln1 and n2 such thatn11n25N
>3. Beside being unstable with respect to the spi
and spin-2 quadratic perturbations, forN>3 the
O(N) FP is also unstable with respect to quartic p
turbations belonging to the spin-4 representation
the O(N) group; cf. Eq.~3.5!. This implies that for
N>3 the enlargement of the symmetry O(n1)
% O(n2) to O(N) requires an additional parameter
be tuned, beside those associated with the quad
perturbationsr 1 andr 2 in the LGW Hamiltonian. The
associated crossover exponentsf4,4[y4,4 n are f4,4

'0.01 forN53, f4,4'0.08 forN54, f4,4'0.15 for
N55, andf4,4→1 for N→` ~see Table I!.

~ii ! For N53, i.e., forn151 andn252, the critical be-
havior at the MCP is described by the BFP, who
critical exponents turn out to be very close to those
the Heisenberg universality class; see Eq.~4.4!.

~iii ! For N>4 and for anyn1>1 andn2>1, the tetracriti-
cal DFP is stable. This has been inferred using n
perturbative arguments16–19 that allow us to write the
relevant stability eigenvalueyw in terms of the critical
exponents of the O(ni) universality classes; cf. Eq
~4.1!. Thee-expansion analysis shows that the BFP
unstable for all cases withN>5, while it is not con-
clusive for the cases withN54.

~iv! When the initial parameters of the Hamiltonian a
not in the attraction domain of the stable FP, the tra
sition between the disordered and ordered pha
should be of first order in the neighborhood of t
MCP. In this case, a possible phase diagram is gi
in Fig. 3. Close to the MCP all transition lines a
first-order ones. However, far from the MCP, th
high-temperature transitions may become continuo
belonging to the O(n1) and O(n2) universality
classes.

As already mentioned in the Introduction, a multicritic
behavior has been observed in several systems.

Anisotropic antiferromagnets in a uniform magnetic fie
H i parallel to the anisotropy axis present a MCP in theT-H i
phase diagram, where two critical lines belonging to theXY
and Ising universality classes meet.2,3 The results presente
above predict a multicritical BFP. The mean-field approxim
tion assigns a tetracritical behavior to the MCP,3 but a more
rigorous characterization, which requires the computation
the corresponding scaling free energy, is needed to dra
definite conclusion. Experimentally, the MCP appears to
bicritical ~see, e.g., the experimental results of Refs. 74
75!; numerical Monte Carlo results hint at the same behav
although with much less confidence.76 Our results contradic
theO(e) calculations of Refs. 2 and 3, suggesting the sta
ity of the O~3! FP. Notice that it is very hard to distinguis
the biconal from the O~3! critical behavior. For instance, th
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correlation-length exponentn differs by less than 0.001 in
the two cases. However, one may still hope to distinguish
two FP’s by measuring some universal amplitude ratio t
varies more significantly in the two cases. The crosso
exponent describing the crossover from the O~3! critical be-
havior is very small, i.e.,f4,4'0.01, so that systems with
small effective breaking of the O~3! symmetry cross very
slowly towards the biconal critical behavior or, if the syste
is outside the attraction domain of the BFP, towards a fi
order transition; thus, they may show the eventu
asymptotic behavior only for very small values of the r
duced temperature.

Isotropic antiferromagnets in a magnetic field are quit
special case. Indeed, the critical transition atH50 is a MCP
with O~3! symmetry, as observed experimentally; see, e
Ref. 77. As we discussed, forH5” 0, two relevant perturba-
tions are switched on, and they can give rise in principle t
more complex phase diagram. Finally, it should be noted
in real antiferromagnets additional nonisotropic interactio
are present, giving rise to lower-symmetry MCP’s. In Ref.
the magnetic phase diagram of NiCl2•4H2O was studied.
The orthorombic symmetry of the crystal gives rise to Isi
transition lines both for small and largeH i , so thatn15n2
51. As predicted by the theory, the MCP is a bicriticalXY
point. A similar experiment is reported in Ref. 79. A tetra
ritical XY MCP is observed in anisotropic antiferromagne
when the magnetic field is perpendicular to the symme
axis; see, e.g., Ref. 74 for an experimental study.

High-Tc superconductors are other interesting physi
systems in which MCP’s may arise from the competition
different order parameters. At low temperatures these m
rials exhibit superconductivity and antiferromagnetism d
pending on doping. The SO~5! theory5,6 attempts to provide a
unified description of these two phenomena, involving
three-component antiferromagnetic order parameter an
d-wave superconducting order parameter with U~1! symme-
try, with an approximate O~5! symmetry. This theory predicts
a MCP arising from the competition of these two order p
rameters when the corresponding critical lines meet in
temperature-doping phase diagram. Neglecting the fluc
tions of the magnetic field and the quenched randomn
introduced by doping~see, e.g., Ref. 19 for a critical discus
sion of this point!, one may consider the
O(3)% O(2)-symmetric LGW Hamiltonian to infer the criti
cal behavior at the MCP~see, e.g., Refs. 80,34,13,26,14, a
15!. In particular, the analysis of Ref. 34, which uses t
projected SO~5! model81 as a starting point, shows that on
can use Eq.~1.1! as an effective Hamiltonian. Different sce
narios have been proposed for the critical behavior at
MCP. In Refs. 5,13, and 14, it was speculated that the M
is a bicritical point where the O~5! symmetry is asymptoti-
cally realized. On the other hand, on the basis of theO(e)
results of Refs. 2 and 3, Refs. 80 and 26 predicted a tet
ritical behavior governed by the BFP. However, since it w
expected that the BFP is close to the O~5! FP, it was sug-
gested that at the MCP the critical exponents were in
case close to the O~5! ones.

The O~5!-symmetric scenario would require the stabili
of the O~5! FP. Evidence in favor of this picture has bee
5-10
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recently claimed using Monte Carlo simulations for a fiv
component O(3)% O(2)-symmetric spin model.14,20 The nu-
merical results show that, within the parameter ranges c
sidered, the scaling behavior at the MCP is consistent with
O~5!-symmetric critical behavior. Similar results have be
obtained in Ref. 35 by a quantum Monte Carlo study of
quantum projected SO~5! model in three dimensions. On th
other hand, the interpretation of these numerical results a
evidence for the stability of the O~5! FP~Refs. 14 and 20! is
untenable, because the results discussed in this paper
nitely show that the O~5! FP is unstable, and that th
asymptotic approach to the MCP is characterized by a de
pled critical behavior or by a first-order transition. The O~5!
symmetry can be asymptotically realized only by tuning
further relevant parameter, beside the double tuning requ
to approach the MCP. We note that the crossover expo
f4,4, related to the spin-4 perturbation of the O~5! FP, f4,4
'0.15, is much larger than itsO(e) approximation, i.e.,
f4,4'

1
26 e from which one would obtainf4,4'0.04 setting

e51. It is of the same order of the crossover exponent
pearing in many other physical systems. For instance, in
domly dilute uniaxial magnetic materials—a class of syste
whose asymptotic critical behavior has been precisely
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