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First-principles calculations of spin spirals in Ni2MnGa and Ni2MnAl

J. Enkovaara,1,* A. Ayuela,1 J. Jalkanen,1 L. Nordström,2 and R. M. Nieminen1
1Laboratory of Physics, Helsinki University of Technology, P.O.B. 1100, FIN-02015 HUT, Finland

2Condensed Matter Theory, Department of Physics, Uppsala University, Box 530, 75121, Uppsala, Sweden
~Received 22 October 2002; published 27 February 2003!

We report here noncollinear magnetic configurations in the Heusler alloys Ni2MnGa and Ni2MnAl which are
interesting in the context of the magnetic shape memory effect. The total energies for different spin spirals are
calculated and the ground-state magnetic structures are identified. The calculated dispersion curves are used to
estimate the Curie temperature which is found to be in good agreement with experiments. In addition, the
variation of the magnetic moment as a function of the spiral structure is studied. Most of the variation is
associated with Ni, and symmetry constraints relevant for the magnetization are identified. Based on the
calculated results, the effect of the constituent atoms in determining the Curie temperature is discussed.
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I. INTRODUCTION

Materials showing strong coupling between the magn
and structural properties are interesting from a technolog
point of view. Tb-Dy-Fe alloys~Terfenol-D, already in com-
mercial use! exhibit magnetic-field-induced strains o
;0.1% based on the magnetostriction phenomenon.1 On the
other hand, Ni-Mn-Ga alloys close to the Ni2MnGa stoichi-
ometry show strains up to 10% with moderate magne
fields.2–4 The mechanism of this phenomenon, the magn
shape memory~MSM! effect, is based on the magnetic-fiel
induced movement of structural domains~twin variants! and
is different from ordinary magnetostriction.5 The basic mag-
netic properties related to the MSM effect include the sa
ration magnetic moment and the magnetic anisotropy wh
have been studied earlier for Ni2MnGa.6,7 Here, we probe
deeper into the magnetic properties of Ni2MnGa and another
MSM candidate, Ni2MnAl, by studying noncollinear mag
netic configurations which also enables one to cons
finite-temperature effects in a natural way.

Although one ingredient in the MSM effect is a structur
transformation ~martensitic transformation! from a cubic
structure to a lower-symmetry structure upon cooling,
concentrate here only on the high-temperature phase. In
phase Ni2MnGa has the cubicL21 structure~see Fig. 1! as
shown byx-ray and neutron-diffraction measurements.8,9 The
magnetic order is ferromagnetic and most of the magn
moment originates from Mn.9,6 In the stoichiometric com-
pound the Curie temperature is about 370 K~Ref. 9! and
decreases with increasing Ni content.10 On the other hand
Ni2MnAl is less studied and its structure and magnetic c
figuration do not seem to be perfectly understood. On
structural side, bothL21 and disorderedB2 structures are
reported11–15 depending on the thermal treatment. The ma
netic configuration is found to be ferromagnetic with Cu
temperatures between 300 K and 400 K in Ref. 13 and a
ferromagnetic or spiral in Refs. 11 and 12. The magne
moment comes mainly from Mn atoms also in th
compound.11,16 It seems that the ground-state magnetic c
figuration depends on the underlying crystal structure. H
we address the possibility of noncollinear magnetic confi
rations in theL21 structure.
0163-1829/2003/67~5!/054417~7!/$20.00 67 0544
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Although the original formulation of the local-spin
density approximation17 of density-functional theory allowed
noncollinear magnetic order, first-principles calculations
this aspect have begin only recently~for a review, see Ref.
18!. One application has been the study of noncolline
ground states, for example, ing-Fe ~Refs. 19–21! or in frus-
trated antiferromagnets.22,23 In addition, the noncollinear for-
mulation enables studies of finite-temperature properties
magnetic materials. Since the dominant magnetic excitati
at low temperatures are spin waves which are noncollin
by nature, it is possible to determine the magnon spectra
ultimately the Curie temperature from first principles.24–27

Most of the previous work has been done for elements
compounds with only one magnetic constituent. We stu
here systems with several magnetic atoms and show how
interaction between different magnetic sublattices can g
rise to interesting effects.

The paper is organized as follows. Some general pro
ties of spin spirals are discussed in Sec. II followed by
description of the computational scheme in Sec. III. W
study the total energy and magnetization with spiral m

FIG. 1. Cubic cell of theL21 structure, whereX is Al or Ga. The
cubic cell contains four primitive cells.
©2003 The American Physical Society17-1
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netic orderings and estimate the Curie temperature in Sec
and finally we conclude in Sec. V.

II. GENERAL PROPERTIES OF SPIN SPIRALS

The magnetic configuration of an incommensurate s
spiral shows the magnetic moments of certain atomic pla
varying in direction. The variation has a well-defined peri
determined by a wave vectorq. When the magnetic momen
is confined to the lattice sites the magnetizationM varies as

M~rn!5mnF cos~q•rn1fn!sin~un!

sin~q•rn1fn!sin~un!

cos~un!
G , ~1!

where polar coordinates are used andmn is the magnetic
moment of atomn with a phasefn at the positionrn . Here,
we consider only planar spirals, that is,un5p/2 which also
gives the minimum of the total energy. When the spin-or
interaction is neglected thez directions in spin space and re
space are not coupled and the relative orientations of
magnetic moments are the important quantities. The mag
tization of Eq.~1! is not translationally invariant but trans
forms as

M~r1R!5D~q•R!M~r!, ~2!

whereR is a lattice translation andD is a rotation around the
z axis. A spin spiral with a magnetization in a general poinr
in space can be defined as a magnetic configuration w
transforms according to Eq.~2!. Since the spin spiral de
scribes a spatially rotating magnetization, it can be correla
with a frozen magnon.

Because the spin spiral breaks translational symmetry,
Bloch theorem is no longer valid. Computationally, o
should use large supercells to obtain total-energy spin spi
However, one can define generalized translations which c
tain translations in real space and rotations in spin space28,29

These generalized translations leave the magnetic struc
invariant and lead to a generalized Bloch theorem. There
the Bloch spinors can still be characterized by ak vector in
the Brillouin zone, and can be written as

ck~r!5eik•rS e2 iq•r/2uk~r!

e1 iq•r/2dk~r! D . ~3!

The functionsuk(r) and dk(r) are invariant with respect to
lattice translations having the same role as for normal Bl
functions. Due to this generalized Bloch theorem the s
spirals can be studied within the chemical unit cell and
large supercells are needed.

Although the chemical unit cell can be used, the prese
of the spin spiral lowers the symmetry of the system. O
the space-group operations that leave invariant the wave
tor of the spiral remain. When considering the general s
space groups, i.e., taking the spin rotations into account,
space-group operations which reverse the spiral vector
gether with a spin rotation ofp around thex axis are sym-
metry operations.29
05441
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Basically, the spin spiral relates only the magnetizatio
in the different primitive cells. However, the symmetry pro
erties constrain the magnetization which we discuss her
the context of theL21 structure. The primitive cell of the
L21 structure~one-fourth of the cubic cell shown in Fig. 1!
contains four atoms: two Ni, one Mn, and one Ga or Al ato
In the full cubic symmetry the two Ni atoms are equivale
but this equivalence can be broken when the spin spiral l
ers the symmetry of the system. If the spiral wave vecto
in the @111# direction the two Ni atoms are no longer equiv
lent under space-group operations. Considering also the
rotations, the phasesfn of the two Ni magnetizations are
opposite since the atoms are related by space inversion. I
two Ni atoms are treated as equivalent~when allowed by the
spiral symmetry! constraints for the phases of Ni momen
are even stronger. If the magnetic moments of Ni within t
primitive cell areM(r1)5m1cos(f1)5M(r2), the magnetic
moment in the neighboring cell at2r1 is M(2r1)5m1cos
(2f1). On the other hand, the Ni atoms at2r1 and atr2 are
connected by a lattice translation, so that according to Eq.~2!
M(r2)5m1cos(2f11q•R) and one has the relationf15
2f11q•R for the phase. In order to obtain the tru
minimum-energy configuration it may be necessary to tr
the Ni atoms as inequivalent~i.e., lower the symmetry of the
system! so that the above relation for the phase does not h
to hold.

III. COMPUTATIONAL METHOD

The spin spirals discussed in Sec. II are studied wit
density-functional theory. We use the full-potential lineariz
augmented-plane-wave method30 in an implementation
which allows noncollinear magnetism including sp
spirals.31,32 In addition to the full charge density and to th
full potential, the full magnetization density is used. T
magnetic moment is allowed to vary both in magnitude a
in direction inside the atomic spheres as well as in the in
stitial regions. The plane-wave cutoff for the basis functio
is RKmax59, leading to;350 plane waves with muffin-tin
radii of 2.25 a.u. Brillouin-zone integrations are carried o
with the special point method using 800k points in the full
Brillouin zone and a Fermi broadening of 0.005 Ry. To
energies are given per formula unit and they are converge
least up to 0.01 mRy. For the exchange-correlation poten
we use both the local-spin-density approximation17 ~LSDA!
and the generalized gradient approximation~GGA!,33 which
we discuss next in more detail.

A. LSDA vs GGA

It has been pointed out that the use of the GGA is ben
cial in the context of Ni2MnGa.16,6 Because there has bee
some discussion about the different exchange-correlation
tentials in the context of noncollinear magnetism, we pres
some comparison also here.

Although there is no global spin-quantization axis, o
can consider at every point of space a local coordinate
tem such that the magnetization at that point is in thez di-
rection. Since the LSDA depends only on the magnitude
7-2
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the magnetization, the exchange-correlation potential ca
calculated at every point in the local coordinate system s
as in the usual collinear case. The noncollinear potentia
obtained by rotating back to the global frame of referen
On the other hand, the GGA depends also on the gradien
magnetization. Because the magnetization direction m
vary, only projections of the magnetization on the local qu
tization axis are used in the standard GGA when evalua
the gradients. If the magnetization direction varies slow
this should not cause any problems. Some previous work
led to suggestions that the disagreements between theory
experiment are due to projection errors in some case20

However, later work has corroborated the fact that the m
issue is not the exchange-correlation functional but the ac
computational method, pointing to the importance of a
electron and full-magnetization treatments.21,34,35

We have done all the calculations in this work both w
the LSDA and the GGA. The total energy as a function of
spiral wave-vector length in Ni2MnGa is shown in Fig. 2 for
a single direction.

One can see that for smallq both approximations give
similar results. With largerq the results differ slightly but the
same qualitative behavior is seen. For the other results
sented in the following sections the qualitative behavior
also the same for the LSDA and GGA, and the quantitat
differences between the two approximations are e
smaller. The differences between the LSDA and GGA in s
spiral calculations are small also for pure elements.21 There-
fore, only the GGA results are discussed in the following

IV. RESULTS AND DISCUSSION

A. Total energies

First, we have studied the possibility of noncollinear o
dering by studying the energetics of spiral configuratio
This study also provides information about finit
temperature properties. The total energy is calculated a
function of the spiral wave vectorq, and the wave vector is
varied along the high-symmetry directions@001#, @110#, and

FIG. 2. Total energy as a function of the spiral vectorq in units
of 2p/a. Circles represent LSDA, squares are for GGA.
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@111#. q is given in units of 2p/a wherea is the theoretical
lattice constant of theL21 structure.16 The corresponding
total energies are shown in Figs. 3 and 4.

Figure 3 shows that the variation of total energy in@001#
and@111# directions is similar in Ni2MnGa and Ni2MnAl for
all values ofq. The lowest energy in all cases is atq50
which is the normal collinear ferromagnetic configuratio
Both materials have small minima at the antiferromagne
configuration atq5(0 0 1), but at other antiferromagneti
configurations atq5(0.5 0.5 0.5) there are no minima.

The energy in the@110# direction is also similar for both
materials as seen in Fig. 4. Here, the effect of symme
constraints can be seen clearly. If the two Ni atoms
equivalent the energy is higher especially aroundq
5(0.5 0.5 0). When the magnetic moments of the two Ni a
allowed to relax independently the energy lowers and
dispersion becomes flat afterq5(0.5 0.5 0). Near the
Brillouin-zone boundary atq5(0.75 0.75 0) both materials

FIG. 3. Total energy as a function of the spiral vectorq. Circles
represent Ni2MnAl, squares are for Ni2MnGa.

FIG. 4. Total energy as a function of the spiral vectorq. Circles
represent Ni2MnAl, squares are for Ni2MnGa. ~a! Ni atoms are
equivalent;~b! Ni atoms are inequivalent. Vertical line denotes t
Brillouin-zone boundary.
7-3
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J. ENKOVAARA et al. PHYSICAL REVIEW B 67, 054417 ~2003!
show small energy minima corresponding to incommen
rate spiral order. At the antiferromagnetic configurations
q5(1 1 0) there are no clear energy minima even though
the case of Ni2MnAl the dispersion is very flat.

Generally, the spin spirals are related to magnons wh
allows the estimation of magnon-related properties, such
spin stiffness and Curie temperature, from the total ener
calculated above. The total energy of the planar spin spira
related to the magnon energyvq as24,26

vq5
4mB

M
E~q!, ~4!

whereM is the magnetic moment per unit cell. In the lowq
limit the magnon dispersion is quadratic, and one defines
spin stiffness constantD as

vq5Dq2. ~5!

From the calculated total energies in Figs. 3 and 4 we
estimate the same spin stiffness for both materials whic
D577 mRy a.u.2 This in good agreement with the exper
mental value 79 mRy a.u.2 measured in Ni-Mn-Ga films.36

The Curie temperature can be estimated on the bas
the Heisenberg model. By mapping the first-principles res
to the Heisenberg model, the Curie temperatureTc in the
random-phase approximation is given by27,37

1

kBTC
5

6mB

M

V

~2p!3E d3q
1

vq
, ~6!

whereV is the unit-cell volume, and the integration is ov
the Brillouin zone. An estimation can be obtained using
quadratic dispersion, Eq.~5!, and carrying out the integratio
over a sphere having the same volume as the Brillouin zo
This results in

1

kBTC
5

3Vqd

Mp2D
, ~7!

whereqd5(6p2/V)1/3. By using the calculated spin stiffnes
constant we obtainTc5830 K which is clearly an overesti
mate. As seen in Figs. 3 and 4 the dispersion curveE(q)
deviates strongly from quadratic behavior with largerq. A
better estimate can be obtained by considering the disper
quadratic up to some radius and constant thereafter. Base
the calculated energies in Figs. 3 and 4 the constant is ch
to be 5 mRy whenq.0.7qd . The Curie temperature ob
tained in this way isTc5485 K which compares well with
the experimental one, 380 K.

B. Magnetic moments

In order to obtain a deeper understanding of the ene
dispersion we next look into the behavior of magnetizati
The magnetic moments averaged over the atomic sphere
different q are shown in Figs. 5 and 6. The atomic magne
zations show that within the Mn spheres the magnetizatio
nearly constant and the variation in the total magnetizatio
mainly due to Ni. Also, the symmetry consideration of t
05441
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equivalence of Ni atoms has no effect on the Mn mome
This points to a more localized character of the magne
moment of Mn, compared to a more itinerant character of
Because most of the total magnetic moment comes from
these alloys can be considered as localized-moment sys
consistent with the traditional view for similar materials.38

However, despite the relative smallness of its magnetic m
ment, Ni has a significant effect on the energetics as
cussed later. The differences between Ni2MnGa and
Ni2MnAl are small: the magnetic moment in Ni2MnGa is
slightly larger, as shown already in previous work.16

Since the magnetic moment in Ni shows a larger var
tion, the behavior of the Ni moment for several directions
analyzed in more detail. The magnetization decreases
notonously both in the@001# and in the @111# directions.
Differences are at the antiferromagnetic configurations si
the magnetic moment of Ni remains finite atq5(1 1 1) but
vanishes atq5(0 0 1). In the@110# direction, the behavior
of the Ni moment depends strongly on the symmetry as s

FIG. 5. Magnetic moments within the atomic spheres as a fu
tion of the spiral vectorq. Circles represent Ni2MnAl, squares are
for Ni2MnGa. ~a! Ni atoms are equivalent;~b! Ni atoms are in-
equivalent.

FIG. 6. Magnetic moments within the Ni sphere as a function
the spiral vectorq. Circles represent Ni2MnAl, squares are for
Ni2MnGa.
7-4
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in Fig. 5. When the two magnetic moments are forced to
the same, the magnetization starts to decrease with incr
ing q and vanishes to zero value atq5(0.5 0.5 0). For larger
q values the moment shows a small peak before decrea
again to zero in the antiferromagnetic state atq5(1 1 0). In
the case of Ni atoms being inequivalent only a monoton
decrease similar to the@001# direction is seen.

Because most of the variation in total magnetization
due to Ni, it should have a stronger effect also on the ene
dispersion. The importance of Ni can be seen most clearl
the @110# direction for the cases of different symmetry. Th
symmetry affects only Ni as seen in the behavior of the m
netization, Fig. 5. Since the energy dispersion depends on
symmetry, Fig. 4, the importance of Ni is clear. Comparis
of Figs. 5 and 4 shows that the energy lowers when the
moment increases. Based on the above reasoning, Ni sh
have an effect on the Curie temperature, which indeed
seen in experiments where the increase in Ni content
creases the Curie temperature.10

The variation of the Ni moment can be understood
considering symmetry arguments and the coordina
around Ni atoms. In the@001# direction two of the four Mn
atoms neighboring Ni have the same magnetization direc
in the spiral and the other two have different directions,
shown schematically in Fig. 7~a!. The magnetization in Ni
favors ferromagnetic alignment with the neighboring M
moments so that part of the Ni moment can be though
align with one group of the Mn neighbors and part with t
other group. The total moment within the atomic sphere is
average of these two parts and the Ni moment decre
when the angle between the Mn moments increases. In
antiferromagnetic configuration there is a complete frus
tion of the Ni atoms which results in a zero average mag
tization within the sphere. For the@111# direction shown in
Fig. 7~b! one group contains three Mn atoms and the ot
group only one. Therefore the variation of the average m
ment in the Ni sphere is smaller and the moment rema
finite in the antiferromagnetic configuration.

In the @110# direction the situation is more complex esp
cially when the two Ni atoms are treated as equivalent. In
antiferromagnetic configuration the coordination is similar
the case of the@001# direction. There are two groups o
neighboring Mn atoms with antiparallel magnetization, a

FIG. 7. Schematic view of magnetic moments in neare
neighbor Mn atoms of Ni atoms at~a! q5(0 0 1) and ~b! q
5(0.5 0.5 0.5).
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the frustration leads to a zero average moment within the
sphere. The Ni moment is, however, zero also atq
5(0.5 0.5 0). At this point there are three groups of equiv
lent Mn neighbors. One group contains two Mn atoms a
the other groups contain one Mn atom. The magnetic m
ments of single Mn atoms are antiparallel to each other
have a 90° angle with respect to the moments in the grou
the two Mn atoms. The other equivalent Ni atom has th
similar groups of neighboring Mn atoms, such as the first
atom. The important point is that the moments in the gro
with two Mn atoms are antiparallel to those in the corr
sponding group of the first Ni atom, as seen in Fig. 8. Th
is now frustration for Ni, but only when both equivalent N
atoms and their neighbors are taken into account. This f
tration causes the magnetic moment around Ni to van
completely in contrast to the antiferromagnetic case, whe
small moment remains near Ni but averages to zero. W
the Ni atoms are inequivalent, they can relax according
local environment so that a finite moment can remain aq
5(0.5 0.5 0).

An example of the magnetization density for the case
which finite magnetic moments near the Ni atom average
zero is seen in Fig. 9. Here the magnetization direction
change its sign within the atomic sphere. This finding sho
the importance of the full-magnetization treatment wh
dealing with several magnetic sublattices.

t-

FIG. 8. Schematic view of magnetic moments in neare
neighbor Mn atoms of the two equivalent Ni atoms atq
5(0.5 0.5 0).

FIG. 9. Magnetization density around Ni in the~001! plane with
q5(1 1 0). The width and the height of the area are 2.5 a.u. w
magnetization is in arbitrary units.
7-5
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V. CONCLUSIONS

We have studied noncollinear magnetic configurations
the ternary alloys Ni2MnGa and Ni2MnAl with first-
principles calculations. The calculations show that the m
netic properties are similar for both materials. The ferrom
netic configuration is the ground state in theL21 structure, so
that the experimentally observed antiferromagnetism
Ni2MnAl is related to structural disorder. Studies of the oth
structural phases as well as inner distortions would be in
esting in the future.

The calculated total energies are used to estimate the
stiffness constant and the Curie temperature, which ar
good agreement with the experiments. The similarity in
energy dispersion for both materials suggests that the C
temperatures should be also similar. In the@110# direction
Ni2MnAl has higher energy, so that the Curie temperat
should be slightly higher.

The variation of the magnetic moment in the spira
shows that the Mn moment is nearly constant while the
moment varies strongly. The symmetry of the spin sp
constrains the direction of magnetization, and since Ni fav
ferromagnetic coupling with Mn, there can be frustration
certain wave vectors resulting in the vanishing of the m
netic moment near the Ni sites. It is also shown how th
can be strong variation in the direction of the magnetizat
near the atomic sites which points to the relevance of
full-magnetization treatment.

Some conclusions can be made concerning the role o
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constituent atoms for the magnetic properties. Since the m
netic moment of Ni varies strongly and its symmetry affe
the energy considerably, Ni has probably a strong effect
the energy dispersion especially when larger wave vec
are involved. Therefore Ni also influences the Curie tempe
ture. If one assumes that the spin stiffness is mainly due
Mn, and the lowering of the energy with larger wave vecto
due to Ni, Ni lowers the Curie temperature from 830 K
485 K within the present approximations. Since the incre
in the Ni moment decreases the energy it is suggested th
order to increase the Curie temperature one should rep
some Ni, perhaps a little counterintuitively, with some no
magnetic element, for example, Cu. Further experime
should clarify these issues and confirm the above sug
tions.
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