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Ground state and excitation of an asymmetric spin ladder model
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We perform a systematic investigation on an asymmetric zigzag spin ladder with interleg exchangeJ1 and
different exchange integralsJ26d on both legs. In the weak frustration limit, the spin model can be mapped
to a revised double frequency sine-Gordon model by using bosonization. Renormalization-group analysis
shows that the Heisenberg critical point flows to an intermediate-coupling fixed point with gapless excitations
and a vanishing spin velocity. When the frustration is large, a spin gap opens and a dimer ground state is
realized. FixingJ25J1/2, we find, as a function ofd, a continuous manifold of Hamiltonians with dimer
product ground states, interpolating between the Majumdar-Ghosh and sawtooth spin-chain model. While the
ground state is independent of the alternating next-nearest-neighbor exchanged, the gap size of excitations is
found to decrease with increasingd. We also extend our study to a two-dimensional double layer model with
an exactly known ground state.
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I. INTRODUCTION

Quantum spin ladder systems have attracted much a
tion in the past few years.1,2 Strong quantum fluctuation
prevent any long-range antiferromagnetic order in quasi
dimension. The magnetic phases of the ladder systems
rich and strongly dependent on their geometric structu
Several types of disordered ‘‘quantum spin liquid’’ phas
are known.1,3,4 Typical examples of two-leg ladders are th
railroad ladder and the zigzag ladder. The railroad ladder
a singlet ground state with elementary triplet excitatio
~magnons!.1 Depending on the ratio of the leg to rung e
change integrals, the zigzag ladders may have gap
ground states with algebraically decaying spin correlation
spontaneously broken dimerized ground states.5 The gapped
dimer ground state is degenerate, and the elementary ex
tions are pairs of spinons. The spin ladders have been stu
experimentally in compounds such as SrCu2O3 and
CuGeO3.6

The two-leg zigzag ladder, which has been well inves
gated, is perhaps the simplest example of the frustrated
model and highlights the role played by frustration. Ho
ever, less attention has been paid to asymmetric spin lad
where the exchange integrals on both legs are different. O
the extreme case where one leg of a zigzag ladder is mis
entirely ~sawtooth orD chain! has been solved.7,8 In this
paper, we perform a systematic study of an asymmetric
zag spin ladder, which is a Heisenberg model defined on
structure shown in Fig. 1. In general, it is convenient
represent the zigzag ladder as a spin chain with nea
neighbor ~NN! exchange J1 and next-nearest-neighbo
~NNN! exchangeJ2 corresponding to the interleg exchan
J1 and intraleg exchangeJ2. Equivalently, the asymmetric
ladder model can be represented as a chain with an alte
ing NNN exchange

H5(
l

$J1Sl•Sl 111@J21~21! ld#Sl•Sl 12%, ~1!
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where J1[1 and J26d are the NN and alternating NNN
coupling constants, respectively. The introduction ofd
makes the exchanges on top and bottom legs differend
50 is the ordinary zigzag ladder or frustrated spin cha5

andd5J2 is the extreme case with one leg completely mi
ing. Fixing J25J1/2 gives an exactly solved continuou
manifold of Hamiltonians.9 The Majumdar-Ghosh10 ~M-G!
and the sawtooth chain7,8 are extreme cases withd50 and
d5J25J1/2, respectively.

Ford50 the model~1! is well understood for generalJ2.5

Frustration due toJ2 is irrelevant whenJ2,J2c ,6,11 and the
system renormalizes to the Heisenberg fixed point,15 whose
ground state is described as a spin fluid or Luttinger liq
with massless spinon excitations. AsJ2.J2c , the frustration
term is relevant and the ground state is doubly degener
Particularly, the ground state has a simple product form
J250.5J1.10 The critical value ofJ2c50.2412J1 can be de-
termined numerically.6,11 For J2.0.5J1, quite different field-
theory treatments are required depending on the ratio
J2 /J1.12,13

Since relatively less is known about the asymmetric la
der, we study physical effects brought about by the leg as
metry. Before solving the quantum problem, we start w
the classical problem which can give us instructive insig
into properties of the asymmetric spin model. In the class
limit, the ground state of this model is a Ne´el state forJ2
,J1/4 and a spiral with a pitcha5arccos(2J1/4J2) for J2
.J1/4. Both ground states and the critical ratio of exchan
integrals separating them are independent ofd. The excita-
tions may depend ond, however.

Certainly, the quantum case is much more complicat

FIG. 1. The asymmetric zigzag spin ladder with different e
changes on the top and bottom legs.
©2003 The American Physical Society12-1
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When the asymmetric exchange interaction is introduc
some unexpected phenomena will appear. We found tha
Heisenberg fixed point is no longer stable and flows to
intermediate-coupling fixed point with gapless excitatio
and a vanishing spin velocity.9 However, there is still remi-
niscence of classical results. It was found that the gro
state is independent ofd whenJ25J1/2, but the excited gap
is decreased byd. Part of the work on a weak frustratio
regime has been reported in our previous paper,9 and here we
quantitatively study the crossover of the excitation spectr
from the symmetric M-G model to the extremely asymmet
sawtooth model in detail. An extension to a two-dimensio
~2D! double layer model is also presented.

The outline of this paper is as follows. In Sec. II, th
effective low-energy theory of the asymmetric ladder is d
rived using bosonization. We qualitatively discuss the eff
of alternating NNN interaction and compare our model w
the well-known spin-Peierls model. The phase diagram
the system is discussed with the help of renormalizati
group analysis. In Sec. III, we study the asymmetric mode
the special pointJ25J1/2. The ground state and excitatio
properties are also discussed. In Sec. IV, we generalize
model to a two-dimensional double layer model, who
ground state is a dimer product state and the excitations
magnons. Section V contains our conclusions.

II. EFFECTIVE LOW-ENERGY THEORY
AND RENORMALIZATION-GROUP ANALYSIS

Following the general procedure of transforming a s
model to an effective model of continuum field,14,15 we con-
vert the spin Hamiltonian to a Hamiltonian of spinless fe
mions using Jordan-Wigner transformation, then map it t
modified Luttinger model with umklapp and backscatterin
type interactions. Using the standard dictionary
bosonization,16,17 we obtain the effective boson Hamiltonia
H5H01H1 with

H05E dx
u

2p FK~pP!21
1

K
~]xF!2G , ~2!

H15E dxF g3

2~pa!2
cos 4F1

g1

p2a
~]xF!cos 2FG , ~3!

whereF(x) is a bosonic phase field andP(x) its canoni-
cally conjugate momentum. Herea is a short-distance cutoff
g3}12J2 /J2c is the umklapp-scattering amplitude andg1
}d is the amplitude of the alternating NNN field. The p
rametersu andK are the effective spin velocity and couplin
constants which are given by

u5AS 11
g4

2p D 2

2S g2

2p D 2

, K5A2p1g42g2

2p1g41g2
.

In general, these values are only valid near the free ferm
point (K51), whereasK51/2 is fixed by the symmetry a
the isotropic point. The corresponding spin-correlation fu
tions can be calculated from the boson representation, w
gives
05441
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^Sz~0!Sz~x!&0;~21!xx22K, ~4!

^S1~0!S2~x!&0;~21!xx21/2K. ~5!

It is clear that the SU~2! symmetry is restored at the isotrop
point with K51/2.

For smallg3 andg1 , H1 could be considered as a pertu
bation toH0. Without theg1 term,H5H01H1 represents a
standard sine-Gordon model.5 The g3 term is either margin-
ally irrelevant, which leads to the weak-coupling Heisenb
fixed point, or relevant, which drives the system to a stro
coupling dimer state. Therefore, what we are interested i
how the alternating NNN interactiong1 changes the physica
properties of the system. Qualitative results on the influe
of the new interaction (g1) can be obtained from scalin
analysis and physical considerations.

It is important to determine whether perturbative ope
tors are relevant, marginal, or irrelevant. In general, only
most relevant perturbation is important, because the ir
evant operator will scale to zero at large lengths. We can g
an approximate estimate by comparing scaling dimension
the given operators. It follows thateiaF(x) has a scaling di-
mension ofa2K/4 and]xFeiaF(x) has a scaling dimension
of a2K/411. Therefore, the scaling dimensions of the u
klapp and the alternating NNN termsg3 andg1 are

dg3
54K, dg1

5K11. ~6!

At the isotropic Heisenberg fixed point,g3 is marginal with
dg3

52, while the g1 term with dg1
53/2 is relevant. We

conclude thatg1 destabilizes the isotropic Heisenberg fixe
point and the spin liquid ground state.

On the other hand, forJ2.J2c , theg3 term is marginally
relevant and renormalizes to a strong-coupling fixed poin
the long-wavelength limit. Near the strong-coupling dim
fixed point, theg3 term is much more relevant than theg1
term. Usually~e.g., g3→6`), the boson fieldF(x) locks
into a constant value with small fluctuations and an ass
ated excitation gap. Here, the constant solutionF56p/4
corresponds to the degenerate ground state at the str
coupling fixed point forg3→`. The standard cos 4F sine-
Gordon equation has a pair of solutions of kink and antikin
which describe the elementary excitations~a pair of spinons!
for the degenerate dimer phase. Even including the less
evantg1 term, the soliton solutions will survive. Howeve
the phase locking of theg1 term is forbidden by the]xF
prefactor to the cos(2F) term inH1. In this sense, there is n
standard strong-coupling theory for theg1 term.

From known results on the sawtooth chain7,8 and the M-G
model,10 we expect that theg1 term, induced by the alternat
ing NNN interaction, does not confine spinons and pla
quite a different role than the dimerization by other degre
of freedom. Moreover, the difference in the size of excitati
gaps in these two models implies that theg1 term quite gen-
erally competes with the umklapp term whereas an exte
NN dimerization would cooperate. As we will show, it turn
out thatg1 opens no spin gap despite being a relevant p
turbation of the Heisenberg fixed point. This result is a
corroborated by the absence of a magnetization platea
2-2
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our model in small magnetic fields.18 For an alternating NN
exchange, a magnetization plateau is observed in small m
netic fields, but for alternating NNN exchange, it is on
observed in high fields.18,19

To get instructive insight, we would like to compare th
alternating NNN interaction in our model with the alterna
ing NN interaction in the well-known spin-Peierls model.
the language of field theory, the external dimerization cor
sponds to a relevant termHsp}*dx(gspsin 2F). This term is
always much more relevant than theg3 term and lifts the
degeneracy (F56p/4) of the ground state. With the pres
ence of thegsp term, the lowest-energy configuration is
2p/4 if gsp.0 or p/4 if gsp,0. Since the most relevan
term is sin 2F, the corresponding sine-Gordon system ha
pair of soliton and antisoliton solutions~excitations withSz
561) as well as two breather solutions~excitations with
Sz50).20,21The lowest breather is precisely degenerate w
the soliton and antisoliton excitations, and they form a bou
state which corresponds to theS51 triplet. In this case, the
elementary excitation should be a spin triplet and a spin
glet, since no spinons exist as an elementary excitation.22–24

However, the alternating NNN interaction, (]xF)cos 2F,
does not lift the degenerate phasesF56p/4, due to the
existence of the prefactor]xF.

We now perform a perturbative renormalization-gro
~RG! analysis of our model by following standar
procedures.25–28 Introducing the reduced variablesy3

5g3 /pu andy15g1 /A2pu, we obtain the RG equations

dK

dl
52y3

2K21y1
2K4, ~7!

dy3

dl
5~224K !y31K2y1

2 , ~8!

dy1

dl
5~12K !y124K2y1y3 , ~9!

du

dl
52

1

2
uy1

2~11K !K2, ~10!

under a change of length scalea→aedl. Here we definedl
5 ln(a1da/a). The RG equation for the spin velocityu is a
consequence of the anisotropy of theg1 interaction in the
classical 2DXY model, i.e., its nonretarded but nonloc
character in quantum field theory~3!.

For y150 Eqs.~9! and ~10! would not appear, thusu is
not renormalized. The RG Eqs.~7! and ~8! with y150 de-
scribe the symmetric spin ladder system with a Kosterl
Thouless transition.5 Spin-rotation invariant models sca
along the separatrix between Ne´el and spin liquid phases, o
along its continuation into the dimer regime. Linearizing t
RG Eqs. ~7!–~10! around the isotropic Heisenberg fixe
point @g3

(H)50, g1
(H)50, K (H)51/2# and defining dK5K

2 1
2 , we obtain the linearized RG equations

d dK

dl
52

1

4
y3

21
1

16
y1

2 , ~11!
05441
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dy3

dl
524dKy31

1

4
y1

2 , ~12!

dy1

dl
5

1

2
y12y1y32dKy1 . ~13!

A family of solutions of the RG equations, projected on t
y3-K plane, are shown in Fig. 2. We choose the initial val
of y1 as 0.001 and find the trajectories are not sensitive to
choice of the initial values ofy1. From the RG equations
one can directly find that there exist two intermediate fix
points given by (dK,y3 ,y1)5(0.1,0.4,60.8). Herey1 takes
the values6, which reflects that our RG equations are sy
metric toy1. As shown in Fig. 2, the intermediate fixed poi
(dK!,y3

!)5(0.1,0.4) on the plane ofy3-dK is stable along
the liney354dK where the spin-rotation invariance is pro
tected. For points near the intermediate fixed points, but
exactly on the line ofy354dK, the spin-rotation invariance
is broken, thus they will flow to the spin-fluid fixed poin
(y350) or the strong-coupling fixed point (y3→`).

At the fixed point, the RG Eq.~10! implies that the spin
velocity u! is renormalized. The robustness of the existen
of this intermediate fixed point against higher-order pert
bations does not depend on the exact value of the fixed p
as long as the fixed point is located on the RG separa
with 1/2,K,`.9 The intermediate fixed point is thus de
scribed by an effective fixed-point Hamiltonian. Inverting th
definitions ofyi5gi /pu, we rewrite the effective fixed-poin
Hamiltonian as a product ofu! and a term independent o
u!, H!5u!H(K!,g3

! ,g1
!). Then the vanishing ofu! leads to

a trivial fixed-point HamiltonianH!50. As a result of the
vanishing of the renormalized spin velocity, the element
excitations at the fixed point, spinon and antispinon, are
gapless. The vanishing of velocity is usually interpreted a
sign of ferromagnetism, however we interpret this as o
spins effectively decoupling at the lowest-energy scales,

FIG. 2. The scaling trajectories fory1( l 50)50.001 projected
on the y32dK plane.dK5K21/2, and the dot locates the ne
intermediate-coupling fixed point. The Ne´el state is realized in the
upper left, the dimer state in the lower left, and the spin liquid in
right part of the figure. The asterisk locates the boundary betw
flows to the new fixed point, and into the dimer regime.
2-3
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a kind of asymptotic freedom in this spin-rotation invaria
ladder.9 Also, the numerical results of Wiessneret al.18 indi-
cate a paramagnetic susceptibility.

When J2 increases beyond a critical valueJ2c(d) ~now
depending ond), the RG flows to a strong-coupling fixe
point, which corresponds to the quantum dimer phase.
y150.001, this critical point is indicated in (K,y3) coordi-
nates in Fig. 2 by an asterisk. For smalld andJ2.J2c(d),
our RG equations show that the system will remain in
universality class of the dimer solid corresponding to
strongly fixed point, however the spin gap is decreased
increasingd. Basically, the gap sizeD}exp(2l1) wherel 1 is
the length of the scaling trajectory from the initial values
the point where the most relevant perturbation is of or
unity. This length is increased, andD therefore decreased, b
the y1 contributions toK and y3 being opposite in sign to
those ofK andy3 in Eqs.~7! and ~8!.

Recently, Sarkar and Sen29 studied the same model b
using nonlinears-model field theory and Abelian bosoniza
tion. However, the main discrepancy between our work a
theirs29 is that we kept the bosonized operator of the alt
nating NNN operator and analyzed it by RG, while they ju
discarded it by arguing the irrelevance of the operator. Fo
anisotropicXXZ chain, our RG result indeed shows that t
g1 operator is irrelevant9 in that it does not drive the system
to a new phase, and this is consistent with the work of Sa
and Sen. But the main difference lies in the question
whether an intermediate fixed point exists and whether
fixed point corresponds to a phase different from a Luttin
liquid. In our previous work, we argued that vanishing sp
wave velocity plays a crucial role in the existence of such
unusual phase. If the spin velocity does not vanish,
should explain the fixed point as a spin liquid phase such
in theJ12J2 model with the spin velocity renormalized. Ou
result also suggests that the quantum phase-transition pa
eter (J2c /J1.0.2412) to the dimer phase is changed by
alternating NNN operator, which may be verified directly
numerical simulations such as density-matrix renormali
tion group. We also notice that the magnetization curve
the Heisenberg model with an additional alternating NN
operator18 gives an obvious different magnetization susce
tibility from the one without it. Their susceptibility is en
hanced by this new interaction with respect to an equiva
Heisenberg chain, indicating a reduced spin velocity. F
thermore, a complete scheme to deal with the alterna
NNN operator should give a correct description of the
duced effect not only in the weak frustration regime but a
in the strong frustration regime. The omission of theg1 term
could not explain why the operator shrinks the spin gap s
in the regime of strong frustration, as we will study in det
in the next section. However, our RG analysis gives a qu
tative explanation of the influence of theg1 term on spin gap
sizes. Therefore, we think that the scheme of discarding
g1 operator based on its irrelevance seems to be oversim
fied. We hope that more numerical simulations will even
ally be able to resolve this disagreement and quantitativ
study the phase diagram of the ground state as a functio
J2 /J1 andd.
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III. CROSSOVER FROM M-G TO SAWTOOTH MODEL

It is generally believed that continuum field theory cann
give a good description of the behavior of the system
away from the critical point. In the case ofJ250.5J1, the
correlations extend only to a distance of one lattice spac
thus the continuum field description is not a good approa
As we have shown, the phase corresponding to largeJ2 is the
dimer phase. This is consistent with our knowledge from
models with exactly known ground states, say, t
Majumdar-Ghosh~M-G! and sawtooth models. In this sec
tion, we prove that there exists a continuous manifold
Hamiltonians with dimer product ground states as long
J25J1/2.

We start with the asymmetric ladder model

H5(
l 51

2N

JSl•Sl 111F J

2
1~21! l 11dGSl•Sl 12 . ~14!

The M-G model and sawtooth model correspond tod50 and
d5J/2, respectively.

For the M-G model,10 the two linearly independen
ground states, say, the left and right dimer ground states
products of nearest-neighbor singlets, respectively,

uFL&5 )
l 5odd

@ l ,l 11#, uFR&5 )
l 5even

@ l ,l 11#, ~15!

where@ i , j #5(a ib j2b ia j )/A2 denotes the singlet combina
tion of spin i and j with the direction of dimers defined a
i→ j . Herea i represents the up-spin andb i the down-spin
states at sitei. uFL,R& also represent the degenerate grou
states of the sawtooth model.7,8 For the asymmetric ladde
model, we notice that the NNN exchange alternation d
not modify the product states of nearest-neighbor singlet

HduFL,R&5(
l

~21! ld Sl•Sl 12uFL,R&50. ~16!

This is induced by the fact that the alternating NNN co
plings along the upper leg and the lower leg of the lad
cancel each other out, when they operate onuFL,R&. It is
obvious thatuFL& and uFR& are eigenstates of the Hami
tonian ~14!. In fact, as we will prove, they are exactly th
ground states of Eq.~14!.

To see this more clearly, we rewrite the asymmetric lad
model as a sum of projection operatorsPl

3/2:

H5 (
n51

N F3

2 S J

2
2d D P2n21

3/2 1
3

2 S J

2
1d D P2n

3/22
3

4
JG ~17!

with

Pl
3/25

1

3 F ~Sl 211Sl1Sl 11!22
3

4G . ~18!

Here, we introducel to indicate the center position of thre
neighboring sites (l 21, l , l 11). Such an operator is a spe
cial case of the general positive semidefinite Lo¨wdin’s pro-
jection operators30
2-4
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GROUND STATE AND EXCITATION OF AN . . . PHYSICAL REVIEW B67, 054412 ~2003!
PSmax5 )
S5Smin

Smax21
~S11S21•••1Sm!22S~S11!

Smax~Smax11!2S~S11!
, ~19!

whereSmax andSmin are the maximum and minimum value
of the total spinS.

As long asudu<J/2, the coefficients in Eq.~17! are non-
negative. Therefore, the Hamiltonian~14! is a linear combi-
nation of projection operators with positive coefficien
Since Pl

3/2 projects a state composed of three spi
(Sl 21 ,Sl ,Sl 11), into a subspace of total spin32 , its eigenval-
ues are 0~if the total spin is1

2 ) and 1~if the total spin is3
2 ).

By virtue of the properties of the positive semidefinite pr
jection operator, whose lowest eigenvalue is zero, the gro
state of the Hamiltonian~17! can be constructed by choosin
states with configurations such that each projection oper
has the lowest eigenvalues 0 when operating on these st
It is easy to prove thatuFL,R& are the exact ground states
the asymmetric ladder model~14!. The ground-state energ
is independent ofd and given by

Eg52
3

4
NJ. ~20!

There is thus an entire manifold of Hamiltonians wi
fixed J152J2, parametrized byd, with doubly degenerate
ground states of NN dimer product ground statesFL,R . For
convenience, in our following discussion we will shift ou
model by an energy ofEg , H2Eg→H, which is equivalent
in taking the ground state of the system as zero.

In the following, we consider the excited state of our sy
tem~14!. The elementary excitation of the system is a pair
spinons known as the kink or antikink.7–9 First results were
obtained by Shastry and Sutherland for the M-G mode31

within a variational ansatz. Since the ground state of Eq.~14!
is independent of the alternating NNN exchange, the c
struction of the excited states for the M-G model can
directly extended to the asymmetric model~14!. Breaking a
singlet pair in the ground state would give rise to two u
paired ‘‘defect’’ spins. Therefore, the simplest excitation co
sists of a pair of spinons. The spinons can be thought o
domain walls separating different dimer ground-state c
figurations. From a symmetry consideration, the kink a
antikink are identical in the M-G model, and specifica
they have the same dispersions. With alternating NNN in
action, the symmetry between legs is broken, therefore, s
properties of kinks and antikinks are different, in particul
their dispersion. However, they still survive as element
excitations of the asymmetric spin ladder system.

In general, we call a spinon at the odd site 2m21 a kink
and the other one at the even site 2n an antikink~see Fig. 3!.

FIG. 3. The kink and antikink excitations in the asymmet
ladder model. The double lines represent singlets.
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The kink and antikink always appear in pairs in a period
system, however, a single spinon can be realized in the o
boundary systems. Taking the variational wave function w
one ‘‘defect’’ spin,31 one can easily obtain the spinon dispe
sion of the M-G model

«~k!5
5

8
J1

J

2
cos 2k. ~21!

The energy gapD is, therefore,J/8. For d5J/2, i.e., the
sawtooth model, the kink excitation is much different fro
the antikink excitation. As shown by Senet al.7 and Naka-
mura and Kubo,8 the kink ~K! excitation in the sawtooth
chain is exactly a single spin on odd site and dispersionl

«K~k!50. ~22!

However, an antikink propagates with an effective ma
along the lattice. The antikink is not a free spin and spre
out to an extended region, because it is not an eigensta
the local Hamiltonian. In the first approximation, the an
kink (K̄) is supposed to be a single defect spin at the e
site, and the dispersion obtained by variational calculat
has a similar form to the spinon dispersion of the M
model,

« K̄~k!5
5

4
J1J cos 2k, ~23!

with the corresponding energy gap ofJ/4. Despite the varia-
tional nature of the dispersion, the results agree very w
with exact numerical results.32,33

We will explicitly calculate the change of the gap siz
with increasingd. As expected, we found that thed term
changes the energy-gap size of excitations, which is con
tent with our conclusion obtained by renormalization-gro
analysis. Following Senet al.,7 we assume both the kink an
antikink to be a five-cluster block with spin 1/2. It is know
that for the M-G and sawtooth chains there is no clos
bound kink-antikink pair whose energy is lower than that
a widely separated pair. Thus we can deal with the kink a
antikink separately. The gap of the lowest excitation is a s
of the gaps of kink and antikink,

D5DK1D K̄ , ~24!

where the subscriptsK and K̄ represent the kink and th
antikink, respectively. It should be noticed that both the M
and sawtooth models have the same energy-gap sizeD under
the first approximation~one-cluster approximation!. That is
not true as we take a more precisen-cluster approximation.

Under the five-cluster approximation, the only three li
early independent configurations that we need to consider
those shown in Fig. 4. We denote these three configurat
of kink by u 2m21 &1 , u 2m21 &2, andu 2m21 &3 and the
configurations of antikink byu 2n &1 , u 2n &2, and u 2n &3,
respectively. Here, (2m21) and 2n denote the position of
the center of the five-spin cluster corresponding to the k
and antikink. We now consider the momentum wave funct
with two variational parametersa1,2 andb1,2,
2-5
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uk1&5
1

AN (
m

ei (2m21)k1@ u2m21&1

1a1u2m21&21b1u2m21&3], ~25!

uk2&5
1

AN (
n

ei2nk2@ u2n&11a2u2n&21b2u2n&3],

~26!

wherek1 andk2 are the momentum of the kink and antikin
respectively.

The lowest energy is obtained by finding paramet
which minimize the energy expectation

«~k1,2!5
^k1,2uHuk1,2&

^k1,2uk1,2&
. ~27!

Sinceu2m21&2 andu2m21&3 ( u2n&2 andu2n&3 ) are sym-
metric about the site 2m21 (2n), there is no reason to
discriminate between these configurations and it is reas
able to choosea1,25b1,2.

The computation of Eq.~27! is straightforward although a
little bit lengthy, we will not give the details here but refe
the reader to the literature.7 It is found that the minimum
value of«(k1) occurs atk15p/2 and is given by

«~k15p/2;a1!5
1

4

J/2 ~114a1
2!2d

12a11a1
2/2

, ~28!

and the minimum value of«(k2) is

«~k25p/2;a2!5
1

4

J/2 ~114a2
2!1d

12a21a2
2/2

, ~29!

where we takeJ51 for convenience.
For any given value ofd, the excited gapDK (D K̄) of a

kink ~an antikink! corresponds to the minimum of Eq.~28!
@Eq. ~29!#. Our result is shown in Fig. 5, which indicates th
the elementary excitation gap decreases from 0.234 in
M-G to 0.219 in the sawtooth with the increase of the co
pling constantd, while the ground-state energy is consta
In particular, ford51/2, i.e., the sawtooth chain, Eq.~28!
reduces to

«~k15p/2;a1!5
1

4

2a1
2

12a11a1
2/2

, ~30!

which has the minimumDK50 for a150, while Eq. ~29!
becomes

FIG. 4. The five-cluster size of the kink and the antikink.
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«~k25p/2;a2!5
1

4

112a2
2

12a21a2
2/2

, ~31!

which has a minimumD K̄50.2192 ata2520.2808. It is
clear that the kink excitation is exactly dispersionless, wh
an antikink is still a domain wall propagating with an effe
tive mass.7,8 For the M-G model,d50, Eq.~28! and Eq.~29!
have the same form (DK5D K̄), thus,

«~p/2;a!5
1

8

114a2

12a1a2/2
, ~32!

whose minimum value is 0.2344. In these limits, the resu
are consistent with the known results of the M-G and
sawtooth models, as well as our qualitative conclusion
tained from field theory.

If we introduce additionally an alternating NN exchan
to our asymmetric model~14!, the degeneracy ofuFL& or
uFR& will be lifted and the singlets would be pinned alon
the stronger NN external dimer potential. The element
excitations are no longer separated kinks and antikinks
the presence of an external dimer potential, a kink and
antikink separated by a distance ofl give rise to a region in
the incorrect ‘‘ground state,’’ which effectively produces
confining potential between the kink and antikink. This p
tential is proportional to the distance ofl, thus the kink and
antikink cannot escape from each other and behave an
gously as a quark-antiquark pair.22–24 The kink-antikink
bound state corresponds to a magnon with spin 1. The in
esting topic of how the confined spinons develop to magn
has been investigated by Uhriget al.34

IV. DOUBLE LAYER MODEL

Recently, it was found that the 2D Shastry-Sutherla
model35,36can be used to explain the experimentally realiz
material SrCu2(BO3)2, and hence such a model with an e
act dimer ground state37 has attracted much attention agai
In this section, we will show that the asymmetric spin ladd
model can be generalized to a double layer model, wh
ground state is a simple direct product of singlet dimers.

FIG. 5. The elementary excitation energyD versusd at the M-G
point J250.5 with D5DK1D K̄ .
2-6
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The double layer model is constructed from two coup
spin layers shown in Fig. 6, where each layer hasN3M sites
and couples to the other layer by the interlayer excha
interactionsJ' andJd . The intralayer exchange interaction
J1 and J2 on the top and bottom layers may have differe
strengths. The Hamiltonian of our model is given by

H5 (
i , j 51

N,M

(
a51

2

Ja~Si , j
a
•Si , j 11

a 1Si , j
a
•Si 11,j

a !

1 (
i , j 51

N,M

Jd~Si , j
1
•Si , j 11

2 1Si , j
1
•Si 11,j

2 !1 (
i , j 51

N,M

J'Si , j
1
•Si , j

2 ,

~33!

where the superscriptsa51,2 denote labels of the top an
bottom layers.J' is the perpendicular interlayer exchan
interaction andJd is the diagonal interlayer exchange inte
action. Here all the exchanges are taken to be positive
similar model has been investigated in Ref. 38, where
layer model is a direct generalization of the Bose-Gay
ladder model.39 It is clear that every slice of the double lay
net is just a ladder whose Hamiltonian has the same form
Eq. ~14!. Thus we find that the ground state of the lay
model is given by a product of all perpendicular singlet pa

FD5 )
i , j 51

M ,N
1

A2
~a i , j

1 b i , j
2 2b i , j

1 a i , j
2 !, ~34!

when the condition

J'52Jd52~J11J2! ~35!

is fulfilled. Rigorous proof can be made directly by repr
senting the layer model as a sum of the projection operat
as in the spin ladder case. The corresponding ground-s
energy is

Eg52
3

4
NMJ' . ~36!

*Present address: Institute for Theoretical Physics IV, Heinri
Heine-Universita¨t, D-40225 Düsseldorf, Germany.
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FIG. 6. The two-dimensional double layer model.
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It is obvious that the dimer product stateFD remains the
ground state forJ'.2Jd . The properties of the ground sta
are independent of the specific values ofJ1 andJ2 as long as
the constraint condition~35! is satisfied. Since the dimerize
ground state is not degenerate, the lowest excitation is
pected to be a triplet excitation, corresponding to breakin
singlet bond, with a gap size proportional toJ' . However,
the many-particle excitation spectra might be very comp
cated because of the effective interactions among the tri
excitations.40

V. CONCLUSIONS

Spin-isotropic, asymmetric zigzag ladders are studied
ing a field-theory method and a variational approach. Wh
the leg exchange integrals are small compared with the
exchange, the spin model is mapped to a revised double
quency sine-Gordon model. Renormalization-group analy
shows that there are two fixed points, say, an intermedi
coupling fixed point and a strong-coupling fixed point. In t
weak frustration limit, the system is described by t
intermediate-coupling fixed point with gapless excitation
The vanishing of spin velocity at the intermediate-coupli
fixed point is likely to indicate a decoupling of spins at low
energy scales. Apart from the isotropic separatrix, we fi
gapless spin liquid and gapped Ne´el states with easy-plan
and easy-axis anisotropy. For large frustration, a more u
dimer solid phase is realized corresponding to the stro
coupling fixed point. RG analysis also predicts that the s
gap is decreased by increasing leg asymmetryd. A continu-
ous manifold of Hamiltonians with the same singlet produ
ground state interpolates between the Majumdar-Gh
model and the sawtooth spin chain. Starting from the ex
ground-state wave function, we construct the variatio
wave function of the excited state and investigate the cha
of spin gap with the change of leg asymmetryd. In the spirit
of constructing the Hamiltonian in the form of a sum
positive semidefinite projection operators, extension to
double layer model is carried out. We propose an exa
solved two-dimensional double layer model with a grou
state of a product of interlayer dimers.

ACKNOWLEDGMENT

The authors would like to thank Professor K. H. Mu¨tter
and Dr. M. Nakamura for interesting discussions. S. Ch
would like to specially thank F. Siano and B. Han for the
critical reading of the manuscript. This research was s
ported by Deutsche Forschungsgemeinschaft through G
Nos. VO436/6-2 and VO436/7-2.

- 4Y. Wang, Phys. Rev. B60, 9236~1999!.
5F.D.M. Haldane, Phys. Rev. B25, 4925~1982!; 26, 5257~1982!.
6M. Azuma, Z. Hiroi, M. Takano, K. Ishida, and Y. Kitaoka, Phy

Rev. Lett.73, 3463~1994!; G. Castilla, S. Chakravarty, and V.J
Emery, ibid. 75, 1823~1995!.

7D. Sen, B.S. Shastry, R.E. Walstedt, and R. Cava, Phys. Re
2-7



ev.

r.

ens.
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