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We perform a systematic investigation on an asymmetric zigzag spin ladder with interleg exdhangke
different exchange integralk, + § on both legs. In the weak frustration limit, the spin model can be mapped
to a revised double frequency sine-Gordon model by using bosonization. Renormalization-group analysis
shows that the Heisenberg critical point flows to an intermediate-coupling fixed point with gapless excitations
and a vanishing spin velocity. When the frustration is large, a spin gap opens and a dimer ground state is
realized. FixingJ,=J,/2, we find, as a function ob, a continuous manifold of Hamiltonians with dimer
product ground states, interpolating between the Majumdar-Ghosh and sawtooth spin-chain model. While the
ground state is independent of the alternating next-nearest-neighbor exchahgegap size of excitations is
found to decrease with increasiidg We also extend our study to a two-dimensional double layer model with
an exactly known ground state.
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[. INTRODUCTION where J;=1 andJ,=* é are the NN and alternating NNN
coupling constants, respectively. The introduction &f
Quantum spin ladder systems have attracted much attemakes the exchanges on top and bottom legs differ&nt.
tion in the past few years? Strong quantum fluctuations =0 is the ordinary zigzag ladder or frustrated spin chain
prevent any long-range antiferromagnetic order in quasion&ndé=J, is the extreme case with one leg completely miss-
dimension. The magnetic phases of the ladder systems aieg. Fixing J,=J1/2 gives an exactly solved continuous
rich and strongly dependent on their geometric structuregnanifold of Hamiltonians. The Majumdar-Ghosfl (M-G)
Several types of disordered “quantum spin liquid” phasesand the sawtooth chalifi are extreme cases with=0 and
are known>* Typical examples of two-leg ladders are the =J>=J1/2, respectively.
railroad ladder and the zigzag ladder. The railroad ladder has For =0 the mode(1) is well understood fore%?neralz.5
a singlet ground state with elementary triplet excitationstrustration due td, is irrelevant whenl,<J,¢, ™" and the
(magnons! Depending on the ratio of the leg to rung ex- system renormalizes to the Heisenberg fixed pbinthose

change integrals, the zigzag ladders may have gap|e§gound state is described as a spin fluid or Luttinger liquid

round states with algebraically decaying spin correlations oYVith maSS|eSS spinon excitations. Ag> ‘]?C’ the frustration
g 9 Y ying sp term is relevant and the ground state is doubly degenerate.

spontaneously broken dimerized ground statéke gapped . .
dimer ground state is degenerate, and the elementary excitpgjglg]ar% _trf;:a %:EIL:: r;? VS;SE Qta]\s i gl;n4pll% pg(;?]ug; fg(rar_n at
tions are pairs of spinons. The spin ladders have been StUdi(%grmir.1eoll.numericaII§:11 ForJ,> 0.25631 ciuite dilfferent field-
g)l(JpGeélgesntally in compounds  such as $jOy and theory treatments are required depending on the ratio of
: . . . J,13,.1213
2191
gatL Ze itswp?élri%;ég;aegsli?r?;)jlzgtVg::r?wprllgsof %anmilr;?ggsst;in Since relatively less is known about the asymmetric lad-
model and highlights the role played by frustration. How-der’ we study physical effects brought about by the leg asym-

ever, less attention has been paid to asymmetric spin Iaddemetry' Before solving the guantum problem, we start with
' P y P {Re classical problem which can give us instructive insight

where the exchange integrals an both I.egs are d|ffer.ent._Or_1I. to properties of the asymmetric spin model. In the classical
the.extreme case where one leg of a zigzag Iadger IS MISSINEhit the ground state of this model is a dlestate forJ,
entirely (sawtooth orA chain has been solvet® In this <J1’/4 and a spiral with a pitclr= arccost-J,/4J,) for J,

paper, we perform a systematic study of an asymmetric Zlg'>Jl/4. Both ground states and the critical ratio of exchange

zag spin ladder, which is a Heisenberg model defined on thﬁqte rals separating them are independens.olhe excita-
structure shown in Fig. 1. In general, it is convenient to 9 P 9 P '

Ej_ons may depend oi, however.

represent the zigzag ladder as a spin chain with neares Certainly. the quantum case is much more complicated
neighbor (NN) exchange J; and next-nearest-neighbor Y q P '

(NNN) exchangel, corresponding to the interleg exchange
J; and intraleg exchangé,. Equivalently, the asymmetric
ladder model can be represented as a chain with an alternat-
ing NNN exchange

H:E {31S-S,1+[I+(—1)'6]1S-S 42}, (1) FIG. 1. The asymmetric zigzag spin ladder with different ex-
[ changes on the top and bottom legs.
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When the asymmetric exchange interaction is introduced, (SH0)SH (X))o~ (—1)*x 2K, (4)
some unexpected phenomena will appear. We found that the
Heisenberg fixed point is no longer stable and flows to an <S+(O)S‘(x)>0~(—1)Xx‘1’2'<. (5)

intermediate-coupling fixed point with gapless excitations
and a vanishing spin velocifyHowever, there is still remi- Itis clear that the S(2) symmetry is restored at the isotropic
niscence of classical results. It was found that the groungboint with K=1/2.
state is independent & whenJ,=J,/2, but the excited gap For smallg; andg,, H; could be considered as a pertur-
is decreased by. Part of the work on a weak frustration bation toH,. Without theg, term,H=Hy+H, represents a
regime has been reported in our previous pdperd here we  standard sine-Gordon modeThe g5 term is either margin-
guantitatively study the crossover of the excitation spectrunally irrelevant, which leads to the weak-coupling Heisenberg
from the symmetric M-G model to the extremely asymmetricfixed point, or relevant, which drives the system to a strong-
sawtooth model in detail. An extension to a two-dimensionalcoupling dimer state. Therefore, what we are interested in is
(2D) double layer model is also presented. how the alternating NNN interactiayy changes the physical
The outline of this paper is as follows. In Sec. Il, the properties of the system. Qualitative results on the influence
effective low-energy theory of the asymmetric ladder is de-of the new interaction ;) can be obtained from scaling
rived using bosonization. We qualitatively discuss the effecanalysis and physical considerations.
of alternating NNN interaction and compare our model with It is important to determine whether perturbative opera-
the well-known spin-Peierls model. The phase diagram ofors are relevant, marginal, or irrelevant. In general, only the
the system is discussed with the help of renormalizationmost relevant perturbation is important, because the irrel-
group analysis. In Sec. Ill, we study the asymmetric model aevant operator will scale to zero at large lengths. We can give
the special pointl,=J,/2. The ground state and excitation an approximate estimate by comparing scaling dimensions of
properties are also discussed. In Sec. IV, we generalize ouhe given operators. It follows that*®*® has a scaling di-
model to a two-dimensional double layer model, whosemension ofa?K/4 andd,®e'“*™ has a scaling dimension
ground state is a dimer product state and the excitations a «?K/4+ 1. Therefore, the scaling dimensions of the um-
magnons. Section V contains our conclusions. klapp and the alternating NNN terngs andg, are

Il. EFFECTIVE LOW-ENERGY THEORY dg,=4K, dg =K+1. (6)

AND RENORMALIZATION-GROUP ANALYSIS . . ) . . . . .
At the isotropic Heisenberg fixed poirdg is marginal with

Following the general procedure of transforming a spindgs=2, while the gy, term with d91:3/2 is relevant. We

; i - 34415
model to an effective model of continuum fieftf;°we con-  conclude thay, destabilizes the isotropic Heisenberg fixed
vert the spin Hamiltonian to a Hamiltonian of spinless fer'point and the spin liquid ground state.

mions using Jordan-Wigner transformation, then map itto @ op, the other hand fak,>J,., thegs term is marginally
modified Luttinger model with umklapp and backscattering-rg|evant and renormalizes to a strong-coupling fixed point in

type _inte_racﬁtigns. Using the standard dictionary ofihe |ong-wavelength limit. Near the strong-coupling dimer
bosonization®” we obtain the effective boson Hamiltonian fixed point, thegs term is much more relevant than toe

H=Hq+H; with term. Usually(e.g.,g3— =), the boson fieldP(x) locks
into a constant value with small fluctuations and an associ-

Ho=f dxi K(Il)2+ i(aqu)Z}, (2)  ated excitation gap. Here, the constant solutibr * /4
2m K corresponds to the degenerate ground state at the strong-
coupling fixed point forg;—o0. The standard cosk sine-
O3 01 Gordon equation has a pair of solutions of kink and antikink,
lef dx 2(ma)? cos 4b + W—za(é'XCI))COSZCD .+ (3 which describe the elementary excitatigaspair of spinons

for the degenerate dimer phase. Even including the less rel-
where®(x) is a bosonic phase field add(x) its canoni- €vantg; term, the soliton solutions will survive. However,
cally conjugate momentum. Heads a short-distance cutoff, the phase locking of the; term is forbidden by thej,
g3<1—J,/J,. is the umklapp-scattering amplitude agg  prefactor to the cos@®) term inH;. In this sense, there is no

« & is the amplitude of the alternating NNN field. The pa- standard strong-coupling theory for tie term.

rameterss andK are the effective spin velocity and coupling ~ From known results on the sawtooth cHelmnd the M-G

constants which are given by model® we expect that thg, term, induced by the alternat-
ing NNN interaction, does not confine spinons and plays
94\% [92)\° 27+04— 0> quite a different role than the dimerization by other degrees

u= It~ =52, K=\ of freedom. Moreover, the difference in the size of excitati
2w 2w 27m+g4+ 0o ' tion

gaps in these two models implies that theterm quite gen-
In general, these values are only valid near the free fermioerally competes with the umklapp term whereas an external
point (K=1), whereaK=1/2 is fixed by the symmetry at NN dimerization would cooperate. As we will show, it turns
the isotropic point. The corresponding spin-correlation func-out thatg, opens no spin gap despite being a relevant per-
tions can be calculated from the boson representation, whicturbation of the Heisenberg fixed point. This result is also
gives corroborated by the absence of a magnetization plateau in
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our model in small magnetic field&.For an alternating NN y
exchange, a magnetization plateau is observed in small mac S
netic fields, but for alternating NNN exchange, it is only
observed in high field$1°

To get instructive insight, we would like to compare the
alternating NNN interaction in our model with the alternat-
ing NN interaction in the well-known spin-Peierls model. In
the language of field theory, the external dimerization corre-

SIS —

sponds to a relevant terbhg o [ dX(gspSin 2P). This termis  -03 13 0.1 0 5 KV
always much more relevant than tigg term and lifts the o

degeneracy ® = * 7/4) of the ground state. With the pres-

ence of thegg, term, the lowest-energy configuration is 1

—ml4 if gsp>0 or 7/4 if g5,<<0. Since the most relevant \

term is sin 2b, the corresponding sine-Gordon system has a -06

pair of soliton and antisoliton solutior(gxcitations withS,
==+1) as well as two breather solutioriexcitations with
S,=0).2%2 The lowest breather is precisely degenerate with FIG. 2. The scaling trajectories for,(I=0)=0.001 projected
the soliton and antisoliton excitations, and they form a bounan they;— 8K plane. SK=K—1/2, and the dot locates the new
state which corresponds to tie=1 triplet. In this case, the intermediate-coupling fixed point. The blestate is realized in the
elementary excitation should be a spin triplet and a spin sindpper left, the dimer state in the lower left, and the spin liquid in the
glet, since no spinons exist as an elementary excitaticnf.  right part of the figure. The asterisk locates the boundary between
However, the a|ternating NNN interactionp’ix@)cos ZI), flows to the new fixed point, and into the dimer regime.

does not lift the degenerate phasés- = 7/4, due to the

-0.3

existence of the prefactar®. dys 1,
We now perfgrm a pxerturbative renormalization-group ar o AoKYst gy, (12
(RG) analysis of our model by following standard
procedure$®=?® Introducing the reduced variableys dy, 1
=gz/7u andy,; =g, /27U, we obtain the RG equations oI = 2Y1Y1ys— oKyy. (13
dK a0 24 A family of solutions of the RG equations, projected on the
ar = TYsKT iKY, (7)  ys-K plane, are shown in Fig. 2. We choose the initial value

of y; as 0.001 and find the trajectories are not sensitive to the
dy choice of the initial values of;. From the RG equations,
—3=(2—4K)y3+ szf, (8) one can directly find that there exist two intermediate fixed
dl points given by ¢K,y3,y;)=(0.1,0.4;-0.8). Herey, takes
q the valuest, which reflects that our RG equations are sym-
ay: . k2 metric toy;. As shown in Fig. 2, the intermediate fixed point
ar ~ A7 K)y1= 4Ky, © (6K*,y3)=(0.1,0.4) on the plane of;-5K is stable along
the liney;=46K where the spin-rotation invariance is pro-
du 1 ) tected. For points near the intermediate fixed points, but not
a7 = W+ KK, (10" exactly on the line of/;=445K, the spin-rotation invariance
is broken, thus they will flow to the spin-fluid fixed point
under a change of length scade~ae”. Here we definal (y3=0) or the strong-coupling fixed poiny§— ).
=In(a+da/a). The RG equation for the spin velocityis a At the fixed point, the RG Eq(10) implies that the spin
consequence of the anisotropy of the interaction in the velocity u* is renormalized. The robustness of the existence
classical 2DXY model, i.e., its nonretarded but nonlocal of this intermediate fixed point against higher-order pertur-
character in quantum field theo(g). bations does not depend on the exact value of the fixed point
Fory,;=0 Egs.(9) and(10) would not appear, thugis  as long as the fixed point is located on the RG separatrix
not renormalized. The RG Eqg?) and (8) with y;=0 de-  with 1/2<K <. The intermediate fixed point is thus de-
scribe the symmetric spin ladder system with a Kosterlitzscribed by an effective fixed-point Hamiltonian. Inverting the
Thouless transition. Spin-rot{:\tion invariant models scale definitions ofy;=g;/mu, we rewrite the effective fixed-point
along the separatrix between &lend spin liquid phases, or Hamiltonian as a product ai* and a term independent of
along its continuation into the dimer regime. Linearizing they* H*=u*#(K* g5,9}). Then the vanishing ai* leads to
RG Egs. (7)—(10) around the isotropic Heisenberg fixed 3 trivial fixed-point HamiltoniarH*=0. As a result of the
point [g§"=0, g{"=0,KM=1/2] and defining SK=K  yanishing of the renormalized spin velocity, the elementary

—3, we obtain the linearized RG equations excitations at the fixed point, spinon and antispinon, are still
gapless. The vanishing of velocity is usually interpreted as a
d 6K 1,1, sign of ferromagnetism, however we interpret this as our
== Y3t 7=V, 11 : . . -
dl 473 16 spins effectively decoupling at the lowest-energy scales, i.e.,
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a kind of asymptotic freedom in this spin-rotation invariant 1ll. CROSSOVER FROM M-G TO SAWTOOTH MODEL

; . 18 i
ladder? Also, the numerical results of Wiessreral.” indi It is generally believed that continuum field theory cannot

cate a paramagnetlc suscept|b|||ty.' . give a good description of the behavior of the system far

When J, increases beyond a critical valdg(6) (NOW 54y from the critical point. In the case d§=0.5];, the
depending ord), the RG flows to a strong-coupling fixed cqrrelations extend only to a distance of one lattice spacing,
point, which corresponds to the quantum dimer phase. Fofyys the continuum field description is not a good approach.
y1=0.001, this critical point is indicated irK(y3) coordi-  Aswe have shown, the phase corresponding to laggs the
nates in Fig. 2 by an asterisk. For smallandJ,>J5:(6),  dimer phase. This is consistent with our knowledge from the
our RG equations show that the system will remain in themodels with exactly known ground states, say, the
universality class of the dimer solid corresponding to theMajumdar-GhoshM-G) and sawtooth models. In this sec-
strongly fixed point, however the spin gap is decreased byion, we prove that there exists a continuous manifold of
increasings. Basically, the gap sizA«xexp(—I,) wherel, is  Hamiltonians with dimer product ground states as long as
the length of the scaling trajectory from the initial values toJ,=J,/2.
the point where the most relevant perturbation is of order We start with the asymmetric ladder model
unity. This length is increased, addtherefore decreased, by
the y; contributions toK andy; being opposite in sign to
those ofK andy; in Egs.(7) and(8).

Recently, Sarkar and S&hstudied the same model by
using nonlineawr-model field theory and Abelian bosoniza- :
tion. However, the main discrepancy between our work anf:‘]/z' respectively. 0 . ,
their€® is that we kept the bosonized operator of the alter- ' ©F the M-G modef,’ the o linearly independent
nating NNN operator and analyzed it by RG, while theyjustground states, say, the_ left and_nght dimer gro_und states, are
discarded it by arguing the irrelevance of the operator. For aRrOdUCtS of nearest-neighbor singlets, respectively,
anisotropicXXZ chain, our RG result indeed shows that the
g, operator is irrelevantin that it does not drive the system @)= TI [11+1], |exy= II [1.1+1], @15
to a new phase, and this is consistent with the work of Sarkar 1=odd |=even
and Sen. But the main difference lies in the question Ofvvhere[i,j]=(aiﬂj—ﬂiaj)/\/§ denotes the singlet combina-
whether an intermediate fixed point exists and whether thigion of spini andj with the direction of dimers defined as
fjxeq point corresponds to a phase different from a'Luttingeli_q_ Here «; represents the up-spin agl the down-spin
liquid. In our previous work, we argued that vanishing spin-states at site. |, ) also represent the degenerate ground
wave velocity plays a crucial role in the existence of such anstates of the sawtooth model.For the asymmetric ladder
unusual phase. If the spin velocity does not vanish, ongnodel, we notice that the NNN exchange alternation does

should explain the fixed point as a spin liquid phase such agot modify the product states of nearest-neighbor singlets
in theJ; —J, model with the spin velocity renormalized. Our

result also suggests that the quantum phase-transition param-

eter (J,./J;=0.2412) to the dimer phase is changed by the H5|¢L,R>:2l (—1'6 §-S42/® g)=0. (16
alternating NNN operator, which may be verified directly by

numerical simulations such as density-matrix renormalizaThis is induced by the fact that the alternating NNN cou-
tion group. We also notice that the magnetization curve oblings along the upper leg and the lower leg of the ladder
the Heisenberg model with an additional alternating NNNcancel each other out, when they operate|®n g). It is
operato?8 gives an obvious different magnetization suscep-obvious that|® ) and |®g) are eigenstates of the Hamil-
tibility from the one without it. Their susceptibility is en- tonian (14). In fact, as we will prove, they are exactly the
hanced by this new interaction with respect to an equivalenground states of Eq14).

Heisenberg chain, indicating a reduced spin velocity. Fur- To see this more clearly, we rewrite the asymmetric ladder
thermore, a complete scheme to deal with the alternatinghodel as a sum of projection operatcﬂé/z:

NNN operator should give a correct description of the in-

duced effect not only in the weak frustration regime but also

in the strong frustration regime. The omission of theterm H=
could not explain why the operator shrinks the spin gap sizes

in the regime of strong frustration, as we will study in detail y;itp

in the next section. However, our RG analysis gives a quali-

tative explanation of the influence of tige term on spin gap 1 3

sizes. Therefore, we think that the scheme of discarding the P|3/2=§[(31+3+3+1)2— Z} (18

0, operator based on its irrelevance seems to be oversimpli-

fied. We hope that more numerical simulations will eventu-Here, we introduce to indicate the center position of three
ally be able to resolve this disagreement and quantitativelyeighboring sitesl(=1, I, 1+1). Such an operator is a spe-
study the phase diagram of the ground state as a function afal case of the general positive semidefinitesdin’s pro-
J,/3; and 6. jection operator®

2N

J
H=2 3881t |51 (-1"18|S 8.2 (19

The M-G model and sawtooth model correspond+e0 and

3(3_Jpae ,3(3 5
2|27 0Pt 1"

N
n=1

3
P3n— ZJ} (17)
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antikink The kink and antikink always appear in pairs in a periodic

R T O 2n_ system, however, a single spinon can be realized in the open
AM/_\/’ boundary systems. Taking the variational wave function with
o -- one “defect” spin®! one can easily obtain the spinon disper-
m- 2n-1

sion of the M-G model

FIG. 3. The kink and antikink excitations in the asymmetric

ladder model. The double lines represent singlets. e(k)= §J+ %cos X. (21)
s, _Smﬁfl (Si+S,+ - - +Sp)?—S(S+1) The energy gap\ is, therefore,J/8. For §=J/2, i.e., the
Prmas= =S SmaxSmaxt1)—S(S+1) 19 sawtooth model, the kink excitation is much different from

the antikink excitation. As shown by Set al.” and Naka-
whereS,,,, andS,,, are the maximum and minimum values mura and Kubd, the kink (K) excitation in the sawtooth

of the total spinS. chain is exactly a single spin on odd site and dispersionless
As long as|§|=<J/2, the coefficients in Eq(17) are non-
negative. Therefore, the Hamiltoni&h4) is a linear combi- ex(k)=0. (22)

nation of projection operators with positive coefficients.
Since Pf"2 projects a state composed of three spins
(S-1.S,S+1), into a subspace of total spi its eigenval-
ues are Q(if the total spin is3) and 1(if the total spin is3).

By virtue of the properties of the positive semidefinite pro-
jection operator, whose lowest eigenvalue is zero, the groun
state of the Hamiltoniafil7) can be constructed by choosing
states with configurations such that each projection operat
has the lowest eigenvalues 0 when operating on these statégpdel’

It is easy to prove thgtb, ) are the exact ground states of 5

the asymmetric ladder modél4). The ground-state energy ex(k)=—~J+Jcos Xk, (23)
is independent o6 and given by 4

However, an antikink propagates with an effective mass
'along the lattice. The antikink is not a free spin and spreads
out to an extended region, because it is not an eigenstate of
the local Hamiltonian. In the first approximation, the anti-

hink (K) is supposed to be a single defect spin at the even
site, and the dispersion obtained by variational calculation
J}as a similar form to the spinon dispersion of the M-G

3 with the corresponding energy gap B#. Despite the varia-
Eg=—>NJ. (200  fional nature of the dispersicangu, the results agree very well
4 with exact numerical resulf§:
] ) ) o ] We will explicitly calculate the change of the gap size
There is thus an entire manifold of Hamiltonians with ith increasings. As expected, we found that th& term
fixed J;=2J,, parametrized bys, with doubly degenerate changes the energy-gap size of excitations, which is consis-
ground states of NN dimer product ground stafgsg. For  tent with our conclusion obtained by renormalization-group
convenience, in our following discussion we will shift our analysis. Following Seet al,” we assume both the kink and
model by an energy dEy, H—Eg—H, which is equivalent  antikink to be a five-cluster block with spin 1/2. It is known
in taking the ground state of the system as zero. that for the M-G and sawtooth chains there is no closely
In the following, we consider the excited state of our sys-hound kink-antikink pair whose energy is lower than that of
tem(14). The elementary excitation of the system is a pair ofa widely separated pair. Thus we can deal with the kink and

spinons known as the kink or antikidk? First results were  antikink separately. The gap of the lowest excitation is a sum
obtained by Shastry and Sutherland for the M-G mdldel of the gaps of kink and antikink,

within a variational ansatz. Since the ground state of(E4).
is independent of the alternating NNN exchange, the con- A=Ay +Ag, (24)
struction of the excited states for the M-G model can be o
directly extended to the asymmetric mod##). Breaking a where the subscript& and K represent the kink and the
singlet pair in the ground state would give rise to two un-antikink, respectively. It should be noticed that both the M-G
paired “defect” spins. Therefore, the simplest excitation con-and sawtooth models have the same energy-gapisineder
sists of a pair of spinons. The spinons can be thought of athe first approximatior{fone-cluster approximationThat is
domain walls separating different dimer ground-state connot true as we take a more preciseluster approximation.
figurations. From a symmetry consideration, the kink and Under the five-cluster approximation, the only three lin-
antikink are identical in the M-G model, and specifically early independent configurations that we need to consider are
they have the same dispersions. With alternating NNN interthose shown in Fig. 4. We denote these three configurations
action, the symmetry between legs is broken, therefore, somgf kink by | 2m—1 ), | 2m—1),, and| 2m—1 )5 and the
properties of kinks and antikinks are different, in particular,configurations of antikink by 2n );, | 2n ),, and| 2n )3,
their dispersion. However, they still survive as elementaryrespectively. Here, (2—1) and 21 denote the position of
excitations of the asymmetric spin ladder system. the center of the five-spin cluster corresponding to the kink
In general, we call a spinon at the odd site21 a kink  and antikink. We now consider the momentum wave function
and the other one at the even site & antikink(see Fig. 3. with two variational parameters, , andb; ,,
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FIG. 4. The five-cluster size of the kink and the antikink.

0.22 S

1 .
k=g 3 @ aram-1), 5

0.215 : : : :
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FIG. 5. The elementary excitation enerywersusé at the M-G
1 ) pointJ,=0.5 with A=A+ Ag.
ko) = \/_N > 2™ |2n); +a,]2n), + by|2n)s],
n 2
(26) B ) _ 1 1+ 2&2
s(ko=ml2;85)= 7 775, (31)
wherek; andk, are the momentum of the kink and antikink, AT
respectively. _ _ o which has a minimumAg=0.2192 ata,=—0.2808. It is
The lowest energy is obtained by finding parameters;jear that the kink excitation is exactly dispersionless, while
which minimize the energy expectation an antikink is still a domain wall propagating with an effec-
tive mass’® For the M-G model5=0, Eq.(28) and Eq.(29)

e(kyp)= (kidHlks o) (27)  have the same form\=Aj), thus,
' (kydkq2)
2
Since|2m—1), and|2m—1)3 ( |2n), and|2n); ) are sym- 1 1+4a

e(ml2;a)= (32

metric about the site B—1 (2n), there is no reason to 8 1-a+a%2’

discriminate between these configurations and it is reason- . . .

able to choos@, ,= b, ,. whose minimum value is 0.2344. In these limits, the results
The computation of E¢27) is straightforward although a 2'® conﬁlstent ‘I’V'th the l|<|nown resultsl,_ of the M'Cli and the

little bit lengthy, we will not give the details here but refer sqwtooft m(]zdle s,has well as our qualitative conclusion ob-

the reader to the literatufelt is found that the minimum t@ined from field theory. .

value of(k,) occurs atk,= /2 and is given by If we introduce additionally an alternating NN exchange

! ! to our asymmetric mode(14), the degeneracy ofP ) or

1 J/2 (1+4ad)—6 |®g) will be lifted and the singlets would be pinned along

e(klzrrlz;al)zz 1—atals (28)  the stronger NN external dimer potential. The elementary
17 excitations are no longer separated kinks and antikinks. In
and the minimum value of(k,) is the presence of an external dimer potential, a kink and an
antikink separated by a distancelajive rise to a region in
1 J/2 (1+4a§)+5 the incorrect “ground state,” which effectively produces a
elke=ml2Zas) =7 — 75 (29 confining potential between the kink and antikink. This po-
2 %2 tential is proportional to the distance bfthus the kink and
where we takel=1 for convenience. antikink cannot escape from each other and behave analo-

For any given value o6, the excited gap\ (Ag) of a  gously as a quark-antiquark pafr:>* The kink-antikink
kink (an antikink corresponds to the minimum of E(28) bound state corresponds to a magnon with spin 1. The inter-
[Eq. (29)]. Our result is shown in Fig. 5, which indicates that esting topic of how the confined spinons develop to magnons
the elementary excitation gap decreases from 0.234 in thieas been investigated by Uhrig al3*

M-G to 0.219 in the sawtooth with the increase of the cou-

pling constants, while the ground-state energy is constant. IV. DOUBLE LAYER MODEL
In particular, for5=1/2, i.e., the sawtooth chain, E(R8)
reduces to Recently, it was found that the 2D Shastry-Sutherland
modef®>3¢can be used to explain the experimentally realized
Zaf material SrCy(BOs),, and hence such a model with an ex-
e(ky=ml2;a,)= 7 1T a, a2’ (30 act dimer ground statéhas attracted much attention again.

In this section, we will show that the asymmetric spin ladder
which has the minimum\¢=0 for a;=0, while Eq.(29) model can be generalized to a double layer model, whose
becomes ground state is a simple direct product of singlet dimers.
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/ / It is obvious that the dimer product staig, remains the

, ground state fod, >2J,. The properties of the ground state
- 0% are independent of the specific valueslbfandJ? as long as

the constraint conditio(35) is satisfied. Since the dimerized
ground state is not degenerate, the lowest excitation is ex-

o pected to be a triplet excitation, corresponding to breaking a
- singlet bond, with a gap size proportional 9. However,
. ‘ww the many-particle excitation spectra might be very compli-

cated because of the effective interactions among the triplet
excitations?®

NN

FIG. 6. The two-dimensional double layer model.

The double layer model is constructed from two coupled V. CONCLUSIONS

spin layers shown in Fig. 6, where each layer NasM sites Spin-isotropic, asymmetric zigzag ladders are studied us-
and couples to the other layer by the interlayer exchanggg a field-theory method and a variational approach. When
interactionS]J_ ande . The intralayer eXChange interactions the |eg exchange integra|s are small Compared with the NN
J* and J* on the top and bottom layers may have differentexchange, the spin model is mapped to a revised double fre-

strengths. The Hamiltonian of our model is given by quency sine-Gordon model. Renormalization-group analysis
NM 2 shows that there are two fixed points, say, an intermediate-
— alor  oa o oo coupling fixed point and a strong-coupling fixed point. In the
= P S P B S\ . . - ) g
: i,jEzl azl PSSt S-Sy weak frustration limit, the system is described by the

M M ?ﬁermediaﬁg-coufpling fix?d .point \;]vith gaplesas excitaticl)'ns.
e vanishing of spin velocity at the intermediate-coupling
+i,j2=1 Jd(sl,j ' Sﬂz,J+l+Sﬁl,J ' §*1’i)+i;l JLSl,J ' 32,1’ ' fixed point is likely to indicate a decoupling of spins at low-
energy scales. Apart from the isotropic separatrix, we find
(33 gapless spin liquid and gapped @lestates with easy-plane
where the superscripts=1,2 denote labels of the top and and easy-axis anisotropy. For large frustration, a more usual
bottom layers.J, is the perpendicular interlayer exchange dimer solid phase is realized corresponding to the strong-
interaction andl, is the diagonal interlayer exchange inter- coupling fixed point. RG analysis also predicts that the spin
action. Here all the exchanges are taken to be positive. Aap is decreased by increasing leg asymmetnj continu-
similar model has been investigated in Ref. 38, where th@us manifold of Hamiltonians with the same singlet product
layer model is a direct generalization of the Bose-Gayrerground state interpolates between the Majumdar-Ghosh
ladder modef? It is clear that every slice of the double layer Mmodel and the sawtooth spin chain. Starting from the exact
net is just a ladder whose Hamiltonian has the same form &round'state wave fUnCtion, we construct the variational
Eq. (14). Thus we find that the ground state of the layerwave function of the excited state and investigate the change
model is given by a product of all perpendicular singlet pairsof spin gap with the change of leg asymmedtyin the spirit
of constructing the Hamiltonian in the form of a sum of

M.N positive semidefinite projection operators, extension to the
op= 1 —=(af 82— Blal). (34 double layer model is carried out. We propose an exactly
T2 solved two-dimensional double layer model with a ground
when the condition state of a product of interlayer dimers.
J, =234=2(3*+J?) (35
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