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Planar pyrochlore: A valence-bond crystal

J.-B. Fouet,* M. Mambrini, P. Sindzingre, and C. Lhuillier
Laboratoire de Physique The´orique des Liquides-UMR 7600 of CNRS, Universite´ Pierre et Marie Curie,
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~Received 3 August 2001; revised manuscript received 11 June 2002; published 10 February 2003!

Exact diagonalizations of the spin-1/2 Heisenberg model on the checkerboard lattice have been performed
for sizes up toN536 in the full Hilbert space andN540 in the restricted subspace of first neighbor dimers.
This antiferromagnet does not break SU~2! symmetry and displays long-range order in four-spinS50
plaquettes. Both the symmetry properties of the spectrum and various correlations functions are extensively
studied. At variance with thekagome´ antiferromagnet, the Heisenberg quantum model on a checkerboard
lattice is a valence bond crystal. Some results concerning the three-dimensional spin-1/2 pyrochlore magnet
~for sizes 16 and 32! are also shown: this system could behave differently from its two-dimensional analog.

DOI: 10.1103/PhysRevB.67.054411 PACS number~s!: 75.10.Jm, 75.50.Ee, 75.40.2s
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I. INTRODUCTION

In the family of frustrated magnets, thekagome´ and py-
rochlore lattices have attracted special attention both exp
mentally and theoretically. Experimentally such magnets d
play a wide variety of unusual low-temperature behaviors1–6

signatures of different kinds of collective low-energy degre
of freedom.

The first-neighbor classical Heisenberg model on such
tices has aT50 entropy.7 On these lattices, the Heisenbe
model can be rewritten as the sum of the square of the t
spin of corner sharing unitsa ~triangles for thekagome´ lat-
tice, tetrahedra in the pyrochlore!:

H5J (
( i , j )bonds

Si•Sj[
J

2 (
a units

Sa
21Cst. ~1.1!

Thus a classical ground state is obtained wheneverSa50 for
all a. It is a straightforward exercise to show that su
ground states have a continuous local degeneracy. The
fluctuations select planar spin configurations on thekagome´
lattice,8,9 but are unable to build order from disorder in th
pyrochlore lattice.10

A simple Maxwellian counting has been done by the l
authors: the number of degrees of freedom ofN Heisenberg
spins with a given length isF52N. The number of con-
straints to realize a classical ground state isK56N/q where
q is the number of spins on eacha unit. Assuming that these
constraints are linearly independent~this has been argued t
be true in the pyrochlore case10!, one finds aT50 extensive
entropy (F2K;N) for the pyrochlore and zero entropy (F
2K;0) in the kagome´ case. Although the assumption
known to fail for thekagome´ magnet this naive counting
suggests that the degeneracy of the classical ground sta
the pyrochlore magnet is larger than inkagome´ magnet, in
qualitative agreement with the thermal behavior of the t
magnets.

Lately, Palmer and Chalker have studied the Heisenb
problem on the checkerboard lattice.11 This lattice built out
of corner sharing four-spin squares~see Fig. 1! is the two-
dimensional analog of the pyrochlore lattice. The class
Heisenberg model on the checkerboard lattice has a sim
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ground-state degeneracy and behaves the same way a
temperature~and with additional dipolar interactions!.11

The effect of quantum fluctuations on these differe
structures remains to be fully understood. In the first-or
spin-wave approximation~LSWA!, all these magnets remai
‘‘disordered’’ for S51/2.12 Higher-order approximations
have been devised for thekagome´ lattice suggesting selec
tion of order out of disorder by quantum fluctuations.13 How-
ever, this is in contradiction with exact diagonalization r
sults which support the idea that the spin-1/2kagome´
antiferromagnet has a small spin gap and no long-range o
~LRO! in spin-spin correlations as well as in any higher ra
correlations.14,15 Numerical results also support the absen
of long-range spin-spin order in the three-dimensional~3D!
spin-1/2 pyrochlore magnet.16,17 Palmer and Chalker hav
also studied the spin-1/2 2D pyrochlore magnet with ex
diagonalizations:18 they found a large spin gap and an a
sence of LRO in spin-spin correlations, a result in agreem
with LSWA and a recent Dyson Maleev approach.12 We are
thus indulged to consider that the spin-1/2 Heisenberg mo
on all these vertex sharing units has no Ne´el LRO and a spin
gap.

FIG. 1. The checkerboard lattice: the spins sit at the verti
shown by bullets, all couplings are identical,u1 ,u2 are the unit
vectors of the Bravais lattice.
©2003 The American Physical Society11-1
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To go beyond this assumption and characterize th
quantum phases more information is needed on higher-o
correlations functions and on the spectra of their first exc
tions. The spectrum of low-lying excitations of the spin-1
kagome´ magnet obtained from exact diagonalizations h
been a real surprise:15,19 whereas it probably has a small ga
for DS51 excitation~transitionsS50→S51), there is no
gap to singlet excitation~transitionsS50→S50) and the
density of low-lyingS50 states is so large that the syste
has a T50 residual entropy. The discovery of a seco
model with a similar spectrum of low-lying excitations o
the triangular lattice with four-spin exchange interaction le
us to speculate that this could be a generic different type
magnet.20,21A natural question thus arises: do the 2D and
true pyrochlore quantum magnets belong to this gen
class? The results obtained from their classical and semic
sical counterparts support the speculation that the ans
might be positive! As exact diagonalizations are up to n

FIG. 2. Samples: the star indicates that the sample has e
symmetries not shared by the checkerboard infinite lattice~see text!,
the prime indicates that the sample has higher ground-state en
than the other with the same number of spins.
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limited to systems ofN;36 spins, the problem of the tru
spin-1/2 pyrochlore magnet might remain open for still
long time. The 2D pyrochlore looks more promising: Palm
and Chalker18 have computed the spectra of clusters up to
spins. From their results, they were able to conclude that
system has no Ne´el LRO; it does not break SU~2! at T50
and probably has a large spin gap. Yet these sizes were
large enough to be sure that this magnet was really in
same class as thekagome´ magnet. In this work we extend
such diagonalizations up toN536. The technical aspects o
these diagonalizations have been previously described.22

Besides these diagonalizations in the full Hilbert spa
we also have peformed diagonalizations in the restric
space of first neighbor dimer coverings~denoted in the fol-
lowing FNSS, for first neighbor singlet subspace!. The size
of this restricted subspace is smaller than theS50 sector of
the full Hilbert space and it increases slower with the syst
size (;1.33N compared to;2N). In this restricted basis we
have studied samples up toN540. The FNSS calculations
for N540 have required an order of magnitude less of co
puter memory than the full Hilbert space calculations forN
536. As usual, periodic boundary conditions are applied
the samples.

tra

rgy

FIG. 3. Energy per spine0 vs N23/2 for ‘‘true two-dimensional
samples’’ ~full upwards triangles! and ‘‘quasi-one-dimensiona
tubes’’ ~downwards triangles! ~see text!.
state

d state

les
es.
TABLE I. Spectrum of the Heisenberg model in the full Hilbert space. Energy per spin in the ground

e0 and energy gapsES
nS2E

S8

nS8 between thenS8 energy level of theS8 spin sector and thenS level of theS
sector. First line: energy per spin. Second line: spin gap. Third line: gap between the absolute groun
and the first singlet excitation. Fourth line: gap between the second and third level in theS50 sector. Fifth
line: gap between the third level in theS50 sector and the first triplet excitation. Following lines:n1 is the
number of singlet states in the spin gap~including degeneracies!. The starred columns correspond to samp
which have the extra symmetries of the pyrochlore lattice. The first three columns are four-spins tub

N 16* 20 24 248 28 32* 328 36

e0 20.551 20.540 20.541 20.522 20.520 20.517 20.514 20.520
ES51

1 2ES50
1 1.12 0.96 1.00 0.58 0.57 0.69 0.57 0.71

ES50
2 2ES50

1 0.37 0.30 0.20 0.08 0.09 0.03 0.01 0.05
ES50

3 2ES50
2 0.53 0.22 0.28 0.06 0.05 0.18 0.13 0.22

ES51
1 2ES50

3 0.23 0.44 0.52 0.44 0.42 0.47 0.43 0.44
n1 27 25 38 51 82 286 135 110
ln(n1)/N 0.21 0.16 0.15 0.16 0.16 0.18 0.15 0.13
1-2
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II. ENERGY PER SPIN OF THE GROUND STATE IN
THE FULL HILBERT SPACE

The absolute ground state is anS50 state,23 in the trivial
irreducible representation of the space group. The grou
state energy per spin versus system size~the samples are
displayed in Fig. 2! is given in Fig. 3 and in Table I. Ou
results are identical to those of Palmer and Chalker18 for the
small sizes and identical shapes. We have added some
shapes~indexed by a prime! to show the sensitivity of smal
size results to the shape. The analysis of the whole se
results shows that the most stable small samples largely o
estimate the thermodynamic binding energy. In fact the fi
three samples 16, 20, 24 can be seen as tubes with a
spin section. The properties of these quasi-one-dimensi
systems are different from those of the true two-dimensio
samples~see Sec. VI!. This is manifest in Fig. 3 and follow
ing and has also been checked on the properties of
ground-state wave function. The energy per spin for the la
est sizes seems to level off in the range@20.52,20.51#.

The still non-negligible size effect found on samples 2
32, and 36 has to be related to symmetry problems: the
sample has not all the symmetries of the infinite lattice a
the 32* sample~as the 16* sites sample! has extra symme
tries not shared by the checkerboard infinite lattice~see be-
low!. So in all respects the 36 sample seems the be
sample to mimic the checkerboard infinite lattice: its ene
gives a plausible lower bound of the thermodynamic lim
Its only weakness could be the absence of fluctuation
wave vectors~0,p!,~p,0!, but all the information gathered o
this system leads us to conclude that this absence is
qualitatively essential.

FIG. 4. Energy per spin in the FNSS subspace. Symbols are
same as in Fig. 3. The twoN532 results are nearly indistinguish
able with the scale of the symbols.
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Samples 16* and 32* are peculiar. There is in fact a on
to one mapping, preserving neighborhood relationships
periodic boundary conditions, between these samples on
checkerboard lattice and the cells of the same size of a
rochlore. Their symmetry group has extra symmetries inh
ited from those of the pyrochlore lattice. This explains t
extra degeneracy noticed on exact spectra of these ‘‘p
chlore’’ samples, when analyzed with the checkerboard sy
metry group ~numerical results available on request
fouet@lptl.jussieu.fr or phsi@lptl.jussieu.fr!.

III. GROUND-STATE IN THE FIRST-NEIGHBOR
DIMER SUBSPACE

Results of diagonalizations in the first neighbor sing
subspace~Fig. 4 and Table II! confirm the above-mentione
hypotheses and call for the following comments:

The variational energy in the FNSS is;2% above the
exact one. This property is not spoiled by increasing sys
size. We might thus expect that this variational subspace c
ture most of the physics of the exact ground state.

The size and shape effects on theS50 ground state are
roughly the same in the two sets of results. Due to the pa
cutoff of long dimers the size effects in the FNSS are sma
than in the exact ground state.

The anomaly of theN532 sample is less pronounced
the FNSS. This can be understood as this basis does
allow expression of the full ternary symmetry of the 3d py-
rochlore. In fact the difference in ground-state energy

he
FIG. 5. Full Hilbert space: energy gaps measured from the

solute ground state versus 1/N. Full squares~diamonds!: spin-gaps
for two-dimensional samples~four-spin tubes!. Open triangles
pointing up ~down!: gaps to the second singlet energy level f
two-dimensional samples~four-spin tubes!.
lines:
te
TABLE II. Spectrum of the Heisenberg Hamiltonian in the first neighbor singlet subspace. First two
energy gaps in the singlet sector~same definitions as in Table I!. Last line: relative difference in ground-sta
energy between the FNSS and the full Hilbert space.

N 24 248 28 32* 328 36 40

ES50
2 2ES50

1 0.340 0.080 0.035 0.025 0.027 0.050 0.014
ES50

3 2ES50
2 0.47 0.35 0.31 0.45 0.44 0.49 0.45

(Evar2Eex)/Eex 0.015 0.029 0.008 0.027 0.023 0.023
1-3
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tween the two different 32 samples is hardly visible on
scale of Fig. 4.

The 40 sites sample has an energy in the same rang
the N528, 32, 36 samples confirming that the larger siz
are in a crossover regime, with linear dimensions of the or
of or larger than the spin-spin correlation length.

IV. SPIN GAP

The spin gap~defined as the difference in total energ
between the firstS51 excited state and theS50 absolute
ground state! is displayed in Fig. 5 and Table I~line 2! versus
system size, and in Fig. 6 versus ground-state energy
spin. This last figure emphasizes the difference between
quasi-one-dimensional systems~tubes! with a large binding
energy ~;20.54! and a large gap~;1!, and the true 2D
systems with a binding energy~;20.52! and a gap of the
order of 0.6 times the coupling constant.

V. SPECTRUM OF THE FIRST EXCITATIONS
IN THE SÄ0 SECTOR

The first excited state in the full singlet sector collapses
the ground state with increasing system size~third line of
Table I, open triangles in Figs. 5 and 6!. The same phenom
enon is clearly seen in the FNSS~Table II and Fig. 7!. This is

FIG. 6. Full Hilbert space: correlations between gaps a
ground-state energy per site. Same symbols as in Fig. 5.

FIG. 7. Gaps in the singlet sector. Open triangles~open
squares!: gap from the ground state to the first~second! excited
state in the FNSS.
05441
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a clear indication of a degeneracy of the absolute grou
state in the thermodynamic limit. In this system with tw
spins 1/2 per unit cell we do not expect a topologic
degeneracy.24 We will explain in the next section the spac
symmetry breaking at the origin of the present degenera

Analysis of the gap between the second and third sin
~fourth line of Table I in the full Hilbert space, second line
Table II in the FNSS and Fig. 7! shows a nonmonotonic
behavior and no tendency to close for larger sizes. On
basis of the present results one expects, in the thermo
namic limit, a finite gap in the singlet sector above the tw
fold degenerate ground state. This gap is probably sma
than the gap to the first triplet~fifth line of Table I to be
compared to the second line of this same table!.

Also shown in Table I is the numbern1 of singlet states in
the spin gap. The unusually large values ofn1 found for the
small samples were taken by Palmer and Chalker18 as indi-
cations of a similarity of the checkerboard and thekagome´
magnet. These large values are probably an indication
continuum of singlet excitations. But this continuum appe
to be separated from the ground state by a finite gap. So
continuous density of singlet states adjacent to the gro
state, that is, the distinctive characteristic of thekagome´
magnet, is absent in the two-dimensional checkerboard
tice ~Fig. 7!.

Finally the continuum of singlet excitations above t
third level of the true checkerboard spectra can be interpre
as the excitations of antiferromagnetic pairs of confin
spinons. The ferromagnetic pairs appear more energetic~fifth
line of Table I to be compared to the second line!.

In view of the results for theN516* and 32* pyrochlore
samples one might speculate a different behavior for the
rochlore lattice:n1 is indeed much larger than for other siz
~Table I!. But no continuum is yet actually visible in th
spectrum as it is in thekagome´ spectrum. There is still a
noticeable gap between the second and third singlet eig
levels in the 32* sample. Larger sizes would be necessary
really see if the pyrochlore belongs to the same generic c
as thekagome´.

VI. GROUND-STATE SYMMETRY BREAKING

As noticed above the finite size results point to a twofo
degeneracy of the ground state in the thermodynamic lim
The absolute ground state is in the trivial representation
the lattice symmetry group. Its wave function is invariant
any translation and in any operation ofC4v: group of thep/2
rotations around pointO ~or any equivalent point of the Bra
vais lattice! and axial symmetries with respect to axesu1 and
u2 ~see Fig. 1!. The excited state which collapses on it in th
thermodynamic limit has a wave vector~p,p! ~its wave func-
tion takes a~21! factor in one-step translations alongu1 or
u2), and it is odd underp/2 rotations and axial symmetries
In the thermodynamic limit the twofold degenerate grou
state can thus exhibit a spontaneous symmetry breaking
a doubling of the unit cell. Such a restricted symmetry bre
ing does not allow a columnar or staggered configuration
dimers~Fig. 8!: both of these states have at least a fourfo
degeneracy.

d

1-4
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PLANAR PYROCHLORE: A VALENCE-BOND CRYSTAL PHYSICAL REVIEW B67, 054411 ~2003!
The simplest valence bond crystals that allow the abo
mentioned symmetry breaking are described by pure pro
wave functions of four-spinS50 plaquettes. This family in-
cludes eight different configurations:

The singlet plaquettes may sit either on the squares w
crossed links or on the void squares (A andB configurations
of Fig. 9!,

The translation symmetry-breaking configurations may
in two different locations namedA1(2) ~respectivelyB1(2)),

An S50 state on a plaquette of four spins sitting on si
~a,b,g,d! may be realized either by the symmetric combin
tion of pairs of singlets:

uc1&5ua→d&ug→b&1ua→b&ug→d&, ~6.1!

or by the antisymmetric one:

uc2&5ua→d&ug→b&2ua→b&ug→d&, ~6.2!

whereua→g& is the singlet state on sitesa andg:

ua→g&5~ ua↑,g↓&2ua↓,g↑&)/A2. ~6.3!
We can thus define eight different product wave functio

labeled uA1(2)
e & and uB1(2)

e &. The transformations of thes
states under the elementary operations of the lattice sym
try group are described in the first four lines of Table III. T
symmetric~respectively antisymmetric! linear combinations
of these states which are irreducible representations of
group are defined in the four last lines of the same table.
comparison of the symmetries of these states with thos

FIG. 8. Columnar and staggered configuration of dimers~fat
links! on the checkerboard lattice: such symmetry-breaking c
figurations are fourfold degenerate in the thermodynamic limit.

FIG. 9. S50 four-spin plaquette valence bond crystals
the checkerboard lattice: fat links indicate four-spins involved i
singlet.
05441
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the two first levels of the exact spectra indicates aZ-type
symmetry of the checkerboard magnet ground state: in
thermodynamic limit the symmetry-breaking configuration
thus of theB type decorated by the symmetric four-sp
plaquettes described in Eq.~6.1! ~antisymmetric four-spin
plaquettes are excluded by the properties of the exact gro
state and first singlet excitation in samples with an odd nu
ber of four-spin plaquettes, such asN528 or 36!.

Indeed in the exact ground-state quantum fluctuati
might dress the product states giving a more fuzzy pictu
Insofar as gaps to the third singlet state and the first trip
remain finite in the thermodynamic limit, the valence bo
crystal picture~with LRO in plaquettes! will survive to quan-
tum fluctuations.

A simple last remark could be done: the symmetr
plaquette state@Eq. ~6.1!# can be rewritten as the product o
two triplets along the diagonals of the square. This confi
ration of spins is not energetically optimal on the squa
with antiferromagnetic crossed links (A configuration! but
might a priori be favored inB configuration. Conversely, the
c2 plaquette can be rewritten as the product of two sing
along the diagonals of the square, and would eventually
preferred inA configuration. The variational energy per sp
of the product wave function ofc1 plaquettes inB configu-
ration is Evar(B

1)520.5, whereas the variational energ
per spin of the product wave function ofc2 plaquettes inA
configuration is Evar(A

2)520.375. For the quasi-one
dimensional samples 16, 20, and 24, these symme
plaquettes can be built not only on square voids but also
the four-spin cross section of the tube. The resonnance
tween plaquettes on void square and plaquettes on the c
section might explain the special properties~energy, gaps,
correlations! of these samples.

Exact results are indeed consistent with this variatio
estimate and favorc1 plaquettes on voids. This is in agree
ment with recent results of Moessneret al.25 but is at vari-
ance with the departure point of the strong-coupling appro
mation of Elhajalet al.26

-

TABLE III. Transformation rules of the product wave function
in the elementary operations of the symmetry group~the space
group is defined with respect to pointO and translationsu1 ,u2).
The wave functions of the antisymmetric plaquettes have differ
symmetries depending on the parityp of the number of plaquettes
in the sample.

Wave function Tu1
Rp/2 su1

A1(2)
1 A2(1)

1 A1(2)
1 A1(2)

1

A1(2)
2 A2(1)

2 (21)pA1(2)
2 (21)pA1(2)

2

B1(2)
1 B2(1)

1 B2(1)
1 B2(1)

1

B1(2)
2 B2(1)

2 (21)pB2(1)
2 (21)pB2(1)

2

Xh5A1
11hA2

1 hXh Xh Xh

Yh5A1
21hA2

2 hYh (21)pYh (21)pYh

Zh5B1
11hB2

1 hZh hZh hZh

Th5B1
21hB2

2 hTh (2)phTh (2)phTh

a

1-5
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VII. CORRELATIONS

As it was expected for a valence bond crystal it can
seen in Table IV that spin-spin correlations in theN536
exact ground state decrease very rapidly with distance.
decrease with distance is even more rapid in the full Hilb
space than in the FNSS. In this respect theZ product wave
function appears to be a good simple variational gues
describe the exact ground state.

The four-point correlation function,

C 4~1,2;i , j !54@^S1•S2Si•Sj&2^S1•S2&^Si•Sj&#,
~7.1!

TABLE IV. Spin-spin correlationsC 2( i , j )5^Si•Sj& in the exact
ground state~second column!, in the variationalZ wave function
~third column!, and in the ground state of the first neighbor sing
subspace~fourth columns! of the N536 sample. The sitesi , j are
numbered as in Fig. 10.

i , j Ex. g.s. Z w.f. FNSS i , j Ex. g.s. Z w.f.

1,2 20.239 20.25 20.27 1,29 0.001 0
1,8 20.043 0 0.033 1,17 20.002 0
1,32 0.088 0.125 0.122 1,4 20.037 0
1,3 0.034 0 1,10 20.012 0
1,35 0.013 0 20.018 1,16 20.001 0
05441
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is displayed in Table V in the exact ground state, in theZ
product wave function and in the ground state of the fi
neighbor singlet subspace~see also Fig. 10!. Here again the
general behaviors are quite similar. As it was expected, qu
tum fluctuations in the exact ground state renormalize
correlations at intermediate and larger distances. Asympt
behavior seems approximately reached for the larger
tances in sampleN536. Renormalization by quantum fluc
tuations amounts to;60% of the bare variationalZ value.

Due to the plaquette structure of this valence bond cry
a better order parameter is given by the cyclic permutat
operatorPa,b,g,d of the four-spins~a,b,g,d! on the square-
plaquette. Let us define the corresponding Hermitian obs
able as

Qa,b,g,d5
1

2
~Pa,b,g,d1Pa,b,g,d

21 !

52@Sa•SbSg•Sd1Sa•SdSb•Sg2Sa•SgSb•Sd#

10.5@Sa•Sb1Sg•Sd1Sa•Sd1Sb•Sg#

10.5@Sa•Sg1Sb•Sd11/4#. ~7.2!

Its value in theN536 exact ground state~respectively in
the Z variational wave function! is 0.478~respectively 0.56!

t

sured

s
f bond
TABLE V. Dimer-dimer correlationsC 4(1,2;i , j ) @Eq. ~7.1!# in the N536 ground state. The sites 1,2,i , j
are described in Fig. 10, thei , j points are enumerated in the first column. This correlation has been mea
in the exact ground-state wave function~second column!, in the variationalZ state~third column! and in the
ground state of the first neighbor singlet subspace~FNSS, fourth column!. All the values of these correlation
between sites of Fig. 10 can be obtained from this table by a mirror symmetry through the bisector o
(1,2).

i , j Ex. g.s. Z w.f. FNSS i , j ex. g.s. Z w.f. FNSS

31,32 0.56 0.63 0.55 7,13 0.10 0.25 0.16
7,8 0.43 0.42 0.39 19,25 0.10 0.25 0.14
25,26 0.26 0.25 0.21 7,12 20.10 20.25 20.15
13,14 0.26 0.25 0.21 31,36 20.10 20.25 20.15
19,20 0.25 0.25 0.21 13,18 20.11 20.25 20.16
6,5 0.22 0.25 0.26 25,30 20.11 20.25 20.15
6,12 20.20 20.25 20.18 19,24 20.11 20.25 20.15
25,31 20.20 20.25 20.18 6,36 0.10 0.25 0.16
13,19 20.18 20.25 20.18 12,18 0.11 0.25 0.16
36,35 0.18 0.25 0.18 24,30 0.10 0.25 0.15
5,11 20.18 20.25 20.18 35,5 0.10 0.25 0.15
4,10 20.18 20.25 20.18 11,17 0.10 0.25 0.15
12,11 0.17 0.25 0.19 29,23 0.10 0.25 0.14
36,30 20.15 20.25 20.16 5,4 20.11 20.25 20.16
35,29 20.15 20.25 20.16 11,10 20.11 20.25 20.14
30,29 0.15 0.25 0.17 35,34 20.11 20.25 20.14
17,23 20.15 20.25 20.16 17,16 20.11 20.25 20.14
18,17 0.15 0.25 0.17 29,28 20.10 20.25 20.14
18,24 20.15 20.25 20.16 23,22 20.10 20.25 20.14
24,23 0.15 0.25 0.16 34,4 0.10 0.25 0.15
28,34 20.15 20.25 20.16 10,16 0.10 0.25 0.15
16,22 20.15 20.25 20.16 28,22 0.10 0.25 0.14
1-6
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on a void square, and 0.071~respectively 0.125! on a square
with crossed links. The correlation function of this obse
able is defined as usual as

C 8~a,b,g,d; i , j ,k,l !5^Qa,b,g,dQi , j ,k,l&

2^Qa,b,g,d&^Qi , j ,k,l&. ~7.3!

Its values are displayed in Table VI. One might notice t
presence of non negligible correlations between void squ
and the quasiabsence between squares with crossed
The short distance value of these correlations shows the
its of relevance of the variational description. As expec
from the spectra, the checkerboard Heisenberg magnet
valence bond crystal.

VIII. CONCLUSION

The spin-1/2 checkerboard Heisenberg antiferromagne
a valence bond crystal with LRO in four-spinS50
plaquettes: it exhibits a large spin gap, a breaking of
translational symmetry, a doubling of the unit cell and lon
range correlations in singlets.

At variance with thekagome´ antiferromagnet this system
does not exhibit a singlet continuum but a clear gap in
singlet sector above the~quasi!degenerate ground state.

This system is a two-dimensional analog of the dimeriz
phase of theJ12J2 model on a chain. It belongs to th
same generic class as the Shastry-Sutherland model27 and
the J12J2 model28–30 on the square lattice forJ12J2
;0.5. Dimer LRO has been previously found for theJ1
2J2 model on the honeycomb lattice,31 and plaquette LRO
has been proposed for theJ12J2 model or more compli-

FIG. 10. Dimer-dimer correlations in the exact ground state
the 36 sample@Eq. ~7.1!#. The reference bond is the bond (1,2
Positive~negative! correlations are drawn as full~dashed! lines. The
thickness of the lines is a measure of the strength of the correla
The diagonal lines show the position of the crossed links.
05441
-

e
es
ks.
-

d
a
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e
-

e

d

cated models on the square lattice.32,33In these examples, the
dimerized phases are found after destabilization of a class
collinear Néel ground state by quantum fluctuations as p
dicted from SU~N! or Sp~N! approaches.34,35A common fea-
ture of all these magnets is a bipartite lattice. Such an un
lying lattice is probably favorable for the establishment
LRO in dimer coverings. In each of these models the sys
is around the point of maximum classical frustration o
tained forz2J25z1J1/2 ~with zi and Ji respectively the co-
ordinance and the coupling at distancei ). In the J12J2
model on the square lattice there are still some controver
on the exact nature of the singlets with LRO~dimers or four-
spin plaquettes!,28–30 but no doubt about the belonging o
this phase to the valence bond crystal family.

As shown in this paper the physics of the model in t
singlet sector can essentially be captured in the restric
space of first neighbor coverings~FNSS!. This explains why
the quantum hard-core dimer model on such a lattice gi
essentially the same physics and phase diagram as the
Heisenberg model.25 Nevertheless, the renormalization b
quantum fluctuations in the full Hilbert space is somewh
underestimated in the FNSS, anda fortiori in the quantum
hard-core dimer model.

This work also brings a different light on the discussi
about thekagome´ magnet. The local classical degeneracy
a model~present in any system with corner sharing units—
discussed in the introduction! is not a sufficient condition for
the associated quantum model to exhibit a continuum of
glets and a residual entropy. Two pieces of information jo
to cast a doubt on the relationship between a classical c
tinuous degeneracy and akagome´-like spectrum ~type-II
resonating valence bond spin liquid36!:

The checkerboard magnet has a continuum degenerac
the classical limit but no continuum of singlets.

The multispin exchange model on the triangular latt
~with an antiferromagnetic first neighbor coupling! has a
continuum of singlets in the triplet gap but apparently
simple local continuous degeneracy in the classical limit.

Finally our results seem to indicate qualitative differenc
between planar and true 3D pyrochlore~see Sec. V above!.
In fact in the 3D pyrochlore magnet, symmetric and antisy
metric spin singlets configurations on the tetrahedra are
generate~as in the checkerboard lattice!, but there are no
unique four-spinS50 configurations around the ‘‘voids’
of the structure and the number of resonances on the lo
encircling these voids is large. These quantum resonan
are probably a very efficient mechanism to destabil
dimer LRO.

f

n.

TABLE VI. Plaquette-plaquette correlation
C 8(a,b,g,d; i , j ,k,l ) @Eq. ~7.3!# in the exact ground state of th
N536 sample. The sites are numbered as in Fig. 10. The left pa
the table describes the correlations between void squares, the
part between squares with crossed links.

~1,31,32,2; 5,35,36, 6! 0.172 ~7,1,2,8; 11, 5 ,6,12! 0.073
~1,31,32,2; 17,11,12,18! 0.127 ~7,1,2,8; 23,17,18,24! 0.009
~1,31,32,2; 10, 4, 5,11! 20.121 ~7,1,2,8; 16,10,11,17! 20.006
~1,31,32,2; 22,16,17,23! 20.117 ~7,1,2,8; 28,22,23,29! 20.004
1-7
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