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Planar pyrochlore: A valence-bond crystal
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Exact diagonalizations of the spin-1/2 Heisenberg model on the checkerboard lattice have been performed
for sizes up taN=236 in the full Hilbert space andl=40 in the restricted subspace of first neighbor dimers.
This antiferromagnet does not break @Usymmetry and displays long-range order in four-s@n 0
plaquettes. Both the symmetry properties of the spectrum and various correlations functions are extensively
studied. At variance with th&agomeantiferromagnet, the Heisenberg quantum model on a checkerboard
lattice is a valence bond crystal. Some results concerning the three-dimensional spin-1/2 pyrochlore magnet
(for sizes 16 and 32are also shown: this system could behave differently from its two-dimensional analog.
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[. INTRODUCTION ground-state degeneracy and behaves the same way at low
temperaturdand with additional dipolar interactionst
In the family of frustrated magnets, th@gomeand py- The effect of quantum fluctuations on these different

rochlore lattices have attracted special attention both experstructures remains to be fully understood. In the first-order
mentally and theoretically. Experimentally such magnets disspin-wave approximatiofLSWA), all these magnets remain
play a wide variety of unusual low-temperature behaviofs, “disordered” for S=1/2.' Higher-order approximations
signatures of different kinds of collective low-energy degreedhave been devised for tHeagomelattice suggesting selec-
of freedom. tion of order out of disorder by quantum fluctuatidfigiow-

The first-neighbor classical Heisenberg model on such latever, this is in contradiction with exact diagonalization re-
tices has =0 entropy’ On these lattices, the Heisenberg sults which support the idea that the spin-agome
model can be rewritten as the sum of the square of the totaintiferromagnet has a small spin gap and no long-range order
spin of corner sharing unita (triangles for thekagomelat-  (LRO) in spin-spin correlations as well as in any higher rank
tice, tetrahedra in the pyrochlore correlations:**> Numerical results also support the absence

of long-range spin-spin order in the three-dimensiai3a))
) spin-1/2 pyrochlore magnét’ Palmer and Chalker have
a%its S, +Cst (1.1) also studied the spin-1/2 2D pyrochlore magnet with exact
diagonalizations® they found a large spin gap and an ab-
Thus a classical ground state is obtained when8yerO for ~ sence of LRO in spin-spin correlations, a result in agreement
all a. It is a straightforward exercise to show that suchwith LSWA and a recent Dyson Maleev approdéiwe are
ground states have a continuous local degeneracy. Thermtilus indulged to consider that the spin:1/2 Heisenberg model
fluctuations select planar spin configurations onkhgome  on all these vertex sharing units has noeNeRO and a spin
lattice®® but are unable to build order from disorder in the gap.
pyrochlore lattice

A simple Maxwellian counting has been done by the last P
authors: the number of degrees of freedonNdfleisenberg
spins with a given length i$=2N. The number of con-
straints to realize a classical ground stat& is 6N/q where
g is the number of spins on eachunit. Assuming that these
constraints are linearly independdttiis has been argued to
be true in the pyrochlore cafe one finds ar=0 extensive
entropy & —K~N) for the pyrochlore and zero entrop¥ (
—K~0) in the kagomecase. Although the assumption is
known to fail for thekagomemagnet this naive counting
suggests that the degeneracy of the classical ground state in
the pyrochlore magnet is larger than kagomemagnet, in
gualitative agreement with the thermal behavior of the two
magnets.

Lately, Palmer and Chalker have studied the Heisenberg
problem on the checkerboard lattiteThis lattice built out
of corner sharing four-spin squarésee Fig. 1is the two- FIG. 1. The checkerboard lattice: the spins sit at the vertices
dimensional analog of the pyrochlore lattice. The classicakhown by bullets, all couplings are identicai, ,u, are the unit
Heisenberg model on the checkerboard lattice has a similatectors of the Bravais lattice.

J
H=J X S-S§=3
(i,j)bonds 2
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FIG. 2. Samples: the star indicates that the sample has extéinited to systems oN~36 spins, the problem of the true
symmetries not shared by the checkerboard infinite lattiee tex, ~ SPIN-1/2 pyrochlore magnet might remain open for still a
the prime indicates that the sample has higher ground-state enerd@nd time. The 2D pyrochlore looks more promising: Palmer
than the other with the same number of spins. and Chalkel® have computed the spectra of clusters up to 24

spins. From their results, they were able to conclude that the

To go beyond this assumption and characterize thesgystem has no N# LRO; it does not break S@) at T=0
quantum phases more information is needed on higher-ordénd probably has a large spin gap. Yet these sizes were not
correlations functions and on the spectra of their first excitalarge enough to be sure that this magnet was really in the
tions. The spectrum of low-lying excitations of the spin-1/2same class as theagomemagnet. In this work we extend
kagomemagnet obtained from exact diagonalizations hassuch diagonalizations up 8= 36. The technical aspects of
been a real surpris&:*°whereas it probably has a small gap these diagonalizations have been previously descfibed.
for AS=1 excitation(transitionsS=0—S=1), there is no Besides these diagonalizations in the full Hilbert space,
gap to singlet excitatiorftransitionsS=0—S=0) and the we also have peformed diagonalizations in the restricted
density of low-lyingS=0 states is so large that the systemspace of first neighbor dimer coveringgenoted in the fol-
has aT=0 residual entropy. The discovery of a secondlowing FNSS, for first neighbor singlet subspacehe size
model with a similar spectrum of low-lying excitations on of this restricted subspace is smaller than 80 sector of
the triangular lattice with four-spin exchange interaction leadhe full Hilbert space and it increases slower with the system
us to speculate that this could be a generic different type o$ize (~1.33' compared to~2"). In this restricted basis we
magnet®?*A natural question thus arises: do the 2D and thehave studied samples up M=40. The FNSS calculations
true pyrochlore guantum magnets belong to this generifor N=40 have required an order of magnitude less of com-
class? The results obtained from their classical and semiclaguter memory than the full Hilbert space calculations Kor
sical counterparts support the speculation that the answer 36. As usual, periodic boundary conditions are applied to
might be positive! As exact diagonalizations are up to nowthe samples.

TABLE I. Spectrum of the Heisenberg model in the full Hilbert space. Energy per spin in the ground state
ey and energy gapEgs— E;,S between theng energy level of theS' spin sector and theg level of theS
sector. First line: energy per spin. Second line: spin gap. Third line: gap between the absolute ground state
and the first singlet excitation. Fourth line: gap between the second and third level$a-thesector. Fifth
line: gap between the third level in tf&=0 sector and the first triplet excitation. Following lines: is the
number of singlet states in the spin gapcluding degeneracigsThe starred columns correspond to samples
which have the extra symmetries of the pyrochlore lattice. The first three columns are four-spins tubes.

N 16* 20 24 24 28 32* 32 36

€ -0.551 -0.540 -0.541 -0.522 -0.520 -0517 -0.514 —0.520
Es,—Ei, 1.12 0.96 1.00 0.58 0.57 0.69 0.57 0.71
E2_,—E&o 0.37 0.30 0.20 0.08 0.09 0.03 0.01 0.05
E3 o—E3, 0.53 0.22 0.28 0.06 0.05 0.18 0.13 0.22
Es.1—E2 0.23 0.44 0.52 0.44 0.42 0.47 0.43 0.44
n, 27 25 38 51 82 286 135 110
In(n,)/N 0.21 0.16 0.15 0.16 0.16 0.18 0.15 0.13
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FIG. 4. Energy per spin in the FNSS subspace. Symbols are the
same as in Fig. 3. The twid= 32 results are nearly indistinguish- FIG. 5. Full Hilbert space: energy gaps measured from the ab-
able with the scale of the symbols. solute ground state versus\L/Full squaregdiamonds. spin-gaps

for two-dimensional samplegfour-spin tubes Open triangles
pointing up (down): gaps to the second singlet energy level for
Il. ENERGY PER SPIN OF THE GROUND STATE IN two-dimensional samplegour-spin tubes
THE FULL HILBERT SPACE

Samples 18 and 32 are peculiar. There is in fact a one
Jo one mapping, preserving neighborhood relationships and
periodic boundary conditions, between these samples on the
checkerboard lattice and the cells of the same size of a py-

results are identical to those of Palmer and Chaflder the rochlore. Their symmetry group has e.xtra symmetrigs inher-
small sizes and identical shapes. We have added some efoSd from those of the pyrochlore lattice. This explains the

shapesindexed by a primeto show the sensitivity of small extra degeneracy noticed on exact spectra of these “pyro-

size results to the shape. The analysis of the whole set (ﬁhlore” samples, when analyzed with the checkerboard sym-

results shows that the most stable small samples largely ove hetry group (qumencal re.su'ts .avalllable on request at
ouet@lIptl.jussieu.fr or phsi@Iptl.jussieyfr

estimate the thermodynamic binding energy. In fact the firs
three samples 16, 20, 24 can be seen as tubes with a four-
spin section. The properties of these quasi-one-dimensional IIl. GROUND-STATE IN THE FIRST-NEIGHBOR
systems are different fro_m_ those _of thg tru_e two-dimensional DIMER SUBSPACE
samplegsee Sec. V)l This is manifest in Fig. 3 and follow-
ing and has also been checked on the properties of the Results of diagonalizations in the first neighbor singlet
ground-state wave function. The energy per spin for the largsubspacéFig. 4 and Table )l confirm the above-mentioned
est sizes seems to level off in the rarjged.52-0.51]. hypotheses and call for the following comments:

The still non-negligible size effect found on samples 28, The variational energy in the FNSS is2% above the
32, and 36 has to be related to symmetry problems: the 28xact one. This property is not spoiled by increasing system
sample has not all the symmetries of the infinite lattice andize. We might thus expect that this variational subspace cap-
the 32 sample(as the 18 sites samplehas extra symme- ture most of the physics of the exact ground state.
tries not shared by the checkerboard infinite lat(isee be- The size and shape effects on tBe 0 ground state are
low). So in all respects the 36 sample seems the betteoughly the same in the two sets of results. Due to the partial
sample to mimic the checkerboard infinite lattice: its energycutoff of long dimers the size effects in the FNSS are smaller
gives a plausible lower bound of the thermodynamic limit.than in the exact ground state.
Its only weakness could be the absence of fluctuations at The anomaly of théN=32 sample is less pronounced in
wave vectorg0,m),(,0), but all the information gathered on the FNSS. This can be understood as this basis does not
this system leads us to conclude that this absence is naflow expression of the full ternary symmetry of thd By-
qualitatively essential. rochlore. In fact the difference in ground-state energy be-

The absolute ground state is &/ 0 state? in the trivial
irreducible representation of the space group. The groun
state energy per spin versus system dihe samples are
displayed in Fig. 2is given in Fig. 3 and in Table I. Our

TABLE II. Spectrum of the Heisenberg Hamiltonian in the first neighbor singlet subspace. First two lines:
energy gaps in the singlet secteame definitions as in Tablg Last line: relative difference in ground-state
energy between the FNSS and the full Hilbert space.

N 24 24 28 32¢ 32 36 40
EZ_,—E:, 0.340 0.080 0.035 0.025 0.027 0.050 0.014
E3_,—E2, 0.47 0.35 0.31 0.45 0.44 0.49 0.45
(Epar— Eex)/Eex 0.015 0.029 0.008 0.027 0.023 0.023
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L e L B L— a clear indication of a degeneracy of the absolute ground-
c ?s 20 ] state in the thermodynamic limit. In this system with two
! 3 B spins 1/2 per unit cell we do not expect a topological
08 I degenerac§* We will explain in the next section the space
" F Fue ] symmetry breaking at the origin of the present degeneracy.
2 0.6 - S Analysis of the gap between the second and third singlet
2 r Sl (fourth line of Table | in the full Hilbert space, second line of
0.4 - B Table Il in the FNSS and Fig.)7shows a nonmonotonic
02 L vv h behavior and no tendency to close for larger sizes. On the
C AAﬁ ] basis of the present results one expects, in the thermody-
oL 1 o 0 Fha ] namic limit, a finite gap in the singlet sector above the two-

-0.54 -0.52

R fold degenerate ground state. This gap is probably smaller
[}

than the gap to the first tripldfifth line of Table | to be

FIG. 6. Full Hilbert space: correlations between gaps andcompared to the second line of this same table
ground-state energy per site. Same symbols as in Fig. 5. Also shown in Table | is the numbey, of singlet states in

the spin gap. The unusually large valuesgffound for the

tween the two different 32 samples is hardly visible on thesmall samples were taken by Palmer and Chafkas indi-
scale of Fig. 4. cations of a similarity of the checkerboard and #agome

The 40 sites sample has an energy in the same range aggnet. These large values are probably an indication of a
the N=28, 32, 36 samples confirming that the larger sizesontinuum of singlet excitations. But this continuum appears
are in a crossover regime, with linear dimensions of the ordeto be separated from the ground state by a finite gap. So the

of or larger than the spin-spin correlation length. continuous density of singlet states adjacent to the ground
state, that is, the distinctive characteristic of tkegome
IV. SPIN GAP magnet, is absent in the two-dimensional checkerboard lat-
tice (Fig. 7).

The spin gap(defined as the difference in total energy  Finally the continuum of singlet excitations above the
between the firsB=1 excited state and th=0 absolute third level of the true checkerboard spectra can be interpreted
ground statgis displayed in Fig. 5 and Tablgline 2) versus  as the excitations of antiferromagnetic pairs of confined
system size, and in Fig. 6 versus ground-state energy pa&pinons. The ferromagnetic pairs appear more ener(tic
spin. This last figure emphasizes the difference between thiine of Table | to be compared to the second Jine
guasi-one-dimensional systerttabes with a large binding In view of the results for thé\=16* and 32 pyrochlore
energy (~—0.54 and a large gag~1), and the true 2D samples one might speculate a different behavior for the py-
systems with a binding energy~—0.52 and a gap of the rochlore latticen; is indeed much larger than for other sizes

order of 0.6 times the coupling constant. (Table ). But no continuum is yet actually visible in the
spectrum as it is in th&agomespectrum. There is still a
V. SPECTRUM OF THE FIRST EXCITATIONS noticeable gap between the second and third singlet eigen-
IN THE S=0 SECTOR levels in the 32 sample. Larger sizes would be necessary to

_ _ _ _ really see if the pyrochlore belongs to the same generic class
The first excited state in the full singlet sector collapses tgas thekagome

the ground state with increasing system sf#tard line of
Table I, open triangles in Figs. 5 angl. @he same phenom-
enon is clearly seen in the FN$®able Il and Fig. 7. This is V1. GROUND-STATE SYMMETRY BREAKING

oas 52 28 24 As noticed above the finite size results point to a twofold
T T T degeneracy of the ground state in the thermodynamic limit.
The absolute ground state is in the trivial representation of
the lattice symmetry group. Its wave function is invariant in
any translation and in any operation©f,: group of thew/2
rotations around poir® (or any equivalent point of the Bra-
vais lattice and axial symmetries with respect to axgsand
U, (see Fig. 1 The excited state which collapses on it in the
thermodynamic limit has a wave vectar, ) (its wave func-
tion takes a—1) factor in one-step translations along or
| AAA A U,), and it is odd unde#r/2 rotations and axial symmetries.
0.02 ' '0.04 In the thermodynamic limit the twofold degenerate ground
1/N state can thus exhibit a spontaneous symmetry breaking with
a doubling of the unit cell. Such a restricted symmetry break-
FIG. 7. Gaps in the singlet sector. Open trianglepen ing does not allow a columnar or staggered configuration of
squares gap from the ground state to the firstecond excited — dimers(Fig. 8): both of these states have at least a fourfold
state in the FNSS. degeneracy.

0.6

0.4

singlet gaps
T T T | T T T | T T T I
1 1 1 | 1 1 1 | 1 1 1 I

A

0 ) 1 1
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TABLE lll. Transformation rules of the product wave functions
in the elementary operations of the symmetry grdthe space
group is defined with respect to poifit and translationsi; ,u,).

The wave functions of the antisymmetric plaguettes have different
symmetries depending on the parfiyof the number of plaquettes

>< in the sample.

Wave function 7;1 R oy,
N . Alez) Aza) Al(2) Al(2)
FIG. 8. Columnar and staggered configuration of dimgas Al Az (—1)PAL ) (—1)PAL )
links) on the checkerboard lattice: such symmetry-breaking cong; Bz+(1) B;(l) Bz+(1)
figurations are fourfold degenerate in the thermodynamic limit. - -z _ _
g g y B B2y (—1)PBy, (—1)PBy,
The simplest valence bond crystals that allow the aboves,_ ,+, A+ - - -

. . . =A] +nA] X X X
mentioned symmetry breaking are described by pure produ = A+ A, Y (—1)Py7 (—1)Py?
wave functions of four-spits=0 plaquettes. This family in- ot 2

P paq y Z"=B; + 7B, nZ" nZ" nZ"

cludes eight different configurations: s
The singlet plaquettes may sit either on the squares witd "= B1
crossed links or on the void squares §ndB configurations
of Fig. 9),
The translation symmetry-breaking configurations may béhe two first levels of the exact spectra indicateZ-type
in two different locations nameé, () (respectivelyB ,)), symmetry of the checkerboard magnet ground state: in the
An S=0 state on a plaquette of four spins sitting on sitesthermodynamic limit the symmetry-breaking configuration is
(a,8,7,0) may be realized either by the symmetric combina-thus of theB type decorated by the symmetric four-spin

+ 7B, nT” (=)PnT? (=)PnT?

tion of pairs of singlets: plaguettes described in E@6.1) (antisymmetric four-spin
plaguettes are excluded by the properties of the exact ground
| y=|a— 8)|y— B)+|a— B)|y— 6), (6.1)  state and first singlet excitation in samples with an odd num-
ber of four-spin plaguettes, such BHs=28 or 36.
or by the antisymmetric one: Indeed in the exact ground-state quantum fluctuations

might dress the product states giving a more fuzzy picture.
ly ) =la—8)|y—B)—|a—B)|y— ), (6.2 Insofar as gaps to the third singlet state and the first triplet
remain finite in the thermodynamic limit, the valence bond

where|a— v) is the singlet state on sites and y: crystal picturgwith LRO in plaquetteswill survive to quan-
tum fluctuations.
la—yy=(laTl,yl)=lal,y1)/V2. (6.3 A simple last remark could be done: the symmetric-

We can thus define eight different product wave functionsplaquette statgeq. (6.1)] can be rewritten as the product of
labeled |Af,)) and [Bf,)). The transformations of these two triplets along the diagonals of the square. This configu-
states under the elementary operations of the lattice symmeation of spins is not energetically optimal on the squares
try group are described in the first four lines of Table Ill. The with antiferromagnetic crossed linksA (configuration but
symmetric(respectively antisymmetridinear combinations mighta priori be favored irB configuration. Conversely, the
of these states which are irreducible representations of thig— plaquette can be rewritten as the product of two singlets
group are defined in the four_ last lines of the same table. Thgmng the diagonals of the square, and would eventually be
comparison of the symmetries of these states with those Qfeferred inA configuration. The variational energy per spin
of the product wave function af™ plaquettes irB configu-
ration is E,,(B")=—0.5, whereas the variational energy
0 0 S=0 S=0, per spin of the product wave function ¢f plaquettes imA
configuration isE,,(A7)=—0.375. For the quasi-one-
dimensional samples 16, 20, and 24, these symmetric

o B plaquettes can be built not only on square voids but also on
a B _ . the four-spin cross section of the tube. The resonnance be-
0 0 S= S=0 )
tween plaquettes on void square and plaquettes on the cross
3 Y 3 Y section might explain the special propertigergy, gaps,
correlation$ of these samples.
A Configuration B configuration Exact results are indeed consistent with this variational

estimate and favog™ plaquettes on voids. This is in agree-
FIG. 9. S=0 four-spin plaquette valence bond crystals onment with recent results of Moessnetral® but is at vari-

the checkerboard lattice: fat links indicate four-spins involved in aance with the departure point of the strong-coupling approxi-
singlet. mation of Elhajalet al®
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TABLE IV. Spin-spin correlationg %(i,j) =(S - ) in the exact
ground statg(second colump in the variationalZ wave function

PHYSICAL REVIEW B 67, 054411 (2003

is displayed in Table V in the exact ground state, in the
product wave function and in the ground state of the first

(third column, and in the ground state of the first neighbor singlet neighbor singlet subspacsee also Fig. 10 Here again the

subspacdfourth column$ of the N=36 sample. The sitelsj are

numbered as in Fig. 10.

i,] Ex. g.s. Zwf. FNSS i,j Ex. g.s. Zwf.
1,2 -0.239 -0.25 —-0.27 1,29 0.001 0
1,8 —0.043 0 0.033 1,17 —0.002 0
1,32 0.088 0.125 0.122 1,4 —0.037 0
1,3 0.034 0 1,10 —-0.012 0
1,35 0.013 0 -0.018 1,16 -0.001 0

As it was expected for a valence bond crystal it can be
seen in Table IV that spin-spin correlations in tNe=36

VIl. CORRELATIONS

general behaviors are quite similar. As it was expected, quan-
tum fluctuations in the exact ground state renormalize the
correlations at intermediate and larger distances. Asymptotic
behavior seems approximately reached for the larger dis-
tances in samplél=36. Renormalization by quantum fluc-
tuations amounts te-60% of the bare variationa value.

Due to the plaquette structure of this valence bond crystal
a better order parameter is given by the cyclic permutation
operatorP,, 5, 5 of the four-spins(e,f,7,6) on the square-
plaguette. Let us define the corresponding Hermitian observ-
able as

_ -1
Qa,B,'y,ﬁ_E (Pa,ﬁ,y,5+ Pa,ﬁ,yﬁ)

exact ground state decrease very rapidly with distance. The
decrease with distance is even more rapid in the full Hilbert =2[S,S4S," S5t Sa- S5Sp° Sy~ S+ S,55 S5

space than in the FNSS. In this respect thproduct wave
function appears to be a good simple variational guess to
describe the exact ground state.

The four-point correlation function,

CH1,2i,))=4[(S1" S5 §) —(S1- SNS- )1, (

7.1)

+0.5S,-Ss+S,- S+ S-S5+ S5+ S,
+0.5S,-S,+ S-Syt 1/4]. (7.2

Its value in theN =36 exact ground stat@espectively in
the Z variational wave functionis 0.478(respectively 0.56

TABLE V. Dimer-dimer correlationg*(1,2;i,j) [Eq. (7.1)] in the N=36 ground state. The sites 1,2,
are described in Fig. 10, thgj points are enumerated in the first column. This correlation has been measured
in the exact ground-state wave functi@econd colump in the variationalZ state(third column and in the
ground state of the first neighbor singlet subsp&dSS, fourth column All the values of these correlations
between sites of Fig. 10 can be obtained from this table by a mirror symmetry through the bisector of bond

(1,2).

i,j Ex. g.s. Z w.f. FNSS i,j ex. g.s. Z w.f. FNSS
31,32 0.56 0.63 0.55 7,13 0.10 0.25 0.16
7.8 0.43 0.42 0.39 19,25 0.10 0.25 0.14
25,26 0.26 0.25 0.21 7,12 -0.10 -0.25 -0.15
13,14 0.26 0.25 0.21 31,36 -0.10 -0.25 -0.15
19,20 0.25 0.25 0.21 13,18 -0.11 -0.25 -0.16
6,5 0.22 0.25 0.26 25,30 -0.11 -0.25 -0.15
6,12 -0.20 -0.25 -0.18 19,24 -0.11 -0.25 -0.15
25,31 -0.20 -0.25 -0.18 6,36 0.10 0.25 0.16
13,19 -0.18 -0.25 -0.18 12,18 0.11 0.25 0.16
36,35 0.18 0.25 0.18 24,30 0.10 0.25 0.15
511 -0.18 -0.25 -0.18 35,5 0.10 0.25 0.15
4,10 —0.18 -0.25 -0.18 11,17 0.10 0.25 0.15
12,11 0.17 0.25 0.19 29,23 0.10 0.25 0.14
36,30 -0.15 -0.25 -0.16 54 -0.11 -0.25 -0.16
35,29 -0.15 -0.25 -0.16 11,10 -0.11 -0.25 -0.14
30,29 0.15 0.25 0.17 35,34 -0.11 -0.25 -0.14
17,23 -0.15 -0.25 -0.16 17,16 -0.11 -0.25 -0.14
18,17 0.15 0.25 0.17 29,28 -0.10 -0.25 -0.14
18,24 -0.15 -0.25 -0.16 23,22 -0.10 -0.25 -0.14
24,23 0.15 0.25 0.16 34,4 0.10 0.25 0.15
28,34 -0.15 -0.25 -0.16 10,16 0.10 0.25 0.15
16,22 —0.15 -0.25 —0.16 28,22 0.10 0.25 0.14
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FIG. 10. Dimer-dimer correlations in the exact ground state of
the 36 sampldEq. (7.1)]. The reference bond is the bond (1,2).
Positive(negative correlations are drawn as fyllashedlines. The
thickness of the lines is a measure of the strength of the correlation.

The diagonal lines show the position of the crossed links.

PHYSICAL REVIEW B67, 054411 (2003

TABLE VI. Plaguette-plaquette correlations
C%a,B,v,8:i,j.k,1) [Eq. (7.3] in the exact ground state of the
N=36 sample. The sites are numbered as in Fig. 10. The left part of
the table describes the correlations between void squares, the right
part between squares with crossed links.

(1,31,32,2; 5,35,36,)6  0.172 (7,1,2,8;11,5,6,12 0.073
(1,31,32,2; 17,11,12,38 0.127 (7,1,2,8; 23,17,18,24 0.009
(1,31,32,2; 10, 4, 5,21 -0.121 (7,1,2,8; 16,10,11,37 —0.006
(1,31,32,2; 22,16,17,23 —0.117 (7,1,2,8; 28,22,23,29 —0.004

cated models on the square lattiéé®In these examples, the
dimerized phases are found after destabilization of a classical
collinear Neel ground state by quantum fluctuations as pre-
dicted from SUWN) or SEN) approache3**>A common fea-
ture of all these magnets is a bipartite lattice. Such an under-
lying lattice is probably favorable for the establishment of
LRO in dimer coverings. In each of these models the system
is around the point of maximum classical frustration ob-
tained forz,J,=2z,J,/2 (with z; and J; respectively the co-
ordinance and the coupling at distande In the J;—J,
model on the square lattice there are still some controversies
on the exact nature of the singlets with LR@mers or four-
spin plaquettes?® % but no doubt about the belonging of

this phase to the valence bond crystal family.

As shown in this paper the physics of the model in the
singlet sector can essentially be captured in the restricted

on a void square, and 0.07fespectively 0.126on a square SPace of first neighbor coveringBNSS. This explains why
with crossed links. The correlation function of this observ-the quantum hard-core dimer model on such a lattice gives

able is defined as usual as

C¥a,B,7,8:1,i.k1)=(Qu.p., sQ1jk1)
—(Qu.p,y,Qijk1)- (7.3

essentially the same physics and phase diagram as the full
Heisenberg modéf Nevertheless, the renormalization by
quantum fluctuations in the full Hilbert space is somewhat
underestimated in the FNSS, aadfortiori in the quantum
hard-core dimer model.

Its values are displayed in Table VI. One might notice the This work also brings a different light on the discussion
presence of non negligible correlations between void squaredpout thekagomemagnet. The local classical degeneracy of
and the quasiabsence between squares with crossed linlismodel(present in any system with corner sharing units—as
The short distance value of these correlations shows the linfliscussed in the introductiis not a sufficient condition for

its of relevance of the variational description. As expectedhe associated quantum model to exhibit a continuum of sin-
from the spectra, the checkerboard Heisenberg magnet is@ets and a residual entropy. Two pieces of information join
valence bond crystal. to cast a doubt on the relationship between a classical con-
tinuous degeneracy and llagomelike spectrum (type-II
resonating valence bond spin ligtfd

The checkerboard magnet has a continuum degeneracy in

The spin-1/2 checkerboard Heisenberg antiferromagnet ighe classical limit but no continuum of singlets.

a valence bond crystal with LRO in four-spi®=0 The multispin exchange model on the triangular lattice
plaquettes: it exhibits a large spin gap, a breaking of théwith an antiferromagnetic first neighbor couplingas a
translational symmetry, a doubling of the unit cell and long-continuum of singlets in the triplet gap but apparently no
range correlations in singlets. simple local continuous degeneracy in the classical limit.

At variance with thekagomeantiferromagnet this system Finally our results seem to indicate qualitative differences
does not exhibit a singlet continuum but a clear gap in thebetween planar and true 3D pyrochldsee Sec. V aboye
singlet sector above thgluasjdegenerate ground state. In fact in the 3D pyrochlore magnet, symmetric and antisym-

This system is a two-dimensional analog of the dimerizedmetric spin singlets configurations on the tetrahedra are de-
phase of thelJ;—J, model on a chain. It belongs to the generate(as in the checkerboard latticebut there are no
same generic class as the Shastry-Sutherland ﬁ?odad unique four-spinS=0 configurations around the “voids”
the J,—J, modef®° on the square lattice fod,— of the structure and the number of resonances on the loops
~0.5. Dimer LRO has been previously found for tﬂ@ encircling these voids is large. These quantum resonances
—J, model on the honeycomb lattiééand plaquette LRO are probably a very efficient mechanism to destabilize
has been proposed for thg —J, model or more compli- dimer LRO.

VIIl. CONCLUSION
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