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Critical parameters and universal amplitude ratios of two-dimensional spin-S Ising models using
high- and low-temperature expansions
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For the study of Ising models of general spinS on the square lattice, we have combined our recently
extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting,
Guttmann, and Jensen. We have computed various critical parameters and improved the estimates of others.
Moreover, the properties of hyperscaling and of universality~spin-S independence! of exponents and of various
dimensionless amplitude combinations have been verified accurately. Assuming the validity of the lattice-
lattice scaling, from our estimates of critical amplitudes for the square lattice we have also obtained estimates
of the corresponding amplitudes for the spin-S Ising model on the triangular, honeycomb, and kagome´ lattices.
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I. INTRODUCTION

The properties of the spinS51/2 two-dimensional Ising
model with nearest-neighbor interactions in zero magn
field, have been extensively explored in the last six deca
Much more modest efforts have been devoted to the stud
the simplest generalizations of the model to spinS.1/2. The
main reason is probably that these models are not know
be solvable or, at least, to have any simple property of d
ity that can help to extend the small body of informati
coming from numerical methods of limited accuracy such
stochastic simulations, series expansions, or transfer-m
calculations.

The first important result from a comparative study
Ising models for different values of the spin came from p
neering work by Domb and Sykes.1 They analyzed the high
temperature~HT! expansion of the susceptibilityx(K;S)
through O(K6) in the three-dimensional case and conje
tured that the value of the critical exponentg(S) is indepen-
dent of the spin magnitude. This was the first step towa
the modern formulation of the critical-universality hypot
esis. Similar analyses were soon repeated by other aut
using both HT~Refs. 2 and 3! and low-temperature~LT!
expansions4 for two-dimensional systems. Unfortunately, th
series derived in those years were rather short and, there
the results of the analyses could not reach a sufficient a
racy or were inconclusive. It was only in 1980 that Nickel5,6

finally extended throughO(K21) the HT series in two dimen
sions on the square~sq! lattice and in three dimensions o
the body-centered-cubic lattice. The expansions ofx(K;S)
and of the second moment of the spin-spin correlation fu
tion m2(K;S) were then published only forS51/2,1,2,̀ .
More recently, also the LT expansions on the sq lattice
S51/2,1,3/2,2,5/2,3 were considerably extended by Jen
Guttmann, and Enting.7 We have summarized in Table I an
Table II the state of HT and LT expansions3,7,8 before our
work.
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In spite of the very large number of LT expansion coef
cients now available, the analysis of the series remains a
ous due to occurrence7 of numerous unphysical singularitie
in the complex temperature plane9 that are closer to the ori
gin than the physical singularity and whose structure
comes increasingly complicated withS. As a consequence
the LT study of Ref. 7 has been an alarming lesson on
subtleties in the analysis of slowly convergent series m
than a source of accurate estimates of the critical parame
of the models.

Many intriguing indications and conjectures about t
structure of these unphysical singularities also came in
same period from work by Matveev and Shrock10 who ex-
amined the spinS models on various two-dimensional la
tices using transfer-matrix methods.

Here we discuss some results of an analysis of HT se
for the sq lattice recently extended11 by linked-cluster expan-
sion techniques. For the nearest-neighbor correlation fu
tion G(K;S), for x(K;S), and m2(K;S) our series reach
order K25, while for the second field derivative of the su

TABLE I. The longest HT expansions, published~or obtainable
from data in the literature! before our work~Refs. 11 and 12!, for
the susceptibilityx(K;S), the second moment of the correlatio
function m2(K;S) and the second field derivative of the suscept
lity x4(K;S) in the case of the Ising models with general spinSon
two-dimensional lattices. It should be noted that in the special c
S51/2, on the sq lattice, much longer expansions~Ref. 13! for x
and m2 have been computed. However, the published expans
~Ref. 5! of x4(K;1/2) on the sq lattice do not extend beyondK17.

Observable Lattice Order Reference

x(K;S), m2(K;S) sq 21 6

x4(K;S) sq 10 8

x(K;S), m2(K;S) tr 10 3

x4(K;S) tr 10 8
©2003 The American Physical Society02-1
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ceptibility x4(K;S) they extend throughO(K23). In order to
make alternative analyses possible, our vast collection of
ries data both for two- and three-dimensional lattices w
made easily accessible12 online for S51/2,1,3/2,2,5/2,
3,7/2,4,5,̀ . It should be noted that HT and LT expansions
extensive as those obtained by Nickel and co-workers in R
5 and more recently in Ref. 13~only for x) in the very
special case of the~partially solvable! two-dimensionalS
51/2 Ising model seem presently beyond reach forS.1/2.

The HT series show somewhat simpler and faster con
gence properties than the LT series, because the behavi
the coefficients is dominated by the physical singularity. A
though, even in this case, these favorable properties slig
deteriorate forS.2, we can hope to determine basic H
critical parameters with a reasonable accuracy for vari
values ofS. Moreover, it is also worthwhile to reconsider th
LT expansions of Ref. 7 for the sq lattice, because by rely
on the results of our HT analysis, we can improve so
estimates of the LT critical parameters and thus obtain n
determinations of universal combinations14 of LT and HT
amplitudes. No theoretical surprises are expected from
analysis, however, we believe it is still useful to improve t
rather modest numerical precision presently available e
for basic critical parameters like the critical temperatures
determine various critical amplitudes for which no estima
are yet known and to use our results to test with hig
accuracy the validity of hyperscaling and of universality w
respect to the magnitude of the spin.

Almost all the computational effort in extending series f
the two-dimensional Ising model forS.1/2 has been de
voted to square-lattice series. However by making use of
theory of lattice-lattice scaling, as developed by Betts, Gut
mann, and Joyce15 and extended by Gaunt and Guttmann16

using our estimates of the critical amplitudes on the squ
lattice, we are able to calculate the corresponding amplitu
on other two-dimensional lattices to precisely the same p
cision as they are known for the square lattice.

II. THE SPIN- S ISING MODELS

The spin-S Ising models with nearest-neighbor interacti
are defined by the Hamiltonian

H$s%52
J

2 (
(xW ,xW8)

s~xW !s~xW8!2h(
xW

s~xW !, ~1!

TABLE II. The longest LT expansions, presently available f
the spontaneous magnetization, the specific heat and the sus
bility in the case of the Ising models with various values of the s
on the sq lattice.

Observable Lattice Order Reference

M (u;1), C(u;1), x(u;1) sq 113 7

M (u;3/2), C(u;3/2), x(u;3/2) sq 100 7

M (u;2), C(u;2), x(u;2) sq 119 7

M (u;5/2), C(u;5/2), x(u;5/2) sq 126 7

M (u;3), C(u;3), x(u;3) sq 154 7
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whereJ is the exchange coupling, ands(xW )5sz(xW )/S with
sz(xW ) a classical spin variable at the lattice sitexW , taking the
2S11 values2S,2S11, . . . ,S21,S. The sum runs over
all nearest-neighbor pairs of sites. We shall restrict ourse
to the square lattice and consider expansions either in
usual HT variableK5J/kBT and in the natural LT variable
u(S)5exp(2K/S2). HereT is the temperature,kB the Boltz-
mann constant, andK will be called ‘‘inverse temperature’
for brevity. In the critical region we shall also refer to th
standard reduced-temperature variablet(S)5T/Tc(S)21
5Kc(S)/K21.

In the HT phase, the basic observables are the conne
2n-spin correlation functions. Our series12 cover quantities
related to the two-spin correlation functions^s(xW )s(yW )&c and
to the four-spin correlation functionŝs(xW )s(yW )s(zW)s( tW)&c .

In the LT phase the symmetry is broken and then-spin
correlations are nontrivial also for oddn. In particular, we
shall reconsider the LT expansions of the magnetization,
susceptibility and the specific heat derived forS
51,3/2,2,5/2,3 in Ref. 7.

The spontaneous magnetization is defined by

M ~T;S!5 lim
h→01

^s~0W !&. ~2!

The internal energy per spin is given in terms of t
nearest-neighbor correlation function by

U~T;S!52
qJ

2
^s~0W !s~dW !&, ~3!

where dW is a nearest-neighbor lattice vector andq is the
lattice coordination number.

The specific heat is the temperature derivative of the
ternal energy at fixed zero external field

CH~T;S!5
dU~T;S!

dT
. ~4!

In terms ofx(T;S), the zero-field reduced susceptibility

x~T;S!5(
xW

^s~0W !s~xW !&c ~5!

and of m2(T;S), the second moment of the correlatio
function,

m2~T;S!5(
xW

xW2^s~0W !s~xW !&c ~6!

the ‘‘second-moment correlation length’’j(T;S) is defined
by

j2~T;S!5
m2~T;S!

4x~T;S!
. ~7!

The second field-derivative of the susceptibilityx4(T;S)
is defined by

pti-
n

2-2
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x4~T;S!5 (
xW ,yW ,zW

^s~0W !s~xW !s~yW !s~zW !&c . ~8!

III. DEFINITIONS OF CRITICAL PARAMETERS

In terms of the asymptotic behavior of these observab
we can now define the critical parameters, amplitudes
exponents that we are going to estimate using HT and
series.

The spontaneous magnetization has the asymptotic be
ior

M (2)~T;S!.B(2)~S!ut~S!ub(S)@11aM
(2)~S!ut~S!uu(S)1•••#

~9!

as t(S)→02.
The asymptotic behavior of the susceptibility ast(S)

→06, is expected to be

x (6)~T;S!.C(6)~S!ut~S!u2g(S)@11ax
(6)~S!ut~S!uu(S)1•••

1bx
(6)~S!t~S!1•••#. ~10!

The correlation length

j (6)~T;S!. f (6)~S!ut~S!u2n(S)@11aj
(6)~S!ut~S!uu(S)1•••

1bj
(6)~S!t~S!1•••# ~11!

the specific heat

CH
(6)~T;S!/kB.A(6)~S!lnut~S!u@11aC

(6)~S!ut~S!uu(S)1•••

1bC
(6)~S!t~S!1•••# ~12!

and the second field-derivative of the susceptibilityx4(K;S)

x4
(6)~T;S!.2C4

(6)~S!ut~S!u2g4(S)@11a4
(6)~S!ut~S!uu(S)

1•••1b4
(6)~S!t~S!1•••# ~13!

have analogous asymptotic behaviors.
Different ~universal! critical exponents

b(S),g(S),n(S),g4(S) and different~nonuniversal! critical
amplitudes B(2)(S), C(6)(S), f (6)(S). . . . , ax

(6)(S),
aj

(6)(S), etc. are associated with the various observables.
have reported in such detail our definitions of the critic
amplitudes, because they differ significantly from those
other authors and it is necessary to use a consistent nor
ization convention when comparing models expected to
long to the same universality class. Let us notice in particu
that the estimates reported in the tables of Ref. 7 for
critical amplitudes of the susceptibilityx (2)(u;S) are related
to ours by the factorS2 @2 ln uc(S)#g/uc(S)4S. A similar re-
mark applies to the specific heat amplitudesC(2)(u;S) for
which the conversion factor is 1/uc(S)4S@ ln uc(S)#2. Finally,
the magnetization amplitudes of Ref. 7 should be multipl
by the factor@2 ln uc(S)#1/8/S to agree with ours. Of course
the amplitudes of the conformal field theory considered
the study of Ref. 17 are not comparable to our series qu
tities.
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As indicated in Eqs.~9!–~13!, for a given spinS, all
asymptotic forms are moreover expected18 to contain leading
nonanalytic confluent corrections characterized by the sa
exponentu(S). Higher-order corrections are also expected
contain logarithmic18 factors. If universality holds, all expo
nents have to beS independent.

The presence and the value of the confluent exponent
been discussed19–23 several times. From RG calculations,24

both in thee-expansion and in the fixed-dimension approa
it was conjectured thatu.4/3 for the universality class o
the two-dimensional Ising model. Aharony and Fisher a
later Blöte and den Nijs argued19,22 that ax

(6)(S)50 for S
51/2 and indeed no such correction was revealed by
later very accurate study13,25of the critical asymptotic expan
sion forx(K;1/2). However, in the absence of more gene
results, the reliable assessment of the subleading asymp
critical behavior remained an open problem whenS.1/2.

IV. ESTIMATES OF UNIVERSAL AMPLITUDE
COMBINATIONS

In terms of x (1)(K;S), j (1)(K;S), and x4
(1)(K;S), a

‘‘hyperuniversal’’ combination of critical amplitudes denote
by gr

(1)(S) and usually called the ‘‘dimensionless renorma
ized coupling constant,’’ can be defined by

gr
(1)~S!52

3vC4
(1)~S!

8p@a f (1)~S!#2C(1)~S!2
. ~14!

Here the normalization factor 3/8p is chosen in order to
match the usual field theoretic definition24 of gr

(1)(S) andv
denotes the volume per lattice site, measured in units of
square of a lattice constant. For all lattices one hasv
5sa2, with a the lattice constant. For the triangular lattic
s5A3/2, for the honeycomb lattices53A3/4, and for the
kagomélattice s52/A3.

We have also studied the hyperuniversal combination u
ally denoted as

Rj
(1)~S!5@A(1)~S!/v#1/2@a f (1)~S!# ~15!

and the Watson combination26

RC~S!5A(1)~S!C(1)~S!/B(2)~S!2. ~16!

The other frequently considered universal combination

R4~S!5C4
(1)~S!B(2)~S!2/C(1)~S!3 ~17!

is not independent of the previous ones, sinceR4(S)
52(8/3p)gr

(1)(S)Rj
(1)(S)2/RC(S).

All of these quantities are accurately known in th
S5 1/2 case. As indicated in Ref. 25, it is know
that A(1)(1/2) 5 (2/p)ln @tan(p/8)#2 ' 0.494 538 589 5,
C(1)(1/2)'0.962 581 732, andB(2)(1/2)525/6ln@11A2#1/8

'1.222 409 95. In Refs. 23 and 27, we find the very accur
estimates C4

(1)(1/2)54.379 095(8) and f (1)(1/2)
'0.567 068 3.
2-3
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TABLE III. Estimates of the critical inverse temperatures for the spin-S Ising models on the sq lattice. Of course, the estimateKc
(1)(S),

obtained from the HT series, must equalKc
(2)(S) obtained from the LT series, and their common value is known exactly only foS

51/2. For comparison, we have also reported other results beside those obtained from our HT and those obtained in Ref. 7 from th
of LT series. No error estimates are provided in Ref. 31 for the estimates ofKc

(1)(S) obtained from the ten term series~Ref. 3! of Camp and
Van Dyke as well as for the estimatesKc(S) obtained by a renormalization group method.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

Kc
(1)(S) 0.44068679 . . . 0.590473~5! 0.684255~6! 0.748562~8! 0.79541~1! 0.83106~2! 1.09315~2!

Kc
(2)(S)7 0.44068679 . . . 0.5904727~9! 0.684338~46! 0.7487~14! 0.8025~35! 0.839~10!

Kc
(1)(S)31 0.441 0.592 0.687 0.752 0.800 0.836

Kc(S)31 0.458 0.610 0.704 0.770 0.818 0.855
Kc

(1)(S)33 0.5904727~10!

Kc(S)35 0.590471
Kc(S)34 0.590076 . . .
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Therefore we can concludegr
(1)(1/2)51.754 364(2),

RC(1/2)'0.318 569 39, Rj
(1)(1/2)'0.398 781 94, and

R4(1/2)57.336 744(10).
We have also considered the ratioC(1)(S)/C(2)(S). In

Ref. 25, forS51/2, this ratio was computed with arbitrar
precision to beC(1)(1/2)/C(2)(1/2)'37.693 652.

Finally, we have estimated the ratioA(1)(S)/A(2)(S) for
various values ofS. This ratio equals unity forS51/2 by
self-duality. This was argued28 in greater generality for the
q-state (0<q<4) Potts model on the square lattice, whic
for q52, reduces to theS51/2 Ising model.

In what follows, we determine the values of these univ
sal amplitude combinations forS.1/2. The preliminary part
of our series analysis is aimed at estimating the critical te
peratures using the expansions ofx (1)(K;S) for S>1. We
employed a variety of methods: Zinn-Justin improved-ra
formula,29 Padéapproximants~PA! and inhomogeneous dif
ferential approximants~DA!.30 The best results with DA’s
were obtained from approximants such that the polynom
coefficient of the highest derivative is even.@As a conse-
quence, the approximants always contain an additional a
ferromagnetic singularity at2Kc(S), beside the one a
Kc(S)]. Similarly to the LT analysis, but to a much small
extent, the accuracy of our results tends to deteriorate w
increasingS. In spite of this, our final HT estimates of th
critical points, reported in Table III, show significant im
provement in apparent accuracy and sizable discrepan
from the previous LT determinations.7

For general values ofS, less accurate estimates ofKc(S)
have been obtained in Ref. 31 from the ten term suscept
ity series of Ref. 3 and from a renormalization gro
method. More recently other estimates32 were obtained by a
generalized cluster method. To our knowledge other accu
05440
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determinations of the critical points are available only forS
51. They have been obtained either by analyzing21 the 21
term HT series of Ref. 6 for the susceptibility or by vario
transfer-matrix methods.33–35Some of these results have als
been cited in Table III.

We have then turned to the critical exponentsg(S), n(S),
andg4(S) and have evaluated them from the log derivativ
of the appropriate HT expansions by first-order DA’s bias
with our HT estimates of the critical temperatures. This co
putation shows that the relative variation of the exponent
smaller than'1023, in the worst case, forS varying be-
tween 1/2 and̀ . We report these results in Table IV withou
further details and simply conclude that universality and h
perscaling appear to be well supported for the leading crit
exponents.

It is perhaps also worth noticing thatassumingthe univer-
sality of g we can bias and therefore refine the determinat
of Kc(S). This procedure does not change the central val
of the critical points with respect to the unbiased one,
reduces the error bars.

On the other hand, the estimate of the exponentu(S) of
the leading singular confluent corrections to scaling in
various observables remains quite elusive. Performing ei
a Baker-Hunter36 or a Zinn-Justin29 analysis, we can con
clude that, at the level of accuracy made possible by
present extension of the HT series, the amplitudes of th
corrections are very small,~or perhaps vanishing! for all val-
ues ofS. We should mention that a similar conclusion w
suggested forS51 in Ref. 22, while the opposite conclusio
was advocated in Ref. 21.

Once we have estimated the critical temperatures
verified the universality of the leading exponents, we c
proceed with the analysis simplyassumingthat, for all val-
TABLE IV. Estimates of critical exponents obtained from our HT series for the spin-S Ising models on the
sq lattice. Of course the values ofg, n, andg4, for S51/2 are exactly known.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

g(S) 1.75 1.7502~4! 1.7500~4! 1.7496~5! 1.7500~5! 1.7501~5! 1.7494~8!

n(S) 1.0 0.9999~6! 0.9996~8! 0.9994~8! 0.9994~8! 0.9994~8! 0.9994~8!

g4(S) 5.5 5.498~4! 5.497~5! 5.497~5! 5.497~5! 5.497~5! 5.497~5!
2-4
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TABLE V. Our series estimates of the critical amplitudes on the HT and the LT side of the critical
for various spin-S Ising models on the square lattice. Along with our estimates of the LT amplitudes we
reported for comparison also the results of Ref. 7 multiplied by the proper conversion factors. The va
C(1)(1/2), A(1)(1/2), C(2)(1/2), B(2)(1/2), andA(2)(1/2) are exactly known, those off (1)(1/2) and
C4

(1)(1/2) are very accurately known.

S51/2~ex.! S51 S53/2 S52 S55/2 S53 S5`

C(1)(S) 0.9625817 . . . 0.5514~2! 0.4307~2! 0.3755~2! 0.3441~2! 0.3254~3! 0.2351~2!

A(1)(S) 0.494538589 . . . 0.736~10! 0.854~4! 0.917~4! 0.956~4! 0.983~4! 1.054~6!

f (1)(S) 0.567068 . . . 0.4640~2! 0.4309~2! 0.4159~2! 0.4082~2! 0.4033~2! 0.3900~2!

C4
(1)(S) 4.379095~8! 0.9630~4! 0.5073~3! 0.3591~3! 0.2902~3! 0.2533~3! 0.1239~3!

C(2)(S) 0.02553697 . . . 0.01462~3! 0.0114~3! 0.0102~6! 0.0090~8! 0.0055~30!

C(2)(S)7 0.01462~2! 0.0109~29! 0.0094~10! 0.0096~33!

B(2)(S) 1.22240995 . . . 1.131~4! 1.076~5! 1.041~5! 1.016~5! 1.001~5!

B(2)(S)7 1.1313~2! 1.077~9! 1.042~16! 1.030~19! 1.016~26!

A(2)(S) 0.494538589 . . . 0.738~6! 0.855~10! 0.915~10! 1.1~2! 1.1~2!

A(2)(S)7 0.73~2! 0.77~6! 0.86~8! 0.87~9!
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ues ofS, these exponents take exactly the values expected
the universality class of the two-dimensional spin-1/2 Is
model andusingthem along with our estimated critical tem
peratures to bias the evaluation of the HT and LT criti
amplitudes defined by Eqs.~9!–~13!.

Our estimates of the critical amplitudes are reported
Table V. We have employed quasidiagonal nondefective P
or DA’s for extrapolating toKc(S) the effective amplitudes
of the susceptibility and of the derivative of the specific he
from the HT and the LT side of the critical points. We ha
similarly studied the effective amplitudes of the correlati
length~available only in the HT region! and of the magneti-
zation. For proper comparison, in the same table we h
also cited the LT estimates of the critical amplitudes for
spontaneous magnetization, the specific heat and the su
tibility previously obtained in Ref. 7. These quantities ha
been multiplied by the above indicated conversion factors
agree with our normalization conventions. The uncertain
we have reported, which allow for the observed spread
the approximant values, provide a subjective assessme
residual trends in the sequence of estimates and for the~un-
biased! uncertainties of the critical points. The HT amp
tudes can be determined with a relative accuracy rang
from '1023 in the case of the susceptibility, to'1022 in
the case of the specific heat. The LT amplitudes are subje
larger relative uncertainties, increasing withS, and reaching
up to '50% for S.2. In some cases, in order to improv
the accuracy of the estimates of the LT amplitudes foS
<2, we have based our extrapolations only on the data
ut(S)u*0.0220.04. This unconventional but reasonable p
cedure reduces the sensitivity of the approximants to the
physical nearby singularities. Unfortunately, even this p
scription fails to work satisfactorily forS.2.

Using only the HT series, we can evaluategr
(1)(S), either

directly, in terms of the amplitudes reported in Table V, or
extrapolating to the critical points via DA’s the HT expansi
of the inverse effective coupling 1/gr

(1)(K;S)
52(8p/3)j(K;S)2x(K;S)2/x4(K;S). A third approach
consists in studying the residua atx51 of the series with
05440
or

l

n
’s

t,

e
e
ep-

o
s
in
of

g

to

or
-
n-
-

coefficientsan(S)5cn(S)/dn(S), where cn(S) are the HT
coefficients ofj2(K;S) anddn(S) are the coefficients of the
quantityx4(K;S)/x2(K;S). In Table V we have reported th
results of the latter procedure since it yields estimates w
smaller spreads.

Several other estimates23,37–41 obtained by a variety of
methods are also available in the literature.

Using also the LT series, we have evaluated, directly
terms of the single amplitudes, the other mentioned unive
combinations, for a range of values ofS. We have reported in
Table VI, our series estimates of all these quantities foS
.1/2. In conclusion, whenever only HT amplitudes are
volved, our estimates, within a precision up to 0.1%, a
independent ofS, in full agreement with universality. On th
other hand, our reanalysis of the LT series has been o
partially successful: whenever LT amplitudes also enter i
the combinations, universality appears to be fairly well
spected forS,5/2, but the uncertainties grow notably larg
for larger values of the spin.

In the following section we describe the theory of lattic
lattice scaling, and show how it can be used to extend
estimates of the critical amplitudes from the square lattice
other two-dimensional lattices.

V. LATTICE-LATTICE SCALING

The theory of lattice-lattice scaling was developed
Betts, Guttmann, and Joyce15 in the early 1970s. It explains
how amplitudes change within a given universality class,
one moves from one lattice to another. It can also be view
as a generalization of the law of corresponding states. In
section we give a terse development of the theory, and ap
it to the problem at hand.

In order to review the general ideas let us first consi
the Weiss theory or mean-field theory of a magnetic syst
The equation of state is well known to be

h5
1

3
m3~113t/m2!.
2-5
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TABLE VI. Universal combinations of critical amplitudes for various spin-S Ising models on the squar
lattice. The exactly~or very accurately! known values forS51/2 are reported in the first column. ForS
.1/2, the series estimates of this note are reported in the successive columns. In the last line w
reported the estimates ofRC(S) obtained by combining our present estimates ofA(1)(S) andC(1)(S) with
the estimates ofB(2)(S) given in Ref. 7.

S51/2~ex.! S51 S53/2 S52 S55/2 S53 S5`

C(1)(S)/C(2)(S) 37.693652 . . . 37.71~9! 38~1! 37~2! 38~3! 59~32!

A(1)(S)/A(2)(S) 1.0 0.997~21! 0.999~16! 1.0~1! 0.87~16! 0.89~17!

gr
(1)(S) 1.754364~2! 1.753~2! 1.753~2! 1.752~3! 1.752~3! 1.752~3! 1.752~3!

Rj
(1)(S) 0.39878194 . . . 0.398~3! 0.398~1! 0.398~1! 0.399~1! 0.400~2! 0.400~2!

RC(S) 0.31856939 . . . 0.317~5! 0.318~2! 0.318~2! 0.319~3! 0.319~5!

RC(S)7 0.317~4! 0.317~7! 0.317~11! 0.31~1! 0.31~1!
, r
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Here t5T/Tc21, h5mH/kT, andm5M (T)/M (0) are the
reduced temperature, magnetic field, and magnetization
spectively.

Then thelaw of corresponding statessays that the equa
tion of state is the same for all lattices. That is,

mX~ t,h!5mY~ t,h!,

whereX andY denote two lattices. That is to say, the latti
dependence is entirely contained in the critical tempera
Tc .

A more complex model is the three-dimensional spher
model, for which the critical equation of state is

h5DXm5~11t/m2!2.

Here bothTc and the amplitudeD are lattice dependent
Thus

mX~ t,hX!5mY~ t,hY!.

We see that we must scale the field variable, so thathX/DX
5hY /DY , but that there is no need to scale the reduc
temperature.

Let us now consider the case of the~zero-field! spin S
51/2 Ising model on the triangular~T! and hexagonal~H!
lattices. The star-triangle relation42,43 allows us to relate the
free-energy, susceptibility, and spontaneous magnetiza
between the lattices:

2 f H~KH!5 f T~KT!,

MT,0~ tT!5MH,0~ tH!,

2xT~vT!5xH~vH!1xH~2vH!,

where f 51/NlnZ, KX5JX /kT, andvX5tanh(JX /kT). Here
we see that the reduced temperature needs to be rescale
the free energy to be universal. This is not restricted to
triangular-honeycomb pair, but in that case it is easy to
explicit.

All these examples can be encapsulated in the follow
expression for the singular part of the free energy:

nX f X~ tX ,hX!5nY f Y~ tY ,hY!5 f ~ t,h!,

where the reduced temperature and field are scaled by
05440
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nXhX5nYhY5h

and

gXtX5gYtY5t.

The singular part of the free-energyf (t,h) is then a universal
~lattice independent! function for a given model.

Equivalently, by differentiation we obtain

mX~ tX ,hX!5mY~ tY ,hY!5m~ t,h!,

and

xX~ tX ,hX!/nX5xY~ tY ,hY!/nY5x~ t,h!,

wherem(t,h) andx(t,h) are universal functions for a give
model.

Writing mX5BX
(2)(2tX)b, it follows that

gX

gY
5S BX

(2)

BY
(2)D 1/b

.

Using this result, and the exact scaling parametersgX andgY
given below, it is a trivial matter to calculate the magnetiz
tion amplitudes for the other lattices we consider@triangular,
hexagonal, and kagome´ (K)], taking as input the square lat
tice amplitudes given in Table V. These amplitude estima
are given in Tables VII–IX.

Writing xX5CX
(6)tX

2g it follows that

CX
(1)/CY

(1)5
nX

nY
S gX

gY
D 2g

5CX
(2)/CY

(2) .

Similarly, it is a trivial matter to calculate the susceptibili
amplitudes for the other lattices we consider, taking as in
the S51/2 square-lattice amplitudes given in Table V.

Further differentiation gives the corresponding relatio
ship for higher-field derivatives, and we readily obtain

C2l ,X
(1) /C2l ,Y

(1) 5S nX

nY
D 2l 21S gX

gY
D 2g2l

,

for the high-temperature field derivatives,~where only the
even-order derivatives are nonzero!. The corresponding re
sult for low-temperature field derivatives is
2-6
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TABLE VII. Estimates of the critical amplitudes on the HT and the LT side of the critical point for var
spin-S Ising models on the triangular lattice, as obtained by lattice-lattice scaling, using the square-
series estimates as a basis. The values ofC(1)(1/2), A(1)(1/2), C(2)(1/2), B(2)(1/2), andA(2)(1/2) are
exactly known.

S51/2~ex.! S51 S53/2 S52 S55/2 S53 S5`

C(1)(S) 0.92420696 . . . 0.5294~2! 0.4135~2! 0.3605~2! 0.3304~2! 0.3124~3! 0.2257~2!

A(1)(S) 0.499069377 . . . 0.743~10! 0.862~4! 0.925~4! 0.965~4! 0.992~4! 1.064~6!

f (1)(S) 0.525315 . . . 0.4298~2! 0.3992~2! 0.3853~2! 0.3781~2! 0.3736~2! 0.3613~2!

C4
(1)(S) 4.000248~8! 0.8797~4! 0.4634~3! 0.3280~3! 0.2651~3! 0.2314~3! 0.1132~3!

C(2)(S) 0.024518902 . . . 0.01404~3! 0.0109~3! 0.0098~6! 0.0086~8! 0.0053~30!

B(2)(S) 1.203269903 . . . 1.113~4! 1.059~5! 1.025~5! 1.000~5! 0.985~5!

A(2)(S) 0.4990693724 . . . 0.745~6! 0.863~10! 0.923~10! 1.1~2! 1.1~2!
he
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Cl ,X
(2)/Cl ,Y

(2)5S nX

nY
D l 21S gX

gY
D 2g l8

.

Taking temperature derivatives, one readily establis
that the specific heat amplitudes satisfy

AX
(1)/AY

(1)5
nY

nX
S gX

gY
D 22a

5AX
(2)/AY

(2) .

As a50 for the two-dimensional Ising model, this simplifie
to

AX
(1)/AY

(1)5
nY

nX
S gX

gY
D 2

5AX
(2)/AY

(2) .

We have similarly calculated the specific-heat amplitudes
the other lattices we consider, taking as input the squ
lattice amplitudes given in Table V. These are also given
Tables VI–VIII.

Finally, the correlation function amplitudes were calc
lated exactly from various star-triangle transformations
Thompson and Guttmann44 for the true correlation length. It
follows from universality that these same transformatio
should hold also for the second-moment correlation len
amplitudes. We show below that this is equivalent to
universality ofRj

(1)(S), which is a conclusion of this work
In Ref. 44 it was shown by explicit calculation that
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f T
(1)~1/2!Kc,T

(1)~1/2!/ f H
(1)~1/2!Kc,H

(1)~1/2!51/3.

f S
(1)~1/2!Kc,S

(1)~1/2!/ f T
(1)~1/2!Kc,T

(1)~1/2!5A3.

f K
(1)~1/2!Kc,K

(1)~1/2!/ f H
(1)~1/2!Kc,H

(1)~1/2!52/3.

The universality ofRj
(1)(S)5@A1(S)/v#1/2a f1(S), taken

together with the above lattice-lattice scaling relation for t
specific heat amplitudeA1(S) implies the lattice-lattice scal
ing relation

f X
(1)/ f Y

(1)5
gY

gX
S sXnX

sYnY
D 1/2

,

where s is the area per site, andsX51,A3/2,3A3/4, and
2/A3 for the square, triangular, honeycomb, and kagome´ lat-
tices, respectively. This is equivalent to the explicit amp
tude scaling reported in Ref. 44, and confirms the expe
tion that the true correlation length amplitude and th
second-moment correlation length amplitude scale simila

For the 2D Ising model we can calculate the scaling
rametersnX andgX exactly from known spin-1/2 spontane
ous magnetization and specific heat amplitudes. The crit
points are also exactly known. These are given in the ta
below:
for
quare-
TABLE VIII. Estimates of the critical amplitudes on the HT and the LT side of the critical point
various spin-S Ising models on the hexagonal lattice, as obtained by lattice-lattice scaling, using the s
lattice series estimates as a basis. The values ofC(1)(1/2), A(1)(1/2), C(2)(1/2), B(2)(1/2) andA(2)(1/2)
are exactly known.

S51/2~ex.! S51 S53/2 S52 S55/2 S53 S5`

C(1)(S) 1.0464170 . . . 0.5994~2! 0.4682~2! 0.4082~2! 0.3741~2! 0.3537~3! 0.2556~2!

A(1)(S) 0.4781063817 . . . 0.712~10! 0.826~4! 0.887~4! 0.924~4! 0.950~4! 1.019~6!

f (1)(S) 0.657331 . . . 0.5379~2! 0.4995~2! 0.4821~2! 0.4732~2! 0.4675~2! 0.4521~2!

C4
(1)(S) 5.352965~8! 1.1772~4! 0.6201~3! 0.4390~3! 0.3547~3! 0.3096~3! 0.1515~3!

C(2)(S) 0.027761095 . . . 0.01589~3! 0.0124~3! 0.0111~6! 0.0098~8! 0.0060~30!

B(2)(S) 1.253177691 . . . 1.159~4! 1.103~5! 1.067~5! 1.042~5! 1.026~5!

A(2)(S) 0.4781063817 . . . 0.714~6! 0.827~10! 0.885~10! 1.1~2! 1.1~2!
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TABLE IX. Estimates of the critical amplitudes on the HT and the LT side of the critical point for var
spin-S Ising models on the kagome´ lattice, as obtained by lattice-lattice scaling, using the square-lattice s
estimates as a basis. The values ofC(1)(1/2), A(1)(1/2), C(2)(1/2), B(2)(1/2), andA(2)(1/2) are exactly
known.

S51/2~ex.! S51 S53/2 S52 S55/2 S53 S5`

C(1)(S) 1.01814223 . . . 0.5832~2! 0.4556~2! 0.3972~2! 0.3640~2! 0.3442~3! 0.2487~2!

A(1)(S) 0.4800615653 . . . 0.714~10! 0.829~4! 0.890~4! 0.928~4! 0.954~4! 1.023~6!

f (1)(S) 0.618474 . . . 0.5061~2! 0.4700~2! 0.4536~2! 0.4452~2! 0.4399~2! 0.4254~2!

C4
(1)(S) 5.046953~8! 1.1099~4! 0.5847~3! 0.4139~3! 0.3345~3! 0.2919~3! 0.1428~3!

C(2)(S) 0.02701097 . . . 0.01546~3! 0.0121~3! 0.0108~6! 0.0095~8! 0.0058~30!

B(2)(S) 1.238655888 . . . 1.146~4! 1.090~5! 1.055~5! 1.030~5! 1.014~5!

A(2)(S) 0.4800615653 . . . 0.716~6! 0.830~10! 0.888~10! 1.1~2! 1.1~2!
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X Kc nX gXKc,T /Kc,X

Tr. ln(3)/4 1 1
Sq. 2 ln(A221)/2 3A3/4 1/A2
Ho. 2 ln(22A3)/2 2 1/A3
Ka. 2 ln(2/A321)/4 35(A321)16 9(A321)8

In addition to the above results, one can also derive s
ing relations for the amplitudes of subdominant singulariti
For example, consider the susceptibility of the 2D Isi
model on latticeX. Writing

xX;C0
Xt2g1C1

Xt12g,

from lattice-lattice scaling we can derive the following am
plitude relations:

C0
X

C0
T

5
nX

nY
S gY

gX
D g

,

C1
X

C1
T

5
nX

nY
S gY

gX
D g21

.

The second expression is false for the kagome´ lattice. It is
corrected by the theory of extended lattice-lattice scaling
05440
l-
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veloped by Gaunt and Guttmann16 in 1978. In that theory, a
third scaling parameter needs to be introduced.

It is widely accepted, and in complete agreement with
results of the first part of this paper, that the spin-S Ising
model is in the same universality class as the spin-1/2 Is
model. This is the only assumption we require in order
apply the theory of lattice-lattice scaling to the square-latt
data given in the preceding section. The only subtlety
whether ‘‘universality’’ really extends to lattice-lattice un
versality. While this assumption seems natural, we did
tempt to verify it by estimating amplitudes for other lattic
from the rather short data available in Ref. 13. The long
effective series is the triangular lattice series. We found
high-temperature susceptibility amplitude, as estimated
Padéapproximants, to beC(1)(1)50.529 from this series, in
complete agreement with the more precise valueC(1)(1)
50.5294(2) found by lattice-lattice scaling, and reported
Table VII.

Note too that there is no loss of accuracy, as the con
sions from lattice to lattice are exact. For example, based
the recent estimate of the leading susceptibility amplitude
the spin-1/2 square-lattice Ising model given in Ref. 13,
plication of lattice-lattice scaling gives the correspondi
amplitude on the triangular lattice to the same precision,
udes.
C1
T 50.924 206 958 245 164 329 697 157 577 855 931 717 669 626 152 002 838 9.

Similarly accurate results for other lattices can be readily written down, as can equally accurate subdominant amplit
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