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Critical parameters and universal amplitude ratios of two-dimensional spinS Ising models using
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For the study of Ising models of general sgnon the square lattice, we have combined our recently
extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting,
Guttmann, and Jensen. We have computed various critical parameters and improved the estimates of others.
Moreover, the properties of hyperscaling and of universéipin-S independendeof exponents and of various
dimensionless amplitude combinations have been verified accurately. Assuming the validity of the lattice-
lattice scaling, from our estimates of critical amplitudes for the square lattice we have also obtained estimates
of the corresponding amplitudes for the siSitssing model on the triangular, honeycomb, and kagdatteces.
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[. INTRODUCTION In spite of the very large number of LT expansion coeffi-
cients now available, the analysis of the series remains ardu-
The properties of the spiB=1/2 two-dimensional Ising ous due to occurrené®f numerous unphysical singularities
model with nearest-neighbor interactions in zero magnetién the complex temperature plahéat are closer to the ori-
field, have been extensively explored in the last six decadegjin than the physical singularity and whose structure be-
Much more modest efforts have been devoted to the study afomes increasingly complicated with As a consequence,
the simplest generalizations of the model to spinl/2. The the LT study of Ref. 7 has been an alarming lesson on the
main reason is probably that these models are not known tsubtleties in the analysis of slowly convergent series more
be solvable or, at least, to have any simple property of dualthan a source of accurate estimates of the critical parameters
ity that can help to extend the small body of information of the models.
coming from numerical methods of limited accuracy such as, Many intriguing indications and conjectures about the
stochastic simulations, series expansions, or transfer-matristructure of these unphysical singularities also came in the
calculations. same period from work by Matveev and Shritiho ex-
The first important result from a comparative study ofamined the spirS models on various two-dimensional lat-
Ising models for different values of the spin came from pio-tices using transfer-matrix methods.
neering work by Domb and SykésThey analyzed the high- Here we discuss some results of an analysis of HT series
temperature(HT) expansion of the susceptibility(K;S) for the sq lattice recently extendédy linked-cluster expan-
through O(K®) in the three-dimensional case and conjec-sion techniques. For the nearest-neighbor correlation func-
tured that the value of the critical exponey(tS) is indepen-  tion G(K;S), for x(K;S), and u,(K;S) our series reach
dent of the spin magnitude. This was the first step towardsrder K25, while for the second field derivative of the sus-
the modern formulation of the critical-universality hypoth-
esis. Similar analyses were soon repeated by other authors TABLE I. The longest HT expansions, publisheat obtainable
using both HT(Refs. 2 and Band low-temperaturélLT) from data in the literatupebefore our work(Refs. 11 and 1 for
expansion”sfor two-dimensional systems. Unfortunately, the the susceptibilityy(K;S), the second moment of the correlation
series derived in those years were rather short and, therefor@nction x2(K;S) and the second field derivative of the susceptib-
the results of the analyses could not reach a sufficient acctity x4(K:S) in the case of the Ising models with general sion
racy or were inconclusive. It was only in 1980 that Nid&| two-dimensional Iattlcgs. It should be noted thqt in the special case
finally extended throug® (K23 the HT series in two dimen- S 1/2: 0N the sq lattice, much longer expansi¢Rsf. 13 for
sions on the squarésg lattice and in three dimensions on andf,uz h?ve bgerll compEted. Il-loyvevzr, the DUb"Sdhgd ex%?nsmns
the body-centered-cubic lattice. The expansiong/@;S) (Ref. § of x4(K;1/2) on the sq lattice do not extend beyaRd.

and of the second moment of the spin-spin correlation func: -

tion u,(K;S) were then published only fos=1/2,1,2¢. Observable Lattice Order Reference
More recently, also the LT expansions on the sq lattice fory(K;S), u-(K;S) sq 21 6
S=1/2,1,3/2,2,5/2,3 were considerably extended by Jensefy,(K;S) sq 10 8
Guttmann, and EntingWe have summarized in Table | and y(K:S), x,(K:S) tr 10 3

Table Il the state of HT and LT expansidi€ before our  y,(k:9) tr 10 8

work.
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TABLE II. The longest LT expansions, presently available for \yhere J is the exchange coupling aruai)zsz(i)ls with
the spontaneous magnetization, the specific heat and the susceptj, - lassical spi iable at the latti Sietaking th
bility in the case of the Ising models with various values of the spinS (x) a classical spin variable at the lattice stietaking the

on the sq lattice. 2S+1 values—S,—S+1,...,S—1S. The sum runs over

all nearest-neighbor pairs of sites. We shall restrict ourselves
Observable Lattice Order Reference !0 the square lattice and consider expansions either in the
usual HT variableK=J/kgT and in the natural LT variable

M(u;1), C(u;1), x(u;1) sq 113 ! u(S)=exp(—K/S). HereT is the temperaturekg the Boltz-

M (u;3/2), C(u;3/2), x(u;3/2) sq 100 ! mann constant, anl will be called “inverse temperature”
M(u;2), C(u;2), x(u;2) sq 119 ! for brevity. In the critical region we shall also refer to the
M (u;5/2), C(u;5/2), x(u;5/2) sq 126 ! standard reduced-temperature variat(&S)=T/T.(S)—1
M(u;3), C(u;3), x(u;3) sq 154 ! =K (S)/K—-1.

In the HT phase, the basic observables are the connected
2n-spin correlation functions. Our serf@scover quantities

ceptibility x4(K;S) they extend througlD(K?9). In order to  rejated to the two-spin correlation functiof&(x)s(y)). and

LS e Aalses possie o vt ColEcion o 5 he fourpin coreaton uncton((y)S(S()..
In the LT phase the symmetry is broken and thspin

made easily accessibfe online for S=1/2,1,3/2,2,5/2 . g :
o mt e correlations are nontrivial also for odd In particular, we
8,7/2,4,5¢. It should be noted that HT and LT expansions as hall reconsider the LT expansions of the magnetization, the

extensive as those obtgined by Nickel and co_—workers in Rewsceptibility and the specific heat derived fd®
5 and more recently in Ref. 1®nly for y) in the very —1.3/2.25/2.3 in Ref. 7

special case of thépartially solvable¢ two-dimensionalS e -
=1/2 Ising model seem presently beyond reachSorl/2.

The HT series show somewhat simpler and faster conver-
gence properties than the LT series, because the behavior of
the coefficients is dominated by the physical singularity. Al-
though, even in this case, these favorable properties slightly The internal energy per spin is given in terms of the
deteriorate forS>2, we can hope to determine basic HT nearest-neighbor correlation function by
critical parameters with a reasonable accuracy for various
values ofS. Moreover, it is also worthwhile to reconsider the ql . .

LT expansions of Ref. 7 for the sq lattice, because by relying U(T;S)=— 7(5(0)5( d)), (3)
on the results of our HT analysis, we can improve some

estimates of the LT critical parameters and thus obtain NeWhere 5 is a nearest-neighbor lattice vector agds the
determinations of universal combinatiohof LT and HT | o coordination number

amplitudes. No theoretical surprises are expected from this o shecific heat is the temperature derivative of the in-
analysis, however, we believe itis still useful to improve theternal energy at fixed zero external field

rather modest numerical precision presently available even

for basic critical parameters like the critical temperatures, to dU(T:S)

determine various critical amplitudes for which no estimates Cu(T;9)= T 4
are yet known and to use our results to test with higher
accuracy the validity of hyperscaling and of universality with
respect to the magnitude of the spin.

Almost all the computational effort in extending series for
the two-dimensional Ising model fd8>1/2 has been de- X(T;9 =2 (s(0)s(X))¢ (5)
voted to square-lattice series. However by making use of the X
ieor ot aice scalngas eveloned by Bt G ana of (1), he second moment o the corelaton

- . o . unction,
using our estimates of the critical amplitudes on the square
lattice, we are able to calculate the corresponding amplitudes

The spontaneous magnetization is defined by

M(T;S)= lim (s(0)). 2)
h—0+

In terms of x(T;S), the zero-field reduced susceptibility,

on other two-dimensional lattices to precisely the same pre- ur(T:9 =, x?(s(0)S(X) )¢ (6)
cision as they are known for the square lattice. X
the “second-moment correlation lengti#(T;S) is defined
II. THE SPIN- S ISING MODELS by

The spinS Ising models with nearest-neighbor interaction (T:S)
are defined by the Hamiltonian E(T:9)= 'U“Z_’_ 7

T Ax(TS)
H{s}=— J > s(x)s(x')—h, s(X), (1) The second field-derivative of the susceptibiligy(T;S)

2 (53) x is defined by
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X4(T;9) =2 (s(0)s(X)s(y)s(2))e. (8)

X,y,Z

IIl. DEFINITIONS OF CRITICAL PARAMETERS

In terms of the asymptotic behavior of these observable

series.

The spontaneous magnetization has the asymptotic beha![ -

ior

MO(T:9)=BAS)t(S)|*OL+al, (9t(S)|" O+ -]
)

ast(S)—0—.

The asymptotic behavior of the susceptibility HsS)
— 0=, is expected to be

X198 =Cc(9)|t(s)| "I 1+alI(9)|t(S)| "+ -
+b{I(S)t(S)+ - -1. (10)
The correlation length
€T 9)=1(9t(9)| " O1+ag ()19 "+ -
+b{(S)(S) + - -] (12)
the specific heat
CHUT;9)/kg=AM)(S)In|t(S)|[1+aL(9)[t()] PO+ - -
+bE)(SHS)+ - -] (12

and the second field-derivative of the susceptibilityK;S)

X§(T;9)=~CEA9US)| 1 +af(9)t(S)| "

S,

we can now define the critical parameters, amplitudes angl, "o\ <d8r23 several times. From RG calculatioffs,
exponents that we are going to estimate using HT and L
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As indicated in Eqgs.(9)—(13), for a given spinS all
asymptotic forms are moreover expecftm contain leading
nonanalytic confluent corrections characterized by the same
exponentd(S). Higher-order corrections are also expected to
contain logarithmit® factors. If universality holds, all expo-
nents have to b& independent.

The presence and the value of the confluent exponent has

oth in thee-expansion and in the fixed-dimension approach,
it was conjectured tha#=4/3 for the universality class of
e two-dimensional Ising model. Aharony and Fisher and
later Blte and den Nijs arguéd® that a{")(S)=0 for S
=1/2 and indeed no such correction was revealed by the
later very accurate studfy?°of the critical asymptotic expan-
sion for x(K;1/2). However, in the absence of more general
results, the reliable assessment of the subleading asymptotic
critical behavior remained an open problem wig&n1/2.

IV. ESTIMATES OF UNIVERSAL AMPLITUDE
COMBINATIONS

In terms of x()(K;S), £&(K;S), and x{(K;9), a
“hyperuniversal” combination of critical amplitudes denoted
by g{*)(S) and usually called the “dimensionless renormal-
ized coupling constant,” can be defined by

3vCi{(9)

M(g)=— :
S 8m[af(*)(S)]2C(*)(S)2

(14)

Here the normalization factor 3#8is chosen in order to
match the usual field theoretic definitférof g*)(S) andv
denotes the volume per lattice site, measured in units of the
square of a lattice constant. For all lattices one has
= ¢ga?, with a the lattice constant. For the triangular lattice,
o=1/3/2, for the honeycomb lattice=3./3/4, and for the
kagomelattice o= 2//3.

+o+b{UUS) + - - -] (13) We have also studied the hyperuniversal combination usu-
ally denoted as

have analogous asymptotic behaviors.

Different (universa) critical exponents jo)( S)=[AN(S)/v]¥af(*)(S)] (15)
B(S),y(S),v(S),y4(S) and different(nonuniversal critical
amplitudes B()(S), c*)(g), )(s)...., al")(s), and the Watson combinatith
af)(S), etc. are associated with the various observables. We
have reported in such detail our definitions of the critical Re(S)=AM)(5)cM)(s)/BL)(9)% (16)

amplitudes, because they differ significantly from those of

other authors and it is necessary to use a consistent normal- The other frequently considered universal combination

ization convention when comparing models expected to be-

long to the same universality class. Let us notice in particular (17)

that the estimates reported in the tables of Ref. 7 for the ] ) .

critical amplitudes of the susceptibilityt )(u;S) are related 1S not independent of the previous ones, sinkg(S)

to ours by the facto? [—Inu(ST/u(9*S. A similar re- = —(8/3m)g{ (SREV(S)?/R(S).

mark applies to the specific heat amplitudgs)(u;S) for All of these quantities are accurately known in the
S=1/2 case. As indicated in Ref. 25, it is known

A)(1/2) = (2/7)In[tan(7/8)]? ~ 0.494 538 589 5,

which the conversion factor is dd(S)*9Inu (912 Finally,

the magnetization amplitudes of Ref. 7 should be multipliecthat

by the factorf —In u(S]¥'S to agree with ours. Of course, C'*)(1/2)~0.962581732, an®' )(1/2)=2%0In[1+2]"®

the amplitudes of the conformal field theory considered in~1.222409 95. In Refs. 23 and 27, we find the very accurate
the study of Ref. 17 are not comparable to our series quarestimates C2+)(1/2)=4.379 095(8) and f(F)(1/2)
tities. ~0.567 068 3.

R4(S)=C{ ()BT (9)4CH)(9)3
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TABLE IIl. Estimates of the critical inverse temperatures for the spising models on the sq lattice. Of course, the estinm:-ﬁt@(S),
obtained from the HT series, must eqdéf!_)(S) obtained from the LT series, and their common value is known exactly onlysfor
=1/2. For comparison, we have also reported other results beside those obtained from our HT and those obtained in Ref. 7 from the analysis
of LT series. No error estimates are provided in Ref. 31 for the estimaﬂég’é(fS) obtained from the ten term seriéRef. 3 of Camp and
Van Dyke as well as for the estimati&s(S) obtained by a renormalization group method.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=o
K{I(9) 0.4406869 . . . 0.5904785) 0.68425%6) 0.7485628)  0.795411)  0.831062)  1.0931%2)
K(9)T 0.4406869 . . . 0.59047279) 0.68433846) 0.748714) 0.802%35) 0.83910)

K{D(9)%t 0.441 0.592 0.687 0.752 0.800 0.836
K.(S)3 0.458 0.610 0.704 0.770 0.818 0.855
K((9)% 0.590472710)

K(S)%® 0.590471

K.(9)3* 0.59005 . ..

Therefore we can concludg™)(1/2)=1.7543642), determinations of the critical points are available only $or
Rc(1/2)~0.31856939, R{")(1/2)~0.39878194, and =1. They have been obtained either by analyZirtge 21
R4(1/2)=7.336 744(10). term HT series of Ref. 6 for the susceptibility or by various

We have also considered the ra@*)(S)/C(7)(S). In  transfer-matrix method§~*Some of these results have also
Ref. 25, forS=1/2, this ratio was computed with arbitrary been cited in Table IlI.
precision to beC(™)(1/2)/C(7)(1/2)~37.693 652. We have then turned to the critical exponen(s), »(S),

Finally, we have estimated the ra#d*)(S)/A(7)(S) for  andy,(S) and have evaluated them from the log derivatives
various values ofS This ratio equals unity foS=1/2 by  of the appropriate HT expansions by first-order DA's biased
self-duality. This was arguélin greater generality for the with our HT estimates of the critical temperatures. This com-
g-state (6=q=<4) Potts model on the square lattice, which, putation shows that the relative variation of the exponents is
for g=2, reduces to th&=1/2 Ising model. smaller than~10"3, in the worst case, foB varying be-

In what follows, we determine the values of these univertween 1/2 ande. We report these results in Table IV without
sal amplitude combinations f@>1/2. The preliminary part further details and simply conclude that universality and hy-
of our series analysis is aimed at estimating the critical temperscaling appear to be well supported for the leading critical
peratures using the expansions)éf)(K;S) for S=1. We  exponents.
employed a variety of methods: Zinn-Justin improved-ratio It is perhaps also worth noticing thassuminghe univer-
formula?® PadeapproximantgPA) and inhomogeneous dif- sality of y we can bias and therefore refine the determination
ferential approximant$DA).3° The best results with DA's  of K.(S). This procedure does not change the central values
were obtained from approximants such that the polynomiabf the critical points with respect to the unbiased one, but
coefficient of the highest derivative is eveds a conse- reduces the error bars.
quence, the approximants always contain an additional anti- On the other hand, the estimate of the expon#i8) of
ferromagnetic singularity at-K.(S), beside the one at the leading singular confluent corrections to scaling in the
K¢(S)]. Similarly to the LT analysis, but to a much smaller various observables remains quite elusive. Performing either
extent, the accuracy of our results tends to deteriorate wita Baker-Hunte® or a zinn-Justif® analysis, we can con-
increasingS. In spite of this, our final HT estimates of the clude that, at the level of accuracy made possible by the
critical points, reported in Table 1ll, show significant im- present extension of the HT series, the amplitudes of these
provement in apparent accuracy and sizable discrepanciesrrections are very smallpr perhaps vanishindor all val-
from the previous LT determinatiors. ues of S We should mention that a similar conclusion was

For general values d§ less accurate estimates K§(S) suggested foB=1 in Ref. 22, while the opposite conclusion
have been obtained in Ref. 31 from the ten term susceptibilwas advocated in Ref. 21.
ity series of Ref. 3 and from a renormalization group Once we have estimated the critical temperatures and
method. More recently other estimatesvere obtained by a verified the universality of the leading exponents, we can
generalized cluster method. To our knowledge other accurateroceed with the analysis simpassumingthat, for all val-

TABLE IV. Estimates of critical exponents obtained from our HT series for the Spging models on the
sq lattice. Of course the values ¢f v, andy,, for S=1/2 are exactly known.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=
v(S) 1.75 1.750%4) 1.750@4) 1.74985) 1.750@5) 1.75015) 1.74948)
v(S) 1.0 0.999%) 0.99968) 0.99948) 0.99948) 0.99948) 0.99948)
v4(S) 55 5.4984) 5.4975) 5.4975) 5.4975) 5.4975) 5.4915)
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TABLE V. Our series estimates of the critical amplitudes on the HT and the LT side of the critical point
for various spinS Ising models on the square lattice. Along with our estimates of the LT amplitudes we have
reported for comparison also the results of Ref. 7 multiplied by the proper conversion factors. The values of
c(1/2), AM(1/2), c)(1/2), BUT)(1/2), andAlT)(1/2) are exactly known, those df™)(1/2) and
C{")(1/2) are very accurately known.

S=1/2(ex) S=1 S=3/2 S=2 S=5/2 S=3 S=o
ct)(S) 0962587 ... 0.55142) 0.43072) 0.375%2) 0.34412) 0.32543) 0.23512)
AC)(S)  0.49453859... 0.73610) 0.8544) 0.9174) 0.9564) 0.9834) 1.0546)
() 056708 ... 0.464G2) 0.43092) 0.41592) 0.40822) 0.40332) 0.390G2)
ci(9) 4.379095%8) 0.963G4) 0.50733) 0.35913) 0.29023) 0.25333) 0.12393)
c()(S)  0.0255369 ... 0.014623) 0.01143) 0.01026) 0.009G8) 0.0055%30)
c)(s)? 0.014622) 0.010929) 0.009410) 0.009633)
B()(S)  1.2224098 ... 1.13%4) 1.0765  1.0415  1.015)  1.0015)
B()(S)” 1.13132) 1.0749) 1.04216) 1.03019 1.01626)
ACT)(S)  0.49453859... 0.7386) 0.85510) 0.91510) 1.1(2) 1.1(2)
A7 0.732) 0.776) 0.868) 0.879)

ues ofS these exponents take exactly the values expected faoefficientsa,(S) =c,(S)/d,(S), wherec,(S) are the HT
the universality class of the two-dimensional spin-1/2 Isingcoefficients of¢?(K;S) andd,(S) are the coefficients of the
model andusingthem along with our estimated critical tem- quantity y,(K;S)/x?(K;S). In Table V we have reported the
peratures to bias the evaluation of the HT and LT criticalresults of the latter procedure since it yields estimates with
amplitudes defined by Eq&9)—(13). smaller spreads.

Our estimates of the critical amplitudes are reported in Several other estimates’’~*! obtained by a variety of
Table V. We have employed quasidiagonal nondefective PAsnethods are also available in the literature.
or DA for extrapolating toK.(S) the effective amplitudes Using also the LT series, we have evaluated, directly in
of the susceptibility and of the derivative of the specific heatterms of the single amplitudes, the other mentioned universal
from the HT and the LT side of the critical points. We have combinations, for a range of values®fWe have reported in
similarly studied the effective amplitudes of the correlationTable VI, our series estimates of all these quantitiesSor
length (available only in the HT regignand of the magneti- >1/2. In conclusion, whenever only HT amplitudes are in-
zation. For proper comparison, in the same table we haveolved, our estimates, within a precision up to 0.1%, are
also cited the LT estimates of the critical amplitudes for theindependent oS, in full agreement with universality. On the
spontaneous magnetization, the specific heat and the suscegher hand, our reanalysis of the LT series has been only
tibility previously obtained in Ref. 7. These quantities havepartially successful: whenever LT amplitudes also enter into
been multiplied by the above indicated conversion factors teghe combinations, universality appears to be fairly well re-
agree with our normalization conventions. The uncertaintiespected foilS<5/2, but the uncertainties grow notably larger
we have reported, which allow for the observed spreads iffior larger values of the spin.
the approximant values, provide a subjective assessment of In the following section we describe the theory of lattice-
residual trends in the sequence of estimates and fofuthre lattice scaling, and show how it can be used to extend our
biased uncertainties of the critical points. The HT ampli- estimates of the critical amplitudes from the square lattice to
tudes can be determined with a relative accuracy rangingther two-dimensional lattices.
from ~10 2 in the case of the susceptibility, ts 10”2 in
the case of_the specific_: h_eat. _The LT _amplitudes are su_bject to V. LATTICE-LATTICE SCALING
larger relative uncertainties, increasing wighand reaching
up to ~50% for S>2. In some cases, in order to improve  The theory of lattice-lattice scaling was developed by
the accuracy of the estimates of the LT amplitudes Sor Betts, Guttmann, and JoyCen the early 1970s. It explains
<2, we have based our extrapolations only on the data fohow amplitudes change within a given universality class, as
[t(S)|=0.02—-0.04. This unconventional but reasonable pro-one moves from one lattice to another. It can also be viewed
cedure reduces the sensitivity of the approximants to the urgs a generalization of the law of corresponding states. In this
physical nearby singularities. Unfortunately, even this pre-Section we give a terse development of the theory, and apply
scription fails to work satisfactorily fos>2. it to the problem at hand.

Using only the HT series, we can evalugﬁé’)(S), either In order to review the general ideas let us first consider
directly, in terms of the amplitudes reported in Table V, or bythe Weiss theory or mean-field theory of a magnetic system.
extrapolating to the critical points via DA's the HT expansion The equation of state is well known to be
of the inverse effective coupling ¢Y"(K;9)
=—(87/3)&(K;9)%x(K;S)%/ x4(K;S). A third approach he Em3(1+3t/m2)
consists in studying the residua a1 of the series with 3 ’
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TABLE VI. Universal combinations of critical amplitudes for various sfiising models on the square
lattice. The exactly(or very accurately known values forS=1/2 are reported in the first column. F&r
>1/2, the series estimates of this note are reported in the successive columns. In the last line we have
reported the estimates &.(S) obtained by combining our present estimate\6f(S) and C(™)(S) with
the estimates oB(™)(S) given in Ref. 7.

S=1/2(ex.) S=1 S=3/2 S=2 S=5/2 S=3 S=o

ct)(g)ict)(s)  37.69362 ... 37.719) 38(1) 3702) 38(3) 59(32)

A)(S)IAC)(S) 1.0 0.99721) 0.99916) 1.001) 0.8716) 0.8917)

) 1.7543642) 1.7532) 1.7532) 1.7533) 1.7533) 1.7523) 1.7523)

REZ’)(S) 0.398781@ ... 0.3983) 0.3981) 0.3981) 0.3991) 0.4002) 0.40Q02)

Rc(9) 0.3185699 ... 0.3175 0.3182) 0.3182) 0.3193) 0.3195)

Rc(S)’ 0.3174) 0.3177) 0.31711) 0.311) 0.311)
Heret=T/T.—1, h=uH/KT, andm=M(T)/M(0) are the nyhy=nyhy=h
reduced temperature, magnetic field, and magnetization, re-
spectively. and

Then thelaw of corresponding statesays that the equa-
tion of state is the same for all lattices. That is, Oxtx=gvty=t.

The singular part of the free-energt,h) is then a universal
mx(t,h) =my(t,h), (lattice independeitfunction for a given model.
whereX andY denote two lattices. That is to say, the lattice ~ Equivalently, by differentiation we obtain
dependence is entirely contained in the critical temperature
T.. My (tx ,hyx) =my(ty,hy)=m(t,h),
A more complex model is the three-dimensional sphericak,q
model, for which the critical equation of state is

Xx(tx ) /n = xy(ty,hy)/ny= x(t,h),

) . wherem(t,h) and y(t,h) are universal functions for a given
Here bothT. and the amplitudeD are lattice dependent. \5qel

h=Dym®(1+t/m?)2,

Thus Writing my=B{)(—tx)#, it follows that
my(t,hy)=my(t,hy). (—)\ 1B
. . gx [ Bx
We see that we must scale the field variable, so fiaD g_: @
=hy /Dy, but that there is no need to scale the reduced v Y

temperature. _ ) ) Using this result, and the exact scaling parameggrandgy

Let us now consider the case of thwero-field spin S given below, it is a trivial matter to calculate the magnetiza-
=1/2 Ising model on the triangulai) and hexagonalH)  tion amplitudes for the other lattices we consifteiangular,
lattices. The star-triangle relatitif allows us to relate the hexagonal, and kagon{&)], taking as input the square lat-
free-energy, susceptibility, and spontaneous magnetizatiofice amplitudes given in Table V. These amplitude estimates
between the lattices: are given in Tables VII-IX.

Writing yx=C$"tx? it follows that
214Ky = Fr(Ky), 9 X=X

n -
M1 o(tr) =My o(th), cici== g—x> =c{c{).
Ny \Qy
2xt(v1)=xn(vw) + xu(—vn), Similarly, it is a trivial matter to calculate the susceptibility

wheref =1/NInZ, Ky=Jy /kT, andvy=tanhQy /kT). Here amplitudes for the other lattices we consider, taking as input

we see that the reduced temperature needs to be rescaled 8¢ S=1/2 square-lattice amplitudes given in Table V.
the free energy to be universal. This is not restricted to the Further differentiation gives the corresponding relation-
triangular-honeycomb pair, but in that case it is easy to b&hiP for higher-field derivatives, and we readily obtain

explicit. no|2-1 o
All these examples can be encapsulated in the following cih)clh) = _X> (g_x)

. . 21, X" ~2lY !
expression for the singular part of the free energy: Ny Oy

_ _ for the high-temperature field derivative@yhere only the
f hy)=nyf hy)=f(t,h
Mxfx(thx) =nvTy(ty hy) =f(Lh), even-order derivatives are nonzerdhe corresponding re-
where the reduced temperature and field are scaled by  sult for low-temperature field derivatives is
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TABLE VII. Estimates of the critical amplitudes on the HT and the LT side of the critical point for various
spin-S Ising models on the triangular lattice, as obtained by lattice-lattice scaling, using the square-lattice
series estimates as a basis. The value€6f(1/2), A(F)(1/2), C(7)(1/2), B(I(1/2), andA()(1/2) are
exactly known.

S=1/2(ex) S=1 S=3/2 S=2 S=5/2 S=3 S=x
C)(S)  0.9242068... 0.52942) 0.413%2) 0.360%2) 0.33042) 0.31243) 0.22572)
AM(S)  0.49906937... 0.74310) 0.8624) 0.9254) 0.9654) 0.9924)  1.0646)
f((9) 0.52535. .. 0.42982) 0.39922) 0.38532) 0.37812) 0.37362) 0.36132)
ci(9) 4.0002488) 0.87974) 0.46343) 0.328G3) 0.26513) 0.23143) 0.11323)
Cc)(S)  0.02451892 ... 0.014043) 0.01093) 0.00986) 0.00868) 0.005330)
B()(S)  1.20326998. .. 1.1134)  1.0595 1.0255) 1.0005)  0.9855)
ACT)(S)  0.499069372... 0.7456) 0.86310) 0.92310) 1.1(2) 1.1(2)

Oy (] ox - 12Kt (2K (12 =1/3.
C|,X/C|,Y_ E - .

Ov

f$D12K (12115 (12)K P (1/2) = 3.
Taking temperature derivatives, one readily establishes ' '

that the specific heat amplitudes satisfy
P P FO 2K (12K (12 =2/3.

n
ALIA = —Y(g—j

2—«a
— A A()

The universality oR"(S)=[A*(S)/v]¥2af*(S), taken
) . ) ~__ together with the above lattice-lattice scaling relation for the
As a=0 for the two-dimensional Ising model, this simplifies gpecific heat amplituda* (S) implies the lattice-lattice scal-
to ing relation
Ny (9x\® ().
_Y(g_x) AR f(+)/f(+):g_Y<‘rxnx)1/2
v oy Ox \ oyny

ALIIAH = o

We have similarly calculated the specific-heat amplitudes for
the other lattices we consider, taking as input the squarewhere o is the area per site, andy=1,,/3/2,3,/3/4, and
lattice amplitudes given in Table V. These are also given irQ/\/§ for the square, triangular, honeycomb, and kagtate
Tables VI-VIII. tices, respectively. This is equivalent to the explicit ampli-

Finally, the correlation function amplitudes were calcu-tude scaling reported in Ref. 44, and confirms the expecta-
lated exactly from various star-triangle transformations bytion that the true correlation length amplitude and the
Thompson and Guttmafthfor the true correlation length. It second-moment correlation length amplitude scale similarly.
follows from universality that these same transformations For the 2D Ising model we can calculate the scaling pa-
should hold also for the second-moment correlation lengtltametersny andgy exactly from known spin-1/2 spontane-
amplitudes. We show below that this is equivalent to theous magnetization and specific heat amplitudes. The critical
universality ofR(;)(S), which is a conclusion of this work. points are also exactly known. These are given in the table

In Ref. 44 it was shown by explicit calculation that below:

TABLE VIII. Estimates of the critical amplitudes on the HT and the LT side of the critical point for
various spinS Ising models on the hexagonal lattice, as obtained by lattice-lattice scaling, using the square-
lattice series estimates as a basis. The valugd(6f(1/2), A(Y)(1/2), C(7)(1/2), B()(1/2) andA()(1/2)
are exactly known.

S=1/2(ex) s=1 S=3/2 S=2 S=5/2 S=3 S=oo
C)(S)  1.04641D... 0.59942) 0.46822) 0.40822) 0.37412) 0.35373) 0.25562)
AC)(S)  0.478106381... 0.71210) 0.8264) 0.8874) 0.9244)  0.9504)  1.0196)
f(H(S) 0.65733 . .. 0.53792) 0.499%2) 0.48212) 0.47322) 0.46732) 0.45212)
ci(9 5.352965%8) 1.17724) 0.62013) 0.439G3) 0.35473) 0.30963) 0.151%3)
c)(S)  0.02776109... 0.0158%93) 0.01243) 0.01116) 0.00988) 0.006G30)
B()(S) 1.2531776@... 1.1594) 1.1035 1.0615 1.0425)  1.0265)
AC)(S)  0.478106381... 0.7146) 0.82710) 0.88510  1.1(2) 1.12)
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TABLE IX. Estimates of the critical amplitudes on the HT and the LT side of the critical point for various
spin-S Ising models on the kagomattice, as obtained by lattice-lattice scaling, using the square-lattice series
estimates as a basis. The valuesCét)(1/2), AT (1/2), C(7)(1/2), B()(1/2), andA()(1/2) are exactly

known.

S=1/2(ex.)

S=1 S=3/2

S=2 S=5/2 S=3 S=o

cf)(s)  1.0181423...
AF)(S)  0.480061568. . .

f(+)(3)
c4(9)

0.61844 . ..
5.04695383)

c)(s)  0.0270109 . ..

0.58322) 0.45562) 0.39722) 0.364G2) 0.34423) 0.24872)

0.71410) 0.8294)

0.8904) 0.9284) 0.9544) 1.0236)

0.50612) 0.47002) 0.45362) 0.44522) 0.43992) 0.42542)
1.10994) 0.58473) 0.41393) 0.334%3) 0.29193) 0.14283)
0.015463) 0.01213) 0.01086) 0.00958) 0.005830)

B()(S) 1.23865588...  1.1464) 1.0905 1.0585 1.0305)  1.0145)
AL)(S)  0.480061563... 0.7166) 0.83010) 0.88810  1.1(2) 1.12)
X Ke Nx 0xKe1/Kex  veloped by Gaunt and Guttmalrin 1978. In that theory, a
- In(3)/4 1 1 third scaling parameter needs to be introduced.
: B g It is widely accepted, and in complete agreement with the
32' Jl:((\z/% \/é))g 3\/25/4 11//\/‘% results of the first part of this paper, that the sBirsing
Ka. I3 1)/4 F(3-1)16 9(y3-1)° model is in the same universality class as the spin-1/2 Ising

model. This is the only assumption we require in order to
apply the theory of lattice-lattice scaling to the square-lattice

In addition to the above results, one can also derive Scabata given in the preceding section. The only subtlety is

ing relations for the amplitudes of subdominant singularities
For example, consider the susceptibility of the 2D Ising

model on latticeX. Writing

Xy — Xsel—
xx~Cpt 7+ Ctt,

whether “universality” really extends to lattice-lattice uni-
versality. While this assumption seems natural, we did at-
tempt to verify it by estimating amplitudes for other lattices
from the rather short data available in Ref. 13. The longest
effective series is the triangular lattice series. We found the

from lattice-lattice scaling we can derive the following am- high-temperature susceptibility amplitude, as estimated by
plitude relations:

The second expression is false for the kagdattice. It is

==}

C_g_nv Ox
Ci_nx 9_)
C; Nv\gx '

Padeapproximants, to b€(*)(1)=0.529 from this series, in
complete agreement with the more precise vafié)(1)
=0.5294(2) found by lattice-lattice scaling, and reported in
Table VII.

Note too that there is no loss of accuracy, as the conver-
sions from lattice to lattice are exact. For example, based on
the recent estimate of the leading susceptibility amplitude of
the spin-1/2 square-lattice Ising model given in Ref. 13, ap-
plication of lattice-lattice scaling gives the corresponding

corrected by the theory of extended lattice-lattice scaling deamplitude on the triangular lattice to the same precision, viz.

CT =0.924 206 958 245 164 329 697 157 577 855 931 717 669 626 152 002 838 9.

Similarly accurate results for other lattices can be readily written down, as can equally accurate subdominant amplitudes.
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