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Nonlinear impurity in a lattice: Dispersion effects
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We examine the bound stésg associated with a single cubic nonlinear impurity, in a one-dimensional
tight-binding lattice, where hopping to first- and second-nearest neighbors is allowed. The model is solved in
a closed form \a the use of the appropriate lattice Green function, and a phase diagram is obtained showing
the number of bound states as a function of the nonlinearity strength and the ratio of second- to first-nearest-
neighbor hopping parameters. Surprisingly, a finite amount of hopping to second-nearest neighbors helps the
formation of a bound state at small@ven vanishingly smallnonlinearity values. As a consequence, the
self-trapping transition can also be tuned to occur at relatively small nonlinearity strength, by this increase in
the lattice dispersion.
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The effects of impurities on the transport properties offor any impurity strength. The extension to an impurity of
materials continues to be an interesting subject. When tharbitrary nonlinear exponent [i.e.,|C,|® instead of C,|? in
concentration of impurities inside a material is finite, we Eq. (1)], reveale8® that for a<?2 there is always a bound
speak of a disordered system. In one-dimensional systemstate for any finitey/V. At =2 (the standard DNLS case
this disorder gives rise to the well-known phenomenon ofthere is one bound state foy/2V|>1, while for a>2 there
Anderson localization, where all states acquire a finite localis a critical curve iny-a space, below which there is no
ization length. This precludes any amount of transport in theyound state, while above it, there are two bound states. On
system. More recently, the problem wénlinearimpurities  the critical curve, there is a single bound state.
has received considerable attention. In a condensed matter \When this nonlinear impurity is embedded in a square
context, they appear in strongly coupled electron-vibrationattice® the y-« bound state phase diagram shows a single
systems, when the vibrational degrees of freedom have theurve separating two regimes. Below the curve, there are no
ability to adapt quickly to the presence of the electron, givinghound states; on the curve there is a single bound state, while
rise to a polaronic behaviorNonlinear impurities also ap- above the curve there are two bound states. One of these
pear in other fields, such as nonlinear optics. For instance, aecome more localized upon increment of the nonlinearity
array of linear waveguides containing a single or severaparameter while the other becomes more delocalized. Bound
nonlinear, Kerr-like guides. The transversal dynamics destates for single nonlinear impurities have also been com-
scribing the energy exchange among waveguides is formallguted for other systems, including a Cayley tfeetriangular
identical to the dynamics of an excitation propagating in aattice? and a cubic lattic&?
linear tight-binding lattice in the presence of one or more |n all the studies above, only dispersion to first nearest-
nonlinear impurities. neighbors has been considered. For systems with long-range

In systems where an electrgar excitation is propagat-  dispersion, a continuumlike approximation that employs a
ing while strongly interacting with vibrational degrees of nonlocal nonlinear Schdinger equation has been
freedom, an “effectivg” nonlinear evolution quation for the proposed-_o For the case of a discrete system with a hoppmg
electron can be obtained, under the assumption that the Viarameter of the fornv,,,= V/|n—m|, another stud fol-
brations adapt instantly to the presence of the electfilis  |owed a variational approach, based on a plausible ansatz for
equation, known as the discrete nonlinear Sdhmger  the localized state. Among other things, they found that there
(DNLS) equation, has the form is a critical s, such that all dispersive interactions decreas-

dc ing faster tharr "% lead to similar qualitative behavior as
. n| 2 _ the DNLS with only nearest neighbor transfer. In this work
I( dt )‘V% Crn=xnlColCn (A=), @ we solve in closedyform a Greegn functions, the case of a
single DNLS impurity in a tight-binding lattice, including

whereC,, is the probability amplitude of finding the electron hopping to first- and second-nearest neighbors. This configu-
on lattice siten at timet, V is the nearest-neighbor hopping ration and similar others with a nonlinear topology appear
parameter, ang, is the nonlinearity parameter at sitgpro-  naturally in quasi onedimensional systems, such as “zigzag”
portional to the square of the electron-vibration coupling. Inor coiled structures. In this last case, it is possible to engineer
the conventional DNLS equation, the sum in Ef) is re- the main interactions to be between first neighbors and be-
stricted to nearest neighbofs.n.). tweenmth neighbors, wheren is the “period” of the helix.

For the case of a single nonlinear impurity in a one-Now, since the phenomenon of selftrapping is the result of a
dimensional lattice x,,= &, ox), we have obtained in a pre- struggle between the tendency to sprédidpersion and the
vious work its bound state analytically, ailattice Green tendency to localizénonlinearity, one might surmise that
functions, and have shown that a bound state is possiblany increase in dispersion will have the simple effect of in-
provided|y/2V|>1. This result deviated markedly from the creasing the nonlinearity needed to selftrap. However, as we
well-known linear impurity case where, a bound state existsill see, this is not necessarily the case and a small incre-
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ment in dispersion can actually favor the formation of a E(k)=2V; cogk)+2V,coq2k). (7)
bound state at smaller nonlinearity strength.
A simple analysis shows that, for positive=V,/V,, the
I. ONE-DIMENSIONAL LATTICE WITH DISPERSION upper and lower band edges obey

Let us consider the problem of determining the existence _ _
of bound states and dynamic selftrapping characteristics for Zma 0)=Emax/V1=2(1+9), ®
an electron(or an excitatioh moving on a one-dimensional
dispersive lattice with hopping up to second- nearest neigh-
bors, which contains a single DNLS impurity at the origin
n=0. DNLS equation(1) reduces to

-2(1-9), o<1/4
Znin(8)=Emin/V1= —(1/46)—26, 6>1/4 ©

As a result, while the upper edge always increase linearly

with V,, the lower edge shows the presence of a “waist”: At

first it decreasesin magnitude, reaching a minimum value

— {ICol?Cob, . 2 O 2[1—(1/4/8)]V;~1.29V, at V,=(1//8)V;. Afterwards,
X1~ol~0%n0 the lower edge increases in magnitude wWith At largeV,,

For stationary states, one pus(t) =exp(—iEt) ¢,, obtain-  this increase will be almost linear. These features will of

(dC,
" gt =V1(Cpy1+Cro1) +VaCpintCry)

ing importance in Sec. | A, where we determine the position of
E ¢n=Vi(dns1+ dn-1)+Valdnia+ dn-2) the impurity bound state).
_ 2
Xl bol*Bodno- 3) A. Bound states
The Hamiltonian that gives rise to E() is We use lattice Green functions as described in Refs. 3 and
_ 12, where the perturbative series for the Green function is
H=Ho+H,, (4) resumed to all orders, to obtain
where
Y1 40°Gl(2)GGr (2)
Ho=V nW{n+1|+|n+1%n Gn(2)=G%(z2)— , 10)
0=V12 (InXn+1|+|n+1)(n)) (D=~ = e,
+V22 (In)(n+2[+|n+2)(n|) (5)  whereGy,=(m|G|n), y=x/V,, and
n
and .
1 (= exdig(m—n)]
_ 2 ©)7y= —
Ha=— x| ol0)(0. (®) G2 =5 f,ﬂd‘f’[z—cos 2—scoza]

{|n)} represent Wannier electronic states anqV.,) is the
nearest{next-to-nearest-neighbor transfer matrix element. is the Green function in the absence of nonlinearity (
In the absence of impurity, the energy band is given by ~ =0). By using residues, we evaluate it in a closed form,

2\28(y16+ y2) V1= 8(46— 22+ 1)+ (y18— ya) N1+ 8(—46+22+ y) ™Y 2>Zpaf O)
REGD(2)]=1 —2v28[(y18+ v2) V1= 8(46— 22+ y1) — (y16— y2) N1+ 8(— 46+ 22+ 1)), 2<Zpin(S)

0 otherwise,
(12

where y,(2)= 8+ (1/6%) + (42/ 8) and y,(z)=1—46°+26z, and

O[(1/4)—61{O[z—2(6—1)]-0O[z—2(1+6)]} O[6—(UH{O(z+[1/(45)]+28)—O[z—2(1+ )]}
+
2V1-d(2)?]1+46 dy(2)| 2V1-d(2)?]1+45d,(2)]

O[5—(LUNHOz+[1U(45)]+26))—O[z—2(5—1)]}
+

2V1-dy(2)?]1+45d,(2)]

IM[G{Y(2)]=

(13

whered,(z)=(1/4 8)(— 1+ J1+8 §[ 6+ (2/2)]) andd,(z)=(1/4 8)(—1—J1+8 8] 5+ (2/2)]).
The (dimensionlessenergy of the bound statg, is obtained from the poles @ ,,,(z), while the bound state amplitudes
#?) are obtained from the residues 6f,,(z) at z=z,. This leads to a nonlinear equation fry:
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FIG. 1. Bound state phase diagram in nonlinearity-dispersion
space = x/V.,6=V,/V,).

1 Gz

Gy, (20)

For a complete parameter space examination of all possible
eigenvalues, we only need to consider a fixed sign for the
dispersion parametef? (say, positivgé and the two possible
signs ofy. A graphical examination of Eq14) (not shown
reveals that, whery>0 and asé increases from zero, the
right hand side of Eq(14) moves toward the origin and
increases its height, untid reaches 1/4, where the height
diverges. Further increase i decreases the height of the
curves, but they continue to approach the origin util
=1/\/8. Afterwards, the curves move away from the origin
while their heights continue to decrease. For the casg of
<0, the situation is quite different: For a giveh value,
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FIG. 2. Bound state energy as a function of positiae and

there is a minimum y,| at which there is a bound state. negativéb) nonlinearity, for several dispersion values.

Further increase irjy| creates two bound states, one of
which will ultimately disappear at a further finite,| value,
leaving only a single bound state. These results are nicely
summarized in Fig. 1, which shows a phase diagram in
nonlinearity-dispersion space showing the number of bound
statés). For positive nonlinearity, the critical curve separat-
ing the region with no bound states from the region with one
bound state, decreases with increasth@nd reaches zero at
5=1/4. Afterwards, it increases monotonically with further
dispersion. Thus, there is a finite dispersion intervat, D
<1/4 where, contrary to what might be expected, an increase
in dispersion actuallyeducegshe nonlinearity needed to cre-
ate a bound state. This can also be seen in K@, hich
shows the bound state energy as a functiofpositive) non-
linearity, for several values of dispersi@n This reduction in
nonlinearity needed to sustain a bound state is, of course due
to the reduction in the width of the negative portion of the
band with a small positive dispersion, and thus, it hdis-a

ear origin.'® In the negative nonlinearity sector, in Fig. 1 we
have two critical curves separating regions with no bound

states, two bound states, and one bound state. Here an in- FIG. 3. Probability at the impurity site as a function of nonlin-
crease in dispersion causes a corresponding increase in tberity, in the negative nonlinearity sector, for several dispersion
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minimum nonlinearity needed for the creation of a boundvalues.
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statés). This is correlated with the fact that the width of the B. Transmission across the impurity
positive portion of the band always increases linearly with
Figure Zb) shows the bound state energy as a function o
nonlinearity, for negativey. Here, for a given value ob,
there exists a critical nonlinearity valug for which there is

a bound state, with energy outside the band. Further increase

in nonlinearity creates two bound states, one of which in- 1 1

creases its energy monotonically with nonlinearity while the t= =

other state decreases its energy toward the band, reaching it |1+ ytGR12 1+ 22 Im[GQYy(2)]*’
at a finite nonlinearity valuey,. As Fig. 3 shows, in the

regime with two bound states, as the magnitude of the non- . g 0) for 2
linearity is increased, one of the states becomes more locathich leads to the cubic equationt*Im[Ggp(2)]“+t—1

ized on the impurity site, while the other becomes more de=0. This is invariant undey— — v, implying that the trans-
localized, ultimately disappearing into the continuum at amission does not depend on the sign of the nonlinearity pa-
finite nonlinearity value. rameter. The physical solution fbris

¢ Again, following the formalism of Green functiois?we
obtain the equation for the transmission coefficieof plane
waves across the nonlinear impurity,

(15

—2 6%+ (18 yIm[G{Y(2) ]+ 234+ 27y’ Im[GY(2)12)*°
2 39y Im[G{(2)1(9 YIM[G{Y(2)]+ V3V4+27 5 Im[G{J(2) 1)

(16)

with Im[Gg%)(z)] given by Eq.(12). Figure 4 shows several able of interest here is the long-time average probability of
transmission curves as functions of the plane waves dimerfinding the electron on the initial site after a relatively long
sionless energy, for several different dispersion ratios time T:
The most remarkable new feature is the appearance of an
abrupt “dip” on the transmission near the lower edge of the
band at6~0.4. As ¢ increases further, the “dip” moves to
the right and eventuallynot shown approaches the upper
band edge and merges with it. This “dip” is related to the Following earlier work$, we use a fourth-order Runge-Kutta
creation of a secondary “branch” in [G{)(z)]. numerical scheme, whose accuracy is monitored through to-
tal probability conservation: %3 ,|C,(t)|2. Figure 5 shows
Py as a function of(positive) nonlinearity parametey, for
C. Dynamic self-trapping several different dispersiofi values. As anticipated from the
We place the electron at the impurity site tat0 and bo_yndl statlt_a resgltsf, at';] increatsefof I?itspergion ﬁ]d“ce.s. the
B : : _critical nonlinearity for the onset of self-trapping. The mini-
observe its time evolution, according to Eg). The observ mum threshold oecurs arouns0.3. In the immediate vi-
cinity of this value, the self-trapping transition also seems to

.
Po= lim (1/T) o |Co(t)[2dt, [Cy(0)]=1. (17)

T—oo

1.0
z 1.
3 0
0
%] 0.8
s 05
% o 06
[ 0.4 .
0.0 0.2
0.8 °
0.6 0.0 QJ‘Z?
g 04 //J 4 08 o6 2§
0.2 G 2 04 15 - 0 §
0.0 2 ) <

dis ,

FIG. 4. Transmission coefficient of plane waves across the non- FIG. 5. Long-time average probability of finding the electron on
linear impurity as a function of the plane wave dimensionless enthe impurity site, as a function of nonlinearity, for several different
ergy, for several dispersion values. dispersion valuesT=203V,).

054202-4



NONLINEAR IMPURITY IN A LATTICE : . .. PHYSICAL REVIEW B 67, 054202 (2003

lose some sharpness. A subsequent increaseiintreases shifted to lower nonlinearity thresholds. Given the paradig-
the critical nonlinearityy, again and restores sharpness tomatic character of the DNLS equation, these results could be
the P, curve. At 8~1, theP, curve almost coincides with applied to completely nonlinear optical or solid nanostruc-
the =0 case. Thereaftery, increases in an almost linear tures, with nonlinear topology. For instance, a “zigzag” ar-
fashion with 5. For the case of a negative nonlinearity pa-ray of waveguides in nonlinear optit$where one has cou-
rameter (not shown, the critical nonlinearity always in- pling to first- and second- nearest neighbors, or a triangular/
creases monotonically with dispersion. This case also corréielicoidal stack of atoms, where the main couplings are to
sponds toy>0,6<0. first- and third-nearest neighbors, etc. In these and other
cases, the bound state profile found here could serve as a
Il. DISCUSSION good initial condition for the launching of a discrete excita-
tion (solitor) along a completely nonlinear systéfThe
We have analytically examined the conditions for the for-transport properties of these nonlinear systems and the steer-

mation of a bound state at a nonlinear impurity site, in aing of their mobile excitations is currently an active field of
one-dimensional linear lattice with hopping to first and secresearch.

ond nearest-neighbors. The formalism employed lattice
Green functions, which have been evaluated in closed form
for our system. We found a range in which this increment in
dispersion can actually favor the formation of a bound state
at smaller nonlinearity strength. As a consequence, the onset This work was supported in part by FONDECYT Grant
of dynamical self-trapping at the impurity site can also beNo. 1020139.
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