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Nonlinear impurity in a lattice: Dispersion effects
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We examine the bound state~s! associated with a single cubic nonlinear impurity, in a one-dimensional
tight-binding lattice, where hopping to first- and second-nearest neighbors is allowed. The model is solved in
a closed form vı`a the use of the appropriate lattice Green function, and a phase diagram is obtained showing
the number of bound states as a function of the nonlinearity strength and the ratio of second- to first-nearest-
neighbor hopping parameters. Surprisingly, a finite amount of hopping to second-nearest neighbors helps the
formation of a bound state at smaller~even vanishingly small! nonlinearity values. As a consequence, the
self-trapping transition can also be tuned to occur at relatively small nonlinearity strength, by this increase in
the lattice dispersion.
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The effects of impurities on the transport properties
materials continues to be an interesting subject. When
concentration of impurities inside a material is finite, w
speak of a disordered system. In one-dimensional syste
this disorder gives rise to the well-known phenomenon
Anderson localization, where all states acquire a finite loc
ization length. This precludes any amount of transport in
system. More recently, the problem ofnonlinear impurities
has received considerable attention. In a condensed m
context, they appear in strongly coupled electron-vibrat
systems, when the vibrational degrees of freedom have
ability to adapt quickly to the presence of the electron, giv
rise to a polaronic behavior.1 Nonlinear impurities also ap
pear in other fields, such as nonlinear optics. For instance
array of linear waveguides containing a single or seve
nonlinear, Kerr-like guides. The transversal dynamics
scribing the energy exchange among waveguides is form
identical to the dynamics of an excitation propagating in
linear tight-binding lattice in the presence of one or mo
nonlinear impurities.2

In systems where an electron~or excitation! is propagat-
ing while strongly interacting with vibrational degrees
freedom, an ‘‘effective’’ nonlinear evolution equation for th
electron can be obtained, under the assumption that the
brations adapt instantly to the presence of the electron.1 This
equation, known as the discrete nonlinear Schro¨dinger
~DNLS! equation, has the form

i S dCn

dt D5V(
n.n.

Cm2xnuCnu2Cn ~\[1!, ~1!

whereCn is the probability amplitude of finding the electro
on lattice siten at time t, V is the nearest-neighbor hoppin
parameter, andxn is the nonlinearity parameter at siten pro-
portional to the square of the electron-vibration coupling.
the conventional DNLS equation, the sum in Eq.~1! is re-
stricted to nearest neighbors~n.n.!.

For the case of a single nonlinear impurity in a on
dimensional lattice (xn5dn,0x), we have obtained in a pre
vious work3 its bound state analytically, vı`a lattice Green
functions, and have shown that a bound state is poss
providedux/2Vu.1. This result deviated markedly from th
well-known linear impurity case where, a bound state ex
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for any impurity strength. The extension to an impurity
arbitrary nonlinear exponenta @i.e., uCnua instead ofuCnu2 in
Eq. ~1!#, revealed4,5 that for a,2 there is always a bound
state for any finitex/V. At a52 ~the standard DNLS case!
there is one bound state forux/2Vu.1, while for a.2 there
is a critical curve inx-a space, below which there is n
bound state, while above it, there are two bound states.
the critical curve, there is a single bound state.

When this nonlinear impurity is embedded in a squa
lattice,6 the x-a bound state phase diagram shows a sin
curve separating two regimes. Below the curve, there are
bound states; on the curve there is a single bound state, w
above the curve there are two bound states. One of th
become more localized upon increment of the nonlinea
parameter while the other becomes more delocalized. Bo
states for single nonlinear impurities have also been co
puted for other systems, including a Cayley tree,7 a triangular
lattice,9 and a cubic lattice.8,9

In all the studies above, only dispersion to first neare
neighbors has been considered. For systems with long-ra
dispersion, a continuumlike approximation that employs
nonlocal nonlinear Schro¨dinger equation has bee
proposed.10 For the case of a discrete system with a hopp
parameter of the formVnm5V/un2mus, another study11 fol-
lowed a variational approach, based on a plausible ansat
the localized state. Among other things, they found that th
is a criticalscr such that all dispersive interactions decrea
ing faster thanr 2scr lead to similar qualitative behavior a
the DNLS with only nearest neighbor transfer. In this wo
we solve in closed form vı`a Green functions, the case of
single DNLS impurity in a tight-binding lattice, including
hopping to first- and second-nearest neighbors. This confi
ration and similar others with a nonlinear topology appe
naturally in quasi onedimensional systems, such as ‘‘zigz
or coiled structures. In this last case, it is possible to engin
the main interactions to be between first neighbors and
tweenmth neighbors, wherem is the ‘‘period’’ of the helix.
Now, since the phenomenon of selftrapping is the result o
struggle between the tendency to spread~dispersion! and the
tendency to localize~nonlinearity!, one might surmise tha
any increase in dispersion will have the simple effect of
creasing the nonlinearity needed to selftrap. However, as
will see, this is not necessarily the case and a small inc
©2003 The American Physical Society02-1
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ment in dispersion can actually favor the formation of
bound state at smaller nonlinearity strength.

I. ONE-DIMENSIONAL LATTICE WITH DISPERSION

Let us consider the problem of determining the existe
of bound states and dynamic selftrapping characteristics
an electron~or an excitation! moving on a one-dimensiona
dispersive lattice with hopping up to second- nearest ne
bors, which contains a single DNLS impurity at the orig
n50. DNLS equation~1! reduces to

i S dCn

dt D5V1~Cn111Cn21!1V2~Cn121Cn22!

2xuC0u2C0dn,0 . ~2!

For stationary states, one putsCn(t)5exp(2iEt) fn , obtain-
ing

E fn5V1~fn111fn21!1V2~fn121fn22!

2xuf0u2f0dn0 . ~3!

The Hamiltonian that gives rise to Eq.~2! is

H5H01H1 , ~4!

where

H05V1(
n

~ un&^n11u1un11&^nu!

1V2(
n

~ un&^n12u1un12&^nu! ~5!

and

H152xuf0u2u0&^0u. ~6!

$un&% represent Wannier electronic states andV1(V2) is the
nearest-~next-to-nearest-! neighbor transfer matrix elemen
In the absence of impurity, the energy band is given by
05420
e
or

h-

E~k!52 V1 cos~k!12 V2cos~2k!. ~7!

A simple analysis shows that, for positived[V2 /V1, the
upper and lower band edges obey

zmax~d![Emax/V152~11d!, ~8!

zmin~d![Emin /V15H 22~12d!, d,1/4

2~1/4d!22d, d.1/4.
~9!

As a result, while the upper edge always increase linea
with V2, the lower edge shows the presence of a ‘‘waist’’:
first it decreases~in magnitude!, reaching a minimum value
of 2@12(1/A8)#V1'1.29V1 at V25(1/A8)V1. Afterwards,
the lower edge increases in magnitude withV2. At largeV2,
this increase will be almost linear. These features will
importance in Sec. I A, where we determine the position
the impurity bound state~s!.

A. Bound states

We use lattice Green functions as described in Refs. 3
12, where the perturbative series for the Green function
resumed to all orders, to obtain

Gmn~z!5Gmn
(0)~z!2

guf0u2Gm0
(0)~z!G0n

(0)~z!

11guf0u2G00
(0)~z!

, ~10!

whereGmn5^muGun&, g5x/V1, and

Gmn
(0)~z!5

1

2pE2p

p

df
exp@ if~m2n!#

@z2cos~f!2d cos~2f!#
~11!

is the Green function in the absence of nonlinearityg
50). By using residues, we evaluate it in a closed form,
s

Re@G00
(0)~z!#5H 2A2d@~g1d1g2!A12d~4d22z1g1!1~g1d2g2!A11d~24d12z1g1!#21, z.zmax~d!

22A2d@~g1d1g2!A12d~4d22z1g1!2~g1d2g2!A11d~24d12z1g1!#21, z,zmin~d!

0 otherwise,
~12!

whereg1(z)[A81(1/d2)1(4z/d) andg2(z)[124d212dz, and

Im@G00
(0)~z!#5

Q@~1/4!2d#$Q@z22~d21!#2Q@z22~11d!#%

2A12d1~z!2u114d d1~z!u
1

Q@d2~1/4!#$Q„z1@1/~4d!#12d…2Q@z22~11d!#%

2A12d1~z!2u114d d1~z!u

1
Q@d2~1/4!#$Q„z1@1/~4d!#12d!…2Q@z22~d21!#%

2A12d2~z!2u114d d2~z!u
, ~13!

whered1(z)[(1/4 d)„211A118 d@d1(z/2)#… andd2(z)[(1/4 d)„212A118 d@d1(z/2)#….
The ~dimensionless! energy of the bound state,zb is obtained from the poles ofGmn(z), while the bound state amplitude

fn
(b) are obtained from the residues ofGmn(z) at z5zb . This leads to a nonlinear equation forzb :
2-2
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1

g
5

G00
(0)3~zb!

G
00

8(0)
~zb!

. ~14!

For a complete parameter space examination of all poss
eigenvalues, we only need to consider a fixed sign for
dispersion parameterd ~say, positive! and the two possible
signs ofg. A graphical examination of Eq.~14! ~not shown!
reveals that, wheng.0 and asd increases from zero, th
right hand side of Eq.~14! moves toward the origin and
increases its height, untild reaches 1/4, where the heig
diverges. Further increase ind decreases the height of th
curves, but they continue to approach the origin untild
51/A8. Afterwards, the curves move away from the orig
while their heights continue to decrease. For the case og
,0, the situation is quite different: For a givend value,
there is a minimumugau at which there is a bound state
Further increase inugu creates two bound states, one
which will ultimately disappear at a further finiteugbu value,
leaving only a single bound state. These results are ni
summarized in Fig. 1, which shows a phase diagram
nonlinearity-dispersion space showing the number of bo
state~s!. For positive nonlinearity, the critical curve separa
ing the region with no bound states from the region with o
bound state, decreases with increasingd, and reaches zero a
d51/4. Afterwards, it increases monotonically with furth
dispersion. Thus, there is a finite dispersion interval, 0,d
,1/4 where, contrary to what might be expected, an incre
in dispersion actuallyreducesthe nonlinearity needed to cre
ate a bound state. This can also be seen in Fig. 2~a!, which
shows the bound state energy as a function of~positive! non-
linearity, for several values of dispersiond. This reduction in
nonlinearity needed to sustain a bound state is, of course
to the reduction in the width of the negative portion of t
band with a small positive dispersion, and thus, it has alin-
ear origin.15 In the negative nonlinearity sector, in Fig. 1 w
have two critical curves separating regions with no bou
states, two bound states, and one bound state. Here a
crease in dispersion causes a corresponding increase i
minimum nonlinearity needed for the creation of a bou

FIG. 1. Bound state phase diagram in nonlinearity-dispers
space (g[x/V1 ,d[V2 /V1).
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FIG. 2. Bound state energy as a function of positive~a! and
negative~b! nonlinearity, for several dispersion values.

FIG. 3. Probability at the impurity site as a function of nonli
earity, in the negative nonlinearity sector, for several dispers
values.
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state~s!. This is correlated with the fact that the width of th
positive portion of the band always increases linearly withd.
Figure 2~b! shows the bound state energy as a function
nonlinearity, for negativeg. Here, for a given value ofd,
there exists a critical nonlinearity valuega for which there is
a bound state, with energy outside the band. Further incr
in nonlinearity creates two bound states, one of which
creases its energy monotonically with nonlinearity while t
other state decreases its energy toward the band, reach
at a finite nonlinearity valuegb . As Fig. 3 shows, in the
regime with two bound states, as the magnitude of the n
linearity is increased, one of the states becomes more lo
ized on the impurity site, while the other becomes more
localized, ultimately disappearing into the continuum a
finite nonlinearity value.
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B. Transmission across the impurity

Again, following the formalism of Green functions,3,12 we
obtain the equation for the transmission coefficientt of plane
waves across the nonlinear impurity,

t5
1

u11g t G00
(0)u2

5
1

11g2 t2 Im@G00
0) ~z!#2 , ~15!

which leads to the cubic equation:g2t3Im@G00
0) (z)#21t21

50. This is invariant underg→2g, implying that the trans-
mission does not depend on the sign of the nonlinearity
rameter. The physical solution fort is
t5
22 61/31„18gIm@G00

(0)~z!#12A3A4127g2Im@G00
(0)~z!#2

…

2/3

2 32/3g Im@G00
(0)~z!#„9 gIm@G00

(0)~z!#1A3A4127g2Im@G00
(0)~z!#2

…

1/3
, ~16!
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with Im@G00
(0)(z)# given by Eq.~12!. Figure 4 shows severa

transmission curves as functions of the plane waves dim
sionless energyz, for several different dispersion ratiosd.
The most remarkable new feature is the appearance o
abrupt ‘‘dip’’ on the transmission near the lower edge of t
band atd;0.4. Asd increases further, the ‘‘dip’’ moves to
the right and eventually~not shown! approaches the uppe
band edge and merges with it. This ‘‘dip’’ is related to th
creation of a secondary ‘‘branch’’ in Im@G00

(0)(z)#.

C. Dynamic self-trapping

We place the electron at the impurity site att50 and
observe its time evolution, according to Eq.~2!. The observ-

FIG. 4. Transmission coefficient of plane waves across the n
linear impurity as a function of the plane wave dimensionless
ergy, for several dispersion values.
n-

an

able of interest here is the long-time average probability
finding the electron on the initial site after a relatively lon
time T:

P05 lim
T→`

~1/T!E
0

T

uC0~ t !u2dt, uC0~0!u51. ~17!

Following earlier works,4 we use a fourth-order Runge-Kutt
numerical scheme, whose accuracy is monitored through
tal probability conservation: 15(nuCn(t)u2. Figure 5 shows
P0 as a function of~positive! nonlinearity parameterg, for
several different dispersiond values. As anticipated from the
bound state results, an increase of dispersion reduces
critical nonlinearity for the onset of self-trapping. The min
mum threshold occurs aroundd'0.3. In the immediate vi-
cinity of this value, the self-trapping transition also seems

n-
-

FIG. 5. Long-time average probability of finding the electron
the impurity site, as a function of nonlinearity, for several differe
dispersion values (T5203V1).
2-4
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lose some sharpness. A subsequent increase ind increases
the critical nonlinearitygc again and restores sharpness
the P0 curve. At d'1, theP0 curve almost coincides with
the d50 case. Thereafter,gc increases in an almost linea
fashion withd. For the case of a negative nonlinearity p
rameter ~not shown!, the critical nonlinearity always in-
creases monotonically with dispersion. This case also co
sponds tog.0,d,0.

II. DISCUSSION

We have analytically examined the conditions for the f
mation of a bound state at a nonlinear impurity site, in
one-dimensional linear lattice with hopping to first and s
ond nearest-neighbors. The formalism employed lat
Green functions, which have been evaluated in closed f
for our system. We found a range in which this incremen
dispersion can actually favor the formation of a bound st
at smaller nonlinearity strength. As a consequence, the o
of dynamical self-trapping at the impurity site can also
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