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Molecules interacting with a metallic nanowire
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General expressions for inductive and dispersive dipolar contributions to the van der Waals interaction
between a molecule and a metallic or dielectric nanowire are given. The nonlocal response of the metal is
modeled by a standard hydrodynamic dielectric function, which provides exact and analytical expressions for
the reflection factors. Numerical calculations are carried out for a HF molecule located at a mean distance from
an aluminum wire. A nonpolar molecule (N2) is then considered in order to avoid any chemisorption effect.
The anisotropy of the dispersive van der Waals potential is responsible for rotational transitions of molecules
passing in the vicinity of the wire, giving rise to a rotational alignment.
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I. INTRODUCTION

The interaction between anatomand a mesoscopic soli
at short and intermediate distances, i.e., from 0.1 up to a
hundreds of nm, exhibits special features originating fr
the small size of the solid itself or of the structures it hold
such as curvature effects, nonlocality of the solid respon
etc.1 These effects are mainly observed at intermediate
tances~1–100 nm! where the interaction is of the van de
Waals ~vdW! type. Retardation effects appearing at larg
distances2 can generally be ignored because of their sm
ness and the difficulty to observe them experimentally. A
tually, the interaction also strongly depends on the inter
state of the atom. For a physisorbed ground-state atom
vdW potential combines with a short-range potential due
the overlap of electronic orbitals, giving rise to a potent
well and either a trapping of the atom or a rainbow effec3

For metastable atoms, the polarizability as well as the v
constant is larger than for the ground state, which stron
affects the elastic scattering by surfaces and modifies
intensities scattered by a nanoslit grating.4 It has been also
shown that for excited atoms the vdW interaction is stron
affected by the solid excitation modes5 and that this interac-
tion can take a nondiagonal character, breaking the atom
state symmetry and inducing fine-structure transitions.6 The
case ofmoleculesis obviously more complex, even for d
atomic molecules to which the present paper will be
stricted, because of additional degrees of freedom assoc
with vibrational and rotational motions. In spite of the inte
est of considering electronically excited metastable m
ecules, such as N2* (3Su

1), in which the vdW interaction
induces vibrational transitions,7 we shall assume here a wel
defined vibrational state and only consider rotational sta
affected by the anisotropy of the interaction, which is jus
fied for ground-state~and less polarizable! molecules. An-
other important difference of molecules compared to ato
is the possibility for heteronuclear molecules to carry a p
manent electric dipole, which gives an additional anisotro
inductive contribution to the interaction energy. From a ge
eral point of view, detailed knowledge of the interaction
molecules of any kind, excited or not, with small-sized sol
0163-1829/2003/67~4!/045407~8!/$20.00 67 0454
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or structures, such as spheres, bubbles, wires, tubes, st
on various substrates, etc., is of great importance in the
derstanding of the physisorption~or chemisorption! on this
kind of surfaces and more generally of the molecular phys
within such confined geometry8—for instance, for a single
molecule under the tip of an optical, photoion, or scann
tunneling microscopy~STM! near-field microscope.9 Up to
now, a great deal of theoretical and experimental effort
been devoted to the study of atoms and molecules in var
confined environments, generally in view to store or tr
them, perform a state selection in collision experiments,
use them in an interferometer. So far, systems of wires
microchips have been developed for atoms and even ato
Bose-Einstein condensates10 and wires, quadrupolar traps
and storage rings for polar molecules.11 While most of these
devices consist of charged electrodes or currents, it is lik
that the van der Waals interaction plays a more and m
important role as the size of such systems, or the distanc
closest approach, is made smaller and smaller.

The scope of the present paper is necessarily limited c
pared to the ambitious program mentioned before. Never
less, it will be seen that the study of simple diatomic groun
state molecules interacting with metallic~or dielectric! wires
of small radius~a few nm! gives insight into essential fea
tures of this interaction. In particular, the evolution of th
rotational states in the vicinity of the nanowire is of intere
insofar as it can lead to a rotational alignment of the trapp
or scattered molecules. The organization of the paper wil
as follows: in Sec. II, the theory of the vdW interaction
molecules, possessing or not a permanent dipole mom
with a metallic cylindrical solid is presented. This gene
treatment, which uses the so-calledeigenmodemethod, leads
to exact and analytical results within the framework of o
hypotheses: namely, no retardation effect, linearity of
response, and hydrodynamic model for the dielectric fu
tion of the solid.12 It is then applied to the calculation of vdW
potential surfaces for some molecule-metal systems. In S
III, these results are used to study the dynamics of molec
in the vicinity of the wire, especially the evolution of rota
tional states. Conclusions and perspectives are finally
sented in Sec. IV.
©2003 The American Physical Society07-1
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M. BOUSTIMI, J. BAUDON, AND J. ROBERT PHYSICAL REVIEW B67, 045407 ~2003!
II. MOLECULE-NANOWIRE van der WAALS
INTERACTION

A. Response of the solid

The metallic or dielectric solid is an infinitely long cylin
der of radiusa, the axis of which isZ. The center of mass o
the molecule is located on theX axis, at a distanceR.a
from the Z axis. The internuclear axisr of the molecule is
oriented along thez axis whose polar and azimuthal angl
referred toX are, respectively,u0 and w0 ~see Fig. 1!, the
laboratory frame for the molecule being~Y, Z, X!. The origin
w050 has been chosen alongY. While higher-order multi-
poles could be easily introduced, for the sake of clarity
shall restrict our discussion todipolemoments: namely, the
permanent dipolem ~if any! collinear tor and a fluctuating
dipole, which are respectively responsible for the induct
(Ui) and the dispersive (Ud) parts of the interaction.

The method previously used in the case of an atom in
acting with a nanowire13 can be used here as well to evalua
the response potential and field of the solid, the main dif
ences, exclusively due to the source term, being the exist
of a permanent dipole~involving a special contribution of the
zero frequency!, and a more complicated expression of t
polarizability. The basic idea in this method is to expand
a given frequency, the potentialF1 inside the solid over a
complete basis set of orthogonal functions adapted to
geometry ~the eigenmodes of the problem!: namely,
Jn(k'r)exp(inw)exp(ikiz), wherer, w, Z are cylindrical co-
ordinates. These modes obey the Helmholtz equation and
submitted to the boundary condition@dJn(k'r)/dr)] r5a
50, which leads to a discrete spectrum of the transve
momentumk' . Similarly, the source and response potenti
Fs,r are expanded over the basis s
I (or K)n(kir)exp(inw)exp(ikiz), where I (or K)n are modi-

FIG. 1. Geometry of the problem. The cylindrical wire the ax
of which is Z has a radiusa. The center of mass of the molecule
on theX axis at a distanceR from the origin. The internuclear axi
r̂ has polar anglesu0 , w0 referred to theX axis. The originw0

50 is taken along theY axis.
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fied Bessel functions. Owing to the linearity of the relatio
ship between the charge density induced in the solid andF1 ,
a bipoint susceptibility function can be introduced, which
expressed in the eigenmode basis as a matrix~diagonal inn
and ki because of the cylindrical symmetry!:
x(ki ,k' ,k'8 ,v). Then boundary conditions atr5a lead to
the determination of the so-calledreflection factors

Dn~ki ,a,v!5
Kn8~kia!

I n8~kia!

Rn~ki!

An~ki!
,

whereRn andAn are the coefficients in the expansions ofF r
andFs , respectively,K8(I 8) being the derivatives of func
tions K(I ). The calculation, already developed in Ref. 1
leads to

Dn~ki ,a,v!52
I n~kia!2kiFn~ki ,a,v!I n8~kia!

Kn~kia!2kiFn~ki ,a,v!Kn8~kia!

Kn8~kia!

I n8~kia!
,

~1!

where

Fn~ki ,a,v!5a (
k' ,k'8 50

1`

Bn~k'!Bn~k'8 !Jn~k'r!

3Jn~k'8 a!En
21~ki ,k'8 ,k' ,v!, ~2!

Bn(k') are normalization factors the detailed expression
which is not necessary here, and

En524px~ki ,k' ,k'8 ,v!1~ki
21k'

2 !dk
'8 ,k'

. ~3!

In the usual case of a nonlocal dielectric function of t
hydrodynamic type,

«~k,v!512
vp

2

v22d2~ki
21k'

2 !
, ~4!

wherevp is the plasma frequency andd the nonlocal param-
eter, anexactandanalytical expression of theFn functions
can be obtained, by a method similar to that already used
a metallic nanosphere:14

Fn~ki ,r,i j!5
j2

j21vp
2

I n~kir!

kiI n8~kia!
1

vp
2

j21vp
2

I n~br!

bI n8~ba!
,

~5!

where b5@(j21vp
2)/d21ki

2#1/2 and i j is a complex fre-
quency.

Just as in the case of an atom in the vicinity of a wire13

the case of a dielectric cylinder is readily found by maki
d50 ~local response of the solid! and using a dielectric con
stant«~v! of a form rather similar to Eq.~4! ~e.g., Clausius-
Mossotti formula!. In that case one obtains again an analy
cal form of the reflection factors, a form which is actual
identical to that already given in the previous reference:

Dn
loc5

@«~v!21#I n~kia!Kn8~kia!

I n~kia!Kn8~kia!2«~v!I n8~kia!Kn~kia!
, ~58!
7-2
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MOLECULES INTERACTING WITH A METALLIC NANOWIRE PHYSICAL REVIEW B 67, 045407 ~2003!
whereI n , Kn are Bessel functions andI n8 , Kn8 their deriva-
tives.

B. vdW potential energy surface

In a general case, once the response potentialF r(r ,v)
induced by a source located at pointr 8, the mth-order mo-
mentum of which isM (m) is known, its successive gradien
En(r ,v) are readily obtained using the so-calle
propagators:15

En~r ,v!52@~2m21!!! #21 nSm~r ,r 8,v!~• !mM ~m!~v!,
~6!

where nSm is a tensor of rank (n1m) and (•)m is a con-
tracted product. As mentioned before, we shall restrict
discussion to the dominant dipolar contributions, i.e., ter
such asn5m51. Hence the source momentum is the p
manent dipolem ~if any! and a fluctuating molecular dipole
The permanent dipole gives rise to the inductive poten
energy16

Ui52
1

2
@~mX!2 1SXX

1 1~mY!2 1XYY
1 1~mZ!2 1SZZ

1

12mYmZ
1SYZ

1 #. ~7!

All terms of 1S1 are taken atr5r 85R andv50. We have

1SYY
1 5

1

p (
n52`

1` E
2`

`

dki

n2

R2 Kn
2~kiR!Gn~ki ,a,0!,

1SXX
1 5

1

p (
n52`

1` E
2`

`

dkiki
2Kn8

2~kiR!Gn~ki ,a,0!,

1SZZ
1 5

1

p (
n52`

1` E
2`

`

dkiki
2Kn

2~kiR!Gn~ki ,a,0!,

1SYZ
1 5

1

p (
n52`

1` E
2`

`

dki

nki

R
Kn

2~kiR!Gn~ki ,a,0!, ~8!

with

Gn5Dn

I n8~kia!

Kn8~kia!
. ~9!

Finally,

Ui52
m2

p
~ I 11I 2 cos2 u01I 3 sin2 u0 cos 2w0!. ~10!

The coefficientsI 1,2,3 ~which are onlyR dependent! are given
by

I 15 (
n52`

1` E
0

`

dki

1

2 S n2

R2 1ki
2DKn

2~kiR!Gn~ki ,a,0!,
04540
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I 25 (
n52`

1` E
0

`

dkiFki
2Kn8

2~kiR!

2
1

2 S n2

R2 1ki
2DKn

2~kiR!GGn~ki ,a,0!,

I 35 (
n52`

1` E
0

`

dki

1

2 S n2

R22ki
2DKn

2~kiR!Gn~ki ,a,0!.

~11!

Finally, the dispersive part of the interaction is16,17

Ud5
\

2p E
0

1`

dj 1a1~ i j!~• !2 1S1~R,R,i j!, ~12!

where 1a1 is the polarizability tensor of the molecule. In th
molecular frame~x, y, z!, whereẑ is alongr , it is represented
by a diagonal matrix of elementsa i , a' , a' , wherea i .'
are the parallel and perpendicular polarisabilities. It is tra
formed into the fixed frame~X, Y, Z! by a rotation involving
the Euler anglesw0 , u0 , 0. Then Eq.~12! becomes

Ud5
\

2p E
0

`

dj~aXX
1SXX

1 1aYY
1SYY

1 1aZZ
1SZZ

1

12aYZ
1SYZ

1 !. ~13!

The elements of1S1 are given by Eq.~8! where the fre-
quency is nowi j instead of zero. Then one obtains forUd an
angular dependence identical to that ofUi :

Ud5
\

p2 ~D11D2 cos2 u01D3 sin2 u0 cos 2w0!, ~14!

where

D15 (
n52`

` E
0

`

djE
0

`

dkiF1

2
~a i1a'!S n2

R2 1ki
2DKn

2~kiR!

1a'ki
2Kn8

2~kiR!GGn~ki ,a,uj!,

D25 (
n52`

` E
0

`

djE
0

`

dki~a i2a'!Fki
2Kn8

2~kiR!

2
1

2 S n2

R2 1ki
2DKn

2~kiR!GGn~ki ,a,i j!,

D35 (
n52`

` E
0

`

djE
0

—y

dki~a i2a'!

3S n2

R2 1ki
2DKn

2~kiR!Gn~ki ,a,i j!. ~15!

Notice that, fora i5a' , the dispersive interaction become
isotropic, as expected.
7-3
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C. Polar and nonpolar molecules in the vicinity of a metallic
nanowire

Inductive and dispersive interactions between a HF m
ecule and an aluminum wire, of radiusa540 a.u., have been
calculated using expressions~10!, ~11! and~14!, ~15!. For the
metal the set of parameters~in a.u.! ~Ref. 16! vp
50.562 66,d50.697 is used. For the HF molecule,16 m
51.78 and a i ,'(v)5a i ,'(0)v i ,'

2 /(v i ,'
2 2v2) ~Drude

model!, with a i(0)55.2, a'(0)53.84, v i51.561, andv'

50.375. Figure 2 shows the dependence of the total v
interactionU on anglesu0 and w0 for R552 a.u., i.e., at a
distanced512 a.u.~5 0.635 nm! from the solid. A strong
anisotropy with respect tou0 is observed (DU/Ū'63.5%)
and a much smaller one withw0 (DU/Ū'6.75%). Foru0
5p/2 the dependence of bothUi and Ud on w0 was ex-
pected: the polarizability of the wire is higher in the directi
of its axis Z than it is in any direction perpendicular toZ.
Hence the magnitudeuUu of the interaction is smaller atw0
50 ~molecular axis perpendicular toZ! than it is at w0
5p/2 ~molecular axis parallel toZ!. This effect is more
marked for the inductive part at larger distances. For
stance, at R5140 a.u. one obtains U i521.0529
31023 meV in the former situation and 23.284
31023 meV in the latter one, whereasUd increases by only
10%. In the mean distance range~10–300 a.u.! the depen-
dence of the isotropic part of the interactionU15I 11D1 on
the distanced follows the lawd23 (110.022d) ~d in a.u.!.
At short distance it is similar to that calculated previously
an atom near a large-radius wire.13 Moreover, the presen
calculation shows approximately the same dependenced
of the anisotropy coefficientsU2,35I 2,31D2,3.

Only the dispersive interaction is present in the case o
symmetric nonpolar molecule such as N2. The calculation of

FIG. 2. HF molecule in the vicinity of an aluminum wire~radius
a540 a.u.). Total (inductive1dispersive) vdW energyU ~in meV!
as a function of anglesu0 , w0 , for R552 a.u.
04540
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Ud for the N2 /Al system has been carried out using for t
metal the parameters given previously and for the molec
~in a.u., at the equilibrium distance!: a i(0)510.286,
a'(0)53.416, andv i5v'51.10. It is seen in Fig. 3 tha
theu0 anisotropy atR552 a.u.~about 30%! is lower than the
previous one, whereas thew0 anisotropy is comparable to
(DU/Ū'5.5%). At the mean distance, the common dep
dence ond of the coefficients, ind23 (110.014d) ~d in a.u.!
also holds for the N2 molecule. This greatly simplifies the
treatment of the dynamics.

III. MOLECULAR DYNAMICS

A. Evolution of rotational states

Let us consider a N2 molecule the center of mass~c.m.! of
which follows, at a constant velocityv, a classical rectilinear
trajectory perpendicular to theZ axis. This statement implies
that~i! a classical description of the c.m. motion is valid, i.
that the de Broglie wavelength is small compared to
range of the interaction; this is widely verified at therm
energies~a few tens of meV!; ~ii ! the deflection due to the
vdW potential is small, which is verified at sufficiently larg
impact parameters. Actually, this second hypothesis is
strictly necessary for the following semiclassical treatme
Indeed, at sufficiently large impact parameters (r.12 a.u.)
the classical deflection angleQ is small enough (Q,15°) to
allow us to consider the internal molecular evolution as t
ing place along a straight line trajectory. Then—and witho
any contradiction—one can use the dependence ofQ on r to
calculate transition probabilities, differential cross sectio
etc., as functions ofQ. A third hypothesis in our treatment i
that the electronic~ground state! and vibrational (v50)
states of the molecule remain unchanged during the collis

FIG. 3. Same as Fig. 2 for a N2 molecule in the vicinity of an
aluminum nanowire (a540 a.u.,R552 a.u.); here,U is a purely
dispersive energy.
7-4
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MOLECULES INTERACTING WITH A METALLIC NANOWIRE PHYSICAL REVIEW B 67, 045407 ~2003!
which appears to be reasonable for not too large incid
energies~in the present caseE0<50 meV). Under these con
ditions the only internal degrees of freedom involved h
areu0 andw0 . They correspond to the rotation of the mo
ecule which will be assimilated to a rigid rotator~more in-
tricate situations could be treated as well along the sa
principles!. Then the rotational wave functionsuJ,M &, where
J is the angular momentum andM its projection on the fixed
Z axis, are simply the spherical harmonicsYJ

M(u0 ,w0). Ow-
ing to the symmetry of the molecule, a single parity ofJ is
allowed, J being even for the electronic ground state. T
angular dependence ofUd @Eq. ~14!# can be written as wel
as an expansion over spherical harmonics:

Ud52$d1Y0
2~ r̂ !1d2Y2

0~ r̂ !1d3@Y2
12~ r̂ !1Y2

22~ r̂ !#%,
~16!

where

d15A4p~D11D2/3!, d254Ap

5
D2 ,

d352A2p

15
D3 . ~17!

Let H0 be the rotational Hamiltonian of the isolated mo
ecule. In the vicinity of the wire it becomesH5H01Ud ,
and the rotational wave functionuc& obeys the time-
dependent Schro¨dinger equation

i\] tuc&5~H01Ud!uc&. ~18!

Expandinguc& over the free rotational states and replacing
Eq. ~18!, one gets for the amplitudesaJM a set of coupled
equations

i\ȧJM5 (
J8M8

^JMuUduJ8M 8&aJ8M8 , ~19!

whereȧ is the time derivative ofa. Using Eqs.~16! and~19!,
the selection ruleM 82M50,62 is readily derived. In order
to simplify the resolution of Eq.~19! and avoid useless com
plications we shall assume that the initial rotational state
u0,0&. Under such conditions the problem reduces to fo
states: namely,u0,0&, u2,0&, u2,12&, u2,22&. In fact, states
u2,62& obey the same differential equation. Then~provided
that the initial conditions are adequate!, only the state
(1/&)(u2,12&1u2,22&) has to be considered, which re
duces the number of states to 3. These states will be lab
1, 2, 3. As all coefficients inUd have the same dependen
on d, this also holds for its matrix elements which can
written in the form f @d(t)# Wjk , all termsWjk being con-
stant. Let us introduce the new variable

u~ t !5E
2`

t

dt8 f @d~ t8!#, ~20!

whered5@(a1r)21v2t2#1/22a, with r5d(0) the impact
parameter. At mean distancesf '(12/d)3 (110.014d)21

(d512 a.u. being simply an arbitrary reference distanc!,
then Eq.~19! reduces into
04540
nt

e

e

is
r

led

i\ȧ j85 (
k51

3

Wjkak , ~21!

where aj85daj /du. As the elementsWjk are constant,uc&
can be reexpanded over the time-independent eigenvecto
W with new amplitudesbn(u) given by

bn~u!5bn~0!exp~2 iwnu! ~n51,2,3!. ~22!

The wn2s are the eigenvalues ofW. With our parameters
we find ~in a.u.!

w1523.835 03, w2522.130 92, w3522.034 39.
~23!

The initial valuesbn(u50) are derived from those ofaj by
a simple rotationR:

b~0!5R21a~0!, ~24a!

b anda being the column matrices of amplitudesbn andaj .
Finally, we obtain

aj~u!5(
n

Ajn exp~2 iwnu!, ~24b!

whereAjn are constant coefficients.

B. Transition probabilities and alignment effect

It is worth noticing that the dependence of the amplitud
on both the velocity and the impact parameter is entir
contained inu(t). From Eq.~20! it is seen that the initial
conditions att52` correspond tou50, whereas the fina
amplitudes att51` correspond to the finite upper limit o
u. Figure 4~a! shows an example of the time evolution
populationsuaj u2 at impact parameterr515 a.u. and an in-
cident velocity of 609 m/s~i.e., an incident energiesE0
528.0 meV), with the initial conditionsa151, a250, and
a350. Transition probabilitiesua2u2 and ua3u2 are shown in
Fig. 4~b! as functions ofr. They are clearly different from
each other: in the present range ofr, ua2u2 is oscillatory,
whereasua3u2 is a monotonic decreasing function~actually in
the whole range ofr, the behavior ofua3u2 is similar to that
of ua2u2 apart from scaling factors!. This difference means
that molecules emerging in statesJ52 are rotationally
aligned. The degree of alignment, defined asa5(ua2u2
2ua3u2)/(ua2u21ua3u2), is shown in Fig. 4~c! as a function
of the impact parameter. It is an oscillating function tendi
to 11 as r→`. The minima are sharply peaked becau
ua3u2 is much smaller than the amplitude of oscillation
ua2u2.

Due to the close values of the diagonal terms ofW and to
the smallness of the rotational energy~;0.4 meV for J
52) compared toE0 , the hypothesis of a common trajecto
governed by a mean vdW potentialU is justified. For r
.12 a.u. the~small! classical deflection angle is given by18

Q~r!'2
2r

E0
E

0

`

]RU
dY

R
, ~25!
7-5
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M. BOUSTIMI, J. BAUDON, AND J. ROBERT PHYSICAL REVIEW B67, 045407 ~2003!
whereR is the distance of the molecule center of mass to
Z axis andŶ is the incident direction. FromQ~r! the differ-
ential equation is readily derived:ds/du5@]rQ#rC

21 where

rC is the ‘‘classical’’ impact parameter for whichu
5Q(rC). Inelastic total cross sections can be calculated
well using s1,2(3)5*0

} ua2(3)u2dr. At v5609 m/s one ob-
tainss12'16 a.u. ands13'1.4 a.u. Notice that these cros
sections have the dimension of a length since they are
plicitly referred to a wire of unit length. Figure 5~a! shows
the final populationsua2u2 and ua3u2 as functions of the de
flection angle. AsQ is a monotonously decreasing functio

FIG. 4. N2 molecule colliding with an aluminum nanowire (a
540 nm) at an incident velocity of 609 m/s.~a! Time evolution of
rotational populations; timet is in a.u. (1 a.u.52.419310217 s).
Solid line: population ua1u2 in state u1&5u0,0&. Short-dashed
line: ua2u2 in stateu2&5u2,0&. Long-dashed line: ua3u2 in state
u3&5(1/&)(u2,12&1u2,22&). ~b! Final populationsua2u2 ~solid
line! and 103ua3u2 ~dashed line! as functions of the impact param
eterr. ~c! Degree of alignmenta5(ua2u22ua3u2)/(ua2u21ua3u2) as
a function ofr.
04540
e

s

-

of r, the former population regularly oscillates withQ,
whereas the latter one is monotonously increasing. This le
to an alignment degreea which oscillates as a function of th
angle@Fig. 5~b!#, uau reaching values close to 1 in the prese
small-angle range. As far as smaller impact parameters
considered, an anisotropic repulsive contribution must
added to the vdW potential. This repulsive potential can
estimated by summing, over the metal lattice, atom~N!–
atom ~Al ! interactions of the formC12/,12, where, is the
N-Al distance andC12'1.203107 a.u.,19 the minimum dis-
tance between two Al atoms in the lattice being 4.83 a.u. T
total potential exhibits an anisotropic potential well. Foru0
50 it is located at 10.3 a.u. from the surface with a dep
«m52.5 meV, and foru05p/2, w05p/2, at 8.0 a.u. with a
depth of 5 meV. In the present range of impact parame
(r.12 a.u.) the repulsive part is negligible. Neverthele
this well a priori produces rainbow effects at an angle20

uQu'2 «m /E0'20° ~on average! larger than those consid
ered in our discussion.

If one neglects transitionsJ52→4 ~otherwise, the size of
the matrix considered below gets larger!, then the previous
treatment can be carried out for any initial conditions, lea
ing to the linear relationship

a~ t51`!5Sa~ t52`!, ~26!

whereS is the scattering matrix. It is given by

S5R21ER. ~27!

FIG. 5. ~a! Same as Fig. 4~b!, as functions of the deflection
angleQ ~in deg!. ~b! Same as Fig. 4~c!, as a function of the deflec
tion angleQ ~in deg!.
7-6
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E is a diagonal matrix the elements of which areEnn
5exp(2i wnuM). Hence,

Sjk5(
n

s jknEnn , ~28!

wheres jkn are constant coefficients~i.e., independent ofv
andr! given in Table I.

Here a wire of a very small radius~40 a.u.! has been
deliberately chosen to better evidence the effect of the n
locality of the response on the vdW interaction. Obvious
an experiment with a wire of such a small size is quite u
pian. One may notice, however, that monolayer carbon na
tubes are not so far from such sizes. Since the anisotrop
the potential surface persists even for wires of a much la
radius ~e.g., a few hundreds of a.u.!, similar collisional ef-
fects should be seen, with larger cross sections, but with
smaller angular range~e.g., 10 times smaller, which keep
feasible an angular analysis!. In order to enhance the scatte
ing signal, a realistic experiment should be carried out wit
beam of molecules traversing a transmission grating con
ing of many parallel identical wires. Under such condition
provided that the transverse coherence length is larger
the grating period, theinelastic diffraction of molecules
could be observed, which would provide a higher sensitiv
to inelastic processes and alignment effects. Owing to
rather small deflection angles involved here, a reflection g
ing consisting of parallel wires on a dielectric substra
should be used as well. This configuration would need ho
ever a new calculation of the interaction potential.

IV. CONCLUSION AND PERSPECTIVES

We have calculated anisotropic inductive and dispers
contributions to the vdW interaction between a molecule a

TABLE I. Coefficientss jkn appearing in the scattering matrixS
~see text!, in atomic units.

j, k n51 n52 n53

1,1 0.347870 0.062153 0.589970
1,2 0.476294 20.045698 20.430595
1,3 26.09931024 20.237069 0.237679
2,2 0.652129 0.033601 0.314271
2,3 8.35131024 0.174305 20.173471
3,3 1.0731026 0.904247 0.095752
a

s,

ni
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a metallic nanowire in the mean distance range~12 a.u. up to
a few hundreds of a.u.!. For the sake of clarity the presen
calculation has been limited to the~dominant! dipole-dipole
terms, but higher-order multipole contributions could be c
culated as well along the same principles. It should be e
phasized that owing to the ‘‘eigenmode’’ method used he
exact and analytical expressions of the reflection factors
derived. In other words, the uncertainties remaining in o
vdW potential energy surface could only come from~i! the
validity of the hydrodynamic nonlocal dielectric function o
the metal and the parameters in it and~ii ! the molecule per-
manent dipole, if any, and polarizabilities.

The anisotropy of the potential surface is responsible
rotational transitions. This has been shown for nitrogen m
ecules~assimilated to rigid rotators! colliding with an alumi-
num nanowire in the thermal energy range. In these tra
tions, selection rulesDJ50,2, DM50,62 hold. Starting
from the lowest rotational state (J50) we show that, be-
cause of the specific angular dependence of the pote
~i.e., the symmetry breaking of the molecular states indu
by the surface!, statesu2, 0& and u2, 62& are unequally popu-
lated, i.e., that molecules in statesJ52 are aligned. The
degree of alignment gently oscillates, with a period of ab
5°, as a function of the deflection angle, an effect that sho
be easily observed in an experiment.

As it can be seen in the above example@Figs. 4~b! and
5~a!#, the transition probabilities fromJ50 to J52 are
rather important~a few 10%!. This means that the nanowir
plays the role of an efficient beam splitter, a role that can
exploited in a molecular interferometric device similar to t
so-called Stern-Gerlach atomic interferometers.21 In our cal-
culation it has been assumed that all molecules in an incid
monokinetic and parallel beam are in stateu0, 0&. This selec-
tion ~in internal state and velocity! is equivalent to thepo-
larization stage of a Stern-Gerlach interferometer. It can
realized, for instance, by using a supersonic nozzle exp
sion. Similarly, one final rotational state needs to be selec
~theanalyzerin a Stern-Gerlach interferometer!. This can be
achieved, for instance, with the use of an inhomogene
electric field22 or with a laser-induced transition.23
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