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Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells
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Electron scattering on both neutf) and chargedX ™) excitons in quantum wells is studied theoretically.
A microscopic model is presented, taking into account both elastic and dissociating scattering. The model is
based on calculating the exciton-electron direct and exchange interaction matrix elements, from which we
derive the exciton scattering rates. Scattering by electrons is found to be an efficient process even for very low
electron densities. In particular, the charged exciton linewidth due to electron scattering is larger than that of
the neutral exciton, partially because of the larger contribution from the dissociating process. Calculated
reflection spectra are then obtained by considering the three electronic excitations of the system, namely, the
heavy-hole and light-hole 3 neutral excitons, and the heavy-hol& tharged exciton, with the appropriate
oscillator strengths.
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[. INTRODUCTION electrons in the context of cavity polaritohslere we extend
our model, to incorporate both excitons and trions, taking
The broadening of exciton emission lines due to electroninto account elastic and inelastic scattering processes. The
exciton collisions was observed in bulk GaA#n experi-  model is based on calculating the exciton-electron direct and
mental comparison between exciton-electron and excitonexchange interaction matrix elements, from which we derive
exciton scattering mechanisms in bulk GaAand in GaAs the exciton scattering rates. These are integrated over all final
quantum wells(QW's),>* showed that the exciton-electron excitonic states, resulting in the exciton linewidth due to
scattering efficiency is an order of magnitude larger than thascattering, as a function of its initial momentyor energy.
of the exciton-exciton process. Both scattering processes afe major difference between the exciton and trion scattering
enhanced for the two-dimension&D) excitons as com- lies in the charge of the latter, which results in a divergence
pared to bulk excitons. Theoretical calculations of elastic anaf its matrix elements in the limit of zero transferred momen-
inelastic exciton-electron scattering were reported for bulkkum. This divergence, originating from the infinite range of
semiconductorsand for QW's® The semiclassical treatment the Coulomb potential, is treated by applying the Lindhard
of the latter neglected the exchange term which was showmodel for the potential screening. The screening action com-
recently to be the dominant term in QW's. plicates the trion linewidth dependence on the electron den-
The existence of the negatively charged excitgn sity; thus, while for electron densities larger than 5
(trion) was proposed by Lampéras the semiconductor ana- x 10° cm™2 the trion linewidth due to electron scattering in
log of the hydrogen ion. Due to their confinement in thea GaAs QW aff=5 K is comparable to that of the neutral
growth direction, 2D trions have a binding energy which isexciton, for a very dilute 2DEG r,=5%10° cm ?) the
an order-of-magnitude larger than that of the bulk tridns. trion linewidth becomes roughly an order of magnitude
This fact facilitated the observation of trions in Cd{lRef. larger than that of the neutral exciton. Inelastic scattering is
10) and in GaAs(Ref. 1) QW's containing a low-density also much more efficient in the trion’s case, due to its smaller
two-dimensional electron ga@DEG). Theoretical calcula- binding energy. The calculated reflection spectra are obtained
tions of the binding energy of both negativelX{) and by considering the three electronic excitations of the system,
positively (X™) charged excitons were performed using vari-namely, the heavy-hole and light-holeS heutral excitons,
ous ftrial functions, showing that only the singlet state isand the heavy-hole 2 charged excitorgtrion), with the ap-
bound?*213Particular attention was devoted to the modifi- propriate oscillator strengths. A qualitative validation of our
cation of the trion’s properties in the presence of strong magealculations is given by considering photoluminese(fel)
netic fields. In this limit, theX™ binding energy is increased, measurements that were done on a mixed type-l—type-II
and the electron spin triplet state becomes bound as'kll. GaAs/AlAs QW (MTQW) structure’
was also observed that the dependence on the magnetic field The paper is organized as follows. In Sec. Il, we present
of the X~ andX™ binding energies, as well as their Zeemanin detail the model for the neutral exciton-electron scattering.
splitting, differ drastically(while being nearly identical at In Sec. lll we consider the trion-electron scattering. First we
zero magnetic field™ construct the trion’s wave function, which is used in the ma-
While these aspects of the trions were extensively studiedrix elements calculations. We then treat the divergences that
there are very few reports on their broadeningoriginate from the infinite range of the Coulomb potential, by
mechanism&/81n this paper we present a theoretical modelapplying the Lindhard model for the potential screening. The
for the scattering of both neutral and charged excitons witheffect of the screening is discussed in the context of the trion
electrons in QW's. This paper continues our previous worKinewidth dependence on the electron density. In Sec. IV we
which introduced neutral excitons elastic scattering withuse our model to calculate QW reflection spectra and discuss
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their relevance to the available experimental data. A sumThis approximation is quite accurate for almost all practical
mary and conclusions are given in Sec. V. In Appendix A wethicknessed.. Calculating the binding energy of the 1S ex-
provide some details of the exchange integral calculation fociton in a GaAs QW of widthL=200 A, we find E,
the neutral exciton-electron scattering. Finally, a derivation=6.73 meV,\ =150 A (E,=7.49 meV,A=133 A) for the
of the trion binding energy, using a Chandrasekhar-type triaheavy-hole(light-hole) exciton. These results, obtained with

function, is given in Appendix B. our single parameter trial function, are quite close to those
obtained in Ref. 27, which took into account finite QW bar-
Il. AMICROSCOPIC MODEL FOR EXCITON-ELECTRON riers and anisotropic masses.
SCATTERING We now consider a state of a single exciton with an in-

plane CM momentunk, in the Fermionic Hilbert space of

In this section we present a detailed description of th&ectron-hole pairs, using the notations of Tassone and
exciton-electron scattering, considering separately the elastig; mamoto!® It is a superposition of wave functions with

process, for which the exciton remains bound, and the inelasjifrerent electron momentk, and electron and holecoor-
tic process, where the exciton breaks into an unboundjistes given by

electron-hole pair.

A. Elastic scattering |kx>:k2 f dzedzh¢2kx+ kl(Ze-Zh)CJL kl,zedlx+ kl,zh|0>1
1

We first construct the excitonic wave function to be used (2.9
in the scattering matrix elements calculations. Separating the + t . .
coordinates in the QW plane ¢ y) from the perpendicular Wherecy . (di ) is the electron(hole) creation operator
coordinate £), and denoting the electron and hole in-planewith in-plane momentunk, and z, (z,) coordinate, and
momenta byk; andk,, respectively, we write the in-plane ¢i(ze,zn) =M 1+ (AK)2] *2x(ze) xn(zn) is the in-plane
Fourier transform of the exciton wave function Fourier transform of the exciton wave function. A state com-
DL(re)sze),(rny»zn) 1y prising an exciton and an unbound electron hawp@ndz,

will be written as

1
Cbklykz(ze,zh)=zj d2re||d2th<I>[(re”,ze),(th,Zh)] |k y 2 Jd o . ) . :
; = @ Zs,Z z
Xe*i(kl'reu*kz'rhn), (2'1) X e> o Z,07, ch’ kx+k1( e14h wke( C

where A denotes the QW surface area. Transforming to XCikl,zedlzx+kl,zhcle,zc|0>v (2.5
center-of-masgCM) and relative coordinates in the QW . ] .

plane ®|=arg|+ Bry|,f[|=Te|—Th, Wherea=m¢/M,, B where iy (z) is the electron wave function. Applying the
=1—a, andm,, M, are the electron and exciton in-plane Coulomb interaction operatorge., Ve, to this state, we
effective masses, respectivelwe can decompose the exci- have for the electron-hole and electron-electron interactions
ton wave function into an envelope functio#(r,ze,z),

and a free motion part related to the in-plane CM coordinate,

Denotingk, as thepin-plane CM momenF:um we find Verl kx;ke>:k§h dzedz,dzVq, (20— 2c)

1 <! b* * T T
Dy, 1 (2o )= | PRETO(1) 20120 kst (Ze (2 Bz

T * * T
@ik Rj@—ilR} (kg ko) + 1) (Bky — akp)] XChgz, T ¢‘1’kx+ kl(Ze ’Zh)wke(zc)c_kl'ze
+ +
= 6k K1~k u, ol (ZesZ). (2.2 XAy, kg -0y 2, Cherag 2} 0): (2.69
We use the simplest exciton wave function for the excito

ground states(r | ,ze ,zp) = Nxe(ze) xn(zn)e "I™*, whereA” nVeEIkX;ke>:k%l J dzdz,dzeV, (ze=2c)
is a normalization factor and is a variational parameter

associated with the exciton Bohr radius in the QW, which is X ¢§kx+ kl(Ze,Zh)¢§e(Zc)
fixed by maximizing the binding energy of the excitdhive ) . )
note that the use of a wave function separable andr , ><C_kl_ql,zedkarkl,zthe+ql,zc|0)- (2.6b

facilitates considerably the calculation of the scattering ma- _ _ _
trix elements, although it is strictly justifiable only for nar- The first term in Eq(2.63 represents the Coulomb interac-
row well structures. Assuming perfect confinement of election between the constituents of the exciton, thus contribut-
trons and holes in the QW, and taking thaxis origin in the  ing to its self-energy, and can be discarded in the calculation
center of the QW, the confinement functions are of the scattering matrix elements. In E¢R.63 and (2.6b),
Vg, (2)== (2me?/Aeyq,)e %1% is the two-dimensional Fou-

2.3 rier transform of the Coulomb interaction, whefeis the

' QW area, and the plugninug sign is used iNVge (Vep).

cogmz/L) |z]<L/2

Xe(ze):)(h(zh): 0 |Z|>L/2
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Using the anticommutation relations for the fermion operators, one can easily find the scattering matrix elements to be
<kx+ a; ke_ q|Veh| kx ;ke> = kE f d Zed Zhdzc[vq(zh - Zc) ¢a(kx+ q)+ kl(ze ,Zh) ¢ka+ kl(ze ,Zh) 'pke—q(zc) ’ﬁkce( Zc)
1

Vi rke-a(ZhZ0) Pak vk, - pa( Ze 1 Zn) Dok +-q -k (Ze 1 Z0) Y~ q(Ze) ¥ (2Z0) ], (2.7a

<kx+ a ke_ c1|Vee| kx ; ke> = kE f dZethdZC[Vq(Ze— Zc) ¢akx—ﬁq+ kl(ze vzh) ¢ka+kl(ze ’Zh) ‘r//ke—q(zc) l/fife(zc)
1

Vi +ke-a(Ze™ Ze) Pak — pa+ky (Ze 1 Zh) P +k,(Ze 1 Zn) i~ q(Ze) Y (Z0) 1. (2.7b
|
The first term in each of Eq$2.7) contributes to the direct L2 L2 0 L+2g!
(classical Coulomb interaction and the second contributes to J_ |_/2d J_ led = J_ L/ZdZ' f_ oy dz
the exchange matrix element. The direct term reads (L+2z)
L2 L-2z7'
30\2e2 [LI2 +J dz’f , dz,
V@)= [ dzdzgz, [ dige e o Jog-an
€oAL7q)-L2 and performing the integrations results in the direct term
X[9(NBa—ki|)—g(Meq+ka|)Ig(Nky) RN
X co(mze/L)co(mzy/L)co(mz. /L), (2.8 Varld)= NE h(Aa)[g(ABa/2) —g(Naq/2)],  (2.12
0
where

wherelL is the QW width,\ is a variational parameter asso-
B 21—3/2 ciated with the exciton Bohr radius in the QW, and we have
g(ra)=[1+(Aa)7] (2.9 defined the dimensionless function

is a dimensionless function. We note that the electron wave

3 5
functions in the QW plane are absent, as they contribute, 5(La) + 3(La)

e t-1+Lg+

together with the in-plane center-of-mass part of the exciton 872 3274 2.13
wave function, a fixed phase factor which is unimportant for h(\q)= 3 P 2.1
our purposes. The momentum integral is a simple convolu- (@) 1+(La/2m)]

tion and can be readily evaluated, It is evident from Eq(2.12) that the direct term is identically

zero for equal electron and hole massas=(3=0.5). Simi-

larly, h for th h t
fdzkl[g(hlﬂq—kll)—g(hlaq+kll)]g(>\k1) arly, we have for fhe exchange term
8e’\°
€oAL?

X[g(Aky+a—Ak|)—g(A[a—AkD],

Vel AK,Q)=— f 02k h(\kp) GN Ko + g — AK])

! 2 =2 . )
:mj d2pg?(p/N)[explip- Bg)—expip- aq)]

T (2.19
=— 2)— 2 2.1
sz[g(xﬁq/ )~ 9(haa/2)], (219 where we have definedk=k.— ak,. The exchange term
(2.14) is computed numerically, however, its angular part can
where be calculated analyticallsee Appendix A It is convenient
to transform to dimensionless direct and exchange integrals
Bpin)= 2o oo CREI
A 2y 3
2 e\
is the exciton spatial wave function in the QW plane. In V:; eAL2
order to evaluate the integrals, we change to the coordi- 0
nates The direct and exchange integrals are plotted in Fig. 1 as a

function of the transferred momentum for the caseAk
, =0, where the angular dependence gf disappears. Ag
1=Ze— 2, Z = E(ZeJr Zc) —0 the direct integral approaches zero, while the exchange
integral has its maximun(this is also the case for exciton-
which implies the following change in the integration limits: exciton interactiot?). In the general case, the exchange in-
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FIG. 1. Calculated direct and exchange integrals vs transferred ) ) )

momentum. The inset showsl 4, on an expanded scale. FIG. 2. (a) Heavy exciton ¥,=0.177,) and light exciton
(M,=0.306m,) linewidths due to electron scattering for a 2DEG

tegral is a function of the transferred momentgnthe mo-  With ne=5x 10° cm™2, as a function of the exciton initial in-plane
mentum difference Ak (which can be regarded, for momentum, af =80 K. (b) Same aga) at T=5 K. (c) Linewidth
convenience, as the in-plane momentum of the colliding®f Néavy-hole exciton with initial momentuk=0, as a function
electron in the rest frame of the excijprand of the angle of N, for the two temperatures considered.
0=/ (q,Ak). The exchange interaction term has the follow- 1
ing f_eatures:_(i) The interaction favors_ the _casq>=Ak. * = [q(My+me) + 2k,m,cosy]. (2.17)
Physically, this means that the electron is inclined to transfer 2M, coso
as much momentum as possible to the exciton, preferably i
the same directior(ii) The interaction retains its strength for
quite Iarge_ values_ o) (or Ak) even th(_)ugh 'Fhe excitonic Wy o Ky— Kyt Q)
wave function vanishes much more rapidly with momentum.
(iii) The differential cross section is largest fé=0 and A [ o [VartVed?d(ke—kg)
decreases to a minimum for back scatterifg-(r). = EJ eTdE([ko—q) dEa(ky) ke=szfd(ke)

In the above we have disregarded the electron spin degree e _ &€
of freedom. Considering parallel spiftsiplet configuration dke dke
will retain the sign of the exchange term with respect to the X[1—f(|ke—al)]
direct term, whereas for antiparallel spifssnglet configura- fat1%e
tion) the sign would be reversed. We note that the spin con- Am, (27 ds k% ,
figuration is irrelevant in this case, since the direct term is =——| ——= —|Vairt Vexd 0.Ky.KE ,0,0)|

3 e
mh3Jo [cosd| q
contributions from both singlet and triplet configurations. * *
. i . X feg(KE)[1—frg(|KE — , 2.1

Next we calculate the scattering rate of an exciton, with ralke )l r(lke —al] .18
an initial in-plane momenturk,, to an excitonic state with wheref(ko) =[e(Eelke) ~#)’keT+ 17171 s the electron Fermi-
an in-plane momenturk,+q. The exchange matrix element Dirac distribution function. In the two-dimensional case that
(2.149 depends on five variablesk,, k.,q, cosé, cose, we are considering, the chemical potential ia

where we have define@i= 2 (k, k. +q). Itis convenientto =kgT In(eF1’6"—1), and we assume that the Fermi energy is
transform from the angle®y and ¢ to the anglesy given by the free 2D electrons valuB;= m#2n./m,. We

Fhe scattering rate is then found using Fermi’'s golden rule,

much smaller than the exchange term. This results in similar

=/ (ky,q) and 8=~ (ke,q):%° note that in the high-temperature limi;<kgT, the Fermi-
Dirac distribution is practically classical, and that for low
ke cOSd— ak, cosy electron densities, the chemical potential becomes negative.
cost= (Ak#0), Using the relationg2.15), the integrand in E(2.18 can

2, 2.2 "
Vet a?l,— 2akyk, cog v 6) be expressed as a function of the variables:

ky,q, cosy, cosé. The exciton linewidth due to electron scat-
Kyt qcosy (k#—q). (2195 tering is calculated by integrating over all final excitonic
K2+ g%+ 2k,qcosy states

Cos¢p=

It can be verified that for the special casekgf0, we have hA
#= 6 and ¢=y. Conservation of energy and momentum for I'yo(ky) = —2f gdqdyw,.«ky,qg, cosy). (2.19
the exciton-electron scattering process reads (2)

Al — Figures 2a) and h show the heavy-hole excitonM
E (|ky+a|)+Eq(|k =E,(ky) +Ed(ky), (2.1

ikt A+ Eullke—a) =Edko+Elky). (219 =0.177,) and light-hole exciton If1,=0.306m) line-
whereE, (E,.) is the exciton(electron kinetic energy. This  widths atT=80 K andT=5 K for n,=5x10° cm 2. The
equation is satisfied with large linewidths obtained for relatively low, reflect the
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. 462)\4 2 3/2
ky ke +q-K VI (K, a,k ko) = — (—W) h(NK'" = kel )[g(N | arky
60L2 A
Xe
. / +g—k'|) —g(\aky+g—ke|)],

K (2.20b

co—m»

whereg(\q),h(\q) are given in Eqs(2.9 and (2.13), re-
€e spectively. We note that contrary to the elastic-scattering
case, here the direct and exchange matrix elements are com-
parable. In order to calculate the scattering rate we first in-

k troduce energy-momentum conservation
ke e—4q

Ex(ke) +Ee(ke) = Ept En([ky+a—k'|) +Ee(K')

+Ee(|ke_Q|)v (2.21
high efficiency of the electron-scattering mechanism. This ) ] o )
should be compared to an exciton linewidth 0.2 mev ~ WhereE, is the exciton binding energy. Denoting the angle
for acoustic phonon scattering @t=80 K. The larger line- v=Z(k4,k") together withy,5 which were defined previ-
width obtained aff=5 K [Fig. 2(b)] is explained by notic- ously, this equation is satisfied with
ing that the exciton-electron interaction matrix elements fa-
vor small energy-transfer transitions. Thus, at high 1 2BE,m,
temperatures, the electrons have too high energy to be effelss :2,8q C0SS

FIG. 3. Electron-exciton inelastic-scattering scheme.

+(aky)?+q?+k'?

tive scatterers. Decreasifighus increases the scattering rate h?

until the electron gas becomes degenerate, and fewer final

states are available for the scattered electrons. In Fiyil2e +2a[kyq cosy—k'k, cosv—k’'q cog y— v)]) .
heavy-hole exciton linewidth &,= 0 is plotted as a function

of ng for T=5 and 80 K(the light-hole exciton linewidth (2.22

exhibits a similar behavigr It is seen that while afl

=80 K the linewidth amplitudes scale practically linearly The scattering rate is then calculated to be
with n, for a large range of electron densitiésp to n,
~10" cm™?), the linearity region atT=5 K is much i A’m, (k'dK'dvds ks Lo
smaller. This linearity threshold seems to be in accord with Wie(Kx—Kx+a)=— 3f Cosa] F' dir = Vexd

the onset of the phase-space filling effect which becomes A

noticeable at higher densities and effectively enlarges the *\r]— * _ — ’

exciton Bohr radgi’u§.1 As the temperature decréases,?he ef- X fig(ka)[1—fra([ke —aDI[1—fu(k")], (2.23

fect of phase-space filling becomes important at a muchvhere the+ (—) sign between the direct and exchange ma-
lower electron density. We note that the functional depentrix elements corresponds to the singleiplet) electron spin
dence of the linewidths on the initial exciton momentum isconfiguration. For an unpolarized electron gas, an averaging
almost unchanged within the linear regime. Increasmpg over the two spin configurations must be performed, in order
further results in a shift of the maximum linewidth frokg  to take into account the contributions of all the electrons to
=0 to higher momenta. the exciton linewidth due to dissociating scattering:

B. Exciton dissociation scattering — 3I‘di3’_ ‘ 1 — 05
We now consider the case when the electron-exciton scat- el ko) 4 xe ( X)Jr4 xe (K. (224
tering results in dissociation. This scattering process is de- . dis.. o _
picted schematically in Fig. 3. The initial state of the systeml xe (K«) [I'xe'(ks) ] denotes the exciton linewidth contribu-
is given again by Eq(2.5) while the final state is that of tion from the singlettriplet) spin configuration, and both are
three free particles, symbolically written ak.—q;k’;k,  calculated using E¢2.19.
+q-— k’>, Whereq is the momentum transferred from the Figure 48) shows the heaVy'hOIe exciton linewidth due to
free electron to the electron-hole pair, akdis the second dissociating scattering at.=5x10° cm~?, and T=80 K.
electron momentum. Calculating the Coulomb interactiorAlthough the magnitude of {3(k,) is of the same order as
matrix elements between the initial and final states of théhe elastic-scattering linewidtfcompare to Fig. @], its
system, we again obtain direct and exchange interactiofinctional dependence on the exciton in-plane momentum is
terms: very different. In particular, we note that the maximal line-
width is obtained at a very large momentua &5\ 1).

dis L 4ei\t(2m|3? , This is due to the fact that in order for an exciton with ini-
Vair(Kx,q.k") = el 2 A hOxa)[g(Makya—k']) tially small k, to be ionized, it must scatter on an electron
0 with energy large enough to overcome its binding energy.
—g(\|ak,—k'])1, (2.20a  This is less likely as the temperature decreases, as is evident
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_ 2 —r/\
d(r)= \/me : (3.29

[

10 @ T;SOK

>

Linewidth (meV)
[

0.5

- 20 40
E nx10° cm?) 8(r)= 2 Y (3.2b
s 0 : - V2™ |
= 10t 5
é z and the trion wave-function normalization factor is given by
.- = |
- E
0.5F 5 . . S 2 3/2 1
ngx10°(Cm'2) Mr_ E r—zli P y (33)
0 1 1
0 10 20 30
K where
FIG. 4. Heavy exciton1,=0.177%n,) linewidths due to disso- _ n_ 4NN
. . . : . . K=<¢|¢ y=—. (3.4
ciating scattering with electrons, as a function of exciton initial ()\_H\/)z

in-plane momentum, witm,=5x10° cm™2 at (a) T=80 K, and
(b) T=5 K. The insets show the maximum linewidth dependenceThe trial function(3.1) was used in Ref. 23 for the case of a
onn,. two-dimensional negative-donor centge., m,— oo limit).

In addition, these authors performed the binding-energy cal-

from Fig. 4b), whereI‘d‘S(kx) is plotted atT=5 K. The culations using a more complicated version of E§.1)

. e x-€ . which includes a correlation tergwith an additional varia-
insets in Figure 4 show the maximum valuesf‘dﬁ(kx) VS tional parameter The variational parametebs,\’ are cal-

n.. As in the elastic-scattering case, thelli.near dependencg,ated by maximizing the trion binding energy for the two
on n, holds for much larger electron densitiesTat 80 K. spin configurations. The details of the binding-energy calcu-
lation are given in Appendix B, resulting inEp
Ill. CHARGED EXCITON (TRION)-ELECTRON =0.985 meV, A =143 A, \'=300 A (Etr:0'7§5“ev'. A
SCATTERING =151 A, \'=7650 A) for the singlettriplet) spin configu-
ration, whereEy is calculated with respect to the heavy-hole
At low temperatures and low,, charged excitons are 1S neutral exciton energy. We note that the triplet configu-
formed. In this section we calculate the trion linewidth due toration is barely bound, in accordance with the experimental
scattering with free electrons. Three scattering processesbservations, thus it can be disregarded. Comparing with the
are considered: elastic scattering, where the trion remainsiuch more elaborate treatment of Is#et al.'® our results
bound, capturing scattering, where the heavy-hole excitoare fairly accurate, giving us the confidence to proceed in
captures a free electron to form a trion, and dissociatingalculating the trion-electron scattering matrix elements us-
scattering, where the trion dissociates into a heavy-hole exng the wave functior(3.1).
citon and an extra free electron. The latter process is impor- We construct the state of a single trion with an in-plane

tant due to the small binding energy of the trion with respectCM momentunk,, similarly to that of a single excito(2.4):
to the exciton. We neglect the scattering in which both elec-

trons become unbound. In order to facilitate the matrix ele- ¢
: : : lky= > dzdz,dz,¢ (21,22,2p)
ments calculation, we consider a simple two parameter VT, 1= akitky akirkpi T10E20%h

Chandrasekhar-typetrial function for the trion, 1.5

S]_T CSzT

* T
X &5(sy asz)c,kl'zl *kgvlgdkﬁkl*kzvzhlo% (3.5

¢tr(r1h!r2h121!22!zh)
where we have added the spin index to the electron creation

= N2 X2 @ (T2 (2 operators, and denotedx,—=me/My, and £s(s:1.s2)
A =(S|s;,s,) as the projection of a generic spin configuration
, of two electrons on the singlet spin configuration. The in-
¢ (110 (ran)], 3.1 plane Fourier transformed trion wave function in E8,.5) is
given by
where the+ (—) sign applies to the singldtriplet) spin
configuration. In Eq(3.2), riy=|r;—ry/,(i=1,2) are the in- DK, k,(21:22,20) = NuXe(Z1) Xe( 22) Xn(Zh) i, b,
plane coordinates of the two electrons with respect to the (3.6

hole in-plane coordinate; are the electrong coordinates,

and x«(z), xn(zy) are the confinement functions in thze where

direction, taken to be the same for all constituefs. SN2 1

(2.3)]. The two electron orbitals are given by the normalized o= [em (3.7
functions A

[1+(Nk)?]¥2
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bl [87N'2 1
k A [1+()\/k)2]3/2'

A state comprising a trion and a free electron hawgg z,,
ands, will be written as

(3.7b

|kt;ke>: 2
kq ko

S1.,52,S¢

d2,02,d2,07,¢5(51,S2)

trx *
X Dok +ky ke ko(Z1:22:Zn) P (Ze)

sit syt + set

X kal e ,zzdkt+ ki+ kz,zhcke *Ze|0>' (3.9

PHYSICAL REVIEW B7, 045323 (2003
1=(Ke—:2¢:8s), 2=(—K325;8;), 3=(—Ky:2:8y),

4=(—Kky;—01:21;81), 5=(—Kkz;22:52),

6=(—KeT0d1;Ze:Se). (3.1

The second electron interaction term is found by making the
substitutionsk;—k;—q;, k,—k,+q; in Egs.(3.11). Simi-
larly, the electron-hole interaction term is found by substitut-
ing: k;—k;—q, in Eq. (3.11). Applying the delta functions

of Eqg. (3.10 to Eq.(3.9), it is evident that the contributions

of the z-dependent parts are identical for all three terms,
since we have taken identical confinement functions for the
electron and the holsee Eq(2.3)]. Assuming that the trion
remains in the singlet electron spin configuration, we sum
over the spin degrees of freedom, resulting in selection rules

In the following we shall use these wave functions to calcufor the three electron final spin states, which determine the
late the scattering matrix elements for the various scatterinéelevant signs of the various terms. Performing the in-plane

processes.

A. Elastic scattering

Applying the Coulomb interaction operatoké,;, Ve,
andV, to the initial state of the syste(.8), and discarding

the self-energy contributions, we can write a generic expres-

sion for the three scattering matrix elements,

(ke 0;ke—a| Veilki ke)

SR

k1Ko 51,5,S¢
! ’ ! ’ !
klvkzrql Slxszyse

| dzdzdazazve,z-2)

tr ’ ’ ’ !
X Pt )+ kg ekt Q)+k§(zi )€s(51,2) Y-l Ze)

trx * *
X Dok, +ky ark,+ky(Zi) €5 (S1,82) ¢ (Ze)

(0|cicocacielct|0) (i=1,2h), (3.9

momentum integrations, and collecting the matrix elements
into one direct and two exchange contributions, we finally
find

Viir(@) = Neh(N{[g(N a0/2)g(\' B0/2)
+g(N 0/2)9(NBi0/2) + 2k*g(X @) 9(X Bi) ]

—[9(N e @/2) g\ ,0/2) + k2PN ey @) ]} (3.12)
and

N
VEAa Ak ==

d?kyh(Nk){AN kg(X @) g (N [ky
— Ak+ ayq) + N 2g(A a,@/2)g(N kg — Ak,
+atq|)][g()\’|k1—Akt+q|)—g()\’|Akt
—q) ]+ AN IX[A AT} (3.133
(2) _ Nes 2 ’ N
VENa,Ak) == | dkah(k{ M kg(X kg

—ayq))g(N'|g— Ake) +N2g(N'[kq

—a,0/2)g(N|g— Ake)Jg(N [k — Ak + ayq|)
(3.13b

where we put the 1/2 prefactor to indicate averaging over the
initial electron spin states, and used a numeric index for the
electron operators, indicating both spatial and spin degrees of
freedom. Note that we have omitted the hole operators sinc@here we have denote,=1—a,, Ak, =ko— ak,, andXx
they anticommute with the electron operators and do not=xN'/(N+X')2. In Egs. (3.12 and (3.13, the prefactor,
contribute additional constraints. Using the electrons antimultiplying the dimensionless quantities, is given by
commutation relations, the Fermi vacuum expectation value

of the operators reads 1 4me\3

® 1+k? L%Ae

HA N IX[A =N,

(3.19
<O|01C2C301CEC<T3| 0) = 834( 625016~ O15026) T O24( 815036
— 035016) + 014( 035026~ 925036)

(3.10

We note that the direct terr{8.12 diverges atg—0. This
divergence originates from the infinite range of the Coulomb
potential, which is manifest whenever a scattering event be-
tween two charged particles occyrote that for the neutral
exciton this divergence cancelled out, due to the equal con-
tributions with opposite signs from the electron and hole
constituting the exciton In practice the Coulomb potential is

where we have symbolically writtend;;= S, X (z
—zj)éSi 50 For the first electron interaction term we have
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screened by the presence of the 2DEG. Since we are consid- 2Of T T T {120

ering a low-density 2DEG, its Fermi wave vectds . I,, (n.=10°)

=2mn,, is small, thus the semiclassic@lhomas-Fernji £ | 1Y (ak=0)| 80

approximation, which assumes tha#k;, is inadequaté? jefhad 12 (ak=0)]

In particular, the two-dimensional semiclassical analysis re- R | 40
=

sults(at T=0) in a density-independent screening wave vec-
tor gqo, implying that the presence of a single electron is
sufficient to screen the external potential, which is clearly
unrealistic. We adopt instead the Lindhard approach which e L
utilizes a perturbative scheme to evaluate the induced charge 0O 2 4 6 8 0 1 2 3 4
density in first order of the total potentiddy total we mean q*, ar

the sum of the external potential, i.e., that of the trion, and
the 2DEG potential that is induced by the trion’s presence
The in-plane Fourier transformed dielectric function which
results from the effect of the screening is giverfby

FIG. 5. Calculated dimensionless matrix elemenfab K for
the case ofAk,=0 vs transferred momentum(@) Direct (n.
=10 cm ?) and exchange term@wote that since the exchange
terms are not affected by the screening, their dependencg,
negligible. (b) Total matrix element for various electron densities

€(q)=1+ %QS(Q)%(Q), (3.19  n,. The inset provides a closeup at small
where
2me®> 2 hy(\q)= hra) (3.21)
Qo= = — (3.16 ° 4)\3 ' '
eh? @ 1+ ——h(xg)as(q)
L%ag

andag is the electrons effective bulk Bohr radius. Two fac-
tors appear in Eq.3.15, which influence the screening. The

first is the screening form factor given by In general, the effect of the quasi-two-dimensional screening
saturates in larger electron densities, in contradistinction to
gs(q)zf dzdZ x3(z) x4z )e Uz=7l (3.17  the bulk case, resulting in a complicated dependence of the

trion linewidth onn,. We note that since there are no diver-
which arises from the finite QW width. In the infinite barrier gences in the exchange terms, replacihghk;) with

limit we are considering, the confinement function$z), hy(\k;) in Egs.(3.13 amounts to a very small effe¢less
are given by Eq(2.3), andgs(q) can be calculated analyti- than 1% in the relevant parameter range
cally, resulting in Figure a) shows the direct and exchange dimensionless
matrix elements as a function of transferred momentym

e -1+ Lg+ i(Lq)?’Jr (LS for the caseAk,=0, where the angular dependencé\/éi)c, _
82 327* V(2 disappears. The effect of the screening on the total di-

98(Q):( L)2 Lq\ 22 : mensionless matrix element is shown in Figh)5 where
g 1+ ﬂ) } various electron densities are considered, giving rise to a

(3.18 change in the screening action. As expected, the effect of the
screening is noticeable in the region of small momenta of the
This screening form factor is smaller than 1, thus it reducesjirect matrix element.
the effept of the screening, compared with the strictly.two- The elastic scattering rate of the triam, «(k— k+q), is
dimensional casggs(L—0)=1]. The second factor which ¢aicylated by writing the energy-momentum conservation
appears in Eq(3.19 is given by equation and finding its solutiok} , similarly to Egs.
(k) — Frg(K) (2.16)—(2.18): Inte.grati'ng over all final t'rionic states, we cgl-
adq)= _f d2k-e e (3.19 culate the trion linewidth due to elastic electron scattering,
™ (k+q)?—k? I'i.o(ky), plotted for two electron densities in Fig. 6. The

. ._linewidth dependence am, is quite complicated. First, as we
We note thaixg(q) does not depend on the particular detallsare consideringT=5 K, the density range for which the

of the QW but only on the two-dimensional nature of theIinewidth exhibits a linear dependence ppis quite small,

2DEG motion. Substituting the screening dielectric function”. . . . .
into the Coulomb interaction, we find the screened potentia?Imllar to the neutral exciton scatteringf. Fig. 2c)). Sec-

ond, the screening potential becomes larger as the density

to be 2 —ldq 5 ~|dq decreases, thus for very small densities<5x 10°) de-
V3(2) = 1 27e"e "% 2me e _ creasingn, results in a larger trion linewidth. We note that
4 e(q) Aeg Q Aey g+0p94(q)as(q)’ for such low densities, it is probable that other screening

(3.20 mechanisms become apprecialileg., lattice impurities
thus the use of the screened potential implies replacinghus such a behavior will probably not be observed experi-
h(\q) in Eq. (3.12 with mentally.
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N 8e’\g (3.23
P 1¥ kA mAL2e, '
Figure {a) shows the dependence of the dimensionless

matrix element om\k. Proceeding as before, we write con-
servation of energy:

Ex(k) + Ee(ki—ky) = Ey(k) + Eg (3.24

which is satisfied for

! Epme
ks :E k,cosf=x \/ B; 2

where 6= 2 (k,,k;). We note that for the energy conserving
solutionsk{ , the interaction matrix element is constant since

* :\/—ﬁ
FIG. 6. Calculated trion linewidth due to elastic scattering vsAk(kt) axEpme /A Thus the dependence of the

Linewidth (meV)

—kisinzﬁ) (3.29

L N I, heavy-hole exciton linewidth on its initial momentum,
initial trion momentum, aff =5 K for two electron densities. . .

shown in Fig. Tb), comes solely from energy-momentum

B. Electron capture conservation and the Fermi-Dirac distribution of the scat-

) _ ] _ tered electronfy(ke) = fra(ki —k,).
We now consider the case in which a heavy-hole exciton

captures a free electron thereby forming a trion. The initial C. Charged exciton dissociation

and final states of the system are given by H@s5 and '

(3.5), respectively. The calculation of the Coulomb interac- Last, we consider the case in which the scattered trion
tion matrix elements between these states essentially follondissociates into a neutral exciton and a free electron. This
the procedure described in the previous section. In this proscattering process is shown schematically in Fig. 8. The ini-
cess there is no exchange term. Instead, the two electroiti@l state of the system is given by E@.8) while the final
which constitute the trion form a singlet spin configuration.state is that of three free particles, symbolically written as

Defining Ak= ak;— a,k,, the calculation yields |ky;Ke:ki+q—ky), whereq is the momentum transferred
from the free electron to the trion, atg is the neutral ex-
AN citon CM momentum.
_ 2
Vcap(Ak)—Ncapf d klh()‘okl){ (hgt 1) Proceeding as before, we calculate the interaction matrix
elements between the initial and final states of the system. To
5 X Ak this end we denote the final spin state of the three elect
X[g(\'[ky+AK[)—g(N"AK)Ig| Mk + — is end we denote the final spin state of the three electrons
Xx as|s,,s’,ss) (see Fig. 8 Assuming the interaction is spin
AN/ - - independent, this final state will be one of the two states:
+(}\0+)\)2[9(7‘|k1+Ak|)_9(7‘Ak)] (sm)=(3,+3), where the state \(vitm_=% (m=—3) cor-
responds to the initial electron spsg being up(down). Ac-
xg| N kg + ﬁ ) (3.22 tually, we need not concern ourselves with the exact form of
Yoa )] the final electron spin state, since the projection of the initial

i ~  spin state(which is a tensor product of a singlet state with
where we have ~def|ned the reduced Bohr radi the additional free electron spion a generic final spin state
=AM (Ng+\) andN'=AgN'/(Ag+\"), and the prefactor:

ST T (ke Es(s1,52)) (s 59)
2 4 1 . te
-‘E S 1.2t
b :
b=t X
8 £ 08 ® (keta-kes)
2t :
- E e °
£ 04} 3 J
1t = / ee
ol o N\Sug
01 2 3 4 5 01 2 3 4 5 Ce \
Ak %, k
. . . k k. —q,s
FIG. 7. (a) Calculated dimensionless matrix element of the cap- ( es 3e) ( e — 4, e)
turing process vak atT=5 K. (b) X, calculated linewidth due to
capturing scattering fon,=10° cm™2 at three temperatures. FIG. 8. Electron-trion inelastic-scattering scheme.
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will extract the relevant contributions. The progeant)sym-
metrization of this final spin state is performed inherently by
the anticommutation relations of the electron operators, as in

V@(q,Ak;, Ak,) = — Nd.shs(

PHYSICAL REVIEW B67, 045323 (2003

Sl

Ak, Ak,

ay

Eq. (3.10. As in the elastic scattering case, we find one
direct and two exchange contributions. Denotifg,=k,

— Ky, and Ak,=k.— a,k, as before, these terms are ex-
pressed as

' AK)
Vi AK, Q) = Ngihs(Aod) (7\(#—)\)2[9()\ a—x>g(7\Ak)
Ak - B
+g| N’ )[g(hlAk+ql)—g(>\Ak)]]
]
g (XX ©20
and
VvE(q,Ak,,Aky)

AN ,
= 2N | dahOkgOl k- k| {] o] A

!

( AN
>< J—
(Aot

N)2

| Ak— ByAky

Xgl A

[g(h’lAkt—ql)

+g(NAK)

Ay

X

,Ak) ,
gl A o —g(\'[Ak—ql)

2] em

whereX, N\’ andAk were defined in the previous subsection
and the prefactor multiplying the dimensionless quantities in
16\2e\§

Egs.(3.26 and(3.27), is given by
2.\ 312
Nais= =7 (T) :

1+ «“L €p

The direct term(3.26) and the second exchange term
(3.27h diverge atq—0 and at Ak, /ay—Ak/a+q)—0,
respectively, implying the need of using a screened Coulomb
potential, as was done in the trion elastic scattering. Note
that the direct term(3.26) depends only ork;,k,,q, and

A
=N

AN/
+—
(Ng+\")?

(3.28

Ak Ak on the anglesy=2(k;,q) and v=~2(kk,), whereas
- a——Q‘)—g()\‘a—+q g(N'Jg—Aky) +g(N Kk, the exchange terms depend also on the initial electron mo-
X X mentumk, and on the angleéS= 2 (k.,q). In practice, we
express everything in terms of, Ak;,Ak,, and the angles
—Akt+q|)g(>\ )}HM—»\'}) (3278 ¢,= 2/ (Aky,Aky), 6,=2(Aky,q), and ;=2 (Ak,,q),
given by:
k2— akyke COS y— 6— v) — arkiko COS y— &) + aryarkyk, cosy
Cosf,= , 3.29
! Ak, Ak, (3.293
|
ke COSS— aryky cog y—v) 1 Me
= t 2 2
cosb, Ak, , (3.29h r= qcoss| 2 — Ept0°t 5 ,3 57 (Bki—ky)
ke COSS6— ik, COSY
CoSf3= Ak, : (3.299 +q[k,cosy—k,cogy—v)]]|. (3.3

The calculation of the scattering rate is performed as be
fore, where conservation of energy now reads

Et( kt) + Ee( ke) = Etbr"_ Ex( kx) + Ee( I(t"— q— kx) + Ee( ke_ Q)-
(3.30

Equation(3.30 is satisfied for

Using Fermi’s golden rule as in E¢2.23, we find the
scattering ratev, (ki—k;+ ). Integrating over all final tri-
onic states, we find the trion linewidth due to inelastic scat-

tering as a function of its initial momenturk,, T'%5(k,),

shown in Fig. 9 fom,=10° cm™ 2.
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1.5+ (al)

0.5

Line Shape

Linewidth (meV)

00 1.0 20 3.0 40 :
kt}“l QCE
FIG. 9. Calculated trion linewidth due to inelastic scattering :‘3
with electrons vs its initial momentum for,=10° cm™2. &
IV. EXCITONS AND TRIONS
IN QW’'S CONTAINING A 2DEG E-E, (meV)
1

In this section we apply the linewidth calculations for the FIG. 11. (8 Heavy-hole M,=0.177m,) exciton normalized
B . . . _ . . - X_ . e.
various scattering processes, presented in the Previous Sef shapes due to scattering with electrons for two electron densi-
tions, in order to calculate the line shapes of neutral exciton es. (b) The corresponding dielectric function real part
and trions. These line shapes can be directly compared with™ '
measured reflection spectra, taken from MTQW structures

containing a variable density 2DEG. Without electrons in the/Nere we takeE;s=0. When a low-density 2DEG is

QW and for T=100 K, the two dominant scattering pro- presentZO(E) is_ convolved with a Lorentzian Ii.ne shap.e that
cesses are due to acoustic phonons and static disorder. associated with the homogeneous broadening that is due to

note that the radiative lifetime of a free QW excitonigy the electron scattering:

~25 ps, resulting in a radiative homogeneous broadening of

Yad~26 neV. The exciton-acoustic phonon interaction %

leads to a homogeneous broadening whose Lorentzian line IE)= fo Io(E-E") L d E" .T'x(E)]dE’", (4.2
shapeL, is characterized byn,=0.2 meV for theX, and

Yphon=0.28 meV for theX,, at T=80 K, using the param- e ) _

eters of GaAs/AlAs QW'$? The 1S exciton energ\E;s has where,FX_e(E ) is given by Eq.(2.19, with the exciton en-
a Gaussian distributioficharacterized byyg) due to the €9y E’ corresponding td,. A pictorial description of the

roughness of the QW surface. Convolving these two districonvolution in Eq.(4.2) is given in Fig. 10, for both elastic
butions results in the familiar Voigt functiéh and dissociating exciton-electron scattering procestes

trion-electron scattering exhibits a similar behayidt is
seen that the electron scattering admixes excitons haying
>0 with thek,=0 state. The degree of admixture is deter-
dEy, mined by the value of the Lorentzian that is due to electron
—= (E~Eg)*+ (¥pnord2)? scattering, given in the figure by the dashed line. Note that
(4.1)  sincel',((E') is a decreasing function &', the Lorentzian
peak is shifted to higher exciton energi€shis is observed
experimentally as an increased shift with increasipgRef.
7)]. In the calculation, the Gaussian width, associated with
) the inhomogeneity, was taken as a fitting parameter, yielding
VL JETT (EY the value 4=0.2 meV for bothX;, and X, (the same
'\‘/ value was taken also for the trion line
p The calculated line shapes are identified with the imagi-
nary part of the dielectric function in the QW that is related
to the exciton(trion) resonance. Use of the Kramers-Kronig
............ relations yields the real part of the dielectric function. Ex-
3 4 5 amples of calculated exciton line shapes together with the
associated real part of the dielectric function are depicted in

FIG. 10. A schematic picture of the convolution resulting from Fig- 11 for two electron densities.
electron scattering. The solid lines represent various exciton initial Combining the three exciton line shapégavy-hole and
line shapesZ,(E—E’). The contributions of states witk >0 to  light-hole neutral excitons, and heavy-hole tiioby using
the k,=0 state are weighted by the value of the Lorentzianthe appropriate oscillator strengths, the reflection spectra of a
L E" . T «(E")], given by the dashed line. QW can be obtained. For high temperaturé=80 K),

Io(E)=

2, 2

Yphon fw e~ Fo'?ais
3/2

(27) " “yyis

Intensity

-2 -1 0 1 2
E(meV)
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8_(3)' L] 40_(,); ] strated that even for small densities, of the ordeng#5
- x10° cm 2 in the case of a GaAs/AlAs QW, exciton-
2 AN W ] electron scattering is much more efficient than both exciton-
g ) phonon and exciton-exciton scattering, thus playing a central
E 4 a0k role in the system dynamics. The dependence of the exciton
2 ' linewidth onn, was shown to be drastically different for the
£ 25-., fo——T=5K 10_;" 1 cases of a classicallT& 80 K) and a degeneratd €5 K)
Y B T=8K 2DEG. In general, the trion-electron scattering poses a much
ol o R o i/\ harder problem, one of the major difficulties being the evalu-
12345 0123435 ation of the screening effects. We showed that the screening
nx10" (em”) nx10" em’”) model has a crucial effect on the trion-electron scattering

] ) ) ) matrix elements, and hence on the resulting trion linewidth.
FIG. 12. Trion’s linewidth vs electron density, for three tempera-Tnis is particularly true for very low densitiesn=5

tures due tda) elastic scattering anb) both elastic and dissociat- < 108 Cm_z), where the 2DEG screening is less effective,

Ing scattering. making other possible mechanisms more dominant. Using

o ) the calculated scattering rates we showed that dissociating
where the trion is dissociated, these calculated spectra angattering can produce a sizable broadening of the excitonic

their dependence am, were shown to be in good agreement jines, in particular for the trion, whose binding energy is
with the experimental data. ~ considerably smaller than that of the neutral exciton.

In the low-temperature regime €2T<20 K), the vindi- A simple method to produce excitonic line shapes from
cation of our results with experimental measurements ishe calculated linewidths was devised, allowing our results to
harder to perform. Since the heavy-hole exciton and triomye easily compared with experimental reflection spectra. A
lines are very close in energy, and the trion oscillatoreliable source of experimental data is achievable from re-
strength is much lower than that of the exciton, it is practi-flection measurements taken from a MTQW structure, em-
cally impossible to discriminate between them by reflectionpeqded in a microcavityMC). In the limit of large MC
measurements. PL experiments were performed in MTQWnode energy, the exciton linewidths are restored, since their
with 2DEG, at low temperatures, facilitating the observationcoup”ng with the MC mode is barely noticeable. A major
of the trion line;” but there the detailed balance between theadvantage of MC experiments is that the trion line is easily
exciton and the trion line intensities is determined by theresgolved by reflectiof? allowing a direct comparison with
2DEG density, and the system dynamics should be addressggkory,
by solving, e.g., rate equations. _ The calculated interaction matrix elements can be readily

In Fig. 12a) the trion linewidth due to elastic electron ysed to evaluate polariton-electron scattering rates in MC's
scattering is shown as a function of for three tempera- jth 2DEG. The use of exciton-electron scattering as a re-
tures. The combined effect of both elastic and dissociatingaxation mechanism for the lower branch polaritons in a MC
electron scattering on the trion linewidth in shown in Fig. was theoretically shown to be advantageous in respect with
12(b). Qualitatively, the trion line observed in Ref. 17 indeed po|ariton-polariton ~ and  polariton-phonon  scattering
broadens considerably at much lowey than the exciton processe&® In a recent experiment we have demonstrated
line, as indicated by our results. The electron densities stategblariton final-state stimulation, assisted by these scattering
in Ref. 17 are probably an overestimate, as implied by thenechanisms, which was hitherto observed using polariton-
fact that the neutral exciton linewidth remains unchanged Upolariton scattering mechanisih® Incorporation of the
to ne=3x10'" cm™?, in clear contradiction to both our cal- various scattering processes which were considered in this

culations and other experimental déeg., Ref. 7. It should  paper, in a consistent explanation for these nonlinear effects,
be noted that calibrating the photoexcitation intensjtyo il be the topic of a forthcoming publication.

ne in MTQW'’s is not an easy task. Even if one assumes a
linear dependence af, on |, (which is valid for a limited ACKNOWLEDGMENTS
range, the slope depends on the temperature, since the holes

tunneling times decrease exponentially withso a different This work was supported by the United States—Israel Bi-
calibration should be performed not Only for different eXperi-nationa| Science FoundatiQBSF), \]erusa|em, |Srae|, by the

ments, but also for each temperature. Finally, the strong ereynd for Promotion of Research at the Technion, and by the
hancement of the dissociating scattering with increasing temfechnion VPR Fund—Jewish Communities of Germany Re-

perature, evident in Fig. 1B), implies that the trion line  search Fund. G.R. gratefully acknowledges the financial help
should practically vanish folf >10 K at very low electron  from the Technion.

densities.

APPENDIX A

V. SUMMARY AND CONCLUSIONS . . . .
In this appendix we present an analytical calculation of

In this paper we presented a theoretical study of the varithe angular part of the exchange integral. This calculation,
ous exciton-electron scattering processes that take place invéhile quite complicated, is worth the trouble for two reasons.
QW which contains a low-density 2DEG. We have demon-The first is, obviously, a major reduction in the time con-
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sumed by the numerical computation, making it feasible. As B>0; D>0; B-A?>0; D-C?>0. (A5
a subsidiary benefit, the partially analytical calculation re-
moves some convergence problems encountered in the pre-

viously used numerical algorithm. One can reduce the polynomial in E@4) to a product of
Using dimensionless moment@.g., by writingq we  two quadratic binomial forms, by making use of the follow-
mean\q) the exchange integral reads ing transformation:

|exc(Ak,q,a)=—4wf dkikih(ky)dg[1+(k;—Ak _ptay

1+y

+aQ)?] [ 1+ (ky— Ak+ 2] 32

—[1+(q—Ak)?]™¥
[1+(q-4Kk)?] "3 with p, g given by

E_4Wfdh&hmuﬂn+unh (A1)

where 6 is the angle betweeq and Ak and ¢ is the angle p,g== ——=+
betweenk,; and Ak. We shall work out separately the two 2A-C
parts of Eq.(Al).

The first part is given by

1D—B+\/l D-B\2 AD-BC
4\A-C A—C

(note that we assumk+ C, deferring for later the treatment
27 in this special cage Noticing thatp and q always have op-
(= jo d¢[ad+(bd+ae)cosp—c(d+ala)sing—c(e  posite signs, we choose<0 and divide the integral into
+bla)sin¢ cos¢p+becogp+c? a sirtp] %2,

) 0 0
(A2) f dz= f dz+ f dz,
— — 0

where we have defined

a=1+ki+Ak*+a’g?~2agqAk coso, where the limitz=c corresponds toy=—1 and the limit
z=—oo corresponds toy=—1 with q and p interchanged.
b= 2k, (aq cosf—Ak), The integral now reads
c=2aqk; sing,
_ 2 2 272
d=1+k?+ Ak?+g?—2qAk cos, (=M f ' dy[y (1+a)+2y(d+pg+1i+p
~plg [(y?+8)(y>+1t7)]%?
e=2k;(gcosf—Ak). (A3)
. 1 (-ar  [y*(1+p?)+2y(1+pa)+1+9°)°
Transforming¢— ¢' = ¢— 7 and then toz=tan(¢/2) we - dy 5 V) PN
have (st)°)-1 [(yo+1/s)(y“+ 1h9)]
(I)=2f dz(1+z%)?[(a—b)(d—e)+2c(d—e+ala where

—bla)z+2(ad—be+2c?/ a)Z?+2c(d+e+ala , ,
, P°+2Ap+B. t2:p +2Cp+D

+bla)z®+ (a+b)(d+e)z*] %2 s2= ; _,
g’+2Aq+B q?+2Cq+D
Finding the roots of this fourth order polynomial we have
P 2121 (52 2 and
(I)—Zf dz(1+2z°)“[(z°+2Az+B)(z°+2Cz+D)(a
+b)(d+e)] %2 (Ad) 2(q—p)
N= )
where [(9%+2Aq+B)(g?>+2Cq+D)(a+b)(d+e)]%?
_c _a-b B c _d-e
A= at+b’ “atb’ "~ a(d+e)’ T d+e’ Making the transformatiog = stany in the first integral and

1
We note for later use tha,B,C,D obey the inequalities y= gtanzp in the second, we find
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= N J’tan*l(—l/s)d [(gssiny+ p cosy)?+ (ssiny+ cosy)?]?
( 23| Jan - pisg v (1—K? sirfy)%?

anY(—qsp) . [(p/ssing+qcosy)?+ (1/ssiny+cosy)?]?
—st3J dy — ,
tanﬁl(fs) (1_ k2 S|n2¢)3/2
where we have defined
k?=1-8/t?% k?=1-1%s% (A6)

Changingy— /2— 4 in the second integral, and using tas+ cot 's=/2, we find that the second integral exactly matches
the first except that its upper limit is larger by, thus we are left with

Nf wftan_lsdlp[(l-i- p?)sirty+s?(1+qg?)cog i+ s(1+ pq)sin 2412

(|):_¥ —tan 1s (1_"k23in2¢)3/2

This integral can be evaluated using incomplete elliptic intethus enabling the use of E¢A7) with some modifications.
grals (see p. 201 in Ref. 32 Furthermore, one can exploit Remembering the inequaliti€é5) we note that the sign of

the functional relationgp. 911 in Ref. 32 k2 is determined by the sign db—B. We obtain, forD

>B,
F(=¢.k)=—F(¢); E(—¢,k)=—E(¢),
4JD—A? N
F(nm— ¢,K)=2K(k)—F(¢,k); )= 1+D—-A?)E(k
(n7—¢,k)=2K (k) ~F(¢,k) (1 [(a+b)(d+e)]3,2(D_B)2[[< )E(K)
E(nm—¢,k)=2E(K) ~E(¢,k) _ (1+A2)?2
—2K(K)]| 1+ ——————-| ~2(3A%+1)
where F(¢,k),E(¢,k) denote incomplete elliptic integrals (B=A%)(D—-A9)
of the first and second kind, respectively, akdk),E(k) 2
denote complete elliptic integrals of the first and second x| 2E(k)—| 1+ _ K(K) |} (A8)
kind, respectively. The final result is D—A?

1 For D<B the result is the same as E#\8) with the inter-
t_2(1+ p?)?>  changeB«—D andk—k.
The second special case correspondsAteC, B=D.
Here the integra(A4) reduces to

(h=-— v [(s?+t?)E(k)—2t?K (k)]
S(Sz_tz)z

+(149%)%s? | — 2(3+3p%g2+4pqg+p?>+q?)

B F 1+
" [(a+b)(d+e)]¥) = (22+2Az+B)3

()
><[252E(~k)—(sz+t2)K(~k)]] . (A7)
This integral can be easily evaluatéske p. 81 in Ref. 32

. . - . and the result is
For imaginary values df, the result is the same as E&\7)

with the interchanges—t andk—k, k being defined in Eq. 34 4A24 2B+ 3B2

o
(AB). . _ . ly=— : (A9)
We now return to examine two special cases which cannot 4 [(a+b)(d+e)]¥AB—A?)>5?2
be treated using EqA7). The first case corresponds £0
=C,B#D. Here we have Finally, we evaluate the second part of the exchange inte-
gral, appearing in EqAL1). We have
p=+w; g=—A

Although's,t=c¢, K is still finite, taking the val (an ! fzw dé

oughs,t=x, k is still finite, taking the value = ,

g J (d—k$%2Jo (a+bcosgp—csing)?
k2= D-B , wherea,b,c,d are defined in Eq(A3). Using the transfor-
D—A? mation ¢=24+ B, where tarB= —c/b, we have
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JW—BIZ dy Hifr1h,210,02n,22) = =20V, -V
(N=—= :
(d—kD)32) -p2  (a+p—2psirfy)®? 5
+ 1
wherep=\b?+c?. This integral can be evaluated using the V(rip=ron®+ (21— 25)°
elliptic integral of second kind, resulting in (B4b)
T and we employed natural units of length and energy, namely,
(1= 4vatp 2p ) (A10) bulk effective Bohr radius and Rydberg. The expectation
(d—k})%Ha?—p?) \atp value of the trion energy is given by
APPENDIX B T X2k, + 12T
| | | | T e
In this appendix we present the calculation of the trion 1+«

binding energy, based on the trial wave function given in Eq. i ) i
(3.1). It is useful to work with the Fourier transformed trion Wherex was defined in E¢3.4), and the uppeflower) signs

wave function(3.6), where we have for the two spin configu- apply to the singleftriplet) spin configuration. The various
rations, explicitly, terms appearing in EqB5) are calculated in the in-plane

Fourier space, resulting in simple 2D convolutions, similar to

- ) , those in Appendix A. The results are
b, k(21122:20) = Niex(20) X(22) X (20) bi, Drc, * i i, -

2 2
The effective mass Hamiltonian is given by IF(f) [{x1xnlHol xaxn) + (&’ x1xnlHol &' x1x1)]
z 72 g2 =<z)2(2+0)+ i(1+a)
H=2 | -5 —(Vi+d;)— L 7N
=] 2me T e\ (ri—rp)? (- 20)°
2\2 (=
42 e? —H(—) f daah(Aa)g(Aa/2) [+[x—\"],  (B6a
- —(G'Vr2 +0‘Zﬂ§ )+ , L) Jo
2me " " egV(ri— 1)’ (21— 2)°
(B1) 2\2 ) k([ \?
L= (bx1xnlHol ¢ Xwxn)=5| | (2t
where ozme/mH, a,=m./m{ are the electron-hole effec-
tive mass ratios in the plane arddirections, respectively. 4(1+ o) N\ 2 (e - -
Transforming to CM and relative coordinates in the QW t——5 (AN T J dqgh(Ag)g(\q),
plane, (NN 0
(B6h)
rytro)+r
= L (d1x10ax2lHid drx1box2)
. 2 2 ry
lin=r;—ryn, 1=1,2, (sz) :2)\3<E) f dqqf(Z?xq)g()\q/Z)g()\'q/Z),
0
and neglecting CM motion which does not contribute to the (B60)

binding energy, we have

2 2
2 »72:([) <¢1X1¢§X2|H12|¢1X1¢2X2>
H:izl Ho(rin,Zi,Zn) T H1Ar 10,21, 2n,22),  (B3)

~[2\2 (= ~ ~
=2k°\° [) fo dggh(2hg)g*(Aa).  (B6d)
where
In Egs.(B6), h(Aqg), g(\q) are the functions defined in Egs.
o 5 (2.9 and (2.13, respectively, and we _have denc_)te?d
Ho(rin,zi,zn) = — (1+ (,)Vfih_ 72(;2_ —. =7\_)\’/()\+)\_’). We note that in the 2D limiti{—0), elimi-
Nript(zi—zp) nating the kinetic energy term in thedirection, Eqs.(B6)

(B4a) reduce to
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T S P (B7a) 7, Hto) 8 (B7b)
=| — —_— ag)— - —, = _ ,
R PCRNE Y ZTONEN)2 AN
( Ak 12 ,
———— || 1+ — |E(1-N3IN'®)—2K(1—NYN'3) |, A<\,
()\1_)\)2 )\2
)\,K )\2 27y 2 2/ 2 2
Ji={ ——| | 1+ |EA-N"2A%)=2K(1-N"2A2) |, N>\, (B70)
(N —X\) A
37
— A=\,
[ 4N
[
7 37k 870 Eo(L—0) 1+0 4 B9
:—! — = -3
2 200 +0) 0 N2 Ao

whereK, E are the complete elliptic integrals of the first and Minimizing Eq. (B9) in the o—0 limit, results in A
second kind, respectively. These closed-form expressions o=, o Eg— —qA., Ry as ex ec(tred The trion bindin enc:er
incide with the integral expressions of Sandler and Prégtto _oB8'“» =0~ Y, as exp : . 9 9y
for o—0 and vanishing magnetic fiehote a misprint in with respect to the exciton is related to the trion and exciton

Eq. (A6) of their papet. energies through
In order to maximize the trion binding energy, we must "
first write the expectation value of the exciton energy: Ep=E—Eo—Ee, (B10)
1 a2 where E.=(7/L)? is the confined electron energy, in our
EO_)\_O(l”L‘T)“L L (1+0a,) infinite barrier model. We note that the kinetic energy terms

in the z direction cancel out in the expression for the trion
4)\8 o0 binding energy, so they can be removed from the calculation.
- —zf dagh(noq)g(roa/2), (B8)  Maximizing Eq. (B10) with respect to the two variational
L2 Jo ! ‘ , S
parametera,\’, we finally find the results given in Sec. lll,
resulting in the B exciton Bohr radius and binding-energy where we used the GaAs bulk values of the effective Bohr
values stated in Sec. II. Note that in the 2D limit we have radius @g=100 A) and Rydberg5.7 me\j.
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