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Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells
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Electron scattering on both neutral~X! and charged (X2) excitons in quantum wells is studied theoretically.
A microscopic model is presented, taking into account both elastic and dissociating scattering. The model is
based on calculating the exciton-electron direct and exchange interaction matrix elements, from which we
derive the exciton scattering rates. Scattering by electrons is found to be an efficient process even for very low
electron densities. In particular, the charged exciton linewidth due to electron scattering is larger than that of
the neutral exciton, partially because of the larger contribution from the dissociating process. Calculated
reflection spectra are then obtained by considering the three electronic excitations of the system, namely, the
heavy-hole and light-hole 1S neutral excitons, and the heavy-hole 1S charged exciton, with the appropriate
oscillator strengths.
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I. INTRODUCTION

The broadening of exciton emission lines due to electr
exciton collisions was observed in bulk GaAs.1 An experi-
mental comparison between exciton-electron and exci
exciton scattering mechanisms in bulk GaAs,2 and in GaAs
quantum wells~QW’s!,3,4 showed that the exciton-electro
scattering efficiency is an order of magnitude larger than
of the exciton-exciton process. Both scattering processes
enhanced for the two-dimensional~2D! excitons as com-
pared to bulk excitons. Theoretical calculations of elastic a
inelastic exciton-electron scattering were reported for b
semiconductors5 and for QW’s.6 The semiclassical treatmen
of the latter neglected the exchange term which was sh
recently to be the dominant term in QW’s.7

The existence of the negatively charged excitonX2

~trion! was proposed by Lampert8 as the semiconductor ana
log of the hydrogen ion. Due to their confinement in t
growth direction, 2D trions have a binding energy which
an order-of-magnitude larger than that of the bulk trion9

This fact facilitated the observation of trions in CdTe~Ref.
10! and in GaAs~Ref. 11! QW’s containing a low-density
two-dimensional electron gas~2DEG!. Theoretical calcula-
tions of the binding energy of both negatively (X2) and
positively (X1) charged excitons were performed using va
ous trial functions, showing that only the singlet state
bound.9,12,13 Particular attention was devoted to the mod
cation of the trion’s properties in the presence of strong m
netic fields. In this limit, theX2 binding energy is increased
and the electron spin triplet state becomes bound as well14 It
was also observed that the dependence on the magnetic
of theX2 andX1 binding energies, as well as their Zeem
splitting, differ drastically~while being nearly identical a
zero magnetic field!.15

While these aspects of the trions were extensively stud
there are very few reports on their broadeni
mechanisms.17,16In this paper we present a theoretical mod
for the scattering of both neutral and charged excitons w
electrons in QW’s. This paper continues our previous w
which introduced neutral excitons elastic scattering w
0163-1829/2003/67~4!/045323~17!/$20.00 67 0453
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electrons in the context of cavity polaritons.7 Here we extend
our model, to incorporate both excitons and trions, tak
into account elastic and inelastic scattering processes.
model is based on calculating the exciton-electron direct
exchange interaction matrix elements, from which we der
the exciton scattering rates. These are integrated over all
excitonic states, resulting in the exciton linewidth due
scattering, as a function of its initial momentum~or energy!.
A major difference between the exciton and trion scatter
lies in the charge of the latter, which results in a divergen
of its matrix elements in the limit of zero transferred mome
tum. This divergence, originating from the infinite range
the Coulomb potential, is treated by applying the Lindha
model for the potential screening. The screening action co
plicates the trion linewidth dependence on the electron d
sity; thus, while for electron densities larger than
3109 cm22 the trion linewidth due to electron scattering
a GaAs QW atT55 K is comparable to that of the neutra
exciton, for a very dilute 2DEG (ne'53108 cm22) the
trion linewidth becomes roughly an order of magnitu
larger than that of the neutral exciton. Inelastic scattering
also much more efficient in the trion’s case, due to its sma
binding energy. The calculated reflection spectra are obta
by considering the three electronic excitations of the syst
namely, the heavy-hole and light-hole 1S neutral excitons,
and the heavy-hole 1S charged exciton~trion!, with the ap-
propriate oscillator strengths. A qualitative validation of o
calculations is given by considering photoluminesence~PL!
measurements that were done on a mixed type-I–typ
GaAs/AlAs QW~MTQW! structure.17

The paper is organized as follows. In Sec. II, we pres
in detail the model for the neutral exciton-electron scatteri
In Sec. III we consider the trion-electron scattering. First
construct the trion’s wave function, which is used in the m
trix elements calculations. We then treat the divergences
originate from the infinite range of the Coulomb potential,
applying the Lindhard model for the potential screening. T
effect of the screening is discussed in the context of the tr
linewidth dependence on the electron density. In Sec. IV
use our model to calculate QW reflection spectra and disc
©2003 The American Physical Society23-1
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their relevance to the available experimental data. A su
mary and conclusions are given in Sec. V. In Appendix A
provide some details of the exchange integral calculation
the neutral exciton-electron scattering. Finally, a derivat
of the trion binding energy, using a Chandrasekhar-type t
function, is given in Appendix B.

II. A MICROSCOPIC MODEL FOR EXCITON-ELECTRON
SCATTERING

In this section we present a detailed description of
exciton-electron scattering, considering separately the ela
process, for which the exciton remains bound, and the ine
tic process, where the exciton breaks into an unbo
electron-hole pair.

A. Elastic scattering

We first construct the excitonic wave function to be us
in the scattering matrix elements calculations. Separating
coordinates in the QW plane (x2y) from the perpendicular
coordinate (z), and denoting the electron and hole in-pla
momenta byk1 and k2, respectively, we write the in-plan
Fourier transform of the exciton wave functio
F@(rei ,ze),(rhi ,zh)#,

Fk1 ,k2
~ze ,zh!5

1

AE d2r eid
2r hiF@~rei ,ze!,~rhi ,zh!#

3e2 i (k1•rei1k2•rhi), ~2.1!

where A denotes the QW surface area. Transforming
center-of-mass~CM! and relative coordinates in the QW
plane (Ri5arei1brhi ,r i5rei2rhi , wherea5me /M x , b
512a, andme , M x are the electron and exciton in-plan
effective masses, respectively! we can decompose the exc
ton wave function into an envelope function,f(r i ,ze ,zh),
and a free motion part related to the in-plane CM coordina
Denotingkx as the in-plane CM momentum we find

Fk1 ,k2
~ze ,zh!5

1

AE d2Rid
2r if~r i ,ze ,zh!

3eikx•Rie2 i [Ri•(k11k2)1r i•(bk12ak2)]

5d~kx2k12k2!fk12akx
~ze ,zh!. ~2.2!

We use the simplest exciton wave function for the exci
ground state:f(r i ,ze ,zh)5Nxe(ze)xh(zh)e2r i /l, whereN
is a normalization factor andl is a variational paramete
associated with the exciton Bohr radius in the QW, which
fixed by maximizing the binding energy of the exciton.24 We
note that the use of a wave function separable inz and r i ,
facilitates considerably the calculation of the scattering m
trix elements, although it is strictly justifiable only for na
row well structures. Assuming perfect confinement of el
trons and holes in the QW, and taking thez axis origin in the
center of the QW, the confinement functions are

xe~ze!5xh~zh!5H cos~pz/L ! uzu<L/2

0 uzu.L/2
. ~2.3!
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This approximation is quite accurate for almost all practi
thicknessesL. Calculating the binding energy of the 1S e
citon in a GaAs QW of widthL5200 Å , we find Eb
56.73 meV,l5150 Å (Eb57.49 meV,l5133 Å) for the
heavy-hole~light-hole! exciton. These results, obtained wi
our single parameter trial function, are quite close to tho
obtained in Ref. 27, which took into account finite QW ba
riers and anisotropic masses.

We now consider a state of a single exciton with an
plane CM momentumkx in the Fermionic Hilbert space o
electron-hole pairs, using the notations of Tassone
Yamamoto.18 It is a superposition of wave functions wit
different electron momentak1 and electron and holez coor-
dinates, given by

ukx&5(
k1

E dzedzhfakx1k1
* ~ze ,zh!c2k1 ,ze

† dkx1k1 ,zh

† u0&,

~2.4!

whereckx ,ze

† (dkx ,zh

† ) is the electron~hole! creation operator

with in-plane momentumkx and ze (zh) coordinate, and
fk(ze ,zh)5N@11(lk)2#23/2xe(ze)xh(zh) is the in-plane
Fourier transform of the exciton wave function. A state co
prising an exciton and an unbound electron havingke andzc
will be written as

ukx ;ke&5(
k1

E dzedzhdzcfakx1k1
* ~ze ,zh!cke

* ~zc!

3c2k1 ,ze

† dkx1k1 ,zh

† cke ,zc

† u0&, ~2.5!

wherecke
(zc) is the electron wave function. Applying th

Coulomb interaction operatorsVee, Veh to this state, we
have for the electron-hole and electron-electron interactio

Vehukx ;ke&5 (
k1 ,q1

E dzedzhdzcVq1
~zh2zc!

3$fakx1k11q1
* ~ze ,zh!cke

* ~zc!c2k1 ,ze

† dkx1k1 ,zh

†

3cke ,zc

† 1fakx1k1
* ~ze ,zh!cke

* ~zc!c2k1 ,ze

†

3dkx1k12q1 ,zh

† cke1q1 ,zc

† %u0&. ~2.6a!

Veeukx ;ke&5 (
k1 ,q1

E dzedzhdzcVq1
~ze2zc!

3fakx1k1
* ~ze ,zh!cke

* ~zc!

3c2k12q1 ,ze

† dkx1k1 ,zh

† cke1q1 ,zc

† u0&. ~2.6b!

The first term in Eq.~2.6a! represents the Coulomb intera
tion between the constituents of the exciton, thus contrib
ing to its self-energy, and can be discarded in the calcula
of the scattering matrix elements. In Eqs.~2.6a! and ~2.6b!,
Vq1

(z)56(2pe2/Ae0q1)e2q1z is the two-dimensional Fou
rier transform of the Coulomb interaction, whereA is the
QW area, and the plus~minus! sign is used inVee (Veh).
3-2
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Using the anticommutation relations for the fermion operators, one can easily find the scattering matrix elements to

^kx1q;ke2quVehukx ;ke&5(
k1

E dzedzhdzc@Vq~zh2zc!fa(kx1q)1k1
~ze ,zh!fakx1k1

* ~ze ,zh!cke2q~zc!cke
* ~zc!

2Vk11ke2q~zh2zc!fakx1k12bq~zc ,zh!fakx1q2ke
* ~ze ,zh!cke2q~ze!cke

* ~zc!#, ~2.7a!

^kx1q;ke2quVeeukx ;ke&5(
k1

E dzedzhdzc@Vq~ze2zc!fakx2bq1k1
~ze ,zh!fakx1k1

* ~ze ,zh!cke2q~zc!cke
* ~zc!

2Vk11ke2q~ze2zc!fakx2bq1k1
~zc ,zh!fakx1k1

* ~ze ,zh!cke2q~ze!cke
* ~zc!#. ~2.7b!
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The first term in each of Eqs.~2.7! contributes to the direc
~classical! Coulomb interaction and the second contributes
the exchange matrix element. The direct term reads

Vdir~q!5
32l2e2

e0AL3q
E

2L/2

L/2

dzedzhdzcE d2k1e2quze2zcu

3@g~lubq2k1u!2g~luaq1k1u!#g~lk1!

3cos2~pze /L !cos2~pzh /L !cos2~pzc /L !, ~2.8!

where

g~lq!5@11~lq!2#23/2 ~2.9!

is a dimensionless function. We note that the electron w
functions in the QW plane are absent, as they contrib
together with the in-plane center-of-mass part of the exc
wave function, a fixed phase factor which is unimportant
our purposes. The momentum integral is a simple convo
tion and can be readily evaluated,

E d2k1@g~lubq2k1u!2g~luaq1k1u!#g~lk1!

5
1

4p2E d2rg̃2~r/l!@exp~ i r•bq!2exp~ i r•aq!#

5
p

2l2
@g~lbq/2!2g~laq/2!#, ~2.10!

where

g̃~r/l!5
2p

l2
e2r/l ~2.11!

is the exciton spatial wave function in the QW plane.
order to evaluate thez integrals, we change to the coord
nates

z5ze2zc ; z85
1

2
~ze1zc!

which implies the following change in the integration limit
04532
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E
2L/2

L/2

dzeE
2L/2

L/2

dzc5E
2L/2

0

dz8E
2(L12z8)

L12z8
dz

1E
0

L/2

dz8E
2(L22z8)

L22z8
dz,

and performing the integrations results in the direct term

Vdir~q!5
4pe2l3

e0AL2
h~lq!@g~lbq/2!2g~laq/2!#, ~2.12!

whereL is the QW width,l is a variational parameter asso
ciated with the exciton Bohr radius in the QW, and we ha
defined the dimensionless function

h~lq!5

e2Lq211Lq1
5~Lq!3

8p2
1

3~Lq!5

32p4

~lq!3@11~Lq/2p!2#2
. ~2.13!

It is evident from Eq.~2.12! that the direct term is identically
zero for equal electron and hole masses (a5b50.5). Simi-
larly, we have for the exchange term

Vexc~Dk,q!52
8e2l5

e0AL2E d2k1h~lk1!g~luk11aq2Dku!

3@g~luk11q2Dku!2g~luq2Dku!#,

~2.14!

where we have definedDk5ke2akx . The exchange term
~2.14! is computed numerically, however, its angular part c
be calculated analytically~see Appendix A!. It is convenient
to transform to dimensionless direct and exchange integ
given by

V5
2

p

e2l3

e0AL2
I .

The direct and exchange integrals are plotted in Fig. 1 a
function of the transferred momentumq, for the caseDk
50, where the angular dependence ofI exc disappears. Asq
→0 the direct integral approaches zero, while the excha
integral has its maximum~this is also the case for exciton
exciton interaction19!. In the general case, the exchange
3-3
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tegral is a function of the transferred momentumq, the mo-
mentum difference Dk ~which can be regarded, fo
convenience, as the in-plane momentum of the collid
electron in the rest frame of the exciton!, and of the angle
u5/(q,Dk). The exchange interaction term has the follo
ing features:~i! The interaction favors the caseq5Dk.
Physically, this means that the electron is inclined to trans
as much momentum as possible to the exciton, preferab
the same direction.~ii ! The interaction retains its strength fo
quite large values ofq ~or Dk) even though the excitonic
wave function vanishes much more rapidly with momentu
~iii ! The differential cross section is largest foru50 and
decreases to a minimum for back scattering (u5p).

In the above we have disregarded the electron spin de
of freedom. Considering parallel spins~triplet configuration!
will retain the sign of the exchange term with respect to
direct term, whereas for antiparallel spins~singlet configura-
tion! the sign would be reversed. We note that the spin c
figuration is irrelevant in this case, since the direct term
much smaller than the exchange term. This results in sim
contributions from both singlet and triplet configurations.

Next we calculate the scattering rate of an exciton, w
an initial in-plane momentumkx , to an excitonic state with
an in-plane momentumkx1q. The exchange matrix elemen
~2.14! depends on five variables:kx ,ke ,q, cosu, cosf,
where we have definedf5/(kx ,kx1q). It is convenient to
transform from the anglesu and f to the anglesg
5/(kx ,q) andd5/(ke ,q):20

cosu5
ke cosd2akx cosg

Ake
21a2kx

222akxke cos~g6d!
~DkÞ0!,

cosf5
kx1q cosg

Akx
21q212kxq cosg

~kxÞ2q!. ~2.15!

It can be verified that for the special case ofkx50, we have
u5d andf5g. Conservation of energy and momentum f
the exciton-electron scattering process reads

Ex~ ukx1qu!1Ee~ uke2qu!5Ex~kx!1Ee~ke!, ~2.16!

whereEx (Ee) is the exciton~electron! kinetic energy. This
equation is satisfied with

FIG. 1. Calculated direct and exchange integrals vs transfe
momentum. The inset shows2I dir on an expanded scale.
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ke* 5
1

2M x cosd
@q~M x1me!12kxme cosg#. ~2.17!

The scattering rate is then found using Fermi’s golden ru

wx-e~kx→kx1q!

5
A

p\E d2ke

uVdir1Vexcu2d~ke2ke* !

UdEe~ uke2qu!
dke

2
dEe~ke!

dke
Uke5k

e*
f fd~ke!

3@12 f fd~ uke2qu!#

5
Ame

p\3E0

2p dd

ucosdu
ke*

q
uVdir1Vexc~q,kx ,ke* ,u,f!u2

3 f fd~ke* !@12 f fd~ uke* 2qu!#, ~2.18!

wheref fd(ke)5@e(Ee(ke)2m)/kBT11#21 is the electron Fermi-
Dirac distribution function. In the two-dimensional case th
we are considering, the chemical potential ism
5kBT ln(eEf /kBT21), and we assume that the Fermi energy
given by the free 2D electrons value:Ef5p\2ne /me . We
note that in the high-temperature limit,Ef!kBT, the Fermi-
Dirac distribution is practically classical, and that for lo
electron densities, the chemical potential becomes nega

Using the relations~2.15!, the integrand in Eq.~2.18! can
be expressed as a function of the variabl
kx ,q, cosg, cosd. The exciton linewidth due to electron sca
tering is calculated by integrating over all final exciton
states

Gx-e~kx!5
\A

~2p!2E qdqdgwx-e~kx ,q, cosg!. ~2.19!

Figures 2~a! and b! show the heavy-hole exciton (M x
50.177me) and light-hole exciton (M x50.306me) line-
widths atT580 K andT55 K for ne553109 cm22. The
large linewidths obtained for relatively lowne reflect the

d
FIG. 2. ~a! Heavy exciton (M x50.177me) and light exciton

(M x50.306me) linewidths due to electron scattering for a 2DE
with ne553109 cm22, as a function of the exciton initial in-plane
momentum, atT580 K. ~b! Same as~a! at T55 K. ~c! Linewidth
of heavy-hole exciton with initial momentumkx50, as a function
of ne , for the two temperatures considered.
3-4
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high efficiency of the electron-scattering mechanism. T
should be compared to an exciton linewidth of'0.2 meV
for acoustic phonon scattering atT580 K. The larger line-
width obtained atT55 K @Fig. 2~b!# is explained by notic-
ing that the exciton-electron interaction matrix elements
vor small energy-transfer transitions. Thus, at hi
temperatures, the electrons have too high energy to be e
tive scatterers. DecreasingT thus increases the scattering ra
until the electron gas becomes degenerate, and fewer
states are available for the scattered electrons. In Fig. 2~c! the
heavy-hole exciton linewidth atkx50 is plotted as a function
of ne for T55 and 80 K~the light-hole exciton linewidth
exhibits a similar behavior!. It is seen that while atT
580 K the linewidth amplitudes scale practically linear
with ne for a large range of electron densities~up to ne
'1011 cm22), the linearity region atT55 K is much
smaller. This linearity threshold seems to be in accord w
the onset of the phase-space filling effect which becom
noticeable at higher densities and effectively enlarges
exciton Bohr radius.21 As the temperature decreases, the
fect of phase-space filling becomes important at a m
lower electron density. We note that the functional dep
dence of the linewidths on the initial exciton momentum
almost unchanged within the linear regime. Increasingne
further results in a shift of the maximum linewidth fromkx
50 to higher momenta.

B. Exciton dissociation scattering

We now consider the case when the electron-exciton s
tering results in dissociation. This scattering process is
picted schematically in Fig. 3. The initial state of the syst
is given again by Eq.~2.5! while the final state is that o
three free particles, symbolically written asuke2q;k8;kx
1q2k8&, whereq is the momentum transferred from th
free electron to the electron-hole pair, andk8 is the second
electron momentum. Calculating the Coulomb interact
matrix elements between the initial and final states of
system, we again obtain direct and exchange interac
terms:

Vdir
dis~kx ,q,k8!5

4e2l4

e0L2 S 2p

A D 3/2

h~lq!@g~luakx1q2k8u!

2g~luakx2k8u!#, ~2.20a!

FIG. 3. Electron-exciton inelastic-scattering scheme.
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Vexc
dis~kx ,q,k8,ke!52

4e2l4

e0L2 S 2p

A D 3/2

h~luk82keu!@g~luakx

1q2k8u!2g~luakx1q2keu!#,

~2.20b!

whereg(lq),h(lq) are given in Eqs.~2.9! and ~2.13!, re-
spectively. We note that contrary to the elastic-scatter
case, here the direct and exchange matrix elements are
parable. In order to calculate the scattering rate we first
troduce energy-momentum conservation

Ex~kx!1Ee~ke!5Eb1Eh~ ukx1q2k8u!1Ee~k8!

1Ee~ uke2qu!, ~2.21!

whereEb is the exciton binding energy. Denoting the ang
n5/(kx ,k8) together withg,d which were defined previ-
ously, this equation is satisfied with

ke* 5
1

2bq cosd S 2bEbme

\2
1~akx!

21q21k82

12a@kxq cosg2k8kx cosn2k8q cos~g2n!# D .

~2.22!

The scattering rate is then calculated to be

wx-e
dis~kx→kx1q!5

A2me

4p3\3E k8dk8dndd

ucosdu
ke*

q
uVdir

dis6Vexc
disu2

3 f fd~ke* !@12 f fd~ uke* 2qu!#@12 f fd~k8!#, ~2.23!

where the1 (2) sign between the direct and exchange m
trix elements corresponds to the singlet~triplet! electron spin
configuration. For an unpolarized electron gas, an averag
over the two spin configurations must be performed, in or
to take into account the contributions of all the electrons
the exciton linewidth due to dissociating scattering:

Gx-e
dis~kx!5

3

4
Gx-e

dis,-~kx!1
1

4
Gx-e

dis,1~kx!. ~2.24!

Gx-e
dis,1(kx) @Gx-e

dis,-(kx)# denotes the exciton linewidth contribu
tion from the singlet~triplet! spin configuration, and both ar
calculated using Eq.~2.19!.

Figure 4~a! shows the heavy-hole exciton linewidth due
dissociating scattering atne553109 cm22, and T580 K.
Although the magnitude ofGx-e

dis(kx) is of the same order a
the elastic-scattering linewidth@compare to Fig. 2~a!#, its
functional dependence on the exciton in-plane momentum
very different. In particular, we note that the maximal lin
width is obtained at a very large momentum (kx'5l21).
This is due to the fact that in order for an exciton with in
tially small kx to be ionized, it must scatter on an electro
with energy large enough to overcome its binding ener
This is less likely as the temperature decreases, as is ev
3-5
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from Fig. 4~b!, where Gx-e
dis(kx) is plotted atT55 K. The

insets in Figure 4 show the maximum values ofGx-e
dis(kx) vs

ne . As in the elastic-scattering case, the linear depende
on ne holds for much larger electron densities atT580 K.

III. CHARGED EXCITON „TRION …-ELECTRON
SCATTERING

At low temperatures and lowne , charged excitons are
formed. In this section we calculate the trion linewidth due
scattering with free electrons. Three scattering proces
are considered: elastic scattering, where the trion rem
bound, capturing scattering, where the heavy-hole exc
captures a free electron to form a trion, and dissociat
scattering, where the trion dissociates into a heavy-hole
citon and an extra free electron. The latter process is im
tant due to the small binding energy of the trion with resp
to the exciton. We neglect the scattering in which both el
trons become unbound. In order to facilitate the matrix e
ments calculation, we consider a simple two parame
Chandrasekhar-type22 trial function for the trion,

f tr~r 1h,r 2h,z1 ,z2 ,zh!

5
1

A
Ntrxe~z1!xe~z2!xh~zh!@f~r 1h!f8~r 2h!

6f8~r 1h!f~r 2h!#, ~3.1!

where the1 (2) sign applies to the singlet~triplet! spin
configuration. In Eq.~3.1!, r ih5ur i2rhu,(i 51,2) are the in-
plane coordinates of the two electrons with respect to
hole in-plane coordinate,zi are the electronsz coordinates,
and xe(zi), xh(zh) are the confinement functions in thez
direction, taken to be the same for all constituents@Eq.
~2.3!#. The two electron orbitals are given by the normaliz
functions

FIG. 4. Heavy exciton (M x50.177me) linewidths due to disso-
ciating scattering with electrons, as a function of exciton init
in-plane momentum, withne553109 cm22 at ~a! T580 K, and
~b! T55 K. The insets show the maximum linewidth dependen
on ne .
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f~r !5A 2

pl2
e2r /l, ~3.2a!

f8~r !5A 2

pl82
e2r /l8, ~3.2b!

and the trion wave-function normalization factor is given

Ntr5S 2

L D 3/2 1

A16k2
, ~3.3!

where

k[^fuf8&5
4ll8

~l1l8!2
. ~3.4!

The trial function~3.1! was used in Ref. 23 for the case of
two-dimensional negative-donor center~i.e., mh→` limit !.
In addition, these authors performed the binding-energy
culations using a more complicated version of Eq.~3.1!
which includes a correlation term~with an additional varia-
tional parameter!. The variational parametersl,l8 are cal-
culated by maximizing the trion binding energy for the tw
spin configurations. The details of the binding-energy cal
lation are given in Appendix B, resulting inEb

tr

50.985 meV, l5143 Å, l85300 Å (Eb
tr50.765meV, l

5151 Å, l857650 Å) for the singlet~triplet! spin configu-
ration, whereEb

tr is calculated with respect to the heavy-ho
1S neutral exciton energy. We note that the triplet config
ration is barely bound, in accordance with the experimen
observations, thus it can be disregarded. Comparing with
much more elaborate treatment of Ste`bèet al.,13 our results
are fairly accurate, giving us the confidence to proceed
calculating the trion-electron scattering matrix elements
ing the wave function~3.1!.

We construct the state of a single trion with an in-pla
CM momentumkt , similarly to that of a single exciton~2.4!:

ukt&5 (
k1 ,k2
s1 ,s2

E dz1dz2dzhfa tkt1k1 ,a tkt1k2

tr* ~z1 ,z2 ,zh!

3jS* ~s1 ,s2!c2k1 ,z1

s1† c
2k2 ,z2

s2† dkt1k11k2 ,zh

† u0&, ~3.5!

where we have added the spin index to the electron crea
operators, and denoteda t5me /M tr , and jS(s1 ,s2)
5^Sus1 ,s2& as the projection of a generic spin configurati
of two electrons on the singlet spin configuration. The
plane Fourier transformed trion wave function in Eq.~3.5! is
given by

fk1 ,k2

tr ~z1 ,z2 ,zh!5Ntrxe~z1!xe~z2!xh~zh!fk1
fk2

8 ,

~3.6!

where

fk5A8pl2

A

1

@11~lk!2#3/2
, ~3.7a!

l

e
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fk85A8pl82

A

1

@11~l8k!2#3/2
. ~3.7b!

A state comprising a trion and a free electron havingke , ze ,
andse will be written as

ukt ;ke&5 (
k1 ,k2

s1 ,s2 ,se

E dz1dz2dzhdzejS* ~s1 ,s2!

3fa tkt1k1 ,a tkt1k2

tr* ~z1 ,z2 ,zh!cke
* ~ze!

3c
2k1 ,z1

s1† c
2k2 ,z2

s2† dkt1k11k2 ,zh

† cke ,ze

se† u0&. ~3.8!

In the following we shall use these wave functions to cal
late the scattering matrix elements for the various scatte
processes.

A. Elastic scattering

Applying the Coulomb interaction operatorsVe1 , Ve2,
andVeh to the initial state of the system~3.8!, and discarding
the self-energy contributions, we can write a generic exp
sion for the three scattering matrix elements,

^kt1q;ke2quVeiukt ;ke&

5
1

2 (
k1 ,k2

k18 ,k28 ,q1

(
s1 ,s2 ,se

s18 ,s28 ,se8

E dzidzi8dzhdzh8Vq1
~ze2zi !

3fa t(kt1q)1k
18 ,a t(kt1q)1k

28
tr

~zi8!jS~s18 ,s28!cke2q~ze8!

3fa tkt1k1 ,a tkt1k2

tr* ~zi !jS* ~s1 ,s2!cke
* ~ze!

^0uc1c2c3c4
†c5

†c6
†u0& ~ i 51,2,h!, ~3.9!

where we put the 1/2 prefactor to indicate averaging over
initial electron spin states, and used a numeric index for
electron operators, indicating both spatial and spin degree
freedom. Note that we have omitted the hole operators s
they anticommute with the electron operators and do
contribute additional constraints. Using the electrons a
commutation relations, the Fermi vacuum expectation va
of the operators reads

^0uc1c2c3c4
†c5

†c6
†u0&5d34~d25d162d15d26!1d24~d15d36

2d35d16!1d14~d35d262d25d36!,

~3.10!

where we have symbolically writtend i j 5dki ,k j
d(zi

2zj )dsi ,sj
. For the first electron interaction term we have
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15~ke2q;ze8 ;se8!, 25~2k28;z28 ;s28!, 35~2k18 ;z18 ;s18!,

45~2k12q1 ;z1 ;s1!, 55~2k2 ;z2 ;s2!,

65~2ke1q1 ;ze ;se!. ~3.11!

The second electron interaction term is found by making
substitutionsk1→k12q1 , k2→k21q1 in Eqs.~3.11!. Simi-
larly, the electron-hole interaction term is found by substit
ing: k1→k12q1 in Eq. ~3.11!. Applying the delta functions
of Eq. ~3.10! to Eq. ~3.9!, it is evident that the contributions
of the z-dependent parts are identical for all three term
since we have taken identical confinement functions for
electron and the hole@see Eq.~2.3!#. Assuming that the trion
remains in the singlet electron spin configuration, we s
over the spin degrees of freedom, resulting in selection ru
for the three electron final spin states, which determine
relevant signs of the various terms. Performing the in-pla
momentum integrations, and collecting the matrix eleme
into one direct and two exchange contributions, we fina
find

Vdir~q!5Nesh~lq!$@g~la tq/2!g~l8b tq/2!

1g~l8a tq/2!g~lb tq/2!12k2g~ l̃a tq!g~ l̃b tq!#

2@g~la tq/2!g~l8a tq/2!1k2g2~ l̃a tq!#% ~3.12!

and

Vexc
(1)~q,Dkt!52

Nes

p E d2k1h~lk1!$@ll8kg~ l̃a tq!g~luk1

2Dkt1a tqu!1l82g~la tq/2!g~l8uk12Dkt

1a tqu!#@g~l8uk12Dkt1qu!2g~l8uDkt

2qu!#1@l↔l8#3@l↔l8#% ~3.13a!

Vexc
(2)~q,Dkt!52

Nes

p E d2k1h~lk1!$@ll8kg~ l̃uk1

2a tqu!g~l8uq2Dktu!1l2g~l8uk1

2a tqu/2!g~luq2Dktu!#g~luk12Dkt1a tqu!

1@l↔l8#3@l↔l8#%, ~3.13b!

where we have denotedb t512a t , Dkt5ke2a tkt , and l̃
5ll8/(l1l8)2. In Eqs. ~3.12! and ~3.13!, the prefactor,
multiplying the dimensionless quantities, is given by

Nes5
1

11k2

4pe2l3

L2Ae0

. ~3.14!

We note that the direct term~3.12! diverges atq→0. This
divergence originates from the infinite range of the Coulo
potential, which is manifest whenever a scattering event
tween two charged particles occurs~note that for the neutra
exciton this divergence cancelled out, due to the equal c
tributions with opposite signs from the electron and ho
constituting the exciton!. In practice the Coulomb potential i
3-7
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G. RAMON, A. MANN, AND E. COHEN PHYSICAL REVIEW B67, 045323 ~2003!
screened by the presence of the 2DEG. Since we are co
ering a low-density 2DEG, its Fermi wave vector,kf

5A2pne, is small, thus the semiclassical~Thomas-Fermi!
approximation, which assumes thatq!kf , is inadequate.24

In particular, the two-dimensional semiclassical analysis
sults~at T50) in a density-independent screening wave v
tor q0, implying that the presence of a single electron
sufficient to screen the external potential, which is clea
unrealistic. We adopt instead the Lindhard approach wh
utilizes a perturbative scheme to evaluate the induced ch
density in first order of the total potential~by total we mean
the sum of the external potential, i.e., that of the trion, a
the 2DEG potential that is induced by the trion’s presenc!.
The in-plane Fourier transformed dielectric function whi
results from the effect of the screening is given by24

es~q!511
q0

q
gs~q!as~q!, ~3.15!

where

q05
2mee

2

e0\2
5

2

aB
~3.16!

andaB is the electrons effective bulk Bohr radius. Two fa
tors appear in Eq.~3.15!, which influence the screening. Th
first is the screening form factor given by

gs~q!5E dzdz8x2~z!x2~z8!e2quz2z8u ~3.17!

which arises from the finite QW width. In the infinite barrie
limit we are considering, the confinement functions,x(z),
are given by Eq.~2.3!, andgs(q) can be calculated analyti
cally, resulting in

gs~q!5
2

~qL!2

e2Lq211Lq1
5

8p2
~Lq!31

3

32p4
~Lq!5

F11S Lq

2p D 2G2 .

~3.18!

This screening form factor is smaller than 1, thus it redu
the effect of the screening, compared with the strictly tw
dimensional case@gs(L→0)51#. The second factor which
appears in Eq.~3.15! is given by

as~q!5
1

pE d2k
f fd~k1q!2 f fd~k!

~k1q!22k2
. ~3.19!

We note thatas(q) does not depend on the particular deta
of the QW, but only on the two-dimensional nature of t
2DEG motion. Substituting the screening dielectric functi
into the Coulomb interaction, we find the screened poten
to be

Vq
s~z!5

1

es~q!

2pe2

Ae0

e2uzuq

q
5

2pe2

Ae0

e2uzuq

q1q0gs~q!as~q!
;

~3.20!
thus the use of the screened potential implies replac
h(lq) in Eq. ~3.12! with
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hs~lq!5
h~lq!

11
4l3

L2aB

h~lq!as~q!

. ~3.21!

In general, the effect of the quasi-two-dimensional screen
saturates in larger electron densities, in contradistinction
the bulk case, resulting in a complicated dependence of
trion linewidth onne . We note that since there are no dive
gences in the exchange terms, replacingh(lk1) with
hs(lk1) in Eqs. ~3.13! amounts to a very small effect~less
than 1% in the relevant parameter range!.

Figure 5~a! shows the direct and exchange dimensionl
matrix elements as a function of transferred momentumq,
for the caseDkt50, where the angular dependence ofVexc

(1) ,
Vexc

(2) disappears. The effect of the screening on the total
mensionless matrix element is shown in Fig. 5~b!, where
various electron densities are considered, giving rise t
change in the screening action. As expected, the effect of
screening is noticeable in the region of small momenta of
direct matrix element.

The elastic scattering rate of the trion,wt-e(kt→kt1q), is
calculated by writing the energy-momentum conservat
equation and finding its solutionke* , similarly to Eqs.
~2.16!–~2.18!. Integrating over all final trionic states, we ca
culate the trion linewidth due to elastic electron scatteri
G t-e(kt), plotted for two electron densities in Fig. 6. Th
linewidth dependence onne is quite complicated. First, as w
are consideringT55 K, the density range for which the
linewidth exhibits a linear dependence onne is quite small,
similar to the neutral exciton scattering@cf. Fig. 2~c!#. Sec-
ond, the screening potential becomes larger as the den
decreases, thus for very small densities (ne&53108) de-
creasingne results in a larger trion linewidth. We note tha
for such low densities, it is probable that other screen
mechanisms become appreciable~e.g., lattice impurities!,
thus such a behavior will probably not be observed exp
mentally.

FIG. 5. Calculated dimensionless matrix elements atT55 K for
the case ofDkt50 vs transferred momentum:~a! Direct (ne

5109 cm22) and exchange terms~note that since the exchang
terms are not affected by the screening, their dependence onne is
negligible!. ~b! Total matrix element for various electron densiti
ne . The inset provides a closeup at smallq.
3-8
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B. Electron capture

We now consider the case in which a heavy-hole exci
captures a free electron thereby forming a trion. The ini
and final states of the system are given by Eqs.~2.5! and
~3.5!, respectively. The calculation of the Coulomb intera
tion matrix elements between these states essentially foll
the procedure described in the previous section. In this p
cess there is no exchange term. Instead, the two elect
which constitute the trion form a singlet spin configuratio
Defining Dk[a tkt2axkx , the calculation yields

Vcap~Dk!5NcapE d2k1h~l0k1!H ll8

~l01l8!2

3@g~ l̃8uk11Dku!2g~ l̃8Dk!#gS lUk11
Dk

ax
U D

1
ll8

~l01l!2
@g~ l̃uk11Dku!2g~ l̃Dk!#

3gS l8Uk11
Dk

ax
U D J , ~3.22!

where we have defined the reduced Bohr radii:l̃

5l0l/(l01l) and l̃85l0l8/(l01l8), and the prefactor:

FIG. 7. ~a! Calculated dimensionless matrix element of the c
turing process vsDk at T55 K. ~b! Xhh calculated linewidth due to
capturing scattering forne5109 cm22 at three temperatures.

FIG. 6. Calculated trion linewidth due to elastic scattering
initial trion momentum, atT55 K for two electron densities.
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8e2l0

4

A11k2ApAL2e0

. ~3.23!

Figure 7~a! shows the dependence of the dimensionl
matrix element onDk. Proceeding as before, we write co
servation of energy:

Ex~kx!1Ee~kt2kx!5Et~kt!1Eb
tr ~3.24!

which is satisfied for

kt* 5
1

b t
S kx cosu6Ab t

Eb
trme

\2
2kx

2 sin2u D ~3.25!

whereu5/(kx ,kt). We note that for the energy conservin
solutionskt* , the interaction matrix element is constant sin
Dk(kt* )5Aaxa tEb

trme /\2. Thus the dependence of th
heavy-hole exciton linewidth on its initial momentum
shown in Fig. 7~b!, comes solely from energy-momentu
conservation and the Fermi-Dirac distribution of the sc
tered electron:f fd(ke)5 f fd(kt* 2kx).

C. Charged exciton dissociation

Last, we consider the case in which the scattered tr
dissociates into a neutral exciton and a free electron. T
scattering process is shown schematically in Fig. 8. The
tial state of the system is given by Eq.~3.8! while the final
state is that of three free particles, symbolically written
ukx ;ke ;kt1q2kx&, where q is the momentum transferre
from the free electron to the trion, andkx is the neutral ex-
citon CM momentum.

Proceeding as before, we calculate the interaction ma
elements between the initial and final states of the system
this end we denote the final spin state of the three electr
as usx ,s8,se8& ~see Fig. 8!. Assuming the interaction is spin
independent, this final state will be one of the two stat

(s,m)5( 1
2 ,6 1

2 ), where the state withm5 1
2 (m52 1

2 ) cor-
responds to the initial electron spinse being up~down!. Ac-
tually, we need not concern ourselves with the exact form
the final electron spin state, since the projection of the ini
spin state~which is a tensor product of a singlet state wi
the additional free electron spin! on a generic final spin stat

-

FIG. 8. Electron-trion inelastic-scattering scheme.
3-9
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will extract the relevant contributions. The proper~anti!sym-
metrization of this final spin state is performed inherently
the anticommutation relations of the electron operators, a
Eq. ~3.10!. As in the elastic scattering case, we find o
direct and two exchange contributions. DenotingDkt5ke

2a tkt , and Dkx5ke2axkx as before, these terms are e
pressed as

Vdir~Dk,q!5Ndishs~l0q!S ll8

~l01l!2 H gS l8
Dk

ax
Dg~ l̃Dk!

1gS l8UDk

ax
1qU D @g~ l̃uDk1qu!2g~ l̃Dk!#J

1
ll8

~l01l8!2 H l↔l8

l̃→l̃8
J D ~3.26!

and

Vexc
(1)~q,Dkt ,Dkx!

52
ll8

p
NdisE d2k1h~l0k1!g~l0uk12Dkxu!S H FgS lUk1

2
Dk

ax
2qU D2gS lUDk

ax
1qU D Gg~l8uq2Dktu!1g~luk1

2Dkt1qu!gS l8UDk

ax
1qU D J 1$l↔l8% D ~3.27a!
be

04532
in

Vexc
(2)~q,Dkt ,Dkx!52

1

2
NdishsS l0UDkx

ax
2

Dkt

a t
1qU D

3S ll8

~l01l!2 H g~l8uDkt2qu!

3gS l̃UDkt2bxDkx

ax
2qU D1g~ l̃Dk!

3FgS l8
Dk

ax
D2g~l8uDkt2qu!G J

1
ll8

~l01l8!2 H l↔l8

l̃→l̃8
J D , ~3.27b!

wherel̃, l̃8 andDk were defined in the previous subsectio
and the prefactor multiplying the dimensionless quantities
Eqs.~3.26! and ~3.27!, is given by

Ndis5
16A2e2l0

4

A11k2L2e0
S 2p

A D 3/2

. ~3.28!

The direct term~3.26! and the second exchange ter
~3.27b! diverge atq→0 and at (Dkx /ax2Dkt /a t1q)→0,
respectively, implying the need of using a screened Coulo
potential, as was done in the trion elastic scattering. N
that the direct term~3.26! depends only onkt ,kx ,q, and
on the anglesg5/(kt ,q) and n5/(kt ,kx), whereas
the exchange terms depend also on the initial electron
mentumke and on the angled5/(ke ,q). In practice, we
express everything in terms ofq,Dkt ,Dkx , and the angles
u15/(Dkt ,Dkx), u25/(Dkx ,q), and u35/(Dkt ,q),
given by:
cosu15
ke

22axkxke cos~g2d2n!2a tktke cos~g2d!1axa tkxkt cosn

DkxDkt
, ~3.29a!
at-
cosu25
ke cosd2axkx cos~g2n!

Dkx
, ~3.29b!

cosu35
ke cosd2a tkt cosg

Dkt
. ~3.29c!

The calculation of the scattering rate is performed as
fore, where conservation of energy now reads

Et~kt!1Ee~ke!5Eb
tr1Ex~kx!1Ee~kt1q2kx!1Ee~ke2q!.

~3.30!

Equation~3.30! is satisfied for
-

ke* 5
1

q cosd S me

\2
Eb

tr1q21
1

2b t
~b tkt2kx!

2

1q@kt cosg2kx cos~g2n!# D . ~3.31!

Using Fermi’s golden rule as in Eq.~2.23!, we find the
scattering ratewt-e(kt→kt1q). Integrating over all final tri-
onic states, we find the trion linewidth due to inelastic sc
tering as a function of its initial momentumkt , G t-e

dis(kt),
shown in Fig. 9 forne5109 cm22.
3-10
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THEORY OF NEUTRAL AND CHARGED EXCITON . . . PHYSICAL REVIEW B67, 045323 ~2003!
IV. EXCITONS AND TRIONS
IN QW’S CONTAINING A 2DEG

In this section we apply the linewidth calculations for t
various scattering processes, presented in the previous
tions, in order to calculate the line shapes of neutral excit
and trions. These line shapes can be directly compared
measured reflection spectra, taken from MTQW structu
containing a variable density 2DEG. Without electrons in
QW and for T&100 K, the two dominant scattering pro
cesses are due to acoustic phonons and static disorde
note that the radiative lifetime of a free QW exciton ist rad
'25 ps, resulting in a radiative homogeneous broadenin
g rad'26 meV. The exciton-acoustic phonon interactio
leads to a homogeneous broadening whose Lorentzian
shapeL0 is characterized bygphon50.2 meV for theXhh and
gphon50.28 meV for theXlh at T580 K, using the param-
eters of GaAs/AlAs QW’s.25 The 1S exciton energyE1S has
a Gaussian distribution~characterized bygdis) due to the
roughness of the QW surface. Convolving these two dis
butions results in the familiar Voigt function26

I0~E!5
gphon

~2p!3/2gdis
E

2`

` e2E0
2/2gdis

2

~E2E0!21~gphon/2!2
dE0 ,

~4.1!

FIG. 9. Calculated trion linewidth due to inelastic scatteri
with electrons vs its initial momentum forne5109 cm22.

FIG. 10. A schematic picture of the convolution resulting fro
electron scattering. The solid lines represent various exciton in
line shapesI0(E2E8). The contributions of states withkx.0 to
the kx50 state are weighted by the value of the Lorentz
Lx-e@E8,Gx-e(E8)#, given by the dashed line.
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where we takeE1S50. When a low-density 2DEG is
present,I0(E) is convolved with a Lorentzian line shape th
is associated with the homogeneous broadening that is du
the electron scattering:

I~E!5E
0

`

I0~E2E8!Lx-e@E8,Gx-e~E8!#dE8, ~4.2!

whereGx-e(E8) is given by Eq.~2.19!, with the exciton en-
ergy E8 corresponding tokx . A pictorial description of the
convolution in Eq.~4.2! is given in Fig. 10, for both elastic
and dissociating exciton-electron scattering processes~the
trion-electron scattering exhibits a similar behavior!. It is
seen that the electron scattering admixes excitons havinkx
.0 with thekx50 state. The degree of admixture is dete
mined by the value of the Lorentzian that is due to elect
scattering, given in the figure by the dashed line. Note t
sinceGx-e(E8) is a decreasing function ofE8, the Lorentzian
peak is shifted to higher exciton energies.@This is observed
experimentally as an increased shift with increasingne ~Ref.
7!#. In the calculation, the Gaussian width, associated w
the inhomogeneity, was taken as a fitting parameter, yield
the valuesdis50.2 meV for bothXhh and Xlh ~the same
value was taken also for the trion line!.

The calculated line shapes are identified with the ima
nary part of the dielectric function in the QW that is relat
to the exciton~trion! resonance. Use of the Kramers-Kron
relations yields the real part of the dielectric function. E
amples of calculated exciton line shapes together with
associated real part of the dielectric function are depicted
Fig. 11 for two electron densities.

Combining the three exciton line shapes~heavy-hole and
light-hole neutral excitons, and heavy-hole trion!, by using
the appropriate oscillator strengths, the reflection spectra
QW can be obtained. For high temperature (T580 K),

al

FIG. 11. ~a! Heavy-hole (M x50.177me) exciton normalized
line shapes due to scattering with electrons for two electron de
ties. ~b! The corresponding dielectric function real part.
3-11
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where the trion is dissociated, these calculated spectra
their dependence onne were shown to be in good agreeme
with the experimental data.7

In the low-temperature regime (2,T,20 K), the vindi-
cation of our results with experimental measurements
harder to perform. Since the heavy-hole exciton and tr
lines are very close in energy, and the trion oscilla
strength is much lower than that of the exciton, it is prac
cally impossible to discriminate between them by reflect
measurements. PL experiments were performed in MTQ
with 2DEG, at low temperatures, facilitating the observat
of the trion line,17 but there the detailed balance between
exciton and the trion line intensities is determined by
2DEG density, and the system dynamics should be addre
by solving, e.g., rate equations.

In Fig. 12~a! the trion linewidth due to elastic electro
scattering is shown as a function ofne for three tempera-
tures. The combined effect of both elastic and dissocia
electron scattering on the trion linewidth in shown in F
12~b!. Qualitatively, the trion line observed in Ref. 17 inde
broadens considerably at much lowerne than the exciton
line, as indicated by our results. The electron densities st
in Ref. 17 are probably an overestimate, as implied by
fact that the neutral exciton linewidth remains unchanged
to ne5331010 cm22, in clear contradiction to both our ca
culations and other experimental data~e.g., Ref. 7!. It should
be noted that calibrating the photoexcitation intensityI L to
ne in MTQW’s is not an easy task. Even if one assume
linear dependence ofne on I L ~which is valid for a limited
range!, the slope depends on the temperature, since the h
tunneling times decrease exponentially withT, so a different
calibration should be performed not only for different expe
ments, but also for each temperature. Finally, the strong
hancement of the dissociating scattering with increasing t
perature, evident in Fig. 12~b!, implies that the trion line
should practically vanish forT.10 K at very low electron
densities.

V. SUMMARY AND CONCLUSIONS

In this paper we presented a theoretical study of the v
ous exciton-electron scattering processes that take place
QW which contains a low-density 2DEG. We have demo

FIG. 12. Trion’s linewidth vs electron density, for three tempe
tures due to~a! elastic scattering and~b! both elastic and dissociat
ing scattering.
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strated that even for small densities, of the order ofne'5
3109 cm22 in the case of a GaAs/AlAs QW, exciton
electron scattering is much more efficient than both excit
phonon and exciton-exciton scattering, thus playing a cen
role in the system dynamics. The dependence of the exc
linewidth onne was shown to be drastically different for th
cases of a classical (T580 K) and a degenerate (T55 K)
2DEG. In general, the trion-electron scattering poses a m
harder problem, one of the major difficulties being the eva
ation of the screening effects. We showed that the scree
model has a crucial effect on the trion-electron scatter
matrix elements, and hence on the resulting trion linewid
This is particularly true for very low densities (ne&5
3108 cm22), where the 2DEG screening is less effectiv
making other possible mechanisms more dominant. Us
the calculated scattering rates we showed that dissocia
scattering can produce a sizable broadening of the excit
lines, in particular for the trion, whose binding energy
considerably smaller than that of the neutral exciton.

A simple method to produce excitonic line shapes fro
the calculated linewidths was devised, allowing our results
be easily compared with experimental reflection spectra
reliable source of experimental data is achievable from
flection measurements taken from a MTQW structure, e
bedded in a microcavity~MC!. In the limit of large MC
mode energy, the exciton linewidths are restored, since t
coupling with the MC mode is barely noticeable. A maj
advantage of MC experiments is that the trion line is eas
resolved by reflection,28 allowing a direct comparison with
theory.

The calculated interaction matrix elements can be rea
used to evaluate polariton-electron scattering rates in M
with 2DEG. The use of exciton-electron scattering as a
laxation mechanism for the lower branch polaritons in a M
was theoretically shown to be advantageous in respect
polariton-polariton and polariton-phonon scatteri
processes.29 In a recent experiment we have demonstra
polariton final-state stimulation, assisted by these scatte
mechanisms, which was hitherto observed using polarit
polariton scattering mechanism.30,31 Incorporation of the
various scattering processes which were considered in
paper, in a consistent explanation for these nonlinear effe
will be the topic of a forthcoming publication.
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APPENDIX A

In this appendix we present an analytical calculation
the angular part of the exchange integral. This calculati
while quite complicated, is worth the trouble for two reaso
The first is, obviously, a major reduction in the time co

-
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sumed by the numerical computation, making it feasible.
a subsidiary benefit, the partially analytical calculation
moves some convergence problems encountered in the
viously used numerical algorithm.

Using dimensionless momenta~e.g., by writing q we
meanlq) the exchange integral reads

I exc~Dk,q,u!524pE dk1k1h~k1!df@11~k12Dk

1aq!2#23/2$@11~k12Dk1q!2#23/2

2@11~q2Dk!2#23/2%

[24pE dk1k1h~k1!$~ I !1~ II !%, ~A1!

whereu is the angle betweenq andDk andf is the angle
betweenk1 and Dk. We shall work out separately the tw
parts of Eq.~A1!.

The first part is given by

~ I !5E
0

2p

df@ad1~bd1ae!cosf2c~d1a/a!sinf2c~e

1b/a!sinf cosf1becos2f1c2/a sin2f#23/2,

~A2!

where we have defined

a511k1
21Dk21a2q222aqDk cosu,

b52k1~aq cosu2Dk!,

c52aqk1 sinu,

d511k1
21Dk21q222qDk cosu,

e52k1~q cosu2Dk!. ~A3!

Transformingf→f85f2p and then toz5tan(f/2) we
have

~ I !52E
2`

`

dz~11z2!2@~a2b!~d2e!12c~d2e1a/a

2b/a!z12~ad2be12c2/a!z212c~d1e1a/a

1b/a!z31~a1b!~d1e!z4#23/2.

Finding the roots of this fourth order polynomial we have

~ I !52E
2`

`

dz~11z2!2@~z212Az1B!~z212Cz1D !~a

1b!~d1e!#23/2, ~A4!

where

A5
c

a1b
; B5

a2b

a1b
; C5

c

a~d1e!
; D5

d2e

d1e
.

We note for later use thatA,B,C,D obey the inequalities
04532
s
-
re-

B.0; D.0; B2A2.0; D2C2.0. ~A5!

One can reduce the polynomial in Eq.~A4! to a product of
two quadratic binomial forms, by making use of the follow
ing transformation:

z5
p1qy

11y

with p, q given by

p,q5
1

2

D2B

A2C
6A1

4 S D2B

A2CD 2

1
AD2BC

A2C

~note that we assumeAÞC, deferring for later the treatmen
in this special case!. Noticing thatp andq always have op-
posite signs, we chooseq,0 and divide the integral into

E
2`

`

dz5E
2`

0

dz1E
0

`

dz,

where the limitz5` corresponds toy521 and the limit
z52` corresponds toy521 with q and p interchanged.
The integral now reads

~ I !5NH E
2p/q

21

dy
@y2~11q2!12y~11pq!111p2#2

@~y21s2!~y21t2!#3/2

2
1

~st!3E21

2q/p

dy
@y2~11p2!12y~11pq!111q2#2

@~y211/s2!~y211/t2!#3/2 J
where

s25
p212Ap1B

q212Aq1B
; t25

p212Cp1D

q212Cq1D
,

and

N5
2~q2p!

@~q212Aq1B!~q212Cq1D !~a1b!~d1e!#3/2
.

Making the transformationy5s tanc in the first integral and

y5
1

tanc in the second, we find

s

3-13
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~ I !5
N

s2t3 H Etan21(2p/sq)

tan21(21/s)
dc

@~qssinc1p cosc!21~s sinc1cosc!2#2

~12k2 sin2c!3/2

2st3E
tan21(2s)

tan21(2qs/p)
dc

@~p/s sinc1q cosc!21~1/s sinc1cosc!2#2

~12 k̃2 sin2c!3/2 J ,

where we have defined

k2512s2/t2; k̃2512t2/s2. ~A6!

Changingc→p/22c in the second integral, and using tan21s1cot21s5p/2, we find that the second integral exactly match
the first except that its upper limit is larger byp; thus we are left with

~ I !52
N
s5E2tan21s

p2tan21s
dc

@~11p2!sin2c1s2~11q2!cos2c1s~11pq!sin 2c#2

~12 k̃2 sin2c!3/2
.

te
it

s

n

n

f

te-
This integral can be evaluated using incomplete elliptic in
grals ~see p. 201 in Ref. 32!. Furthermore, one can explo
the functional relations~p. 911 in Ref. 32!

F~2f,k!52F~f!; E~2f,k!52E~f!,

F~np2f,k!52K ~k!2F~f,k!;

E~np2f,k!52E~k!2E~f,k!

where F(f,k),E(f,k) denote incomplete elliptic integral
of the first and second kind, respectively, andK (k),E(k)
denote complete elliptic integrals of the first and seco
kind, respectively. The final result is

~ I !52
2N

s~s22t2!2 H @~s21t2!E~ k̃!22t2K ~ k̃!#F 1

t2
~11p2!2

1~11q2!2s2G22~313p2q214pq1p21q2!

3@2s2E~ k̃!2~s21t2!K ~ k̃!#J . ~A7!

For imaginary values ofk̃, the result is the same as Eq.~A7!

with the interchangess↔t andk̃→k, k being defined in Eq.
~A6!.

We now return to examine two special cases which can
be treated using Eq.~A7!. The first case corresponds toA
5C,BÞD. Here we have

p56`; q52A.

Although s,t5`, k̃ is still finite, taking the value

k̃25
D2B

D2A2
,

04532
-

d

ot

thus enabling the use of Eq.~A7! with some modifications.
Remembering the inequalities~A5! we note that the sign o
k̃2 is determined by the sign ofD2B. We obtain, forD
.B,

~ I !5
4AD2A2

@~a1b!~d1e!#3/2~D2B!2 H @~11D2A2!E~ k̃!

22K ~ k̃!#F11
~11A2!2

~B2A2!~D2A2!
G22~3A211!

3F2E~ k̃!2S 11
B2A2

D2A2D K ~ k̃!G J . ~A8!

For D,B the result is the same as Eq.~A8! with the inter-
changesB↔D and k̃→k.

The second special case corresponds toA5C, B5D.
Here the integral~A4! reduces to

~ I !5
2

@~a1b!~d1e!#3/2E2`

`

dz
~11z2!2

~z212Az1B!3
.

This integral can be easily evaluated~see p. 81 in Ref. 32!
and the result is

~ I !5
p

4

314A212B13B2

@~a1b!~d1e!#3/2~B2A2!5/2
. ~A9!

Finally, we evaluate the second part of the exchange in
gral, appearing in Eq.~A1!. We have

~ II !5
1

~d2k1
2!3/2E0

2p df

~a1b cosf2c sinf!3/2
,

wherea,b,c,d are defined in Eq.~A3!. Using the transfor-
mationf52c1b, where tanb52c/b, we have
3-14
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~ II !5
2

~d2k1
2!3/2E2b/2

p2b/2 dc

~a1p22p sin2c!3/2
,

wherep5Ab21c2. This integral can be evaluated using t
elliptic integral of second kind, resulting in

~ II !5
4Aa1p

~d2k1
2!3/2~a22p2!

ES 2p

a1pD . ~A10!

APPENDIX B

In this appendix we present the calculation of the tri
binding energy, based on the trial wave function given in E
~3.1!. It is useful to work with the Fourier transformed trio
wave function~3.6!, where we have for the two spin configu
rations, explicitly,

fk1 ,k2

tr ~z1 ,z2 ,zh!5Ntrx~z1!x~z2!x~zh!@fk1
fk2

8 6fk1
8 fk2

#.

The effective mass Hamiltonian is given by

H5(
i 51

2 F2
\2

2me
~¹ r i

2 1]zi

2 !2
e2

e0A~r i2rh!21~zi2zh!2G
2

\2

2me
~s¹ rh

2 1sz]zh

2 !1
e2

e0A~r12r2!21~z12z2!2
,

~B1!

wheres5me /mh
uu , sz5me /mh

z are the electron-hole effec
tive mass ratios in the plane andz directions, respectively
Transforming to CM and relative coordinates in the Q
plane,

Rcm5
s~r11r2!1rh

112s
, ~B2a!

r ih5r i2rh , i 51,2, ~B2b!

and neglecting CM motion which does not contribute to
binding energy, we have

H5(
i 51

2

H0~r ih ,zi ,zh!1H12~r1h,z1 ,r2h,z2!, ~B3!

where

H0~r ih ,zi ,zh!52~11s!¹ r ih

2 2
sz

2
]zi

2 2
2

Ar ih
2 1~zi2zh!2

,

~B4a!
04532
.

e

H12~r1h,z1 ,r2h,z2!522s¹r 1h
•¹r 2h

1
2

A~r1h2r2h!
21~z12z2!2

,

~B4b!

and we employed natural units of length and energy, nam
bulk effective Bohr radius and Rydberg. The expectat
value of the trion energy is given by

E5^f truHuf tr&5
I162kI21J16J 2

16k2
, ~B5!

wherek was defined in Eq.~3.4!, and the upper~lower! signs
apply to the singlet~triplet! spin configuration. The various
terms appearing in Eq.~B5! are calculated in the in-plan
Fourier space, resulting in simple 2D convolutions, similar
those in Appendix A. The results are

I15S 2

L D 2

@^fx1xhuH0ufx1xh&1^f8x1xhuH0uf8x1xh&#

5S p

L D 2

~21sz!1F 1

l2
~11s!

2l3S 2

L D 2E
0

`

dqqh~lq!g~lq/2!G1@l→l8#, ~B6a!

I25S 2

L D 2

^fx1xhuH0uf8x1xh&5
k

2 S p

L D 2

~21sz!

1
4~11s!

~l1l8!2
2~l1l8!S l̃k

L
D 2E

0

`

dqqh~ l̃q!g~ l̃q!,

~B6b!

J15S 2

L D 2

^f1x1f28x2uH12uf1x1f28x2&

52l3S 2

L D 2E
0

`

dqqh~2lq!g~lq/2!g~l8q/2!,

~B6c!

J25S 2

L D 2

^f1x1f28x2uH12uf18x1f2x2&

52k2l̃3S 2

L D 2E
0

`

dqqh~2l̃q!g2~ l̃q!. ~B6d!

In Eqs.~B6!, h(lq), g(lq) are the functions defined in Eqs
~2.9! and ~2.13!, respectively, and we have denotedl̃
5ll8/(l1l8). We note that in the 2D limit (L→0), elimi-
nating the kinetic energy term in thez direction, Eqs.~B6!
reduce to
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I15S 1

l2
1

1

l82D ~11s!24S 1

l
1

1

l8
D , ~B7a!
d
c

to

s

y
e

tt

y
m

on

04532
I25
4~11s!

~l1l8!2
2

8

l1l8
, ~B7b!
J155
lk

~l82l!2 F S 11
l82

l2 D E~12l2/l82!22K ~12l2/l82!G , l,l8,

l8k

~l82l!2 F S 11
l2

l82D E~12l82/l2!22K ~12l82/l2!G , l.l8,

3p

4l
, l5l8,

~B7c!
gy
ton

r
ms
n

ion.
l
,
ohr

ett.
.

n,

s.

t,

ev.

ph,

ys.
J25
3pk

2~l1l8!
, ~B7d!

whereK , E are the complete elliptic integrals of the first an
second kind, respectively. These closed-form expressions
incide with the integral expressions of Sandler and Proet23

for s→0 and vanishing magnetic field@note a misprint in
Eq. ~A6! of their paper#.

In order to maximize the trion binding energy, we mu
first write the expectation value of the exciton energy:

E05
1

l0
~11s!1S p

L D 2

~11sz!

2
4l0

3

L2 E0

`

dqqh~l0q!g~l0q/2!, ~B8!

resulting in the 1S exciton Bohr radius and binding-energ
values stated in Sec. II. Note that in the 2D limit we hav
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