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Magnetic edge states of an impenetrable stripe
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The electron motion in a strong perpendicular magnetic field close to the impenetrable stripe is considered
by making use of the singular integral equations technique. The energy spectrum is calculated and compared
with the energy spectrum of the round antidot. It is shown that in the case of the long stripe, the eigenfunctions
can be obtained as a superposition of magnetic edge modes, while the fractal energy levels obtained in a
high-energy region can be explained from the quasiclassical point of view.
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[. INTRODUCTION ergy spectrum are presented. In order to explain the physical
meaning of the spectrum peculiarities, two limit cases—the
Progress in a nanometer technology and the ability to tailong stripe in Sec. V and large electron energy in Sec. VI—
lor potentials has triggered a broad activiw in low- are considered. In Sec. VIl the conclusions are given, and in
dimensional semiconductor nanostructures. Among the 2ihe Appendix the details related to the discretization of the
(two-dimensional structures the quantum dots with the elec-Singular integral equation are collected.
trons confined in a small region have been a subject of the
intense theoretical and experimental research during the past Il. MODEL
yearst The complete confinement and the discrete energy W ider the elect L | hich i
spectrum converted these objects into a useful instrument for, € consider the electron moving ry piané which is
the electron interaction and correlation studiés the strong s.hownln /leg 1_.(;I'h.e _ar;jt!dot, :T) |m;|1n|tely thln.lmp\?\?etralble
perpendicular magnetic field the quantum antidot, the regioHQe |X|E.a. Y=, 15 1n icated by the gray stripe. We solve
with a repulsive potential, can bound the electrons as weIIF e Schrdinger equation
The magnetotransport experiments on the arrays of the quan- {H—E}¥(r)=0, 1)
tum antidot3 showed a close relation of the pronounced
structure in the magnetoresistance and the periodic classiceith the following dimensionless Hamiltonian:
orbits, or the corresponding spectrum of the antidots. It was
tested on the arrays of various shape antifidtbe impor- H=— 1{V+iA(r)}2 @)
tance of the antidot-bound electron states was confirmed in 2 '
the. studies of magnetotransport through clusters of thsvhere the perpendicular magnetic field is described by the
antidots and the individual antidot. S . a
The spectrum of the quantum antidot in the magnetic fiel ector potential n the symmetnc gauge(r) ={—y.x}/2.

, . . . . . the following notation for 2D vectors-{x,y}. The
is also interesting from the dynamic chaos point of vieee € use 9

Ref. 7 and references ther&he quantum antidots together energ_y 'S mea suhred o .(wICZeB/m\/C)TlmgS’ gnthhhe
with quantum billiards are the most simple and convenienfPordinates—in the magnetic lengtg= yc#/eB units. The

structures for revealing the links between the autocorrel antidot—the impenetrable stripe—is taken into account by a

tions in quantum spectrum and the periodic orbits of th ard wall boundary condition
classical problem. The most convenient technique for solving a(r)| . =0 @)
the antidot eigenvalue problems with not separating variables X=azy=x0"""
is the singular integral equations. Usually the sharp antidoBesides, the wave function satisfies zero boundary condi-
edges increase the singularity of these equations makingpns at the infinity® (r)|,_..=0.
them rather complicated and even not useful. In this paper
using the simplest antidot, the finite impenetrable line, we y B
demonstrate how the integral equation technique can be used @
in the case of the antidot with the sharp edges. We have
failed to find that this simple but revealing antidot spectrum y=+0
has been considered ever before. Comparing this spectrum
with the round antidot one we demonstrate the main features - & »
of the problem with nonseparable variables. The limit cases x
. ) -al2 \ al2

of a long antidot and high electron energy show the pecu-
liarities of the quantized magnetic edge modes and the qua- y=-0
siclassical quantization.

The paper is organized as follows. In Sec. Il the problem
is formulated. In Sec. Ill the simplest ultrashort stripe case is
considered, and in Sec. IV the numerical results for the en- FIG. 1. Layout.
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Making use of the Green’s theorem the above two- IIl. SHORT STRIPE
dimensional problem can be transformed into a one-

dimensional integral equation. Indeed, introducing the whole rovt\)llre]:?r? izotlxgl?(é?;i?rglneﬁ?aar?tmazt:nzmegﬁzllé/;:eez]?gt
plane Green'’s function as a solution of the equation problem sihguianty e P
that it will lead to the singularity of the perimeter function at

{H—E}G(r|r")=—8(r—r"), (4)  the ends of the stripe=*a/2. In order to reveal the above
singularity we considered the limit case of the ultrashort

and taking the boundary conditior(|r')=0 into ac-  stripe (@—0) when the Kummer function can be replaced by
count, one can present the wave function as the intége&l jts following expansion:

the details in Ref. ¥

1
1 a2 IimU(—s|1|s)=—F ——{Ins+y(—&)—24(1)}.
W(r)= —f dx' G(r|x",00F(x") (5) 50 (—e)
2 —al2 (11)
over the perimeter of the antidot. Here Here the symbol)(z) stands for the logarithmiE -function

derivative, or the so-calle¢r function. Note apart the singu-
FOO)=Wy(x,+0)=¥y(x,~0) 6 lar logarithmic term we included terms which are large close

is the difference of the wave-function derivatives on the op10 the first Landau level {—0), and the constant term
posite sides of the stripe. We shall refer to it as the perimete¥(1)= — vy (y~0.5772), which we need to get the proper
function. behavior of the lowest antidot energy branch.

The wave function defined via Eq5) satisfies already Now inserting the above expansion into E¢$0), then
Eq. (1) and the boundary condition at the infinity. Satisfying into Eq. (7), and scaling the variables—ax, we arrive at
the boundary condition on strip@) we get the following the following approximate integral equation for the ultrashort

integral equation: stripe case:
al2 1/2 1/2
f dx'K(x,x)F(x")=0, ) f dX"ﬂIX—X’IF(X’)=>\f F(x)dx', (12
al2 -1/2 —-1/2
with the kernel where
N — ’ 1
K(x,x")=27G(x,0x",0). (8) N= §{|I’1(32/2)+¢(—s)+2'y}. (13

The nonessential factors2is included for the sake of con-
venience. Thus, the short stripe energy spectrum problem is reduced to
This integral equation is our main instrument. Note thatthe calculation of the eigenvalues of integral equatib®.
taking the derivative of Eq5) overy and equating it to the Then the energy can be obtained by solving algebraic equa-
perimeter function on the stripe, one more integral equatiortion (13). For instance, replacing th¢ function by its sim-
can be obtained. In our case it is not necessary, because quiest expansion in the vicinity of the first Landau levgl
stripe antidot has no inner region, and consequently, there afe- )~ 1/e — y, we get
no spurious eigenstates, which have to be properly elimi-
nated in the case of other antid6ts. 1
In order to fix the kernel we have to solve the Green'’s E-12=¢= Y on—In(aZ2) (14
function equatior(4). The solution of it is knowhas Y n(a“/2)

1 Due to the average of the eigenfunction over the stripe on
G(r|r')=— —expli[rxr'],/2}g(s), (9a  the right-hand side of Eq12) it has the single not equal to
2m zero eigenvalua.. It can be checked by the straightforward
integration that the function

g(s)=—T'(—e)exp—sl2)U(—¢l[1]s), (9b)
F(x)=1/J1/4—x? (15)
s=[r—r'|?/2, (90) S _ _
satisfies integral equatiofi2) with \=—21In2. The corre-
e=E—1/2. (9d) sponding energy spectrum branch is shown in Fig. 2 as a

function of the stripe length: the solid curve is obtained by
Here the symbal'(z) stands fod” function, andJ(al|b|z) is  the numerical solution of Eq(13), while the dotted curve
the Kummer function of the second kind—the solution of theindicates the simplified version of the asymptotics according

Confluenﬁ hypergeometric equa}tian. . to Eqg. (14). Both of them coincide in the limit casa—0.
Inserting the above expression into £8), we obtain the  We see that the antidgshort impenetrable stripeexpels a
following kernel: single level from the first degenerate Landau statdicated

1 by a thick dashed horizontal lineThe longer the stripe is,
"N _ T2 the higher is the level. Note a rather fast energy grow at
KX 9(s), s Z(X X% (10 small a values. It is a characteristic feature of the energy
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FIG. 2. Energy spectrum of ultra short stripe. Solid curve— all

solution of Eq.(13), dotted curve—simplified asymptotics according

to Eq. (14), and dashed curve—numerical integration of integral FIG. 3. Energy spectrum of the stripe. The non-perturbed Lan-

equation(7). dau levels are indicated by thick dashed horizontal lines. The solu-
tions of Egs.(36) and(38) are indicated by dotted curves.

level corresponding to the nonperturbed level with zero-

orbital momentum, which has a nonzero electron density aence on the stripe length, but its dependence on the

the origin r=Q. All other nonperturbed levels haye zero g1agnetic-field strengtha(l s~ \B) can also be traced.
electron density there, and thus, they are weakly influenced g, 4 comparison the spectrum of round impenetrable an-

by the stripe, and consequently, not expelled in this simplesfyot with a diameter is shown in Fig. 4. It was obtained by
ultrashort stripe approach. means of zeroing the radial antidot wave funct{@ncoin-

cides with Green’s functio®9) with r'=0 assumefat the
IV. NUMERICAL RESULTS antidot border =a/2.

The most important result for the ultrashort stripe case The _characfceristic feature of both specira i_s the fast ex-
presented in the preceding section is perimeter fundti&h pelled first antidot level for each Landau state in the case of
which singularity at the stripe ends is caused by the interpla mall ?1 V?IuesL. Tge d?ta"?? be{]‘a"'OF of _th|shlevel .exlg.elleg
of the logarithmic singularity of the kernel and the sharp rom the first Landau level for the stripe Is shown in Fig.

antidot edges. Thus, it is inherent to the perimeter function oPy a dashed curve. Rather good _coincidence of it with the
general integral equatiof?) as well. That is why in order to short stripe energysolid curve confirms a good accuracy of

achieve the proper accuracy in numerical solution of thethe developed numerical scheme. . .
above equation one has to take both singularifesnel and We see that t_hese two spectra of the anudo; stripe and the
perimeter functiopinto account explicitly. For this purpose round antidot differ essentially. The round antidot spectrum

we have replaced the perimeter function as follows: is'a typical one fpr the system with separable variable;. In
this case the variables can be separated due to the cylindric

£(x) symmetry of the problem, and actually we have independent
X) = ——— 16 radial problems for every angular momentum value, whic
(X) > 5 (16) dial bl f I I hich
va/4—x energy spectrum branches freely intersect each other. The

and discretized the obtained integral equation for the func-
tion f(x) including the singular factors into the proper
weights of the discretization scheme. See the details of the
calculation in the Appendix. Instead of solving the obtained
matrix equation

Kf=0, (17)

the corresponding eigenvalue problem

E/fio,

Kfo=Nofn (18)

for various electron energieswas considered. The electron
energy was defined by zeroing the obtained eigenvalyes

=N,(g)=0. oL . ,
The obtained stripe energy spectrum is shown in Fig. 3 0 5 10 15
where six highest levels expelled from each Landau level all,
(dashed horizontal lingsre indicated. On the axes the origi-
nal dimensions are shown. Thus, not only the energy depen- FIG. 4. Energy spectrum of the round antidot.

045318-3



A. MATULIS AND T. PYRAGIENE PHYSICAL REVIEW B 67, 045318 (2003

E branches describing the electron motion to the left above the
i stripe, and to the right—below it. In the asymptotic region
(77 . | Sy E - k— *, the branches tend to the Landau levels shown by
AE thick dashed horizontal lines. The intersection points of the
E above branches coincide with the Landau levels as well.

In the case of the finite stripe the electron motions above
and under the stripe are no more independent, because mov-
F E, ing above the stripe the electron reaches its end, bends

L~ NN around the corner, continues its motion under the stripe, and
== —d === === so on. Bending of the corner is a rather complicated diffrac-
tion problem, but in the asymptotic long stripe case, we can

* kk O Kk kK 1 replace it by some scattering matrix acting on the longitudi-
nal motion exponents.
FIG. 5. Spectrum of the magnetic edge modes. The description of electron motion depends on the num-
ber of edge modes participating in it. For instance, if the
main point is that when the antidot level with some orbitalelectron energy is lower than the second Landau level with
momentum reaches the next Landau level, the antidot levelenergy 3/2(see, the lower thin dotted horizontal line in Fig.
with the same momentuinis already expelled from it. Con- 5 labeled byE,) there are only two edge modes indicated by
sequently, any antidot level freely crosses any Landau levekolid circles. One of them with momentuknmoves above
And we see the energy spectrum branches going up wahenthe stripe to the left, while the other one with momentum
increases with numerous crossings. —k moves to the right under it. At the stripe ends these edge

This is not the case for a stripe spectrum. Due to the lacknodes are scattered into one another. Since there is a single
of symmetry the orbital momentum is not a good quantumscattering channel only, the scattering probability is equal to
number any more, and instead of crossings we have antinity. Consequently, due to the scattering event the electron
crossings. Moreover, expelled antidot levels cannot cross theave function is multiplied by some scattering amplitugle

C1/ 3= 8 S ' W N S
AE

Landau levels any more. So, when the paramathy grows,  =explix(AE)}, while the propagation along the stripe can be
the expelled antidot levels saturate bellow the next Landataken into account by the propagator ekp). Thus, taking
level. into account the periodic motion of the electr@iter bend-

Nevertheless, there are still some crossings. See, for iring both stripe ends the exponential part of the electron wave
stance, the behavior of levels expelled from the second Larfunction must coincide with itself we can write down the
dau level in Fig. 3. The matter is that the stripe in the perfollowing simple rule for quantization of the edge modes in
pendicular magnetic field still has the inversion symmetrythe asymptotic long stripe case: §&itka+x)}=1, or
(r——r). Due to it all the perimeter functioriand the wave
functions as wejlcan be divided into the symmetric and the ka+ x(AE)=mn, n=1,2,.... (19
antisymmetric ones which actually satisfy the different inte-
gral equations. Thus, in the energy spectrum of the stripe Now using the relatioME=vk (v=5/42) which fol-
crossings between the symmetric and antisymmetric spetews from the properties of the parabolic cylinder functions
trum branches are possible. These crossings and the occw@iose to the intersection point &=3/2, k=0, and the ex-
ring waviness of the spectrum branches are the most prompansion
nent feature of the considered stripe spectrum. Note that
when the electron energy grows, the above waviness is trans- X(AE)=xo+ x1AE, (20
formed into numerously pronounced plateaux on the spec-
trum branches. Now we are going to explain the physicale solve Eq(19) and get
meaning of these plateaux and waviness considering two
limit cases of the long stripe and large electron energies. A(n—A) 477\/5

AEq at+s '’ 5

~3.55. (21)

V. LONG STRIPE , . _
Two other parameters: the effective elongation of the stripe

Let us start with the long stripe approximation. When thes=y y; and the quantum number defekt= y,/7 depend
stripe is infinite there are two types of magnetic edge modegn the scattering amplitude phase and unfortunately, cannot
propagating along the stripe on both of its sides. In this casge found analytically.
we have the problem invariant under the translation along the  Fitting the numerically obtained energy branches expelled
stripe, and thus, the corresponding eigenvalues can be Igom the first Landau level in the interval 5&a<100 by
beled by the electron momentum componieatongx direc-  E=A_/(a+ 5,) we have obtained the following parameters:

tion. The eigenfunctions can be expressed in terms of pargy 1 2 3 4 5 6

bolic cylinder function asW(k|r)=exp(ikx)D.{*2(y

—k)}.2 The spectrum is obtained by zeroing the wave func-9n 429 553 569 725 799 949
tion on the stripeD,(F +2k) =0, and it is shown in Fig. 5. An 348 7.04 1040 1401 17.39 20.99

We see that it consists of two independent system ofA,/A 0.99 198 2092 3.93 4.89 5.88
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Note the numbers in the last row coincide rather well with
the integers) what convince us that the picture of quantized
edge modes is quite adequate.

To explain the behavior of energy branches expelled from (b)
the upper Landau levels is more complicated because there
are more edge modes present. For instance, close to the third
Landau levelsee the upper thin dotted horizontal line in Fig.

5 labeled byE,) there are four edge modes. Two of them
with momenta—k andk’ propagate above the stripe to the
left, while the other two with momentaand —k’ propagate
under it to the right. Consequently, in this case the propaga-
tion of electron on both sides of the stripe has to be described
by the following propagator:

e*ikx 0
P(x)= ( o ) (22) FIG. 6. Electron density for long stripe/l z=48): (a) — for the
0 rex highest antidot level expelled from the first Landau level, éne-

. for the same level expelled from the second Landau level.
acting on the state vector

A i _ iAE |
\PZ(B) (23 eXF(IaAE/v’)—eXF(—ZICD)=iﬁsm(koa_@)_

ol
composed of edge mode superposition coefficients. Bending 28)
of the edges is characterized by some2 scattering matrix If one neglects the small term on the right-hand side of this
S. Now the quantization is performed by the following self- €quation one gets the result similar to E2]1),
consistency condition:
(0)_A’(n—A’)
SP(a)SP(a)¥ ="V, (24) AR =— "5 (29

and the energy spectrum of the stripe can be defined by Z‘?r\'/hereCD(AE)ZQJOJr(I)lAE A =mv, A'=dy/m, and &'

roing the determinant of the above equation, =®,v. The right-hand side term taken into account as a
perturbation leads to the following oscillating correction:

de{SP(a)SP(a)—Z]=0. (25
: AEQ®
The absolute values of the scattering matfielements AEW=+ sin(kpa— o). (30)
are given in Ref. 10. We see that close to the third Landau koa

level the absolute value of the off-diagonal elements arg; i remarkable that the period of oscillations depends on
nearly unity (So|=[S;g~1), while the diagonal elements ko= 1/y/2 only. It leads taAa=2m/k,~8.89, what coincides
are small|Sog = |Sya| ~ Ak/2ky, where the symbak, stands rather well with the period value 8.8 obtained from the nu-

fqr the edge mode intersection point aﬁdat=|_< —kis the ., merical calculation result for the two upper levels expelled
difference of edge mode momenta, propagating on both sid Som the second Landau level

of the stripe. Thus, adding the phases, we construct the fol- This simple asymptotic picture of interfering magnetic

lowing scattering matrix: edge modes is confirmed by Fig. 6 where the contour plots of
the electron densities corresponding to the above considered
), (26)  antidot states are shown. We see that the wave function for
the antidot level expelled from the first Landau level looks
like a cigar(and it does not matter how long is the stjipe
what indicates that it is composed of a single magnetic edge
r{Tlode. In the case of the antidot level expelled from the sec-
ond Landau level there are the lum(ise longer the stripe is
the more lumps there grevhich are caused by the interfer-
ence of two pairs of edge modes propagating on both sides of

1 1
k=ko— U—lAE, k'=ko+ U—ZAE, (279  the stripe.

e'?Ak/2k, el

T _ _ _
ST e _erleakizkeel®

which satisfies the unitarity conditioSS * =7 with the ac-
curacy of Ak terms.

Now expanding the momenta close to the intersectio
points as

1/1 VI. QUASICLASSICAL LIMIT

2 -1
k'—k= v_,AE' v'= E(v_1+ U_z) ' (270 As it has already been mentioned in Sec.(8¢e Fig. 3,
the oscillations surveyed close to the lowest Landau levels
we transform Eq(25) into the following approximate equa- change into well pronounced plateaux when the number of
tion: Landau level is incremented. The detailed view of the antidot
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5.5 ————

FIG. 8. Two circle trajectory.

0 5 10 15 simplest trajectory with two scattering events is shown in
all, Fig. 8 by a solid curve. We see that in this case the trajectory
is composed of two Larmor circles, and consequently, it is
twice longer than the trajectory of the free electron rotating
in the magnetic field. Thus, the integral on the left-hand side
of Eq. (31) becomes twice larger. This fact leads to the twice
maller separation of energy levelAE=1/2) as compared

FIG. 7. The stripe energy levels expelled from the fifth Landau
level.

levels expelled from the fifth Landau level is shown in Fig.
7. It is remarkable that the energy of these plateaux is very', )
close to simple fractions of cyclotron energy. Thus, the pla- ith the separation of Landau levels.

teau indicated by a dashed horizontal line is right in the N Order to decide whether the fractal Landau levels ob-

middle between two adjacent Landau levels with eneggy Lalned in this qur?smllassmal way candtgke plaﬁs Orhncl)lt’ olr<1e
—9/2+1/2=5, while the energy of two other plateaux indi- "aS 0 Inspect the slow motion coordinates. We shall take

cated by dotted horizontal lines exceed the fifth Landau Ieve‘ihem into account in the most simple way. Note that there are

energy (9/2) by one and two thirds. more equwalent trajectories with two scattering events and

Unfortunately, in the case of high Landau levels the num-the same energfthe sam_e.radlus of the L-armor cirgid-et
ber of the interfering edge modes is large, and this fac s mark th_em by the position of the left circle centgnY).
makes it difficult to apply the long stripe approximation con- 0, changlng the center by S.OmAX’AY) we obtain an-
sidered in the preceding section. Nevertheless, the simplifie§t€r €guivalent trajectory, as is shown in Fig. 8 by a dashed
description is still possible due to the large electron energyCUTVe: Thus, the integral over all possible coordinatend

It is known that when the electron energy is large the ™
guasiclassical approach based on the Bohr quantization rule

can be used. In the case of free 2D electron in the homoge- Vz(R,a)Zf f dXdY=f dY n(R,2VRZ—Y?),
neous perpendicular magnetic field it reduces to the estima-

tion of the following integral: (343
n,(R,b)=(2b—a)®(2b—a)®(a—b)+ab®(b—a)
§ &dn=2mn+m7, n=0172... (31 (34b

gives the total phase volume for the trajectories with the
given radiuskR. Hereb is the distance between the centers of
E=px—y/2, n=py+x/2 (320  both circles. We assume that the quanti_tyz(E,_a)

. . ) =V,(R,a)/27 gives the degeneracy of the quasiclassical an-
over the electron_trajectory. Inserting the solutidh qot level with the given energf =R%2. The integral in
=V2Ecost, »=y2Esint into Eq. (31) one immediately Egq,. (34) can be easily calculated, and it leads to the follow-
gets a well-known expression for Landau-level enekgy  ing number of degeneracy of quantum level corresponding to
=n+1/2. Note the considered electron motion is two dimen-the classical two-circle trajectory:
sional, and consequently, two more coordinates—the slow

composed of fast coordinatés

motion coordinates 2E
No(E,a)="— ps(al VBE), (353

X=x/2—py, Y=yl2+p, (33
—have to be taken into account. In free electron case it is T
trivial because the Hamiltonian does not depend on them. p2(X)=L(X)O(1=x)+ 5 O(x—=1)={(x/2), (35D
The single important thing is the commutatpX,Y]=i,
which shows that the total slow coordinate phase volume _ i+ x /1 — X2 35
divided by 2 gives the degeneracy of the corresponding £(x) =aresinx+x X (359
energy level. If the above number is less than unity, the level does not

The influence of the stripe on the classical electron trajecmanifest itself. The energy values obtained by solving the
tory can be taken into account via scattering events. Thequation
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VII. CONCLUSIONS

The energy spectrum of the electron moving in the per-
pendicular magnetic field in a vicinity of an impenetrable
stripe and the corresponding densities are calculated by mak-
ing use of the integral equation technique for the antidot
perimeter function(the perpendicular wave-function deriva-
tive at the antidot border It is shown that the perimeter
function singularities caused by sharp edges of the antidot
can be overcome by proper discretization technique which
takes explicitly into account the logarithmic singularity of

FIG. 9. Electron density for the level indicated by short dash inthe kernel and root-type singularities of the perimeter func-
Fig. 7 corresponding to the classical two-circle trajectory. tion.

The antidot in the magnetic field expels the antidot energy
levels from every degenerated Landau state. In the case of
the round antidot due to the circular symmetry expelled an-
are indicated in Fig. 3 by dotted curves on its left side. Wetidot levels go up when the radius of the antidot incredses
see that the larger is the energy the longer is the fractdhe magnetic field strength increapemd freely intersect
plateau corresponding to the quasiclassical level, and theach other and the Landau levels. In the case of the antidot
higher is its degeneracy. Moreover, there is a good coincistripe due to the lack of symmetry the variables cannot be
dence of dotted curves with the plateaux ranges obtained b§eparated, and nearly all crossings are replaced by the anti-

N,(E,a)=n, n=123 (36)

the numerical calculation.

crossings. The expelled antidot levels cannot cross the Lan-

In a similar way the phase volume and the degeneracy dfau levels, and consequently, they saturate below the next
the quasiclassical levels corresponding to three circle classi-andau level when the stripe length increases.
cal trajectories can be estimated. In this case one can obtain As the antidot stripe still has the inversion symmetry only

n3(R,b)=0(2R—-b)®(a—b)®(3b—a)
X(a—b)®(2b—a)+(3b—a)®(a—2b),

(37a
E
N(E.a)= 5 —ps(a/VBE), (37b
87(x/2)—6L(xI3)—2L(X) 0<x<1
p3(X)=14 8L(X[2)—6{(XI3)—m 1<x<2
37— 6L(x/3) 2<x<r.
(370

The energy values obtained by solving the equation

N;(E,a)=n, n=1,2 (38

are shown by dotted curves on the right side of Fig. 3 as

the pairs of symmetric and antisymmetric levels cross each
other demonstrating the characteristic oscillations of the
spectrum branches expelled from the excited Landau levels.
These oscillations and the above-mentioned saturation can be
explained in the asymptotic long stripe case by the interfer-
ence of the magnetic edge modes.

When the electron energy increasés the antidot levels
expelled from the higher Landau levelthe above men-
tioned oscillations of the spectrum branches is transformed
into plateaux at the fractal cyclotron energy values. It is
shown that these fractal plateaux can be explained by using
simple quasiclassical quantization rule, and they are related
to the classical trajectories composed of several Larmor
circles.

The above-mentioned fractal plateaux of energy branches
have to be seen in magnetoresitance of arrays of stripe-type
antidots, and the magnetization which is just proportional to
the electron-energy derivative over the magnetic-field
strength(in the considered case through the dimensionless
stripe lengtha).
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A good agreement of all dotted curves with the degen-
eracy of the fractional plateaux obtained in the numerical

APPENDIX:  DISCRETIZATION OF SINGULAR

INTEGRAL EQUATION

solution of the problem convinces us of the adequacy of the

considered quasiclassical quantization scheme. The above In this section some details of the numerical solution of
picture is confirmed by the electron-density plot presented irintegral equatior(7) are given. For sake of convenience we
Fig. 9. The density is calculated for the third antidot levelscale the variableg—ax, and rewrite separately the equa-

expelled from the fifth Landau state in the cagéz;=6.32

tion for the symmetric and antisymmetric perimeter function

indicated by a small solid circle in Fig. 7. We see a rather

good correlation of the electron density with the classical

two-circle trajectory shown by a dotted curve in Fig. 9.

1
F=(=x)=5{F()=F(=x)}. (AD)
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Now the equation reads f=={fy,f1, ...} with componentsf,=f*(x,), and x,

=h(n+1/2), h=1/2N. Integral equation(A6) itself has

1/2 - . - - —
J dx'K*(x,x")E*(x")=0, (A2)  been rewritten in the form of the following matrix equation:
0
+BEfE=
with the symmetriqor antisymmetrig kernel {A+B7}=0, (A7)
. , , , where the corresponding matrix elements of the kernel are
K=(x,x")=K(ax,ax')xK(ax,—ax"). (A3) defined as

Next, we write down explicitly the singularity of the perim-

eter function (n+1)h (m+Dh 2 Inx—y|dy
Anm= J dXJ ’
£ (%) nh mh V(12— x)(1/2—y)
F(X)= =, A4 (A8a)
(x) T (A4)
and the logarithmic singularity of the kernel Bam=K™ (X,X")BnBrn, (A8b)
K*(x,x")=2 Inx—x'|+K*(x,x), (A5) (n+Dh  dx
i B, = f S (A8C)
where the second part of the kertét is a regular function nh V1/2=x

at x=x"'.

follows: It enables us to rewrite the integral equation aSBoth integrals can be calculated straightforwardly, and the

analytical expressions for the discretization weights ob-
tained.
Using the discretized perimeter functiét the electron
0 \(1/2—x)(1/2—x") wave function(and the corresponding dengitiyas been ob-
(A6)  tained via the discretized version of E®). Calculating the

Note both terms of the equation are divided by a factor ofV@ve function outside the stripien the stripe it is equal to

[172=x in order to have the symmetric kernel, as the nu__zerd only the perimeter function singularity has to be taken

merical calculation of the corresponding symmetric matrix"to account. Thus, Ed5) can be replaced by

eigenvalues can be performed with greater accuracy than a N1

those for the nonsymmetric one. V()= B.(G(arlax’.0)*+G(ar|—ax’' O\f
The discretization of Eq(A6) has been performed as fol- (N=3 nZO (G(arlax’,0)= Gar] O}

lows. The perimeter function has been replaced by vector (A9)

vadx' K= (x,x)f*(x")

fle dx’'2 Injx—x"|f*(x")
0 V(1/2—x)(1/2—x")
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