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Magnetic edge states of an impenetrable stripe

A. Matulis* and T. Pyragiene˙
Semiconductor Physics Institute, Gosˇtauto 11, 2600 Vilnius, Lithuania
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The electron motion in a strong perpendicular magnetic field close to the impenetrable stripe is considered
by making use of the singular integral equations technique. The energy spectrum is calculated and compared
with the energy spectrum of the round antidot. It is shown that in the case of the long stripe, the eigenfunctions
can be obtained as a superposition of magnetic edge modes, while the fractal energy levels obtained in a
high-energy region can be explained from the quasiclassical point of view.
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I. INTRODUCTION

Progress in a nanometer technology and the ability to
lor potentials has triggered a broad activity in low
dimensional semiconductor nanostructures. Among the
~two-dimensional! structures the quantum dots with the ele
trons confined in a small region have been a subject of
intense theoretical and experimental research during the
years.1 The complete confinement and the discrete ene
spectrum converted these objects into a useful instrumen
the electron interaction and correlation studies.2 In the strong
perpendicular magnetic field the quantum antidot, the reg
with a repulsive potential, can bound the electrons as w
The magnetotransport experiments on the arrays of the q
tum antidots3 showed a close relation of the pronounc
structure in the magnetoresistance and the periodic clas
orbits, or the corresponding spectrum of the antidots. It w
tested on the arrays of various shape antidots.4 The impor-
tance of the antidot-bound electron states was confirme
the studies of magnetotransport through clusters of
antidots5 and the individual antidots.6

The spectrum of the quantum antidot in the magnetic fi
is also interesting from the dynamic chaos point of view~see
Ref. 7 and references there!. The quantum antidots togethe
with quantum billiards are the most simple and conveni
structures for revealing the links between the autocorr
tions in quantum spectrum and the periodic orbits of
classical problem. The most convenient technique for solv
the antidot eigenvalue problems with not separating varia
is the singular integral equations. Usually the sharp ant
edges increase the singularity of these equations ma
them rather complicated and even not useful. In this pa
using the simplest antidot, the finite impenetrable line,
demonstrate how the integral equation technique can be
in the case of the antidot with the sharp edges. We h
failed to find that this simple but revealing antidot spectru
has been considered ever before. Comparing this spec
with the round antidot one we demonstrate the main featu
of the problem with nonseparable variables. The limit ca
of a long antidot and high electron energy show the pe
liarities of the quantized magnetic edge modes and the q
siclassical quantization.

The paper is organized as follows. In Sec. II the probl
is formulated. In Sec. III the simplest ultrashort stripe cas
considered, and in Sec. IV the numerical results for the
0163-1829/2003/67~4!/045318~8!/$20.00 67 0453
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ergy spectrum are presented. In order to explain the phys
meaning of the spectrum peculiarities, two limit cases—
long stripe in Sec. V and large electron energy in Sec. V
are considered. In Sec. VII the conclusions are given, an
the Appendix the details related to the discretization of
singular integral equation are collected.

II. MODEL

We consider the electron moving inx-y plane which is
shown in Fig. 1. The antidot, an infinitely thin impenetrab
line uxu<a/2, y50, is indicated by the gray stripe. We solv
the Schro¨dinger equation

$H2E%C~r !50, ~1!

with the following dimensionless Hamiltonian:

H52
1

2
$¹1 iA~r !%2, ~2!

where the perpendicular magnetic field is described by
vector potential in the symmetric gaugeA(r )5$2y,x%/2.
We use the following notation for 2D vectorsr5$x,y%. The
energy is measured in\vc (vc5eB/mc) units, and the
coordinates—in the magnetic lengthl B5Ac\/eB units. The
antidot—the impenetrable stripe—is taken into account b
hard wall boundary condition

F~r !u uxu<a/2,y56050. ~3!

Besides, the wave function satisfies zero boundary co
tions at the infinityC(r )ur→`50.

FIG. 1. Layout.
©2003 The American Physical Society18-1
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A. MATULIS AND T. PYRAGIENĖ PHYSICAL REVIEW B 67, 045318 ~2003!
Making use of the Green’s theorem the above tw
dimensional problem can be transformed into a o
dimensional integral equation. Indeed, introducing the wh
plane Green’s function as a solution of the equation

$H2E%G~r ur 8!52d~r2r 8!, ~4!

and taking the boundary conditionsG(`ur 8)50 into ac-
count, one can present the wave function as the integral~see
the details in Ref. 7!

C~r !5
1

2E2a/2

a/2

dx8G~r ux8,0!F~x8! ~5!

over the perimeter of the antidot. Here

F~x!5Cy~x,10!2Cy~x,20! ~6!

is the difference of the wave-function derivatives on the o
posite sides of the stripe. We shall refer to it as the perim
function.

The wave function defined via Eq.~5! satisfies already
Eq. ~1! and the boundary condition at the infinity. Satisfyin
the boundary condition on stripe~3! we get the following
integral equation:

E
2a/2

a/2

dx8K~x,x8!F~x8!50, ~7!

with the kernel

K~x,x8!52pG~x,0ux8,0!. ~8!

The nonessential factor 2p is included for the sake of con
venience.

This integral equation is our main instrument. Note th
taking the derivative of Eq.~5! over y and equating it to the
perimeter function on the stripe, one more integral equa
can be obtained. In our case it is not necessary, becaus
stripe antidot has no inner region, and consequently, there
no spurious eigenstates, which have to be properly eli
nated in the case of other antidots.8

In order to fix the kernel we have to solve the Gree
function equation~4!. The solution of it is known7 as

G~r ur 8!52
1

2p
exp$ i @r3r 8#z/2%g~s!, ~9a!

g~s!52G~2«!exp~2s/2!U~2«u1us!, ~9b!

s5ur2r 8u2/2, ~9c!

«5E21/2. ~9d!

Here the symbolG(z) stands forG function, andU(aubuz) is
the Kummer function of the second kind—the solution of t
confluent hypergeometric equation.9

Inserting the above expression into Eq.~8!, we obtain the
following kernel:

K~x,x8!52g~s!, s5
1

2
~x2x8!2. ~10!
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III. SHORT STRIPE

When solving integral equation~7! numerically the main
problem is the kernel singularity atx5x8. One can expect
that it will lead to the singularity of the perimeter function
the ends of the stripex56a/2. In order to reveal the abov
singularity we considered the limit case of the ultrash
stripe (a→0) when the Kummer function can be replaced
its following expansion:

lim
s→0

U~2«u1us!52
1

G~2«!
$ ln s1c~2«!22c~1!%.

~11!

Here the symbolc(z) stands for the logarithmicG-function
derivative, or the so-calledc function. Note apart the singu
lar logarithmic term we included terms which are large clo
to the first Landau level («→0), and the constant term
c(1)52g (g'0.5772), which we need to get the prop
behavior of the lowest antidot energy branch.

Now inserting the above expansion into Eqs.~10!, then
into Eq. ~7!, and scaling the variablesx→ax, we arrive at
the following approximate integral equation for the ultrash
stripe case:

E
21/2

1/2

dx8lnux2x8uF~x8!5lE
21/2

1/2

F~x8!dx8, ~12!

where

l52
1

2
$ ln~a2/2!1c~2«!12g%. ~13!

Thus, the short stripe energy spectrum problem is reduce
the calculation of the eigenvalues of integral equation~12!.
Then the energy can be obtained by solving algebraic eq
tion ~13!. For instance, replacing thec function by its sim-
plest expansion in the vicinity of the first Landau levelc
(2«)'1/«2g, we get

E21/25«5
1

g22l2 ln~a2/2!
. ~14!

Due to the average of the eigenfunction over the stripe
the right-hand side of Eq.~12! it has the single not equal to
zero eigenvaluel. It can be checked by the straightforwa
integration that the function

F~x!51/A1/42x2 ~15!

satisfies integral equation~12! with l522 ln 2. The corre-
sponding energy spectrum branch is shown in Fig. 2 a
function of the stripe lengtha: the solid curve is obtained by
the numerical solution of Eq.~13!, while the dotted curve
indicates the simplified version of the asymptotics accord
to Eq. ~14!. Both of them coincide in the limit casea→0.
We see that the antidot~short impenetrable stripe! expels a
single level from the first degenerate Landau state~indicated
by a thick dashed horizontal line!. The longer the stripe is
the higher is the level. Note a rather fast energy grow
small a values. It is a characteristic feature of the ener
8-2
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MAGNETIC EDGE STATES OF AN IMPENETRABLE STRIPE PHYSICAL REVIEW B67, 045318 ~2003!
level corresponding to the nonperturbed level with ze
orbital momentum, which has a nonzero electron densit
the origin r50. All other nonperturbed levels have ze
electron density there, and thus, they are weakly influen
by the stripe, and consequently, not expelled in this simp
ultrashort stripe approach.

IV. NUMERICAL RESULTS

The most important result for the ultrashort stripe ca
presented in the preceding section is perimeter function~15!
which singularity at the stripe ends is caused by the interp
of the logarithmic singularity of the kernel and the sha
antidot edges. Thus, it is inherent to the perimeter function
general integral equation~7! as well. That is why in order to
achieve the proper accuracy in numerical solution of
above equation one has to take both singularities~kernel and
perimeter function! into account explicitly. For this purpos
we have replaced the perimeter function as follows:

F~x!5
f ~x!

Aa2/42x2
, ~16!

and discretized the obtained integral equation for the fu
tion f (x) including the singular factors into the prop
weights of the discretization scheme. See the details of
calculation in the Appendix. Instead of solving the obtain
matrix equation

Kf50, ~17!

the corresponding eigenvalue problem

Kfn5lnfn ~18!

for various electron energies« was considered. The electro
energy was defined by zeroing the obtained eigenvaluesln
5ln(«)50.

The obtained stripe energy spectrum is shown in Fig
where six highest levels expelled from each Landau le
~dashed horizontal lines! are indicated. On the axes the orig
nal dimensions are shown. Thus, not only the energy dep

FIG. 2. Energy spectrum of ultra short stripe. Solid curv
solution of Eq.~13!, dotted curve–simplified asymptotics accordin
to Eq. ~14!, and dashed curve–numerical integration of integ
equation~7!.
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dence on the stripe length, but its dependence on
magnetic-field strength (a/ l B;AB) can also be traced.

For a comparison the spectrum of round impenetrable
tidot with a diametera is shown in Fig. 4. It was obtained b
means of zeroing the radial antidot wave function@it coin-
cides with Green’s function~9! with r 850 assumed# at the
antidot borderr 5a/2.

The characteristic feature of both spectra is the fast
pelled first antidot level for each Landau state in the case
small a values. The detailed behavior of this level expell
from the first Landau level for the stripe is shown in Fig.
by a dashed curve. Rather good coincidence of it with
short stripe energy~solid curve! confirms a good accuracy o
the developed numerical scheme.

We see that these two spectra of the antidot stripe and
round antidot differ essentially. The round antidot spectr
is a typical one for the system with separable variables
this case the variables can be separated due to the cylin
symmetry of the problem, and actually we have independ
radial problems for every angular momentum value, wh
energy spectrum branches freely intersect each other.

l FIG. 3. Energy spectrum of the stripe. The non-perturbed L
dau levels are indicated by thick dashed horizontal lines. The s
tions of Eqs.~36! and ~38! are indicated by dotted curves.

FIG. 4. Energy spectrum of the round antidot.
8-3
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A. MATULIS AND T. PYRAGIENĖ PHYSICAL REVIEW B 67, 045318 ~2003!
main point is that when the antidot level with some orbi
momentuml reaches the next Landau level, the antidot le
with the same momentuml is already expelled from it. Con
sequently, any antidot level freely crosses any Landau le
And we see the energy spectrum branches going up wha
increases with numerous crossings.

This is not the case for a stripe spectrum. Due to the l
of symmetry the orbital momentum is not a good quant
number any more, and instead of crossings we have a
crossings. Moreover, expelled antidot levels cannot cross
Landau levels any more. So, when the parametera/ l B grows,
the expelled antidot levels saturate bellow the next Lan
level.

Nevertheless, there are still some crossings. See, fo
stance, the behavior of levels expelled from the second L
dau level in Fig. 3. The matter is that the stripe in the p
pendicular magnetic field still has the inversion symme
(r→2r ). Due to it all the perimeter functions~and the wave
functions as well! can be divided into the symmetric and th
antisymmetric ones which actually satisfy the different in
gral equations. Thus, in the energy spectrum of the st
crossings between the symmetric and antisymmetric s
trum branches are possible. These crossings and the o
ring waviness of the spectrum branches are the most pro
nent feature of the considered stripe spectrum. Note
when the electron energy grows, the above waviness is tr
formed into numerously pronounced plateaux on the sp
trum branches. Now we are going to explain the physi
meaning of these plateaux and waviness considering
limit cases of the long stripe and large electron energies

V. LONG STRIPE

Let us start with the long stripe approximation. When t
stripe is infinite there are two types of magnetic edge mo
propagating along the stripe on both of its sides. In this c
we have the problem invariant under the translation along
stripe, and thus, the corresponding eigenvalues can be
beled by the electron momentum componentk alongx direc-
tion. The eigenfunctions can be expressed in terms of p
bolic cylinder function asC(kur )5exp(6ikx)D«$6A2(y
2k)%.10 The spectrum is obtained by zeroing the wave fu
tion on the stripeD«(7A2k)50, and it is shown in Fig. 5.
We see that it consists of two independent system

FIG. 5. Spectrum of the magnetic edge modes.
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branches describing the electron motion to the left above
stripe, and to the right—below it. In the asymptotic regi
k→6`, the branches tend to the Landau levels shown
thick dashed horizontal lines. The intersection points of
above branches coincide with the Landau levels as well.

In the case of the finite stripe the electron motions abo
and under the stripe are no more independent, because
ing above the stripe the electron reaches its end, be
around the corner, continues its motion under the stripe,
so on. Bending of the corner is a rather complicated diffr
tion problem, but in the asymptotic long stripe case, we c
replace it by some scattering matrix acting on the longitu
nal motion exponents.

The description of electron motion depends on the nu
ber of edge modes participating in it. For instance, if t
electron energy is lower than the second Landau level w
energy 3/2~see, the lower thin dotted horizontal line in Fi
5 labeled byE0) there are only two edge modes indicated
solid circles. One of them with momentumk moves above
the stripe to the left, while the other one with momentum
2k moves to the right under it. At the stripe ends these e
modes are scattered into one another. Since there is a s
scattering channel only, the scattering probability is equa
unity. Consequently, due to the scattering event the elec
wave function is multiplied by some scattering amplitudeS
5exp$ix(DE)%, while the propagation along the stripe can
taken into account by the propagator exp(ika). Thus, taking
into account the periodic motion of the electron~after bend-
ing both stripe ends the exponential part of the electron w
function must coincide with itself!, we can write down the
following simple rule for quantization of the edge modes
the asymptotic long stripe case: exp$2i(ka1x)%51, or

ka1x~DE!5pn, n51,2, . . . . ~19!

Now using the relationDE5vk (v55/4A2) which fol-
lows from the properties of the parabolic cylinder functio
close to the intersection point atE53/2, k50, and the ex-
pansion

x~DE!5x01x1DE, ~20!

we solve Eq.~19! and get

DEn5
A~n2D!

a1d
, A5

4pA2

5
'3.55. ~21!

Two other parameters: the effective elongation of the str
d5vx1 and the quantum number defectD5x0 /p depend
on the scattering amplitude phase and unfortunately, can
be found analytically.

Fitting the numerically obtained energy branches expe
from the first Landau level in the interval 50,a,100 by
E5An /(a1dn) we have obtained the following parameter
n 1 2 3 4 5 6

dn 4.29 5.53 5.69 7.25 7.99 9.49
An 3.48 7.04 10.40 14.01 17.39 20.9
An /A 0.99 1.98 2.92 3.93 4.89 5.88
8-4
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MAGNETIC EDGE STATES OF AN IMPENETRABLE STRIPE PHYSICAL REVIEW B67, 045318 ~2003!
Note the numbers in the last row coincide rather well w
the integersn what convince us that the picture of quantiz
edge modes is quite adequate.

To explain the behavior of energy branches expelled fr
the upper Landau levels is more complicated because t
are more edge modes present. For instance, close to the
Landau level~see the upper thin dotted horizontal line in Fi
5 labeled byE1) there are four edge modes. Two of the
with momenta2k andk8 propagate above the stripe to th
left, while the other two with momentak and2k8 propagate
under it to the right. Consequently, in this case the propa
tion of electron on both sides of the stripe has to be descr
by the following propagator:

P~x!5S e2 ikx 0

0 eik8xD ~22!

acting on the state vector

C5S A

BD ~23!

composed of edge mode superposition coefficients. Ben
of the edges is characterized by some 232 scattering matrix
S. Now the quantization is performed by the following se
consistency condition:

SP~a!SP~a!C5C, ~24!

and the energy spectrum of the stripe can be defined by
roing the determinant of the above equation,

detuSP~a!SP~a!2Iu50. ~25!

The absolute values of the scattering matrixS elements
are given in Ref. 10. We see that close to the third Lan
level the absolute value of the off-diagonal elements
nearly unity (uS01u5uS10u'1), while the diagonal element
are smalluS00u5uS11u'Dk/2k0, where the symbolk0 stands
for the edge mode intersection point andDk5k82k is the
difference of edge mode momenta, propagating on both s
of the stripe. Thus, adding the phases, we construct the
lowing scattering matrix:

S5eiFS eiwDk/2k0 eic

e2 ic 2e2 iwDk/2k0eiwD , ~26!

which satisfies the unitarity conditionSS 15I with the ac-
curacy ofDk terms.

Now expanding the momenta close to the intersect
points as

k5k02
1

v1
DE, k85k01

1

v2
DE, ~27a!

k82k5
2

v8
DE, v85

1

2 S 1

v1
1

1

v2
D 21

, ~27b!

we transform Eq.~25! into the following approximate equa
tion:
04531
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exp~ iaDE/v8!2exp~22iF!56
iDE

k0v8
sin~k0a2w!.

~28!

If one neglects the small term on the right-hand side of t
equation one gets the result similar to Eq.~21!,

DEn
(0)5

A8~n2D8!

a1d8
, ~29!

whereF(DE)5F01F1DE, A85pv, D85F0 /p, andd8
5F1v. The right-hand side term taken into account as
perturbation leads to the following oscillating correction:

DEn
(1)56

DEn
(0)

k0a
sin~k0a2w!. ~30!

It is remarkable that the period of oscillations depends
k051/A2 only. It leads toDa52p/k0'8.89, what coincides
rather well with the period value 8.8 obtained from the n
merical calculation result for the two upper levels expell
from the second Landau level.

This simple asymptotic picture of interfering magne
edge modes is confirmed by Fig. 6 where the contour plot
the electron densities corresponding to the above consid
antidot states are shown. We see that the wave function
the antidot level expelled from the first Landau level loo
like a cigar ~and it does not matter how long is the strip!
what indicates that it is composed of a single magnetic e
mode. In the case of the antidot level expelled from the s
ond Landau level there are the lumps~the longer the stripe is
the more lumps there are! which are caused by the interfe
ence of two pairs of edge modes propagating on both side
the stripe.

VI. QUASICLASSICAL LIMIT

As it has already been mentioned in Sec. IV~see Fig. 3!,
the oscillations surveyed close to the lowest Landau lev
change into well pronounced plateaux when the numbe
Landau level is incremented. The detailed view of the anti

FIG. 6. Electron density for long stripe (a/ l B548): ~a! – for the
highest antidot level expelled from the first Landau level, and~b!—
for the same level expelled from the second Landau level.
8-5
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A. MATULIS AND T. PYRAGIENĖ PHYSICAL REVIEW B 67, 045318 ~2003!
levels expelled from the fifth Landau level is shown in F
7. It is remarkable that the energy of these plateaux is v
close to simple fractions of cyclotron energy. Thus, the p
teau indicated by a dashed horizontal line is right in
middle between two adjacent Landau levels with energyE
59/211/255, while the energy of two other plateaux ind
cated by dotted horizontal lines exceed the fifth Landau le
energy (9/2) by one and two thirds.

Unfortunately, in the case of high Landau levels the nu
ber of the interfering edge modes is large, and this f
makes it difficult to apply the long stripe approximation co
sidered in the preceding section. Nevertheless, the simpl
description is still possible due to the large electron ener

It is known that when the electron energy is large t
quasiclassical approach based on the Bohr quantization
can be used. In the case of free 2D electron in the homo
neous perpendicular magnetic field it reduces to the esti
tion of the following integral:

R jdh52pn1p, n50,1,2, . . . ~31!

composed of fast coordinates11

j5px2y/2, h5py1x/2 ~32!

over the electron trajectory. Inserting the solutionj
5A2E cost, h5A2E sint into Eq. ~31! one immediately
gets a well-known expression for Landau-level energyEn
5n11/2. Note the considered electron motion is two dime
sional, and consequently, two more coordinates—the s
motion coordinates

X5x/22py , Y5y/21px ~33!

—have to be taken into account. In free electron case
trivial because the Hamiltonian does not depend on th
The single important thing is the commutator@X,Y#5 i ,
which shows that the total slow coordinate phase volu
divided by 2p gives the degeneracy of the correspond
energy level.

The influence of the stripe on the classical electron tra
tory can be taken into account via scattering events.

FIG. 7. The stripe energy levels expelled from the fifth Land
level.
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simplest trajectory with two scattering events is shown
Fig. 8 by a solid curve. We see that in this case the trajec
is composed of two Larmor circles, and consequently, i
twice longer than the trajectory of the free electron rotat
in the magnetic field. Thus, the integral on the left-hand s
of Eq. ~31! becomes twice larger. This fact leads to the twi
smaller separation of energy levels (DE51/2) as compared
with the separation of Landau levels.

In order to decide whether the fractal Landau levels o
tained in this quasiclassical way can take place or not,
has to inspect the slow motion coordinates. We shall t
them into account in the most simple way. Note that there
more equivalent trajectories with two scattering events a
the same energy~the same radius of the Larmor circle!. Let
us mark them by the position of the left circle center (X,Y).
So, changing the center by some (DX,DY) we obtain an-
other equivalent trajectory, as is shown in Fig. 8 by a das
curve. Thus, the integral over all possible coordinatesX and
Y,

V2~R,a!5E E dXdY5E dYn2~R,2AR22Y2!,

~34a!

n2~R,b!5~2b2a!Q~2b2a!Q~a2b!1aQ~b2a!
~34b!

gives the total phase volume for the trajectories with
given radiusR. Hereb is the distance between the centers
both circles. We assume that the quantityN2(E,a)
5V2(R,a)/2p gives the degeneracy of the quasiclassical
tidot level with the given energyE5R2/2. The integral in
Eq. ~34! can be easily calculated, and it leads to the follo
ing number of degeneracy of quantum level correspondin
the classical two-circle trajectory:

N2~E,a!5
2E

p
r2~a/A8E!, ~35a!

r2~x!5z~x!Q~12x!1
p

2
Q~x21!2z~x/2!, ~35b!

z~x!5arcsinx1xA12x2. ~35c!

If the above number is less than unity, the level does
manifest itself. The energy values obtained by solving
equation

FIG. 8. Two circle trajectory.
8-6
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MAGNETIC EDGE STATES OF AN IMPENETRABLE STRIPE PHYSICAL REVIEW B67, 045318 ~2003!
N2~E,a!5n, n51,2,3 ~36!

are indicated in Fig. 3 by dotted curves on its left side. W
see that the larger is the energy the longer is the fra
plateau corresponding to the quasiclassical level, and
higher is its degeneracy. Moreover, there is a good coi
dence of dotted curves with the plateaux ranges obtaine
the numerical calculation.

In a similar way the phase volume and the degenerac
the quasiclassical levels corresponding to three circle cla
cal trajectories can be estimated. In this case one can ob

n3~R,b!5Q~2R2b!Q~a2b!Q~3b2a!

3~a2b!Q~2b2a!1~3b2a!Q~a22b!,

~37a!

N3~E,a!5
E

3p
r3~a/A8E!, ~37b!

r3~x!5H 8z~x/2!26z~x/3!22z~x! 0,x,1

8z~x/2!26z~x/3!2p 1,x,2

3p26z~x/3! 2,x,r .
~37c!

The energy values obtained by solving the equation

N3~E,a!5n, n51,2 ~38!

are shown by dotted curves on the right side of Fig. 3
well. We see that they also correlate well with the ranges
plateaux exceeded by 1/3 and 2/3 the corresponding Lan
levels.

A good agreement of all dotted curves with the deg
eracy of the fractional plateaux obtained in the numeri
solution of the problem convinces us of the adequacy of
considered quasiclassical quantization scheme. The a
picture is confirmed by the electron-density plot presente
Fig. 9. The density is calculated for the third antidot lev
expelled from the fifth Landau state in the casea/ l B56.32
indicated by a small solid circle in Fig. 7. We see a rath
good correlation of the electron density with the classi
two-circle trajectory shown by a dotted curve in Fig. 9.

FIG. 9. Electron density for the level indicated by short dash
Fig. 7 corresponding to the classical two-circle trajectory.
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VII. CONCLUSIONS

The energy spectrum of the electron moving in the p
pendicular magnetic field in a vicinity of an impenetrab
stripe and the corresponding densities are calculated by m
ing use of the integral equation technique for the anti
perimeter function~the perpendicular wave-function deriva
tive at the antidot border!. It is shown that the perimete
function singularities caused by sharp edges of the ant
can be overcome by proper discretization technique wh
takes explicitly into account the logarithmic singularity
the kernel and root-type singularities of the perimeter fu
tion.

The antidot in the magnetic field expels the antidot ene
levels from every degenerated Landau state. In the cas
the round antidot due to the circular symmetry expelled
tidot levels go up when the radius of the antidot increases~or
the magnetic field strength increases! and freely intersect
each other and the Landau levels. In the case of the an
stripe due to the lack of symmetry the variables cannot
separated, and nearly all crossings are replaced by the
crossings. The expelled antidot levels cannot cross the L
dau levels, and consequently, they saturate below the
Landau level when the stripe length increases.

As the antidot stripe still has the inversion symmetry on
the pairs of symmetric and antisymmetric levels cross e
other demonstrating the characteristic oscillations of
spectrum branches expelled from the excited Landau lev
These oscillations and the above-mentioned saturation ca
explained in the asymptotic long stripe case by the inter
ence of the magnetic edge modes.

When the electron energy increases~for the antidot levels
expelled from the higher Landau levels! the above men-
tioned oscillations of the spectrum branches is transform
into plateaux at the fractal cyclotron energy values. It
shown that these fractal plateaux can be explained by u
simple quasiclassical quantization rule, and they are rela
to the classical trajectories composed of several Larm
circles.

The above-mentioned fractal plateaux of energy branc
have to be seen in magnetoresitance of arrays of stripe-
antidots, and the magnetization which is just proportiona
the electron-energy derivative over the magnetic-fi
strength~in the considered case through the dimensionl
stripe lengtha).
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APPENDIX: DISCRETIZATION OF SINGULAR
INTEGRAL EQUATION

In this section some details of the numerical solution
integral equation~7! are given. For sake of convenience w
scale the variablesx→ax, and rewrite separately the equ
tion for the symmetric and antisymmetric perimeter functi

F6~2x!5
1

2
$F~x!6F~2x!%. ~A1!
8-7
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Now the equation reads

E
0

1/2

dx8K6~x,x8!F6~x8!50, ~A2!

with the symmetric~or antisymmetric! kernel

K6~x,x8!5K~ax,ax8!6K~ax,2ax8!. ~A3!

Next, we write down explicitly the singularity of the perim
eter function

F6~x!5
f 6~x!

A1/22x
, ~A4!

and the logarithmic singularity of the kernel

K6~x,x8!52 lnux2x8u1K̃6~x,x8!, ~A5!

where the second part of the kernelK̃6 is a regular function
at x5x8. It enables us to rewrite the integral equation
follows:

E
0

1/2 dx82 lnux2x8u f 6~x8!

A~1/22x!~1/22x8!
1E

0

1/2dx8K̃6~x,x8! f 6~x8!

A~1/22x!~1/22x8!
50.

~A6!

Note both terms of the equation are divided by a factor
A1/22x in order to have the symmetric kernel, as the n
merical calculation of the corresponding symmetric mat
eigenvalues can be performed with greater accuracy
those for the nonsymmetric one.

The discretization of Eq.~A6! has been performed as fo
lows. The perimeter function has been replaced by ve
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