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Dynamics of electron tunneling in semiconductor nanostructures
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We have modeled the transmission of an electron wave packet through a resonant tunneling semiconductor
nanostructure by solving the time-dependent Schro¨dinger equation using the finite-difference method. We have
found in all cases that the passage of the electron wave packet through the tunneling barrier is accompanied by
a propagation delay relative to the propagation of an undisturbed wave packet. Tunneling transport is shown to
be causal, and no evidence of superluminal behavior is seen, either for resonant or for off-resonant tunneling.
In the case of off-resonant tunneling, the peak of the transmitted wave packet is observed to exit a double
resonant tunneling barrier before the peak of the incident wave packet enters the structure. However, these two
peaks are not directly related, and the appearance of a well-formed peak in the transmitted intensity is shown
to be a result of the transient behavior of the tunneling event.
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I. INTRODUCTION

Tunneling is a fundamental manifestation of the Heis
berg uncertainty principle and quantum mechanics. In
regime of quantum dimensions, the uncertainty princi
teaches that the wave function of a wave particle may
nonzero on both sides of a potential barrier, the height
which exceeds the kinetic energy of the particle wave. Si
a measurement must find the particle either on one sid
the other, there is a finite probability of finding that the p
ticle has tunneled through the barrier. The calculation
steady-state tunneling probabilities based on the solutio
the time-independent Schro¨dinger equation probabilities is
standard problem in introductory quantum mechanics. Ho
ever, this approach leaves a key question unanswered:
long does it take the particle to tunnel from one side to
other?

A closely related problem concerns that of photon pro
gation across thin regions where the wave is evanesc
These regions act like barriers for photons and are analog
to tunneling barriers for electrons. In 1982 time-resolved t
neling experiments were reported concerning the propa
tion of microwave photon pulses in a wave guide contain
a segment with a lower cutoff frequency below the cen
frequency of the pulse.1 Access to this region by the photo
pulse is classically forbidden, but tunneling transmission
allowed. The measured transmission time of the pu
through this wave guide appears to be shorter than throu
wave guide of the same length having no such obsta
These experiments, while suggestive that tunneling act
speed up the pulse, can be explained by the frequency
persion of the microwave pulse and the filter effect of t
tunneling region that preferentially transmits the faster co
ponents of the pulse. A better experiment using single pho
transmission has also shown an apparent superluminal pr
gation of light in the tunneling regime.2 In a recent publica-
tion it was argued by Wanget al. that photon transmission
through a region of anomalous dispersion can lead to su
0163-1829/2003/67~4!/045306~7!/$20.00 67 0453
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luminal transmission velocities.3

The case of tunneling electrons is somewhat different
perhaps even more interesting than the case of tunne
photons. First of all the question of superluminal transport
electrons in solids is not evident. Typical drift velocities a
well below the speed of light. Therefore it is perfectly legi
mate to ask the following question: If an electron is
traverse a finite region of space, such as a section of c
ducting wire, can it do so even faster if we put a tunneli
structure in its path? Through the research reported in
study we are able to address and answer this question.

Part of the phenomenal progress in the information re
lution is based on the idea of creating smaller and sma
transistors that can respond in increasingly shorter tim4

However, we are close to the end of this development ro
Tunneling structures for electrons have been developed
electronic logic implementation as an alternative
transistor-based architectures. These devices have an as
ated transit time that depends fundamentally on the tunne
time.5 The justification of using a tunneling device is that
much smaller size compared to a transistor implies a co
spondingly higher speed. However, since the dynamics
tunneling remain unmeasured, it does not at all follow th
device speed can be so simply scaled when the physic
transport is completely different. In this paper we develop
model of time-dependent tunneling using the finit
difference time-domain method~FDTD! to obtain an exact
numerical solution of the Schro¨dinger equation. We use thi
model to study electron transport through a resonant tun
ing diode ~RTD!, the fundamental element in tunneling
based logic circuits. Using the FDTD solutions, we can f
low in considerable detail the time evolution of the wa
packet as it moves through the tunneling structure, a
through this approach we are able to answer a numbe
important issues of the physics.

II. CALCULATION OF THE TUNNELING TIME

An excellent review has been given by Hauge a
Støvneng of the principal analytic approaches to this pr
©2003 The American Physical Society06-1
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lem, who have found all methods wanting to some degr6

These approaches aim to define tunneling times. For
ample, a phase delay time due to Wigner6,7 can be identified
from the solution of the Schro¨dinger equation for a free
electron wave with a narrow distribution ofk vectors:

tf5
m

\k S w1
df

dk D , ~1!

and a dwell time in the barrier:

tD5
2mk

\kko
2 , ~2!

wherew is the total width of the RTD andf is the phase
associated with the transmission coefficient,T5uAeifu2. The
termdf/dk has units of length and can be thought of as
extra ‘‘distance’’ the electron has to travel in crossing t
barrier, andk is the wave-vector component inside the b
rier. The phase term can in principle be positive correspo
ing to a delay by the barrier, or negative, corresponding to
acceleration. The phase time model can be applied t
monochromatic electron wave with a singlek vector at any
point in space. Electrons are localized in materials like se
conductors to a few nanometers, and therefore the mom
tum distribution is not particularly narrow, as required by th
simple model. In a real experiment involving electron pa
sage through a resonant tunneling barrier, it is quite evid
that the electron is localized both in space and time. With
this condition, the meaning of tunneling time is ambiguo
The same argument applies to the case of photon tunne
It is possible to treat eachk vector separately and imagine a
ensemble average of times. This approach clearly illustra
however, that differentk components of the wave packet w
tunnel at different times resulting in a reshaping of the wa
packet.

In the discussion that follows, we model RTD structure
two barriers each with a width of 0.5 nm and a separat
between them of 1 nm. The potential height of the barrie
2 eV. The effective mass of the electrons is unity. This mo
is easily scaled to parameters representing specific RTD
vices, without any change in the principles illustrated by t
study. We consider two important cases: tunneling close
resonance, where the transmission probability is a maxim
and tunneling far from resonance, where the transmiss
probability is a minimum.

To introduce the problem, we show the transmission
efficient in Fig. 1~a! and the ‘‘tunneling time’’ for a free
electron corresponding to the phase model in Fig. 1~b!. There
is a straightforward one-to-one relationship between
peaks in the transmission coefficient and the peaks in
transmission time. The most tightly bound resonances h
the longest tunneling times. In Fig. 1~b! we also show the
time required for an electron particle to traverse the sa
region of space containing no barrier. It can be seen that
time for an electron to transit an RTD at resonance, when
transmission probability is high, is about two orders of ma
nitude longer than for the time required to transit the sa
04530
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region by the classical physics of electron transport for
electron particle having the same kinetic energy. On the o
hand, off-resonance tunneling results in a transmission t
that is shorter than that of classical transport, although
transmission probability is much lower. This simple mod
shows some of the important features of resonant tunnel
but since the electron is modeled as a delocalized wave,
physical meaning of the Wigner phase tunneling time is
clear. A more sophisticated model that treats the particle
behavior of the electron would be an improvement.

Other models have been proposed to calculate the tra
time of quantum-mechanical particle waves. The Larm
time was proposed to take advantage of the extra degre
freedom that exists because of the spin of the electron.
Buttiker-Landauer time follows a WKB-type derivation, an
the end result ignores the complex nature of the part
wave vector in the barrier regions. The methods have b
reviewed by Landauer and co-workers.8,9 These calculationa
approaches rely on assumptions regarding the distributio
momentum vectors and the range of wave-function ener
that enable semianalytic solutions of the Schro¨dinger equa-
tion. As a result it becomes possible to extract a characte
tic time from the asymptotic behavior of the wave functio
Chiao has identified five such approaches to calculating
transit time.10,11 While each of these methods yields a num
ber, each also suffers from an unrealistic model of the t
neling electron. Numerical simulation of the wave-functio
propagation represents an improvement over these meth
and illustrates some shortcomings of these approache
showing the difficulty of assigning a simple number to t
tunneling time.

FIG. 1. ~a! Transmission probability for an electron incident o
a double potential barrier of height 2 eV and width equal to 150
~b! The Wigner tunneling time can be calculated as a function
kinetic energy from Eq.~1! presuming a perfectly monochromat
electron. This result shows that a nonresonant electron will tun
through the barrier in a time that is about three orders of magnit
shorter than an electron that tunnels on resonance. In betwee
show the time for an electron to traverse the same region of sp
when no barrier is present.
6-2
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Analysis of tunneling by numerical solution of the Schr¨-
dinger equation represents an alternate approach that
not require in principle any of the simplifying accommod
tions that are needed to derive an analytic model. A subs
tial body of research in this area has been carried out
Jauho and co-workers, examining both the spatial and
mentum distributions of a wave packet.12–15 Their calcula-
tions are based on the numerical integration of the Sch¨-
dinger equation, using an electron wave packet with a fin
width in real space and momentum space. This procedu
described and is applied to a triple barrier tunneling struct
in Ref. 12. This a structure more complicated than the
that we use here. Nonetheless, their results illustrate the
terlike effect of a tunneling barrier on a propagating wa
packet where the resonant components are trapped in
tunneling barrier for a much longer time than the nonre
nant components. Jauho and Jonson applied this nume
approach to the study of tunneling through barriers with
height that is modulated in time,13 in order to compare re
sults to those obtained by Buttiker and Landauer.9 Signifi-
cantly, they discovered that it is not possible to define
tunneling time by following the passage of a sharp wa
front through the tunneling barrier. Their numerical meth
showed substantial pulse reshaping, due to the filter eff
obscuring the relationship between the incident and trans
ted wave form. This work gives a much more detailed a
complete picture of wave-packet evolution than those ba
on asymptotic solutions of the Schro¨dinger equation. We
have been able to benefit from these results to confirm
numerical solutions based on the FDTD method.

We have looked at solutions of the time-dependent, o
dimensional Schro¨dinger equation for the propagation of a
electron wave packet in an electric field, in the presence
double barrier tunneling structure. We have developed a
nite difference simulation of the time-dependent Schro¨dinger
equation that gives the tunneling dynamics without recou
to a simplifying model,

i\
]

]t
C~x,t !5S 2

\2

2m

]2

]x2 1V~x! DC~x,t !. ~3!

The quantum-mechanical time-dependent Schro¨dinger
equation gives the time evolution of a wave packet fro
which we can determine the tunneling time. We have cal
lated this parameter by discretization of Eq.~3! and solving
the resulting equation by the finite-difference, time-dom
method,

i\
C~x,t1Dt !2C~x,t !

Dt

5
2\2

2m S C~x,2Dx,t !22C~x,t !1C~x1Dx,t !

~Dx!2 D
1V~x!C~x,t !. ~4!
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For V(x)50, the Gaussian wave packet spreads and mo
with a group velocity corresponding to the initial avera
momentum^po&5A2mE.

The calculation proceeds by determining the wav
function intensity as a function of real space for each poin
time. This solution method does not depend on simplifyi
assumptions regarding the nature of the incident w
packet, such as the distribution of momentum states.
results can be viewed as a movie of the transmission of
wave packet through the barrier.

In Fig. 2~a! we show the initial conditions of the simula
tion. A wave packet having spatial width of 40 Å is releas
with an initial velocity of 4.13105 m/sec and is incident on
a double barrier tunneling structure with a well that is 20
in width and 2 eV in height. Its energy width is less tha
20% of the energy separation between resonant levels in
potential-well region between the two barriers. On the ot
hand, the energy width of the wave packet exceeds tha
the resonant levels by about one order of magnitude.
incident wave packet has its peak initially at 500 Å and t
left-hand edge of the double barrier structure is located
580 Å. The resonant states of the barrier are diagramme
Fig. 2~b!. We can follow the time evolution of this wav
packet for three different cases:~i! the wave packet is on
resonance with the states in the barrier,~ii ! the wave packet
is off resonance with the states in the barrier, and~iii ! the
barrier is absent altogether. The FDTD simulation allows
observe the collision between the wave packet and the
rier. The ability to examine the evolution of the scatteri
event at various points in time is crucial to understanding
physics of the tunneling process.

III. RESULTS

In Fig. 3 we show the results of all three cases. The
scattered curve represents the propagation of the wave pa
in the absence of any potential barrier. The ‘‘on’’ curve co
responds to the case in which the peak of the wave pack
centered in energy on a resonant level of the potential w
We refer to this as the on-resonance wave packet. The ‘‘o
curve corresponds to the case where the same wave pa
with the same initial energy, is incident on a RTD barrier
that the wave-packet peak energy lies halfway between
resonant levels. In our simulation the value of the resona
energy is selected by tuning the energy of the bottom of
well, while keeping all other parameters, such as the w
width and the wave-packet properties, fixed. After an elap
time of 5310214 sec, the peak of the unscattered wa
packet has advanced to 710 Å, as expected given its in
velocity. Both the resonant and nonresonant wave pac
experience strong reflection when incident on the barrier
the case of on-resonance transmission, most of the w
packet intensity has been reflected toward the left, beca
the packet contains substantial nonresonant components
to its width. There is a component that continues to reson
in the barrier, and there is a transmission corresponding
about 10% of the packet amplitude toward the right. Almo
6-3
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all of the off-resonance packet is reflected, but a small co
ponent, representing less than 1% of the incident intens
has tunneled through the barrier. Figure 3~b! shows an ex-
panded portion of these three events.

Looking at Fig. 3~b!, we record the following conclu-
sions: Although the occurrence rate is quite low, the peak
the off-resonance wave packet arrives before the peak of
on-resonance packet. The peak of the on-resonance pa
arrives after that of the unscattered packet. These con
sions are in general similar to those drawn from the Wign
model shown in Fig. 1.

In an experiment, the situation is different. One does
measure the peak of the wave function, but rather the p
ence or absence of an electron in a given time period.
accomplish this measurement, the threshold for detectio
set a certain level and observations are carried out. If
threshold is set so that all three events diagrammed in
3~b! can be detected: unscattered electrons, on-reson

FIG. 2. ~a! Diagram showing the initial position and spatia
width of the pulse used to interrogate the resonant double bar
~b! Resonant tunneling energies for the 2-eV quantum well. T
horizontal axis gives the depth of the well relative to the zero
energy for free-space propagation. Thus for the on-resonance
the bottom of the well lies 1480 meV below the zero energy le
outside the well.
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tunneling electrons, and off-resonance tunneling electro
then the conclusion would be that the unscattered elect
are detected in the shortest time. The off-resonance elect
arrive next and the on-resonance electrons arrive last. In
example there is no superluminal transport, even though
peak of the wave function for the unscattered electron lag
time compared to that for the transmitted part of the wa
function corresponding to off-resonance tunneling.

We can use these data to calculate an effective group
locity of the wave packets in the on-resonance and o
resonance cases. In the on-resonance case, the peak o
transmitted wave packet travels 180 Å in 5310214 sec. The
effective group velocity outside the well is given by the i
cident group velocity, and the effective velocity while cros
ing the well is 1.73105 m/sec, showing that the wave pack

r.
e
f
se,
l

FIG. 3. ~a! Transmission amplitudes after a propagation time
5310214 sec. The unscattered curve shows the diffusion of
wave packet in the absence of any scattering. The off curve sh
the propagation of the wave packet off-resonance, while the
wave packet is centered in energy on a resonant level in the tun
ing barrier. The on-resonance packet shows transmission, reflec
and a substantial intensity in the well itself, due the resonance c
dition. ~b! A blowup of the transmission plot shown in Fig. 3~b!.
Although it cannot be resolved in this view, the off-resonance wa
packet is transmitted through the resonant tunneling barrier ah
of the on-resonance wave packet. Note that the peak of the
resonance wave packet is found to lie ahead of the peak of the w
packet that encountered no barrier. However, the positions of th
two peaks cannot be directly compared because the peaks d
have the same origin.
6-4
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DYNAMICS OF ELECTRON TUNNELING IN . . . PHYSICAL REVIEW B67, 045306 ~2003!
is retarded by the resonance, as expected. When we appl
same procedure to the peak of the off-resonance packet
discover that the elapsed time in the well region is negat
suggesting that the off-resonance packet exits the well be
the peak of the incident packet has entered it. Landauer
Martin8 have concluded that this event demonstrates a
of causality. However, we will show here that this interpr
tation is not correct, and we will thus remove the objecti
that these authors have given to the use of wave-packet tr
mission to the study of tunneling time. This type of event h
been observed in the optical transmission experiments
Wanget al.,3 and attributed to superluminal transmission
photons. Hache´ and Poirier have published quite recen
microwave transmission experiments showing similar
fects, claiming the observation of group velocities grea
than 3c.16 As we will show presently, such estimates of tim
or velocity are naı¨ve.

To examine this unusual result for the case of o
resonance tunneling, we used the FDTD simulation to tr
the peak of the off-resonance packet. We first determined
velocity following its exit from the barrier. To our initia
surprise, the group velocity is not 4.13105 m/sec, as as-
sumed above, but 4.83105 m/sec. This increased propag
tion velocity of the peak of the off-resonance packet is
important piece of the puzzle. The Schro¨dinger equation is
diffusive in time. As a result, the leading edge of a wa
packet moves faster than the peak, causing the packe
broaden in time. By tracking the off-resonance packet w
the leading edge of the unscattered packet, we confirm
the leading edge of the unscattered packet moves with
same velocity as that of the peak of the transmitted o
resonance packet once it has exited the double barrier s
ture. Further analysis confirms that the peak of the o
resonance transmitted pulse is not related in any simple
to the peak of the incident pulse. Above all, it is not
attenuated replica of the incident packet. Comparing th
positions is meaningless. This result shows that the tunne
barrier acts like a time dependent gate that allows only
leading edge of the incident packet to be transmitted. T
apparent increase in peak velocity due to diffusion has
analog in light propagation through a dispersive medium.8 If
optical pulse broadening occurs with time, the leading e
of the pulse may appear to be moving faster than the sp
of light in the dispersive medium. Of course, this effect f
photons would disappear in a vacuum, which is nondisp
sive.

To complete the study of the off-resonance tunneling,
examined the impact of the incident packet on the barrier
the first barrier more than 95% of the packet is reflec
setting up strong interference. This interference is nearly
tal and is instrumental in diminishing the additional pack
intensity that enters the double barrier structure. The tra
mitted packet enters the well, but encounters no interfere
during this transient phase because there is not yet
counter propagating part of the wave function. At the seco
barrier, the wave packet is transmitted with about 5% e
ciency, and starts to exit the well, forming the transmitt
packet. The remaining 95% reflected intensity at the sec
barrier creates a destructive interference inside the well.
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the time the backward traveling wave front reaches the l
hand barrier, the interference is nearly complete, and
peak of transmitted packet has exited the well. The packe
formed in space and time by the transient associated with
time to build up a nearly complete destructive interferen
which could be thought of approximately as the time need
to complete two round trips in the well. At the time that th
transmitted pulse has exited the well on the right, the pea
the incident packet has not yet reached the left-hand bar
However, it is clear that the transmitted packet trav
through the double barrier structure in a manner that
wholly compatible with ideas of causality.

Japha and Kurizki have studied the propagation of p
tons in the evanescent regime in order to investigate
features of photon tunneling that we have also noted in
previous discussion in the case of electrons: the appear
of a transmitted peak in the tunneling wave function that
~i! narrower in width and~ii ! advanced in time compared t
the peak of the wave function for an unscattered phot
Their calculation highlights the role of multiple reflections
interferences of the photon wave function in the barrier
gion, and confirms that the peak in the wave function of
tunneling photon is the result of a transient in the buildup
the interference that represents the reflectivity of the tunn
ing barrier. Their study emphasizes that the multiple refl
tions are interfering components of the same single-part
wave function.

On-resonance tunneling is less complicated. The lead
edge of the packet is transmitted through the double bar
with approximately the same time delay and intensity as t
of the off-resonance packet. However, the interference is
placed by resonance which leads to a continuous increas
the transmitted packet intensity until after the peak of
incident packet is reflected from the left-hand barrier. T
spatial width of the resulting wave packet is enlarged co
pared to the unscattered packet. This is the direct result o
filtering effect of the resonant barrier structure, which tran
mits efficiently only the resonant wave-vector components
the wave packet.

There are obvious analogies between the behavior of p
tons and that of electrons because of their wavelike prop
ties. It is equally important to remember that experime
with photons also involve wave packets, limited in time a
space. When the wave packet contains wave-vector com
nents, the energy of which is resonant with the double b
rier, the double barrier tunneling structure acts like aFourier
filter, transmitting principally the resonant wave-vector co
ponents, and by consequence, enlarging the spatial/temp
width of the transmitted packet. The energy width of t
resonance will also determine the delay in the transmiss
of the packet. It follows that transport of a wave packet v
tunneling on-resonance is slower than transport in the
sence of a barrier. These are features that are all well kn
from the wavelike behavior of resonant cavities of any typ

Off-resonance tunneling is another matter. Our simu
tions show that the barrier acts like atemporalfilter, trans-
mitting the off-resonance wave packet, albeit highly atten
ated, until sufficient interference can build up in th
tunneling structure to cut off further transmission. The pe
6-5
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S. L. KONSEK AND T. P. PEARSALL PHYSICAL REVIEW B67, 045306 ~2003!
of the transmitted wave packet is directly related to a resh
ing of the leading edge of the incident wave packet. This
seen by comparing the propagation velocity of these
features. As a result it is observed that the peak of the tra
mitted packet leaves the tunneling structure before the p
of the incident packet has entered. However, this transmi
peak is not an attenuated replica of the incident wave pac
Since these two peaks are not directly related to each o
this result is not a paradox.

In Fig. 4 we show a snapshot taken just as the o
resonance packet exits the barrier. Inside the well, the wa
function intensity, which is nonzero, creates a nearly co
pletely reflecting boundary to the wave incident from t
left. On the right-hand side, we have confirmed that the le
ing edge of the off-resonance packet~red! is slightly ahead of
the leading edge of the on-resonance packet~green!. How-
ever, it is not ahead of the leading edge of the position of
unscattered packet~blue!. The implications of these result
for experimental measurements are discussed below.

IV. DISCUSSION AND CONCLUSIONS

An electron is a quantum-mechanical entity. In an expe
ment one measures the presence or absence of an ele
and not a wave-packet intensity. If we measure the transm
sion of a stream of electrons, these calculations tell us
for the off-resonance case we will detect the arrival o
quantum only occasionally. These quanta will arrive with
distribution of times. In an experiment, one sets the thresh
of the electron detector. All of our results show that t
threshold for detection of the unscattered wave packet is
ways reached before the threshold of the electron pas
through the tunneling barrier. Thus our first important res
is to show that an electron wave packet is retarded by p
sage through a tunneling barrier, both for on-resonance
above all for off-resonance packets. This result should
contrasted with the results of the phase-time model show
Fig. 1 which predicts that off resonance tunneling throug
barrier occurs in less time than an unimpeded passage.
ures 3 and 4 show that for any arrival time there is alway
smaller probability of detecting a quantum passing throug
tunneling structure compared to the case for propagatio
the absence of tunneling. Thus our model shows that in
mation is not transmitted by tunneling faster than in the
sence of tunneling. Our results do not support the asser
by Landauer and Martin8 that tunneling can act to speed u
transmission.

These results show that the dynamics of propagation o
electron through a resonant tunneling structure will be v
different depending on the relationship between the elec
wave packet and the resonant energies of the barrier.
example, if the electron wave packet is only slightly off res
nance then multiple peaks appear in the time-depen
transmitted wave packet due the combined participation
both resonant and nonresonant transmission channels. W
lustrate such an event in Fig. 5, where we have chose
larger well width in order to better resolve the transmitt
wave-packet shape. The transmitted wave packet has a s
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of peaks. If a tunneling time were to be determined by
centroid of one of these peaks, then the tunneling time wo
be a multiple-valued function. This example shows that
dynamics of tunneling cannot be described meaningfully
a simple number designated as the tunneling time. As m
tioned earlier, the interference that causes this temp
modulation of the electron wave function is a single-parti
phenomenon, and not the result of the interaction of sev
electrons. In fact this effect is the temporal analog of t
well-known two-slit interference experiment. Just as the p
sage of a single electron through a double slit produce

FIG. 4. ~Color! A snapshot of the of the wave-function inten
sities shortly after the off-resonance wave packet~red! exits the
tunneling structure. Note the presence of a small ‘‘echo’’ in t
off-resonance transmission emphasizing that the transmissio
this part of the wave packet is a transient effect. The leading edg
the off-resonance peak is slightly ahead of the on-resonance
~green!, but is lagging the leading edge of the unscattered fre
propagating, wave packet~blue!.

FIG. 5. A snapshot of the wave-function intensity of a o
resonance wave packet after 7.5310214 sec of propagation. The
well in this figure is 40 Å wide in order to better resolve the ser
of multiple peaks in the transmitted wave function. The peak ene
of the wave packet is about 0.15 eV above the resonant level in
quantum well. The presence of multiple peaks in the reshaped w
packet shows that a tunneling time consisting of a simple num
cannot be meaningfully defined.
6-6
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DYNAMICS OF ELECTRON TUNNELING IN . . . PHYSICAL REVIEW B67, 045306 ~2003!
spatial modulation of the electron wave function, pass
through a double barrier produces a modulation of the e
tron wave function in time.

The situation shown in Fig. 5 could be realized in re
resonant tunneling circuits because of structural differen
that occur in fabrication between individual tunneling bar
ers. In an experiment where a regular stream of electron
incident on such tunneling barriers, measurement will de
a distribution of arrival times. Furthermore, the distributi
is not a broadened Gaussian-type curve, but a series of p
whose spacing is approximately related to the dwell time
the tunneling barrier. This ‘‘dwell time’’ depends on the m
mentum distribution of the packet in the well, which
changing with time, and is therefore also not constant.
identify the time jitter introduced by such a resonant tunn
ing diode as a different kind ofquantum telegraph noisethat
has its origin in the quantum-mechanical dynamics of
tunneling process.

Our implementation of the FDTD method to model wav
packet propagation has allowed us to study the propaga
of the wave-packet transmitted in off-resonant tunneling17

The transmitted peak is not an attenuated replica of the i
dent peak. Comparing their peak positions in time is me
ingless. Under conditions of off-resonance propagation,
tunneling barrier acts like a temporal filter. It is a convinci
demonstration of causality, as the opaqueness of the barr
built up in time due to sequential reflection and interferen
in the quantum well. Only the leading edge of the wa
packet is significantly transmitted because the interferenc
absent by causality during this initial time period. This is
feature of wave-packet propagation and will apply to t
propagation of electrons or photons.

The relative importance of tunneling current increases
ponentially with the decrease in device dimensions. For
vice structures such as RTD’s or quantum dots, tunneling
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be expected to dominate the transport behavior. In this st
we have examined the dynamics of tunneling electrons.
results we have obtained show that the presence of a tun
ing structure retards the electron wave packet in time. T
amount of retardation is larger for on-resonance tunne
than for off-resonance tunneling. The differences betwe
on-resonance and off-resonance tunneling will depend on
details of the tunneling barrier. These results, obtained
FDTD solution of the time-dependent Schro¨dinger equation,
recall the results from using Eq.~1!, with the significant
difference that Eq.~1! predicts that off-resonance tunnelin
causes the electron to be transported through the tunne
region faster than would be the case in the absence
tunneling barrier. None of the present work has shown t
case to occur.

It may be asked if the situation would be changed for
case of transmission through a single tunneling barrier,
stead of the double resonant barrier presented here. Th
terference at the barrier that causes the wave packet t
reflected will be present as in the case of the double bar
As shown above, this interference takes time to build
During this time, there will be transmission of the incide
wave. A small peak in the transmitted wave-function inte
sity will appear at the output due to the reshaping of
leading edge of the wave function by the barrier, similar
the case of off-resonance tunneling described above. T
tunneling through a single barrier does not represent a dif
ent case as far as the physics is concerned.
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9M. Büttiker and R. Landauer, Phys. Rev. Lett.49, 1739~1982!.
10R. Y. Chiao and A. M. Steinberg,Progress in Optics, edited by E.

Wolf ~Amsterdam, Elsevier, 1997!, Vol. 27, p. 345.
11R. Y. Chiao, Phys. Rev. A48, R34 ~1993!.
12A. P. Jauho and M. M. Nieto, Superlattices Microstruct.5, 407

~1986!.
13A. P. Jauho and M. Jonson, Superlattices Microstruct.6, 303

~1989!.
14A. P. Jauho and M. Jonson, J. Phys.: Condens. Matter1, 9027

~1989!.
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