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Fractional-quantum-Hall edge electrons and Fermi statistics
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We address the quantum statistics of electrons created in the low-energy edge-state Hilbert space sector of
incompressible fractional-quantum-Hall states, considering the possibility that they may not satisfy Fermi
statistics. We argue that this property is nota priori obvious, and present numerical evidence based on
finite-size exact-diagonalization calculations that it does not hold in general. We discuss different possible
forms for the expression for the electron creation operator in terms of edge boson fields and show that none are
consistent with our numerical results on finite-sizen52/5 states with short-range electron-electron interactions.
Finally, we discuss the current body of experimental results on tunneling into quantum-Hall edges in the
context of this result.
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I. INTRODUCTION

The quantum-Hall~QH! effect1,2 occurs when an incom
pressibility, i.e., a discontinuity in the dependence
chemical-potentialm on density, occurs at a two-dimension
~2D! electron system~ES! sheet densityn0 that is magnetic-
field B dependent. The QH effect at integer Landau-le
filling factors n52p l 2n0 arises from the quantization of 2D
ES kinetic energy and from the macroscopic degenerac
Landau-level states with a particular kinetic energy.l
5A\c/ueBu is known as the magnetic length.! The
fractional-QH effect~chemical potential jumps at fractiona
values ofn), on the other hand, does not occur in a non
teracting electron system, and is due to constraints on
correlations3 that can be achieved among electrons that h
the same quantized kinetic energy. A necessary conseque2

of magnetic-field dependence inn0 is the existence of state
in the chemical-potential gap that are localized at the edg
a finite-size system and carry equilibrium currentI with the
property dI/dm5ne/h.4 These edge-electron systems a
obviously one-dimensional and, since they carry an equi
rium current, obviously chiral.5 Microscopically,6 the edge of
a noninteracting electron system at integer filling factorn
5m is equivalent, at low energies, to a one-dimensio
electron system withm flavors of fermions that can trave
only in one direction, i.e.,m chiral fermion branches. It wa
argued some time ago,7,8 on the basis of trial wave function
for finite-size systems, that the edges of incompress
fractional-QH states can also be described microscopic
as chiral one-dimensional electron fluids that have, in g
eral, an unequal number of inequivalent left-moving a
right-moving branches. In a series of beautiful papers ba
on hydrodynamic and field-theoretic considerations, Wen8–10

proposed and developed the idea that the properties
fractional-QH edges could be described using a genera
tion of the bosonization approach that was developed ea
0163-1829/2003/67~4!/045303~8!/$20.00 67 0453
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for conventional one-dimensional electron systems11–14 and
provides a simple description of their characteristic15

Luttinger-liquid power-law correlation functions. In Wen’
theory, edge excitations can be described microscopicall
terms of a number of chiral-boson fields, and the result
edge system is achiral-Luttinger liquid (xLL). Finite-size
numerical calculations16 have been a useful tool in verifying
the fundamentally bosonic character of the edge-excita
spectrum and in testing some experimental predictions
xLL theory. Further experimental evidence in support
some aspects ofxLL theory is summarized below. There ar
however, difficulties in reconciling this effort to capture g
neric aspects of the microscopic physics of fractional-Q
edges with experimental observations. Early work17 did ap-
pear to imply that the edge structure of QH systems at
Laughlin series of filling factors, i.e., forn51/(2p11) with
positive integerp, is rather well described in terms of
single-branchxLL characterized by a power-law expone
a51/n, as expected on the basis ofxLL considerations.
Recently, however, this universal dependence ofa on filling
factor has been questioned both theoretically18–21 and
experimentally.22 In addition, tunneling density-of-state
observations23 at hierarchical filling factors, i.e., n
5m/(2mp61) with integerm.1 are in apparent contradic
tion with the predictions24 of the xLL theory.

Motivated by this stark experimental discrepancy, we
examine in this paper a key ansatz ofxLL theory, which has
appeared to us to be nonobvious25 and concerns the proper
ties of the operatorc̃† obtained from the full microscopic
electron creation operatorc† by projecting onto the low-
energy sector of edge excitations:

c̃†5P c†P, ~1!

whereP5($h i %
u$h i%&^$h i%u is the projection operator onto

the Fock-space subset of low-energy~edge! excitations
©2003 The American Physical Society03-1
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u$h i%&, discussed at greater length below. In applying
xLL theory to evaluate electronic correlation functions, t
representation ofc̃ in terms of bosonic edge-density fluctu
tions is a key ingredient. Such bosonization identities can
derived constructively26–28 for a conventional one-
dimensional electron system.14 Their generalization to the
fractional-QH case,9,29 in which there is no adiabatic conne
tion to noninteracting electron states, must, however,
based on appealing but heuristic physical arguments t
ultimately, have to be verified by experiment, or by nume
cal calculations. In our view it is not clear beyond any dou
that the bosonized forms ofc̃ that have been used inxLL
theory to evaluate electronic correlation functions and p
dict observables, such as the power-law exponents in tun
ing current-voltage characteristics, are always correct. In
ticular, an important guiding principle that has been used
limit possible bosonized expressions for electron-field ope
tors inxLL theory is the seemingly obvious requirement th
they satisfy Fermi statistics. In this paper, we use finite-s
exact-diagonalization studies of a short-range-interac
model to directly test the Fermi-statistics ansatz. The su
of Fock-space states that represent edge excitations of
model can, for the most part, be identified convincingly.We
demonstrate by explicit calculation of some anticommuta
matrix elements that electron creation operators projec
onto this low-energy Fock space do not satisfy Fermi a
commutation rules.In Sec. II of this paper, the numerica
calculations that support this claim are described in de
Section III discusses the problem of understanding the p
erties of the projected electron-creation operator and of fi
ing a useful expression for it in terms of edge boson fields
light of our numerical finding. We conclude in Sec. IV with
brief summary. A preliminary report on this work was pr
sented earlier.30

II. NUMERICAL TEST OF THE FERMI
STATISTICS ANSATZ

The second-quantized operatorc†(x,y) @c(x,y)# that
creates@annihilates# 2D electrons in the lowest Landau lev
obeys anticommutation relations that encode the fundam
tal antisymmetry condition satisfied by many-fermion wa
functions:

$c†~x,y!,c†~x8,y8!%50. ~2!

The question we address in this section is whether the a
commutation relations are still satisfied afterprojectiononto
the low-energy~long-wavelength! sectors of Fock space tha
represent edge excitations of particular incompressible sta
Because of the projection, Eq.~2! does not mathematically
guarantee the relation

c̃†~x,y!c̃†~x8,y8!52c̃†~x8,y8!c̃†~x,y!. ~3!

A physical argument along the following lines does, ho
ever, appear plausible. It is possible to add two differ
electrons to the system at low energies that are localize
different positions along the edge via processes that ca
represented by the projected creation operator. The e
04530
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electron positions can then be adiabatically interchang
ending up with an equivalent many-fermion state that m
differ only by a sign from the original state. If the many
particle state can be represented, at all intermediate rela
positions, by two projected creation operators acting on
starting state, it seems hard to escape the conclusion
these operators must satisfy Fermi statistics. However,
correlations that establish the bulk gap could be distur
when the two electrons are in close proximity. It is therefo
difficult to exclude the possibility that this argument brea
down at the crossing point in the exchange path. Rela
arguments can be advanced in which the exchange path
volve particle creation at different times, but do not appea
us to be conclusive. Our inability to settle this point on t
basis of simple general arguments has motivated the num
cal calculations we now explain.

The identification of the set of states as edge-excitat
states of a particular incompressible state in a finite-s
many-fermion spectrum is both a challenge and an impor
source of uncertainty for the conclusions we reach. Fon
51/(2p11), the identification is accomplished16 by appeal-
ing to Laughlin3,31 to conclude that the low-energy edg
excitation states appear at angular momenta aboveL05(2p
11)N(N21)/2, and that the dimension of subspaces
fixed angular momentum is related to their excess mom
tum by counting the number of modes in a chiral-boson H
bert space;32 i.e., one state with angular momentum 1, tw
with angular momentum 2, three with angular momentum
five with angular momentum 4, etc. Previous numeri
work16 has verified xLL predictions for n51/(2p11)
edges, but not at filling factors within the range 1/3,n,1,
where experiment and theory appear to be at odds.

Incompressibilities at many other values of the filling fa
tor, e.g., forn5m/(2mp61) with positive integerm, have
been explained using various hierarchical schemes33,34 and
using composite-fermion theory.35 Composite-fermion
theory and variational wave functions based on hierarc
theory ideas make identical predictions36 for the values of
total angular-momentumL0 at whichmaximum-density32 in-
compressible states~those with edge subsystems in the
ground states! appear and for the number and chirality of th
boson branches in their edge-excitation spectra. For prac
reasons explained more fully below, we limit our study
QH systems with two branches of edge excitations that h
the samechirality, i.e., that propagate along the edge in t
same direction and have, for our circular droplets, exc
angular momenta of the same sign. This is the case for
systems at filling factorsn52/(4p11) where the edge spec
trum is expected to be that of two boson modes that share
same chirality.

The angular-momentum values at which maximu
density states occur depend on the number of electronN,
and the number of particles to be transferred from the gro
to the upper composite-fermion Landau-levelNqp . This no-
tation is chosen to suggest the analogous hierarchy-pic
description of the same states, which makes identical pre
tions for the set of angular-momentum values at wh
maximum-density states occur. In the composite-ferm
language, the number of particles in the lower compos
fermion Landau level isN2Nqp , and maximum-density
3-2
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finite-size n52/(4p11) states appear atL05(Nqp
21)(Nqp22)/21 (N2Nqp)(N2Nqp21)/21 2pN(N21),
where the last term comes from the Jastrow factor in Ja
variational wave functions and the first term reflects the
duced angular momentum of higher-Landau-level state37

ChangingNqp and/orN is analogous to atopologicalor zero-
mode excitation in a finite-size one-dimensional electr
system.15 We denote theN-electron state withNqp quasipar-
ticles and an edge-density subsystem in its ground stat

TABLE I. Total angular-momentaL0(N,Nqp) for the ground
state of compact fractional-QH systems as predicted from Eq.~4!
for p51. These states can be regarded asN-electron states in the
lowest Landau level that consist of a QH droplet at filling factor 1
supporting a compact daughter droplet ofNqp quasiparticles. In an
equivalent description, these areN-composite-fermion states with
lowest and first-excited composite-fermion Landau levels hav
occupationN2Nqp and Nqp, respectively. Numbers in bold typ
indicate that the corresponding ground state in our numerical s
tra was positively identified as a finite-sizen52/5 QH state. We do
not subscribe to the different interpretation of some of these st
given by Cappelliet al. ~Ref. 38! based on density profiles.

N 5 6 7 8 9 10
Nqp

0 30 45a 63 84 108 135
1 25 39 56 76 99 125
2 22 35a 51a 70a 92a 117
3 33 48 66a 87a 111
4 64 84 107
5 105

aThe ground states whose edge-excitation sectors are explicitly
here to test the Fermi statistics ansatz.
04530
’s
-
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uN,Nqp,0&, and its total momentum byL0(N,Nqp). The fol-
lowing relation can be derived from the above compos
fermion expression or from hierarchy theory:

L0~N,Nqp!5~2p11!
N~N21!

2
1Nqp~Nqp21!2N Nqp.

~4!
For the casep51, Table I showsL0(N,Nqp) for these

finite-size maximum-densitystates. Finite-size numerica
spectra for smallN exhibit nondegenerate ground states
these values ofL, and a low-energy excitation spectrum
small excessL that corresponds to the expected chiral tw
branch edge whenNqp is close enough to'N/2. ~A chiral
two-branch edge has two low-energy states with excess
gular momentum equal to 1, five with excess angular m
mentum 2, ten with excess momentum 3, etc. As an exam
Fig. 1 shows the spectra obtained forN58 and 9 particles.!
We define the edge-state Fock-space projectionP by retain-
ing for eachN andNqp only these states.

The low-energy Fock space is then the direct sum of
low-energy Hilbert spaces for different particle numbersN;
each of these members is in turn the direct sum of orthogo
subspaces labeled by different values ofNqp, the number of
composite fermions in the first-excited Landau level. O
understanding ofxLL theory is that it attempts to describ
the physics of QH systems projected onto this subspac
will prove useful to write the projected electron creation o
erator as the sum of separate contributions labeled by
change in the number of quasiparticles that accompanie
particle addition. We therefore writec̃†5(nc̃n

† , where the

operatorc̃n
† changesNqp by n. In other words, an electron

can be added to anN-particle, Nqp-quasiparticle finite-size
state in many different ways, distinguished both by the
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FIG. 1. Low-energy portion of the exact finite-size spectrum forN58 andN59 particles with short-range interactions. The nondeg
erate states atL570 (N58), L587 (N59), andL592 (N59) can be identified as maximum-density ground states of an52/5 finite-size
QH droplet. Their energy is separated by a large gap from a continuum of bulk-excited states. States at higher angular momenta wit
below that gap~indicated by asterisks! can be unambiguously identified as edge excitations. Note that the multiplicity of these stateL
571 andL572 in the left panel andL588, 93, and 94 in the right panel is exactly as expected for a two-branch chiral-boson syste
L>73 in the left panel andL>89 andL>95 in the right panel, ‘‘edge’’ states exist that have energies as high as bulk excitations.
calculations described below, we try to select anticommutator matrix elements that do not require us to utilize Fock-space sec
missing edge states. Cases for which there are missing states are explicitly identified in our discussion. The energies plotted h
include the contribution, proportional to total angular momentum, from our model’s parabolic confinement potential which lifts the e
of states with largerL. The ground state is determined by the strength of this confinement potential. In the thermodynamic limit, it
one of then52/5 maximum-density-droplet states when the chemical potential lies in then52/5 gap.
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TABLE II. Results for the ratio between the matrix elementsA5^L0
(N12)ucK2

† P cK1

† uL0
(N)& and B

5^L0
(N12)ucK1

† P cK2

† uL0
(N)&. This ratio should always be equal21 if the edge-electron operator satisfies Fer

statistics. We have chosen valuesK1 and K2 such thatA5^L0
(N12)ucK2

† uL0
(N11)&^L0

(N11)ucK1

† uL0
(N)& involves

matrix elements betweenmaximum-densitystates only. When the order of edge-electron operators is reve

B5( r^L0
(N12)ucK1

† uL̃ r
(N11)&^L̃ r

(N11)ucK2

† uL0
(N)&, with the sum ranging over matrix elements between e

statesuL̃ r
(N11)& with excess angular momentumDK5L0

(N)1K22L̃0
(N11) . The first block corresponds to

B0,0/A0,0, the second toB0,1/A0,1 andB1,0/A1,0, and the third toB1,1/A1,1.

N L0
(N) L0

(N11) L0
(N12) K1 K2 L̃0

(N11) DK B/A

5 30 45 63 15 18 45 3 21 a

5 22 35 51 13 16 35 3 20.78b

6 35 51 70 16 19 51 3 20.99b

7 51 70 92 19 22 70 3 21.02c

8 70 92 117 22 25 92 3 21.01c

8 66 87 111 21 24 87 3 21.05b

6 39 56 70 17 14 51 2 21.12c

7 56 76 92 20 16 70 2 20.95
7 51 66 87 15 21 70 2 21.24
7 51 70 87 19 17 66 2 21.32b

8 70 92 111 22 19 87 2 21.14b

8 70 87 111 17 24 92 2 21.11
8 76 99 117 23 18 92 2 20.88

6 39 51 66 12 15 51 3 21.44b

7 56 70 87 14 17 70 3 21.26c

8 76 92 111 16 19 92 3 21.20c

aThe edge-electron operator for any finite-size Laughlin state satisfies Fermi statistics perfectly.
bIncomplete set of edge states.
cNearly complete set of edge states.
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sulting edge disturbance and by the number of quasiparti
in the resulting (N11)-particle state. If the correspondin
projected electron-creation operatorsc̃n

† satisfy Fermi statis-

tics, their anticommutator$c̃n8
† , c̃n

†% will vanish identically.
We check for Fermi statistics by evaluating anticommuta
matrix elements that involve the lowest possible excess
menta and are therefore likely to have the smallest finite-
effects. In particular, we define

An,n8~N,Nqp!

5^N12,Nqp1n1n8,0ucK2

† PN11,Nqp1ncK1

† uN,Nqp,0&,

~5a!

Bn,n8~N,Nqp!

5^N12,Nqp1n1n8,0ucK1

† PN11,Nqp1n8cK2

† uN,Nqp,0&,

~5b!

with K15KF
(n)(N,Nqp) andK25KF

(n8)(N11,Nqp1n), where
KF

(n)(N,Nqp)ªL0(N11,Nqp1n)2L0(N,Nqp). The projector
PN,Nqp

projects onto the subspace of theN-particle low-

energy subspace havingNqp quasiparticles~i.e., composite
fermions in their first-excited Landau level!. It is then obvi-
ous that
04530
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An,n8~N,Nqp!

5^N12,Nqp1n1n8,0ucK2

† uN11,Nqp1n,0&

3^N11,Nqp1n,0ucK1

† uN,Nqp,0&,

Bn,n8~N,Nqp!

5(
$h%

^N12,Nqp1n1n8,0ucK1

† uN11,Nqp1n8,$h%&

3^N11,Nqp1n8,$h%ucK2

† uN,Nqp,0&, ~6!

where uN11,Nqp1n8,$h%& are edge excitations in the (N
11)-particle, (Nqp1n8)-quasiparticle system forexcessto-
tal momentum

DKF
(n,n8)5KF~N11,Nqp1n,n8!2KF~N,Nqp,n8!,

52p1112nn82n2n8. ~7!

Fermi statistics is satisfied if the ratioB/A equals21.
Our numerical results are summarized in Table II. W

start by considering a QH droplet at filling factor 1/3, i.e
states withNqp50. ~See the first row in Table II.! Although
only one case is presented there, it turns out that forany
finite-size system with short-range interactions, the elect
3-4
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operator projected onto the subspace of low-energy exc
tions above the ground state atn51/3 satisfies Fermi statis
tics exactly. The Fermi statistics of edge excitations is
property of Laughlin many-body wave functions,3 which are
exact in the case of the hard-core-interaction model an
51/(2p11).39 It is apparent from the remaining entries
Table II that this property of hard-core-model single-bran
QH edges does not, in general, hold in then52/5 two-
branch case. We have tested edge-excitation subspace
systems withN56,7,8, and 9 electrons and find that th
ratio B/A that ‘‘measures’’ Fermi statistics often differs su
stantially from21. Instead, a strong dependence ofB/A on
the change inNqp that accompanies particle addition is a
parent from our data. For example, consider the seque
L (N) –L (N11)–L (N12) where particles are added without ad
ing hierarchy quasiparticles. In composite-fermion langua
this corresponds to adding electrons to the lowest-compo
fermion Landau level only. The finite sequences in this cl
that we have studied, e.g., 35–51–70, 51–70–92, and
87–111, are gathered in the first block of Table II. Althou
violations of Fermi statistics are numerically unambiguo
they are large only for those cases where the edge sect
seriously incomplete~only 5 out of 10 edge states could b
identified in theL538 sector for the sequence 22–35–5!.
To some extent, this result is not surprising since the addi
of an electron to the lowest-composite-fermion Landau le
is expected to involve excitations of this level only, as in t
n51/3 case. It seems plausible that the results should
similar. The deviation from Fermi statistics is suspiciou
however, when contrasted with the perfect accuracy seen
the n51/3 QH droplet. When an anticommutator involvin
c̃1

† ~increasing the number of higher-Landau-level compo
fermions by one! is considered, as in the sequences 39–5
66, 56–70–87, and 76–92-111~see the third block in Table
II !, the deviations from Fermi statistics are larger. Note t
some of thesamefinite-size edge states are used here and
the c̃0

† case for which Fermi statistics is more closely a
proximated. It is important to recognize, however, that
edge sectors used in all these sequences are not com
even for the larger systems considered. The incomplete
is related to the fact that there are only two electrons in
first-excited composite-fermion Landau level which impli
that thedaughterdroplets are substantially smaller than t
parent droplets, exacerbating finite-size difficulties. T
strongest evidence that Fermi-statistics relations are not
isfied comes from the remaining sequences in Table II,
which the numerical edge-state sector is usually compl
There is no unique way of estimating a thermodynamic lim
for B/A from our data. A consistent scheme would have
keepN22Nqp!N asN→`, in order to maintain parent an
daughter fluids that are similar in size. The small syst
sizes that are tractable using current numerical methods
der such an extrapolation impossible. Examining the tre
in Table II, however, we are reasonably confident that diff
encesu11B/Au.0.05 are significant and not merely due
finite-size effects.We note that in the case of convention
one-dimensional electron systems, a corresponding calc
tion would always result in exact conformation with Ferm
04530
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statistics; there are no finite-size corrections.The n51/3
hard-core-model case also produces results in agreem
with Fermi statistics without finite-size corrections. In co
trast, our calculations exhibit large deviations from Fer
statistics for many sequences where the edge states exp
for a two-branch boson system are clearly resolved in
spectrum, not only for those with an incomplete edge sec
This is the case for 51–66–87 for example. Furthermo
when edge states exist that have energies above the ga
bulk excitations and can no longer be clearly identified~this
is the case, e.g., for 8-particle states at total momentum!,
the value ofB/A turns out to be determined almost entire
by contributions from edge states with energies below
gap. Inclusion of any number of states~bulk or edge! above
the gap energy changesB/A only by a few percent. Finally,
deviations from Fermi statistics do not seem to diminish w
increasing particle number. On the contrary, the more un
biguously identified edge-state sectors at largerN yield val-
ues ofB/A that differ consistently from21, especially for
anticommutators involving the component of the creation
erator that increases the number of daughter quasiparti
c̃1

† .

III. PROPERTIES OF CANDIDATE BOSONIZED
ELECTRON OPERATORS

Our numerical results clearly support a multibran
chiral-boson form for the excitation spectrum of
fractional-QH edge, but raise new questions about the re
sentation of projected electron creation operators in term
these boson fields. This issue is discussed in the follow
section. We start by carefully examining the arguments t
have been made inxLL theory to obtain bosonization iden
tities. Some of these heuristic arguments must be ruled o
the edge projection of the electron operator does indeed
satisfy Fermi statistics. Alternative proposals are discuss
but we have not been able to find a simple form that
consistent with our numerical results, suggesting that the
expression may not be universal.

In a conventional one-dimensional system,14 the low-
energy projection of the electron operatorc1D

† is expressed

as the sumc̃1D
† 5c̃R

†1c̃L
† of right-moving and left-moving

chiral fermion contributionsc̃R,L
† . For these chiral fermion

operators, an identity relating them to the bosonic cha
fluctuations of an interacting system can be deriv
rigorously.26–28Fractional-QH edgesdo appear to be realiza
tions of chiral one-dimensional systems, as indicated by
multiplicity of low-lying many-electron states in our numer
cally obtained spectra. Given this observation, one
tempted to push the analogy further and search fo
bosonization identity for the projected edge-electron ope
tors c̃n

† . Assuming that it islocal in the angular coordinateu
along the edge, it should read

c̃n
†~u!5Az e2 iuKF

(n)(N̂,N̂qp)e2 ifn
†(u)e2 ifn(u)U n

† , ~8!

wherez denotes a normalization constant. The ‘‘Klein fa
tor’’ U n

† is a ladder operator that connects many-parti
3-5
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ground states,U n
†uN,Nqp,0&5uN11,Nqp1n,0& and com-

mutes with bosonic edge-density operators. The correct c
mutation relations for operators withdifferent n, whatever
they are, have to be encoded in these factors. The c
phase fieldfn(u) is a superposition of edge-density fluctu
tions. Forn52/(4p11), the following decomposition of the
phase field in terms of eigenmodes is always possible:

fn~u!5
1

An
f (c)~u!1jnf (n)~u!, ~9!

where f (c) is the phase field of the chargededge-
magnetoplasmonmode which corresponds to fluctuations
the total edge-charge density, andf (n) is its orthogonal
complement, the so-called neutral mode. The prefactor 1An
of the charged mode in Eq.~9! is mandated by the fact tha
the addition of an electron necessarily increases the t
electric charge by unity. Additional assumptions are nec
sary, however, to fix the values ofjn .

Within xLL theory,9 the operatorsc̃0 and c̃2p11 are be-
lieved to be special in that they create electrons localize
the putative ‘‘outer’’ and ‘‘inner’’ edges which are the boun
aries of the outer parent and inner daughter QH droplets w
filling factors no51/(2p11) and n i51/@(2p11)(4p
11)#, respectively, that comprise then52/(4p11) QH
state. The density fluctuations at the outer and inner ed
are given by (no /L)]uf0 and (n i /L)]uf2p11, respectively,
and the definition of charged and neutral modes implies

f (c)5
1

An
~n if2p111nof0!, ~10a!

f (n)5Anon i

n
~f2p112f0!. ~10b!

The addition of electrons to the edge with concomita
change of 2p112n flux quanta is viewed as adding th
electron to the outer edge and transferringat the same loca-
tion n fractionally charged quasiparticles from the outer Q
droplet to the inner one. This suggests the relationc̃n

†

;c̃0
†exp$inno(f02f2p11)% which is equivalent to

jn5
1

A2
~2n21!. ~11!

The chain of arguments leading to Eq.~11! involves sev-
eral assumptions that are not obviously satisfied. For
ample, it is not clear why changes inNqp that accompany
electron addition have to occur by transferring localized q
siparticles from an inner edge to an outer one. Relaxing
condition would lift the restriction expressed by Eq.~11!. In
fact, two of the present authors suggested the different ch
jn50 for strongly correlated fractional-QH edges.25 The fact
that Eq.~11! ensures Fermi statistics has been regarded40 as
strong support for this line of argument. However, the n
merical results discussed in Sec. II suggest that there is
basis for this requirement. Assuming that a simple boson
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tion identity of the form given in Eq.~8! holds, we can
extract the valuesj0

2'0.5160.02 andj1
2'0.6560.06 from

the data for matrix elements of anticommutators$c̃0
† ,c̃0

†%
and $c̃1

† ,c̃1
†%. ~See the Appendix for details of the calcul

tion.! The value ofj1
2 deviates significantly from that ex

pected withinxLL theory (1/2) becausec̃1
† does not satisfy

Fermi statistics. While the standard deviations from the
erage extractedj0,1

2 are reasonably small, we have to cauti
the reader by noting that the assumption of a sim
bosonization identity would imply symmetry ofBn,n8 /An,n8
under exchangen↔n8. Clearly, no such symmetry is exhib
ited in our data. The significantly large deviation betwe
B0,1/A0,1 and B1,0/A1,0 raises a big question mark: unles
rather complex features are ascribed to the Klein factor
consistent interpretation of our data using a local boson
tion formula like Eq.~8! is impossible.

IV. DISCUSSION AND CONCLUSIONS

We have shown, by explicit numerical calculation of a
ticommutator matrix elements, that the projection of t
lowest-Landau-level electron creation operator onto the lo
energy edge-excitation Fock subspace of an52/5 incom-
pressible quantum-Hall state doesnot satisfy Fermi statistics.
We observe a consistent dependence of the anticommuta
rules on the particular procedure for adding electrons, i.e.
the change in quasiparticle number that accompanies par
addition. We find that the numerical data cannot be con
tently interpreted by assuming any simple generalization
conventional bosonization identities. In particular, the e
pression for the electron operator solely in terms of rig
edge deformations~magnetoplasmon modes!, which two of
us argued for previously25 on heuristic grounds is also no
supported by our calculations. Since our present study
performed for a system with short-range interactions, ho
ever, we cannot exclude the possibility that real QH samp
where long-range Coulomb interactions are present may
consistently described by such a bosonization identity, a
suggested by the amazing experimental finding that
tunneling-IV exponenta'1/n.

Our numerical study demonstrates that the specific fo
of the boson representation of the edge-electron creation
erator cannot be inferred by postulating Fermi statistics
the projected edge-electron operator. Alternatives25 to the
xLL expressions9 cannot be ruled out on these gene
grounds. However, our present data for the short-ran
interacting case supports neither the conventional chi
Luttinger-liquid picture nor any simple alternative. Th
points strongly towards the possibility that there is no sim
universal local bosonization identity for the edge-electro
operator, a conclusion also reached in an independent re
study.41 If true, this is likely to imply that electronic proper
ties of fractional-quantum-Hall edges depend crucially
sample specifics.
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APPENDIX: ANTICOMMUTATORS CALCULATED FROM
BOSONIZATION

Within the bosonization formalism, the quantitiesAn,n8
andBn,n8 , defined by Eqs.~5!, do not depend onN or Nqp.
We find An,n85z and

Bn,n8

An,n8

5xn,n8(
$h%

^N11,Nqp1n8,0ue2 ifn(0)uN11,Nqp1n8,$h%&

3^N11,Nqp1n8,$h%ue2 if
n8
†

(0)uN11,Nqp1n8,0&, ~A1!

where uN11,Nqp1n8,$h%& are excited states with exces

~boson! momentum equal toDKF
(n,n8) . Contributions from

Klein factors are contained inxn,n8 which satisfiesxn,n
51. To better understand the two-branch case, it is usefu
first consider the situation when only a single branch of e
excitations is present.

1. Single-branch case

At the edge of a QH sample at filling factor equal
1/(2p11), a single branch of edge excitations exists wh
corresponds to the edge-magnetoplasmon~charged! mode.
@Within the formalism described above, we would have to
jn[0, fn5f (c)[f, and letn→1/(2p11) in order to de-
scribe the single-branch edge.# Denoting by aQ

† (aQ) the
bosonic creation ~annihilation! operator for an edge
magnetoplasmon excitation with a wave numberQ, we can
give expressions for both the phase field entering
bosonization identity and the excited states appearing in
~A1!:

f~u!5
1

An
(

Q.0

eiQu

AQ
aQ , ~A2a!

uN11,0,~ l !&5)
r

@a0,r
† # l r

Al r !
uN11,0,0&, ~A2b!

with ( r r l r5DKF52p11. Here,r .0 and l r>0 are inte-
gers, and~l! is a partition of the integerDKF labeling pos-
sible many-body excited states. Straightforward calculat
yields
04530
.
es

-
-

d

to
e

h

t

e
q.

n

^N11,0,0ue2 if(0)uN11,0,~ l !&

5^N11,0,~ l !ue2 if†(0)uN11,0,0&

5)
r

@~2n r ! l r l r ! #2(1/2). ~A3!

Inserting this result into Eq.~A1!, we find

B

A
5(

( l )
)

r P( l )
@~2n r ! l r l r ! #21, ~A4a!

5
~21!DKF

DKF!
(
s50

DKF S 1

n D s

(
( l )s

S DKF

(s) , ~A4b!

where (l )s denotes a partition withs cycles, andS DKF

(s) de-

notes Stirling numbers of the first kind.42 ~Klein factors are
irrelevant for calculatingB/A of a single-branch edge.! Us-
ing relation 24.1.3 from Ref. 42, and introducing the gen
alized binomial coefficients,

S a

nD 5
G~a11!

G~a112n!n!
,

we find

B

A
5~21!DKFS n21

DKF
D . ~A5!

Obviously, becausen21[DKF52p11, we find that Fermi
statistic holds for the bosonized expression of the projec
edge-electron operator at Laughlin-series filling facto
B/A521.

2. Two-branch case

Lets now consider again the casen52/(4p11) where
two edge branches with the same chirality are present. Ma
body excited states entering Eq.~A1! are then the eigenstate
of the quadratic edge-density-wave Hamiltonian which
spanned by bosonic operators that are, in general, som
thogonal linear combinations of the charged and neut
mode excitations. The coefficients in the linear transform
tion that relate the charged and neutral modes to the bos
normal modes of the Hamiltonian depend on microsco
details, i.e., the velocities of the charged and neutral mo
as well as their coupling via interactions. However, it tur
out that we do not need these coefficients explicitly. It s
fices to know that the phase fields entering the bosoniza
formula can be expressed in terms of the normal mod
fn5( j 51

2 h j
(n)w j , where

h1
(n)5

cosa

An
2jnsina, ~A6a!

h2
(n)5

sina

An
1jncosa. ~A6b!
3-7
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The fieldsw j are defined in terms of the bosonic operato
aj ,Q that annihilate excitations of thej th normal mode in
analogy to Eq.~A2a!, and microscopic details of the edg
determine the value ofa. Excited states entering Eq.~A1!
are direct products of excited states in the two normal-m
subspaces whose combined excess momenta eq

DKF
(n,n8) . Within each of the normal-mode sectors, total e

cess momentum is partitioned among the possible ma
boson states as in the single-branch case. We can, there
employ the result~A5! and find

Bn,n8

An,n8

5xn,n8~21!DKF
(n,n8)

(
Q

S h1
(n)h1

(n8)

Q
D S h2

(n)h2
(n8)

DKF
(n,n8)2Q

D ,

~A7a!

5xn,n8~21!DKF
(n,n8)S h1

(n)h1
(n8)1h2

(n)h2
(n8)

DKF
(n,n8) D . ~A7b!

Here we have used the addition theorem for generalized
nomial coefficients. ~See, e.g., Sec. 12.2 of Ref. 43!
,

ite
nn
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Straightforward inspection shows that the sum( jh j
(n)h j

(n8)

5n211jnjn8 is universal, i.e., independent ofa. Using
that, we can write

Bn,n8
An,n8

5xn,n8~21!DKF
(n,n8)S n211jnjn8

DKF
(n,n8) D . ~A8!

With the choice of values forjn according toxLL theory,
which is given in Eq. ~11!, one finds n211jnjn8
[DKF

(n,n8) . SinceDKF
(n,n) is always odd, and with a suitabl

definition of Klein factors28 such thatxn,n85(21)n1n8, one
obtainsB/A521.

Two of the authors suggested previously25 the choicejn
50. For the special case ofp51, our result~A8! would
predict B0,0/A0,05B1,1/A1,1525/16. Additional assump-
tions about Klein factors are then necessary for a consis
description ofB0,1/A0,1 andB1,0/A1,0.

Having obtained data forBn,n8 /An,n8 , from numerical
calculations, we used Eq.~A8! to extract the values ofjn and
check whether a consistent description using a sim
bosonization identity of the form~8! is possible.
.
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