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We address the quantum statistics of electrons created in the low-energy edge-state Hilbert space sector of
incompressible fractional-quantum-Hall states, considering the possibility that they may not satisfy Fermi
statistics. We argue that this property is reotpriori obvious, and present numerical evidence based on
finite-size exact-diagonalization calculations that it does not hold in general. We discuss different possible
forms for the expression for the electron creation operator in terms of edge boson fields and show that none are
consistent with our numerical results on finite-size 2/5 states with short-range electron-electron interactions.
Finally, we discuss the current body of experimental results on tunneling into quantum-Hall edges in the
context of this result.
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[. INTRODUCTION for conventional one-dimensional electron systgmé and
provides a simple description of their characteristic
The quantum-HallQH) effect? occurs when an incom-  Luttinger-liquid power-law correlation functions. In Wen'’s
pressibility, i.e., a discontinuity in the dependence oftheory, edge excitations can be described microscopically in
chemical-potentiak on density, occurs at a two-dimensional terms of a number of chiral-boson fields, and the resulting
(2D) electron systenfES) sheet density, that is magnetic- edge system is ahiral-Luttinger liquid (xLL). Finite-size
field B dependent. The QH effect at integer Landau-levelnumerical calculatiort§ have been a useful tool in verifying
filling factors v=212n, arises from the quantization of 2D the fundamentally bosonic character of the edge-excitation
ES kinetic energy and from the macroscopic degeneracy dgipectrum and in testing some experimental predictions of
Landau-level states with a particular kinetic energy. ( xLL theory. Further experimental evidence in support of
= Jhcl/|eB] is known as the magnetic lengthThe  some aspects ofLL theory is summarized below. There are,
fractional-QH effect(chemical potential jumps at fractional however, difficulties in reconciling this effort to capture ge-
values ofr), on the other hand, does not occur in a nonin-neric aspects of the microscopic physics of fractional-QH
teracting electron system, and is due to constraints on thedges with experimental observations. Early wordid ap-
correlations that can be achieved among electrons that hav@ear to imply that the edge structure of QH systems at the
the same quantized kinetic energy. A necessary consecuendeaughlin series of filling factors, i.e., for=1/(2p+1) with
of magnetic-field dependence i is the existence of states Positive integerp, is rather well described in terms of a
in the chemical-potential gap that are localized at the edge dfingle-branchyLL characterized by a power-law exponent
a finite-size system and carry equilibrium currémtith the  a=1/v, as expected on the basis gtL considerations.
property dl/du = ve/h.* These edge-electron systems areRecently, however, this universal dependence ai filling
obviously one-dimensional and, since they carry an equilibfactor has been questioned both theoretic8i§* and
rium current, obviously chiral Microscopically® the edge of ~ experimentally?? In addition, tunneling density-of-states
a noninteracting electron system at integer filling factor observation® at hierarchical filing factors, i.e. v
=m is equivalent, at low energies, to a one-dimensional=M/(2mp=1) with integerm>1 are in apparent contradic-
electron system witim flavors of fermions that can travel tion with the prediction&' of the yLL theory.
only in one direction, i.e.m chiral fermion branches. It was ~ Motivated by this stark experimental discrepancy, we re-
argued some time agd’ on the basis of trial wave functions examine in this paper a key ansatzxdflL theory, which has
for finite-size systems, that the edges of incompressibl@ppeared to us to be nonobviéuand concerns the proper-
fractionalQH states can also be described microscopicallfties of the operator;’ obtained from the full microscopic
as chiral one-dimensional electron fluids that have, in genelectron creation operatop’ by projecting onto the low-
eral, an unequal number of inequivalent left-moving andenergy sector of edge excitations:
right-moving branches. In a series of beautiful papers based
on hydrodynamic and field-theoretic considerations, $vh Y=PyP, (1)
proposed and developed the idea that the properties of
fractional-QH edges could be described using a generalizavhere P==,,[{m}){{=}| is the projection operator onto
tion of the bosonization approach that was developed earlighe Fock-space subset of low-energgdge excitations
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[{m}), discussed at greater length below. In applying theelectron positions can then be adiabatically interchanged,
xLL theory to evaluate electronic correlation functions, theending up with an equivalent many-fermion state that must

representation of in terms of bosonic edge-density fluctua- différ only by a sign from the original state. If the many-

tions is a key ingredient. Such bosonization identities can b@2'ticlé state can be represented, at all intermediate relative
derived constructiveRf 2 for a conventional one- positions, by two projected creation operators acting on the

dimensional electron systeth.Their generalization to the starting state, it seems h_ard to escape the conclusion that
fractional-QH cas&@?%in which.there is no adiabatic connec- these operators must satisfy Fermi statistics. However, the
tion to noninteraciing electron states. must. however bcorrelations that establish the bulk gap could be disturbed

based lina but heuristic bhvsical h hen the two electrons are in close proximity. It is therefore
ased on appealing but heuristic physical arguments thajso it 1o exclude the possibility that this argument breaks

ultimately, have to be verified by experiment, or by numeri-goyn at the crossing point in the exchange path. Related
cal calculations. In our wevllt is not clear beyond any dOUbtarguments can be advanced in which the exchange paths in-
that the bosonized forms af that have been used jpLL volve particle creation at different times, but do not appear to
theory to evaluate electronic correlation functions and preus to be conclusive. Our inability to settle this point on the
dict observables, such as the power-law exponents in tunnebasis of simple general arguments has motivated the numeri-
ing current-voltage characteristics, are always correct. In pacal calculations we now explain.

ticular, an important guiding principle that has been used to The identification of the set of states as edge-excitation
limit possible bosonized expressions for electron-field operastates of a particular incompressible state in a finite-size
tors in yLL theory is the seemingly obvious requirement that Many-fermion spectrum is both a challenge and an important
they satisfy Fermi statistics. In this paper, we use finite-sizéource of uncertainty for the conclusions we reach. For
exact-diagonalization studies of a short-range-interactiorr 1/(2p+1), the identification is accomplish€cby appeal-
model to directly test the Fermi-statistics ansatz. The subsd@g to Laughlii* to conclude that the low-energy edge-
of Fock-space states that represent edge excitations of th@Xcitation states appear at angular momenta ahgve(2p
model can, for the most part, be identified convincinglie ~ +1)N(N—1)/2, and that the dimension of subspaces at
demonstrate by explicit calculation of some anticommutatoffixed angular momentum is related to their excess momen-
matrix elements that electron creation operators projectedUm by counting the number of modes in a chiral-boson Hil-
onto this low-energy Fock space do not satisfy Fermi antibert spacé? i.e., one state with angular momentum 1, two
commutation rulesin Sec. Il of this paper, the numerical With angular momentum 2, three with angular momentum 3,
calculations that support this claim are described in detailfive with angular momentum 4, etc. Previous numerical
Section |1l discusses the problem of understanding the propvork'® has verified yLL predictions for »=1/(2p+1)
erties of the projected electron-creation operator and of findedges, but not at filling factors within the range 4/3<1,

ing a useful expression for it in terms of edge boson fields, ivhere experiment and theory appear to be at odds.

light of our numerical finding. We conclude in Sec. IVwitha  Incompressibilities at many other values of the filling fac-
brief summary. A preliminary report on this work was pre- tor, e.g., forv=m/(2mp= 1) with positive integem, have

sented earliet been explained using various hierarchical schéfmésand
using composite-fermion theo?y. Composite-fermion

Il. NUMERICAL TEST OF THE FERMI theory gnd variational wave funcpiqns based on hierarchy-
STATISTICS ANSATZ theory ideas make identical predictidhgor the values of

total angular-momenturh, at whichmaximum-densit§ in-

The second-quantized operatgr'(x,y) [#(x,y)] that  compressible state@hose with edge subsystems in their
createqannihilateg 2D electrons in the lowest Landau level ground statesappear and for the number and chirality of the
obeys anticommutation relations that encode the fundamerboson branches in their edge-excitation spectra. For practical
tal antisymmetry condition satisfied by many-fermion wavereasons explained more fully below, we limit our study to
functions: QH systems with two branches of edge excitations that have

N fo the samechirality, i.e., that propagate along the edge in the
{#'(xy),¢'(x",y")}=0. (20 same direction and have, for our circular droplets, excess
The question we address in this section is whether the antRn9ular momenta of the same sign. This is the case for QH
systems at filling factore=2/(4p+ 1) where the edge spec-

commutation relations are still satisfied affgpjectiononto !
the low-energy(long-wavelengthsectors of Fock space that trum is expected to be that of two boson modes that share the
ame chirality.

represent edge excitations of particular incompressible states? i )
Because of the projection, E€) does not mathematically '€ angular-momentum values at which maximum-
density states occur depend on the number of electkhns

guarantee the relation ;
and the number of particles to be transferred from the ground

=t ATVURVAN S TR to the upper composite-fermion Landau-le¥g],. This no-

YOYPIEY)= =g YD) @ tation is chosen to suggest the analogouzl%ilpierarchy-picture
A physical argument along the following lines does, how-description of the same states, which makes identical predic-
ever, appear plausible. It is possible to add two differentions for the set of angular-momentum values at which
electrons to the system at low energies that are localized aaximum-density states occur. In the composite-fermion
different positions along the edge via processes that can Hanguage, the number of particles in the lower composite-
represented by the projected creation operator. The edgéermion Landau level isN—Ng,, and maximum-density
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TABLE I. Total angular-momentd.o(N,Ng;) for the ground |N,qu,0), and its total momentum byo(N,qu). The fol-

state of compact fractional-QH systems as predicted from(&q. lowing relation can be derived from the above composite-
for p=1. These states can be regarded\aslectron states in the  farmion expression or from hierarchy theory:

lowest Landau level that consist of a QH droplet at filling factor 1/3

supporting a compact daughter droplethyf, quasiparticles. In an N(N-1)
equivalent description, these akecomposite-fermion states with Lo(N,Ngp) =(2p+1) +Ngy(Ngp— 1) = N Ngp.
lowest and first-excited composite-fermion Landau levels having 2

occupationN—Ng, and Ng,, respectively. Numbers in bold type (4)
indicate that the corresponding ground state in our numerical spec- For the casep=1, Table | showsLy(N,Ny,) for these
tra was positively identified as a finite-size= 2/5 QH state. We do  finite-size maximum-densitystates. Finite-size numerical
not subscribe to the different interpretation of some of these statespectra for smalN exhibit nondegenerate ground states at

given by Cappelliet al. (Ref. 3§ based on density profiles. these values ok, and a low-energy excitation spectrum at

small excesd. that corresponds to the expected chiral two-
N 5 6 7 8 9 10 branch edge wheN, is close enough te=N/2. (A chiral

Ngp two-branch edge has two low-energy states with excess an-

0 30 4% 63 84 108 135 gular momentum equal to 1, five with excess angular mo-
mentum 2, ten with excess momentum 3, etc. As an example,

1 25 39 56 76 99 125 . . .

5 99 35 58 - 9R 117 Fig. 1 ;hows the spectra obtained fdr=8 apd 9 part|clg$.

3 33 48 66° g7 n We define the edge-state Fock-space projechdoy retain-
ing for eachN andNg, only these states.

4 64 84 107

The low-energy Fock space is then the direct sum of the
° 105 low-energy Hilbert spaces for different particle numbbls
&The ground states whose edge-excitation sectors are explicitly use%aCh of these members 1Sin turn the direct sum of orthogonal
here to test the Fermi statistics ansatz subspaces labeled by different valuesN\gf,, the number of
' composite fermions in the first-excited Landau level. Our
finite-size v=2/(4p+1) states appear atLy=(N understanding of¢LL theory is that it attempts to describe
P P 0 P the physics of QH systems projected onto this subspace. It

—1)(Ngp—2)/2+ (N—=Ng,) (N=Ng,—1)/2+ 2pN(N—1) . ) . X

4P ap a Jairyill prove useful to write the projected electron creation op-

where the last term comes from the Jastrow factor in Jain erator as the sum of separate contributions labeled by the
variational wave functions and the first term reflects the re- P y

duced angular momentum of higher-Landau-level stites. change in the number of quasiparticles that accompanies a

ChangingN,, and/orN is analogous to topologicalor zero-  Particle addition. We therefore writg" == 1, where the
mode excitation in a finite-size one-dimensional electronoperatorz,bﬁ changesN, by n. In other words, an electron
system'® We denote thé\-electron state wittN, quasipar-  can be added to aN-particle, Ny-quasiparticle finite-size
ticles and an edge-density subsystem in its ground state kstate in many different ways, distinguished both by the re-
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FIG. 1. Low-energy portion of the exact finite-size spectrumNer8 andN=9 particles with short-range interactions. The nondegen-
erate states dt=70 (N=8), L=87 (N=9), andL=92 (N=9) can be identified as maximum-density ground states:of /5 finite-size
QH droplet. Their energy is separated by a large gap from a continuum of bulk-excited states. States at higher angular momenta with energies
below that gapiindicated by asteriskscan be unambiguously identified as edge excitations. Note that the multiplicity of these states at
=71 andL=72 in the left panel antl =88, 93, and 94 in the right panel is exactly as expected for a two-branch chiral-boson system. For
L=73 in the left panel andl =89 andL=095 in the right panel, “edge” states exist that have energies as high as bulk excitations. In the
calculations described below, we try to select anticommutator matrix elements that do not require us to utilize Fock-space sectors with
missing edge states. Cases for which there are missing states are explicitly identified in our discussion. The energies plotted here do not
include the contribution, proportional to total angular momentum, from our model’s parabolic confinement potential which lifts the energies
of states with larget.. The ground state is determined by the strength of this confinement potential. In the thermodynamic limit, it will be
one of ther=2/5 maximum-density-droplet states when the chemical potential lies in&5 gap.
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TABLE II. Results for the ratio between the matrix elememts=(L{""?|c) Pcg [LGV) and B
=(LE"Plek, Pt |LEY). This ratio should always be equall if the edge-electron operator satisfies Fermi
statistics. We have chosen valués and K, such thatA=(L{"*?|c{ [LI ) (LE Vel |LEY) involves
matrix elements betweanaximum-densitgtates only. When the order of edge-electron operators is reversed,
B=3(LE"?ck [LMNINLTMN Y e |LEY), with the sum ranging over matrix elements between edge
states|LN"Y) with excess angular momentutaK =L{V+K,—L{N*"Y . The first block corresponds to
Boo/Aoo, the second tdB,;/Ag, andBy o/A; o, and the third tB, ;/A; ;.

N LY LN LN*T2) K, K, LD AK B/A

5 30 45 63 15 18 45 3 —12

5 22 35 51 13 16 35 3 —0.78°
6 35 51 70 16 19 51 3 —0.99°
7 51 70 92 19 22 70 3 —1.02¢
8 70 92 117 22 25 92 3 —1.01°
8 66 87 111 21 24 87 3 —1.05°
6 39 56 70 17 14 51 2 —1.12¢
7 56 76 92 20 16 70 2 -0.95
7 51 66 87 15 21 70 2 —1.24
7 51 70 87 19 17 66 2 —1.32°
8 70 92 111 22 19 87 2 —1.14°
8 70 87 111 17 24 92 2 -1.11
8 76 99 117 23 18 92 2 —-0.88
6 39 51 66 12 15 51 3 —1.44°
7 56 70 87 14 17 70 3 —1.26°
8 76 92 111 16 19 92 3 —1.20¢

#The edge-electron operator for any finite-size Laughlin state satisfies Fermi statistics perfectly.
®Incomplete set of edge states.
‘Nearly complete set of edge states.

sulting edge disturbance and by the number of quasiparticles, n(N,Ngp)
in the resulting N+ 1)-particle state. If the corresponding

projected electron-creation operat&rﬁ satisfy Fermi statis-

. . . ~t ~t . . . .
tics, their antlcomm_utatqh//_n, , Yt will va_msh |d_ent|cally. ><(N+1,qu+n,0|c§ IN,N
We check for Fermi statistics by evaluating anticommutator !
matrix elements that involve the lowest possible excess mo- NN

menta and are therefore likely to have the smallest finite-siz n.n'(N:Ngp)

effects. In particular, we define

=(N+2Ngytn+n",0ck IN+1Ng+n,0)

qp10>!

:{277} (N+2Nggtn+n’,0lck [N+1Ngtn' {7})
Ann(N,Ngp)

’ T
=(N+2Ngpt n+n",0/ck, Pu iy nCh, N NgpO), X(N+1Ngotn" {n}[ck N,Ngp0), (6)

(59 where|[N+1Ng+n',{7n}) are edge excitations in theN(

+1)-particle, Nqp+n')-quasiparticle system fagxcesso-
Bn,n'(N,Ngp) tal momentum

=(N+2Ngp+n+ n’,OIC§17’N+1,qu+anEZIN,qu,0>, AKM =K e(N+1,Ngptn,n") = Ke(N,Ngp,n'),

(5b) =2p+1+2nn'—n—-n’. @)
W'(t:)] K1=K{(N,Ngp) andK,=KE(N+1Ngy+n), where  Fermj statistics is satisfied if the rat®/A equals—1.
KE"(N,Ngp) :=Lo(N+1Ngp+n) = Lo(N,Ngp). The projector Our numerical results are summarized in Table II. We
Pn.ng, Projects onto the subspace of theparticle low-  start by considering a QH droplet at filling factor 1/3, i.e.,
energy subspace havirlg,, quasiparticlei.e., composite states withN,,=0. (See the first row in Table )l Although
fermions in their first-excited Landau leyelt is then obvi- only one case is presented there, it turns out thatafoy
ous that finite-size system with short-range interactions, the electron
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operator projected onto the subspace of low-energy excitastatistics; there are no finite-size correctionBhe v=1/3

tions above the ground state ¢ 1/3 satisfies Fermi statis- hard-core-model case also produces results in agreement
tics exactly The Fermi statistics of edge excitations is awith Fermi statistics without finite-size corrections. In con-
property of Laughlin many-body wave functiohsvhich are  trast, our calculations exhibit large deviations from Fermi
exact in the case of the hard-core-interaction modeb at Statistics for many sequences where the edge states expected
=1/(2p+1).% It is apparent from the remaining entries in for a two-branch boson system are clearly resolved in the

Table Il that this property of hard-core-model single-branchSP&ctrum, not only for those with an incomplete edge sector.
QH edges does not, in general, hold in the2/5 two- This is the case for 51-66—-87 for example. Furthermore,

branch case. We have tested edge-excitation subspaces Y§pen €dge states exist that have energies above the gap for
systems withN=6,7,8, and 9 electrons and find that the . ulk excitations and can no longer be clearly identifigds

ratio B/A that “measures” Fermi statistics often differs sub- ![ietzh\?alcl?;%fg/% ’tfj?;fg);rttglges?é?;r?:i;Z?Ialrr:(?sfgtr%?el?f
stantially from—l. Instead, a strong dep_endenc@A on by contributions from edge states with energies below the
the change i, that accompanies particle addition is ap- gap. Inclusion of any number of statésulk or edge above
parent from our data. For example, consider thg sequencese gap energy chang&A only by a few percent. Finally,
LWL (ND | (12) where particles are added without add- geviations from Fermi statistics do not seem to diminish with
ing hierarchy quasiparticles. In composite-fermion languageincreasing particle number. On the contrary, the more unam-
this corresponds to adding electrons to the Iowest-compositq)-iguous|y identified edge-state sectors at lafyeyield val-
fermion Landau Ieyel only. The finite sequences in this clasges of B/A that differ consistently from-1, especially for
that we have studied, e.g., 35-51-70, 51-70-92, and 66znticommutators involving the component of the creation op-

87-111, are gathered in the first block of Table Il. Althoughgrator that increases the number of daughter quasiparticles,
violations of Fermi statistics are numerically unambiguous

7t
they are large only for those cases where the edge sector 'ljjsl'
seriously incompletéonly 5 out of 10 edge states could be
identified in theL =38 sector for the sequence 22—35).51 lll. PROPERTIES OF CANDIDATE BOSONIZED
To some extent, this result is not surprising since the addition ELECTRON OPERATORS
of an electron to the lowest-composite-fermion Landau level Our numerical results clearly support a multibranch
is expected to involve excitatipns of this level only, as in thechiral-boson form for the excitation spectrum of a
V= .1/3 case. It Seems plausible t.hat t'he. res_ults Sh.Ol.Jld bﬁactionaI-QH edge, but raise new questions about the repre-
similar. The deviation from .Ferm| statistics 1s SUSPICIOUS, oo yiation of projected electron creation operators in terms of
howexer, when contrasted with the perfect accuracy seen fqpaqe 15500 fields. This issue is discussed in the following
th 1.’_1/3 QH droplet. When :?m anticommutator '”VO'V'“Q section. We start by carefully examining the arguments that
iy, (increasing the number of higher-Landau-level composité,aye heen made igLL theory to obtain bosonization iden-
fermions by ongis considered, as in the sequences 39-51+ities. Some of these heuristic arguments must be ruled out if
66, 56—70-87, and 76—92-114ee the third block in Table the edge projection of the electron operator does indeed not
II), the deviations from Fermi statistics are larger. Note thakatisfy Fermi statistics. Alternative proposals are discussed,
some of thesamefinite-size edge states are used here and ihyt we have not been able to find a simple form that is
the T/f{, case for which Fermi statistics is more closely ap-consistent with our numerical results, suggesting that the true
proximated. It is important to recognize, however, that theexpression may not be universal.
edge sectors used in all these sequences are not completeln a conventional one-dimensional syst&mthe low-
even for the larger systems considered. The incompletenegsnergy projection of the electron operaw}D is expressed
is related to the fact that there are only two electrons in theys the sumyi,=%%+ %! of right-moving and left-moving
first-excited composite-fermion Landau level which impliesChiral fermion contributionsj, . For these chiral fermion

R,.L*

that thedaughterdroplets are substantially smaller than theoperators, an identity relating them to the bosonic charge

parent droplets, exacerbating finite-size difficulties. Thefluctuations of an interacting svstem can be derived
strongest evidence that Fermi-statistics relations are not sat- g sy

6-28 ; . iza-
isfied comes from the remaining sequences in Table II, fotr.'gorOUSIy'2 Fractional-QH edgedo appear to be realiza

which the numerical edge-state sector is usually completet'ons of chiral one-dimensional systems, as indicated by the

There is no unique way of estimating a thermodynamic "mitmuIUphcny of low-lying many-electron states in our numeri-

for B/A from our data. A consistent scheme would have toCally obtained spectra. Given this observation, one s

keepN—2Ng;<N asN—, in order to maintain parent and tempted to push the analogy further and search for a

daughter fluids that are similar in size. The small systenP0S0NiZation identity for the projected edge-electron opera-

sizes that are tractable using current numerical methods retR'S I Assuming that it idocal in the angular coordinate

der such an extrapolation impossible. Examining the trenddlong the edge, it should read

in Table I, however, we are reasonably confident that differ- 0 R

ences|1+ B/A|>0.05 are significant and not merely due to Ph(0)=\z e 1Ke NN e=idn(Dg=idn(dyyt = (g)
finite-size effectsWe note that in the case of conventional

one-dimensional electron systems, a corresponding calculawherez denotes a normalization constant. The “Klein fac-
tion would always result in exact conformation with Fermi tor” uﬁ is a ladder operator that connects many-particle
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ground states,ullN,qu,O>=|N+1,qu+ n,0) and com- tion identity of th% form given in qu(8) holds, we can
mutes with bosonic edge-density operators. The correct congxtract the valuegs~0.51+0.02 and$;~0.65+0.06 from
mutation relations for operators wittlifferent n whatever the data for matrix elements of anticommutatdg, i}

they are, have tp be encodeq.in these factors'. The chirg,q {;HT/II} (See the Appendix for details of the calcula-
phase fieldp,(0) is a superposition of edge-density fluctua- i, ) The value ofé? deviates significantly from that ex-

tions. Forv=2/(4p+ 1), the following decomposition of the . ~ .
phase field in t(erFr)ns o)f eigenmodesgis alwa;s possible:  Pected withinyLL theory (1/2) becauself{. does not satisfy
Fermi statistics. While the standard deviations from the av-
1 erage extracteééll are reasonably small, we have to caution
dn(0)=—=¢O(0)+ £,6(0), (99 the reader by noting that the assumption of a simple
Vv bosonization identity would imply symmetry &, . /A, o/
under exchanga«n’. Clearly, no such symmetry is exhib-
ited in our data. The significantly large deviation between
Bo1/Ap1 and B, o/A; o raises a big question mark: unless

where ¢ is the phase field of the chargeddge-
magnetoplasmomode which corresponds to fluctuations in

the total edge-charge density, amti” is its orthogonal ; :
com Iementgthe so-%alled neL)J/tralmljﬁode The refa%tqﬁ; 1 rather complex features are ascribed to the Klein factors, a
P ' ' p consistent interpretation of our data using a local bosoniza-

of the charged mode in Eq9) is mandated by the fact that tion formula like Eq.(8) is impossible
the addition of an electron necessarily increases the total a- P '
electric charge by unity. Additional assumptions are neces-
sary, however, to fix the values &f,.

Within xLL theory; the operatorsl, and g, are be- We have shown, by explicit numerical calculation of an-
lieved to be special in that they create electrons localized dicommutator matrix elements, that the projection of the
the putative “outer” and “inner” edges which are the bound- lowest-Landau-level electron creation operator onto the low-
aries of the outer parent and inner daughter QH droplets witlenergy edge-excitation Fock subspace of-a2/5 incom-
filing factors v,=1/(2p+1) and »;=1[(2p+1)(4p  pressible quantum-Hall state dasst satisfy Fermi statistics.
+1)], respectively, that comprise the=2/(4p+1) QH  We observe a consistent dependence of the anticommutation
state. The density fluctuations at the outer and inner edgesiles on the particular procedure for adding electrons, i.e., on
are given by ¢,/L)dy¢o and (v;/L)dsp2p+ 1, respectively, the change in quasiparticle number that accompanies particle
and the definition of charged and neutral modes implies thaaddition. We find that the numerical data cannot be consis-

tently interpreted by assuming any simple generalization of
1 conventional bosonization identities. In particular, the ex-
9= —=(vibops1+ votbo), (108 pression for the electron operator solely in terms of rigid
Vv edge deformationgmagnetoplasmon modesvhich two of
us argued for previousfy on heuristic grounds is also not
H M= A /VOVi(¢ — o) (10H) supported by our calculations. Since our present study was
p ~reptl o performed for a system with short-range interactions, how-
. ) . ever, we cannot exclude the possibility that real QH samples
The addition of electrons to the edge with concomitantyhere |ong-range Coulomb interactions are present may be
change of +1—n flux quanta is viewed as adding the consistently described by such a bosonization identity, as is
glectron to_the outer edge and Frans:ferrmghe same loca- suggested by the amazing experimental finding that the
tion n fractionally charged quasiparticles from the outfr QHtunneIing%V exponenta~ 1/v.
droplet to the inner one. This suggests the relatigh Our numerical study demonstrates that the specific form
~Ulexplinv( do— bap+1)} Which is equivalent to of the boson representation of the edge-electron creation op-
erator cannot be inferred by postulating Fermi statistics of
1 the projected edge-electron operator. Alternatives the
&=—=(2n—-1). (11)  yLL expression$ cannot be ruled out on these general
V2 grounds. However, our present data for the short-range-
. . . interacting case supports neither the conventional chiral-

The chain .Of arguments leading to HA1) mv_olyes Sev- Luttinger—?iquid pictt?r% nor any simple alternative. This
eral asgumptlons that are not obviously satisfied. For exf)oints strongly towards the possibility that there is no simple
ample, it is not clear why changes Mg, that accompany universallocal bosonization identity for the edge-electron

electron addition have to occur by transferring localized qua’operator, a conclusion also reached in an independent recent

siparticles from an inner edge to an outer one. Relaxing thi§tudy“1 If true. this is likel ; :

. . o~ : , y to imply that electronic proper-
condition would lift the restriction expressed by E@D). In . ties of fractional-quantum-Hall edges depend crucially on
fact, two of the present authors suggested the different choic

£,=0 for strongly correlated fractional-QH edg@sThe fact §ample specifics.
that Eq.(11) ensures Fermi statistics has been regditiasl

strong support for this line of argument. However, the nu-
merical results discussed in Sec. Il suggest that there is no Useful and stimulating discussions with A. Auerbach, J. T.
basis for this requirement. Assuming that a simple bosonizachalker, H. Fertig, F. D. M. Haldane, B. I. Halperin, J. Jain,
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A M rel
APPENDIX: ANTICOMMUTATORS CALCULATED FROM (—1)8Ke 2KF ()5
BOSONIZATION = = > 8, (A4b)
AKF! s=0 \ ¥/ (N F

Within the bosonization formalism, the quantitiég ..

andB,, ,/, defined by Eqs(5), do not depend ol or N,. iy .
We fir?gAn,n,:z andy astd) : aP where (), denotes a partition witls cycles, anoL9(AS,)<F de-

notes Stirling numbers of the first kifd.(Klein factors are
irrelevant for calculatingd/A of a single-branch edgeUs-

B ing relation 24.1.3 from Ref. 42, and introducing the gener-
Annr alized binomial coefficients,
= Xnnr 2y (N+1Ngp+n’,0le i O|N+ 1N, +n’ {7}) al|  T(a+1)
K n/ T(a+1—n)n!’

—i T !
X(N+INgptn' {7} e " @IN+1Np+n",0, (Al we find

where [N+ 1,Ng+n’,{n}) are excited states with excess Ak 1

(boson momentum equal taAK{™""). Contributions from A= (=D AKg)®
Klein factors are contained iy, ,» which satisfiesy, , ) . _ )
=1. To better understand the two-branch case, it is useful t&Pviously, because “=AKg=2p+1, we find that Fermi

first consider the situation when only a single branch of edgétatistic holds for the bosonized expression of the projected
excitations is present. edge-electron operator at Laughlin-series filling factors:

B/A=-1.

(A5)

1. Single-b h
Ingie-branch case 2. Two-branch case

At the edge of a QH sample at filling factor equal to . .
1/(2p+1), a single branch of edge excitations exists which Lets now consider again the case=2/(dp+1) where

corresponds to the edge-magnetoplasnamarged mode. two edge branches with the same chirality are present. Many-

[Within the formalism described above, we would have to se{OOdy excited states entering H@1) are then the eigenstates
£.=0, = 9=, and Iety—>1/(2p+’1) in order to de of the quadratic edge-density-wave Hamiltonian which are
n— Y n— - 1 -

. : i ) ¥ spanned by bosonic operators that are, in general, some or-
scnbe_the smgle branph e_dﬁ;eDenotlng byag (ag) the thogonal linear combinations of the charged and neutral-
bosonic creation (annihilation operator for an edge-

ool itati ith e mode excitations. The coefficients in the linear transforma-
magnetoplasmon excitation with a wave NUMREIWe Can. i, that relate the charged and neutral modes to the bosonic
give expressions for both the phase field entering th

N . . N ormal modes of the Hamiltonian depend on microscopic
bosonization identity and the excited states appearing in Ecijetails, i.e., the velocities of the charged and neutral modes
(AL): as well as their coupling via interactions. However, it turns

. out that we do not need these coefficients explicitly. It suf-
)= 1 2 e'Ql A2 fices to know that the phase fields entering the bosonization
$(6) v o \/6%, (A28 formula can be expressed in terms of the normal modes,

=321 7" p;, where
[ad,]"

|N+1,0(|)>=H \/H|N+1,0,0>, (A2b)

cosa
ﬂg_n) :T - gnSin o, (AGa)
. . 14
with =,rl,=AKg=2p+1. Here,r>0 andl,=0 are inte-
gers, andl) is a partition of the integerAKg labeling pos- :
sible many-body excited states. Straightforward calculation n(zn):%Jr £,cosa. (A6Db)
yields Jv
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The fields¢; are defined in terms of the bosonic operatorssirajghtforward inspection shows that the siiyy(™ 771(“/)

aj o that annihilate excitations of thgth normal mode in

=y 14+ &£, is universal, i.e., independent af. Using

analogy to Eq.(A2a), and microscopic details of the edge that, we can write

determine the value of. Excited states entering EGAL)

are direct products of excited states in the two normal-mode
subspaces whose combined excess momenta equals

AK™M) Within each of the normal-mode sectors, total ex-

V_l+§n§n’
AK'(:n,n)

Bn.n

(n,n')
A_:Xn,n’(_l)AKF ( ) (A8)
n,n’

cess momentum is partitioned among the possible many- With the choice of values fog, according toyLL theory,
boson states as in the single-branch case. We can, therefodd)ich is given in Eq. (11), one finds v "+ &8y

employ the resultA5) and find

Bnn (n.n") 7" ")
L :Xn,n’(_l)AKF % (

75" ") )

An Q AKM)—Q
(A7a)
(n), (n") (n), (n")
ooy MM T
=Xn,n’(_l)AKF ( AK(n,n') (ATD)
F

=AK{™") SinceAK{™" is always odd, and with a suitable

definition of Klein factoré® such thaty,, , =(—1)"*"", one
obtainsB/A=—1.

Two of the authors suggested previodslthe choice,
=0. For the special case qgf=1, our result(A8) would
predict Bgo/Ago=B11/A11=—5/16. Additional assump-
tions about Klein factors are then necessary for a consistent
description 0fBg 1/Ag 1 andBy /A1 .

Having obtained data foB, .. /A, ./, from numerical
calculations, we used E@A8) to extract the values af, and

Here we have used the addition theorem for generalized beheck whether a consistent description using a simple
nomial coefficients.(See, e.g., Sec. 12.2 of Ref. #3. bosonization identity of the forn8) is possible.
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