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Bound polarons in semiconductor nanostructures
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Bound polarons are discrete, confined electronic states, spatially localized due to a local pdtehtialt
sharing a common phonon state of the surrounding crystal. We study the energy states of polarons bound in a
potential and determine the local optical absorption spectrum up to first-order time-dependent perturbation
theory with respect to the electron-photon interaction. The model is applied to describe the optical properties
of submonolayer CdSe insertions epitaxially grown between ZnSe layers. As a typical signature of bound
polarons we found excited-state energies equidistantly separated by the LO phonon energy and with optical
transition probabilities determined by the anisotropie¥(n).
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The present semiconductor technology provides artificia w, o in the absorption spectrum are explained in terms of
nanostructures of smallest length scales. To understand thggenstates of the system. Such a picture has implications for
optical and electronic properties of such engineered semiconhe understanding of coherence in semiconductor nanostruc-
ductors, concepts of quantum confinement are well estaliures while relaxation processes would be described here as a
lished. Nowadays, the modern semiconductor epitaxy evesimple polaron decay with different lifetimes for ground and
allows us to create ultrathin layers with submonolayerexcited polaron states, i.e., in terms of a polaron-polaron in-
coverages. The discussion of the electronic and optical teraction process. In semiconductors, the bound polaron was
properties of such quantum structures is presently dominatedhtil now merely of academic interest. Because of the tech-
by quantum dot concepts, i.e., pure electronic quantum cormological progress in submonolayer growth, such elementary
finement created by a potential barrier due to the surroundingXxcitations can now be studied in real nanostructures.
semiconductor material. Such an approach seems to be jus- The samples studied are grown in migration-enhanced ep-
tified since the formation of nanometer-sized islands of CdS&axy by depositing nominal 0.180.58 ML's of CdSe on
is proven by high-resolution electron microscopy, e.g., inZnSe, i.e., we approach the limit of very low CdSe deposi-
case of 0.7-ML(monolayey deposition on ZnSé.Current  tion. The growth of such submonolayer structures introduces
semiconductor technology, however, is able to manufactura controlled local lattice modification, e.g., in a CdSe/ZnSe
nanoscale structures even by submonolayer growth with onlguantum structure the Zn atoms in the ZnSe lattice are ex-
10-20% nominal surface coverage. Such structures are eghanged against Cd atoms. The number of Cd atoms is, how-
cellent candidates to study excitons in potentials that are eever, much smaller than in self-organized grown islands, and
ther formed or influenced by local lattice distortions. Sub-not homogeneously distributed like in ZnCdSe mixed crys-
monolayer 1I-VI nanostructures are highly polar materialstals. The sample scheme is shown in the inset of Fig. 1. First,
with considerable exciton-phonon coupling, and the questiom ZnSe buffer layer is grown on 4° misoriented Gé&0ts)
arises: Is a “quantum dot” characterized by a pure electronicsubstrates. Then three submonolayers of CdSe are grown be-
confinement still the correct picture to describe localizedtween ZnSe layers finally capped by a ZnSe l&yEine host
electronic states of nano-objects within a polar crystallinematerial ZnSe has a band-gap energyE§fP=2.82 eV (T
lattice? =4K), an exciton binding energy of 19 meV, and an LO-

In this work we present a bound-polaron concept to dephonon energy of 31.5 meV. For the "Rlich coupling
scribe the confined states of a quantum structure with sutstrength of ZnSe, we use=0.432. The photoluminescence
monolayer insertions<€0.5 ML). The polaron in a poten- (PL) is measured under optical excitation by a Xe lanip (
tial, i.e., the bound polaron, is considered of essentiak6 K) and plotted in Fig. 1. The emission maximum is at
importance to understand nanostructures grown at atomi2.7917 eM(2.764 e\ for the 0.15 ML(0.58 ML) sample(for
length scales: It refines the quantum confinement models & survey of emission energies for different ML thickness, see
the electron-phonon interaction becomes important and inRef. 4. The PL spectrum is dominated by only one sharp
troduces localized electronic states that couple to a commopeak with a full width at half maximum of 2 meV for the
phonon state. The particular optical properties lead to an al3.15-ML and 6.6 meV for the 0.58-ML sample.
sorption spectrum that strongly deviates from the quantum The photoluminescence excitatiORLE) spectrum is ob-
dot or quantum well absorption caused by pure electroni¢ained by detecting the emission intensity at a fixed spectral
confinement. In a bound-polaron picture, peaks separated Iposition (here the maximum of the PL spectrymvhile the
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Wavelength (nm) weaker in their emission intensities. The latter findings are in
450 , 445 i 440 clear contradiction with the concept of a constant, material
I specific Huang-Rhys-Paramet@r
36 nm ZnSe 32 nm K
L osg ML 2t nm 18 nm To explain the observed spectrum, we propose a bound-
| 7 22 nm 18 nm polaron concept that is based on the true eigenstates of the
= 49 nm ZnSe 37 nm exciton-phonon system. The theoretical treatment is based on
s 3x0.58 ML_8x0-15 ML the functional-integral method and makes use of the follow-
s F CdSe CdSe . ; . .
= ing fact: If E is an eigenvalue of the bound-polaron problem,
= 0.15 ML the same holds foE+E, 5, whereE, o is the LO-phonon
3 T=6K energy. The observed peak energies in the excitation and
f - emission spectra can nicely be explained that way. Since we
o FE, e, Ernm have no direct access to the explicit wave functions using
| | this exact treatment of the Hamiltonian, line shapes and ex-
L L L act peak intensities cannot be described here. In the frame of
2.76 2.78 2.80 2.82 a model calculation we can show, however, the sensitivity of
Energy (eV) optical transition probabilities to the potential properties,

FIG. 1. PL spectrum of CdSe/ZnSe quantum structures with® 9+ |Its anliotropy. h . f .
0.15-ML and 0.58-ML insertions of CdSe in ZnSe. The sample _Folaron formation has been discussed for bound-exciton

structure is shown in the inset. For comparison, the energy of th§omplexes in CdS in an early papefor CuCl nanocrystals,

free exciton denoted by FE and of the band-gap eneffjof bulk ~ and very recently in InAs self-assembled quantum dbts.
7ZnSe is indicated. Conceptually, Ref. 8 stresses the necessity to use a polaron

concept for an adequate description of exciton-phonon phe-
energy of the exciting light source is spectrally tuned fromnomena in quantum dots, as we do here. The authors perform

2.77 to 3.1 eV by spectrally dispersing the light of a high-@ Variational calculation for the lower part of the spectrum,
pressure xenon lam{150 W) by a 1-m monochromator. The taking up to two-phonon states into account. We are con-
result is shown in Fig. 2. We observe in PLE up to ten equi_cgerned \-Nlth. higher excited states, therepy complementmg the
distant peaks separated by the LO-phonon energy even gtscusspn in Ref. 8. We calcula}te transition energles.fo.r one
energies high above the ZnSe band edge. The peak heigm_glaron in a potentlay(r) that is subjected to a radiation
and line shapes are extremely sensitive to the monolayélem- Since the experimental spectra are clearly two-polaron

coverage and deviate from the expected Poissonian intensiff@mely, exciton data, the presented theoretical discussion
distribution for the given phonon coupling constant For accounts for the center-of-mass part of the bound exciton. It

the 0.15-ML sample, e.g., the second peak in PLE is th&an directly be transferred to the complete exciton-polaron
strongest, but for the 0.58-ML one, the first is dominating.SyStém, as has been examined in detail by us and will be
While the PLE spectrum shows very pronounced peaks, the_resent_ed in a forthcoming publication. The main conclu-

PL spectrum is dominated by the single, spectrally narrowpionS _W|th respect to the energy spectrum are unaffected us-
peak used for PLE detection. The LO-phonon replica in thdnd this approach.

region below the PL maximum are by a factor off2a0* The polaron in an arbitrary potential(r) can be de-
scribed by a Hamiltonian of general type,

2.8 2.9 3.0 3.1

1 v 1 v 1 v L] + +

[Eo-15ML HP:E €ndy an+2 ﬁw(Q)bq bq

Det CdSe/ZnSe n q

i AN T=6K
n
+ > 9gMgn,n,Dqan an, + H.c. 1)
aniny

Here,q, by, by, w(q), andg, are wave vector, annihilation
31.2meV 445 ML 1" ~q - - .

— . and creation operators, dispersion, and coupling of the pho-
Epe = 2792 8V non branch under consideratiagy, is the standard Fidich
coupling®° The matrix elements

PL Intensity (arb. units)

EO.S&ML
- Det 0.58 ML 3 it
s Epy = 2.764 &V Mgn,n,:= | dre'd Wi (N W, (r) (2)
FEE
II I 2 1 2 1 2 [ H 1 H
5.8 29 3.0 3 contain the solutions of the eigenvalue problem
PL Excitation Energy (eV) p2
FIG. 2. PLE spectrum of the sample shown in Fig. 1 measured ﬁ+V(r)}\Pn(r):sn\Pn(r). )

at T=6 K with the detection energy tuned into the PL maximum. N N
The peak energy separations are equal to the ZnSe LO-phondrerep,r,n,m,a,, anda, are momentum operator, position
energy. operator, quantum number, mass, and annihilation and cre-
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ation operators of the particle of interest(r) denotes an Here, we have introduced the further abbreviati@s

effective potential that confines the particle. ==(v/(2w)3)|gq|2 (v is the quantization volumeand
If we restrict ourselves to the subspace of one-particle

states, an arbitrary eigenstatetdf has the general form
cmn;=§|‘, MqomJ d3r U (r)epWo(r), @)
|¢>='§O anq Cng.--qy@n Da, -0 [0), (D) N
=0 ng;—-ay - a2
qulmqj_% Clnszj VL[+1 d kVGkVe|kj+l~~~kN

where |0) denotes the Fock vacuum. In view of the Bose
character of the phonons, the coefficienpgl,,_qN have to

be an infinite sequence of totally symmetric functions of the X o Ek: ) eﬁ,%)l. Ak gk (8)
wave vectorgy;- - - gy . It proves useful to extract the cou- (A2 aikjrakn)

plings from the unknown coefficients and to incorporate

S - o 1]
the symmetry conditions explicitly. This is done by the re- M..=— d3q.& 2 9
placement mj- j![[ a, qV|qu1~--qj| . 9
(— N N A detailed derivation of Eq(6) as well as the generalization
Cng. - qu= "N g E €nq,- . qu- (5 to the bound-exciton—phonon system will be given in a
VN ONE st Tty forthcoming publication. Direct inspection of E¢f) shows

that (1£2)I1,,; is a measure for the absorption strength of the
. : . corresponding transitions within the ladder of bound-polaron
the coefficiente is free of any symmetry requirements. In 8tates. We emphasize that the existence of equidistant peaks

Ref. 11, the preceding substitution has been introduced t rated by the LO-phonon enerav i neral propert
analyze the Fock-space equations of a free polaron; in co eparated by the LLJ-phonon energy IS a general property

: . under conditiongi)—(iii ).
lete analogy, we can derive the spectral propertiesi of : :
\l?vhich are d%}(l:isive to establish our IEi)naI reslzlt.p R The presented model goes beyond previous theoretical

. : g : - work (either directly on polarons in quantum dtsr appli-
The interaction between the three-dimensional polaron II’\(,:vable to bulk®) that is based on the adiabatic approximation.

a potential and the radiation field is described by the We”'However, as has been clarified in the literatifer refer-

known minimal substitution. Our method to calculate kire ences, see Refs. 12,16)1The adiabatic approximation for
cal optical absorption spectrum of the system under consid- ' N bp

eration is based on a generalization of the spectral anaIysﬁ%itelms :)g Ii:nrqbehzh;{)pebﬁt ?Spplc')%s:bflsr (\;vneléllnar:r&einstgronrw‘g:
performed in Ref. 11. The following conditions are to be piing reg ' P

fulfilled: diate coupling strengths. A nonadiabatic treatment is pre-

(i) The potentialV(r) violates completely the conserva- sented !N REf'.l.G and usec_;l to Calculate; the_ average_d
tion of total momentum(see Refs. 12,13 for further com- absorption coefficient. We avoid here the adiabatic approxi-

ments and technical details mation using the functional-integral method. Our model is

(ii) The initial state of the polaron system is the grounda‘ISO useful for systems with cIose;Iying confined energy
state(low-temperature limit states where next excited electronic states cannot be ne-

: . : . glected. It also goes beyond the well-known Huang-Rhys
w((';'i wThe phonon dispersion is taken in the form model (see Ref. 18 and the extended version of Ref. 19

q. T _ _ _ This model is a special case of ours: it neglects the nondi-
Additionally, we require that the incoming photon has aagonal part oM, s, in Eq. (1), thereby achieving analytical

sharp momentung, and a fixed polarizatior. solvability. Some shortcomings of this approximation are

It turns out that the local optical absorption spectrumyqinieqd out in Ref. 8. The different point in our paper is that
I'(Q2) can be expressed by a functional form of the groundye se a rigorous result for thepectrumof the bound po-
state and asubsetof excited states of the confined particle |5, which is valid for a whole class of potentials(in-

(the particle-phonon interaction includedn the following,  ¢|,ding Yukawa potentials and potentials of oscillator fype
we denote the corresponding energy eigenvalues and waye e js"a spectral point of the Hamiltonian, the same is true
functions of the confined particlghe particle-phonon inter- ¢ £ plus the LO-phonon energy. The most elegant proof of
aCtié)” includedi by EE” and|®E"); in particular,ER and g property is provided by Feynman’s functional-integral
|®{) are ground-state energy and ground-state wave funGapproach that shows that the exact partition function of the
tion, respectively. The quantum number contains the pound polaron has a prefactor, which is precisely the parti-
whole information about the corresponding eigenstate. Theon function of free phonons. A functional analytical proof is
local optical absorption spectrum between bound-polaroontained in Ref. 12. It is precisely thiand only thi prop-
statesI'({2) calculated in first-order time-dependent pertur-erty that we used to derive E(p).

bation theory with respect to the electron-photon interaction \We have performed a model calculation for a parabolic,

Here, P indicates a permutation of all momentg- - - qy;

is given by anisotropic potential of typeV(r)~w2x2+ w3(x5+Xx3),
1 wherew; is the potential strength in the corresponding space
o q. 5(E(pm)— E(PO)Jr ho—h )Ty, (6) dlriactlon[the quantum numbers have the general strl'Jctu.re
(m)#(0,0) m=(my,m,,m3)]. An important result of our calculation is
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7F — : bility to explain non-Poissonian intensity variation in the op-
rad'at"f’e '”tTraCt".’” tical absorption. However, since we do not have access to the

ho,, I gpaofeonﬁ:r\'/'(:) explicit wave functions in our calculation, line shapes and

the contribution of the continuum absorption cannot be dis-

cussed here. For example, the resonance with continuum
states might result in Fano effects or density of states en-
hancements due to free carrier absorption.

: The technological realization of submonolayer growth

I now allows us to start with a detailed experimental study of
:

1

Absorption (arb. units)

bound polarons, addressing such problems as lifetime, dipole
. moment, binding energy, or Raman scattering involving
EnergyE ———— bound-polaron states. Submonolayer growth, for example, is
reported for both IlI-V and II-VI semiconductor quantum

FIG. 3. Absorption strengths of excited states calculated for astructures:22° Nanoscale growth succeeded, e.g., in
bound polaron in a potential of typ¥(r)~wixi+w5(x3+x3).  molecular-beam epitaxy of CdSe on ZnSe, ZnCdSe, or
Here, E§" —E{” corresponds to the detection energy and is theznMgSS&1-29. For quantum structures with a nominal layer
difference between the energies of the ground state and the excit¢fickness of CdSe between 0.5 and 1.0 ML, high efficient
states with the quantum numbers=(0,1,0) andm=(0,0,1) (see  photoluminescence as well as optical gain has been observed
text for further explanationsThe plotted curves correspond to the \ith emission wavelengths in the blue/violet spectral range.
two casesn; > w, (black andw, <w, (white). But only little is known about the decoherence process, or

the nonlinear optical properties of bound-polaron states.

the statement that anisotropies in the potential may strongli#lowever, bound polarons have a fascinating particular prop-
modify the optical transition probabilities. An example is il- erty: the common phonon state is shared by all polarons.
lustrated in Fig. 3. The absorption strength is given for twoSuch a property has a close analogy to atoms in traps sharing
examples with different anisotropies of the effective potentiala common phonon state, a well-studied system in atomic
V. As can be seen, the obtained peak intensities are eyphysics. By growing semiconductor-based submonolayer
tremely sensitive with respect to potential anisotropies. Playstructures in microcavities, we might exploit bound polarons
ing with the potential properties one can simulate both verycoupled to a cavity photon state. The excited polaron states
different values for the maximum intensity and for the inten-can then be used as spectator states for any measurement.
sity slope down to zero. The deviation from the Poisson in-Another interesting problem is the behavior under strong op-
tensity distribution due to anisotropy can become muchical pumping above the band gap. Strong field-induced non-
stronger than those reported as a result of nonadiabaticity.linearities might bgcoherently transferred via the common
Such intensity variation should be observed, for example, iphonon to another polaron state. Many other interesting phe-
the infrared absorption for transitions to excited polaronnomena are conceivable in semiconductor nanostructures
states. An anisotropy in the potential is therefore one possibased on the bound-polaron concept.
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