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Bound polarons in semiconductor nanostructures
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Bound polarons are discrete, confined electronic states, spatially localized due to a local potentialV(r ) but
sharing a common phonon state of the surrounding crystal. We study the energy states of polarons bound in a
potential and determine the local optical absorption spectrum up to first-order time-dependent perturbation
theory with respect to the electron-photon interaction. The model is applied to describe the optical properties
of submonolayer CdSe insertions epitaxially grown between ZnSe layers. As a typical signature of bound
polarons we found excited-state energies equidistantly separated by the LO phonon energy and with optical
transition probabilities determined by the anisotropies inV(r ).
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The present semiconductor technology provides artifi
nanostructures of smallest length scales. To understand
optical and electronic properties of such engineered semi
ductors, concepts of quantum confinement are well es
lished. Nowadays, the modern semiconductor epitaxy e
allows us to create ultrathin layers with submonolay
coverages.1 The discussion of the electronic and optic
properties of such quantum structures is presently domin
by quantum dot concepts, i.e., pure electronic quantum c
finement created by a potential barrier due to the surround
semiconductor material. Such an approach seems to be
tified since the formation of nanometer-sized islands of Cd
is proven by high-resolution electron microscopy, e.g.,
case of 0.7-ML~monolayer! deposition on ZnSe.2 Current
semiconductor technology, however, is able to manufac
nanoscale structures even by submonolayer growth with o
10–20 % nominal surface coverage. Such structures are
cellent candidates to study excitons in potentials that are
ther formed or influenced by local lattice distortions. Su
monolayer II-VI nanostructures are highly polar materi
with considerable exciton-phonon coupling, and the ques
arises: Is a ‘‘quantum dot’’ characterized by a pure electro
confinement still the correct picture to describe localiz
electronic states of nano-objects within a polar crystall
lattice?

In this work we present a bound-polaron concept to
scribe the confined states of a quantum structure with s
monolayer insertions (,0.5 ML). The polaron in a poten
tial, i.e., the bound polaron, is considered of essen
importance to understand nanostructures grown at ato
length scales: It refines the quantum confinement mode
the electron-phonon interaction becomes important and
troduces localized electronic states that couple to a com
phonon state. The particular optical properties lead to an
sorption spectrum that strongly deviates from the quan
dot or quantum well absorption caused by pure electro
confinement. In a bound-polaron picture, peaks separate
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\vLO in the absorption spectrum are explained in terms
eigenstates of the system. Such a picture has implications
the understanding of coherence in semiconductor nanos
tures while relaxation processes would be described here
simple polaron decay with different lifetimes for ground a
excited polaron states, i.e., in terms of a polaron-polaron
teraction process. In semiconductors, the bound polaron
until now merely of academic interest. Because of the te
nological progress in submonolayer growth, such elemen
excitations can now be studied in real nanostructures.

The samples studied are grown in migration-enhanced
itaxy by depositing nominal 0.15~0.58! ML’s of CdSe on
ZnSe, i.e., we approach the limit of very low CdSe depo
tion. The growth of such submonolayer structures introdu
a controlled local lattice modification, e.g., in a CdSe/Zn
quantum structure the Zn atoms in the ZnSe lattice are
changed against Cd atoms. The number of Cd atoms is, h
ever, much smaller than in self-organized grown islands,
not homogeneously distributed like in ZnCdSe mixed cr
tals. The sample scheme is shown in the inset of Fig. 1. F
a ZnSe buffer layer is grown on 4° misoriented GaAs~001!
substrates. Then three submonolayers of CdSe are grown
tween ZnSe layers finally capped by a ZnSe layer.3 The host
material ZnSe has a band-gap energy ofEgap52.82 eV (T
54K), an exciton binding energy of 19 meV, and an LO
phonon energy of 31.5 meV. For the Fro¨hlich coupling
strength of ZnSe, we usea50.432. The photoluminescenc
~PL! is measured under optical excitation by a Xe lampT
56 K) and plotted in Fig. 1. The emission maximum is
2.7917 eV~2.764 eV! for the 0.15 ML~0.58 ML! sample~for
a survey of emission energies for different ML thickness, s
Ref. 4!. The PL spectrum is dominated by only one sha
peak with a full width at half maximum of 2 meV for th
0.15-ML and 6.6 meV for the 0.58-ML sample.

The photoluminescence excitation~PLE! spectrum is ob-
tained by detecting the emission intensity at a fixed spec
position ~here the maximum of the PL spectrum!, while the
©2003 The American Physical Society04-1
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energy of the exciting light source is spectrally tuned fro
2.77 to 3.1 eV by spectrally dispersing the light of a hig
pressure xenon lamp~150 W! by a 1-m monochromator. Th
result is shown in Fig. 2. We observe in PLE up to ten eq
distant peaks separated by the LO-phonon energy eve
energies high above the ZnSe band edge. The peak he
and line shapes are extremely sensitive to the monola
coverage and deviate from the expected Poissonian inte
distribution for the given phonon coupling constanta. For
the 0.15-ML sample, e.g., the second peak in PLE is
strongest, but for the 0.58-ML one, the first is dominatin
While the PLE spectrum shows very pronounced peaks,
PL spectrum is dominated by the single, spectrally narr
peak used for PLE detection. The LO-phonon replica in
region below the PL maximum are by a factor of 102–104

FIG. 1. PL spectrum of CdSe/ZnSe quantum structures w
0.15-ML and 0.58-ML insertions of CdSe in ZnSe. The sam
structure is shown in the inset. For comparison, the energy of
free exciton denoted by FE and of the band-gap energyEGapof bulk
ZnSe is indicated.

FIG. 2. PLE spectrum of the sample shown in Fig. 1 measu
at T56 K with the detection energy tuned into the PL maximu
The peak energy separations are equal to the ZnSe LO-ph
energy.
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weaker in their emission intensities. The latter findings are
clear contradiction with the concept of a constant, mate
specific Huang-Rhys-ParameterS.

To explain the observed spectrum, we propose a bou
polaron concept that is based on the true eigenstates o
exciton-phonon system. The theoretical treatment is base
the functional-integral method and makes use of the follo
ing fact: If E is an eigenvalue of the bound-polaron proble
the same holds forE1ELO , whereELO is the LO-phonon
energy. The observed peak energies in the excitation
emission spectra can nicely be explained that way. Since
have no direct access to the explicit wave functions us
this exact treatment of the Hamiltonian, line shapes and
act peak intensities cannot be described here. In the fram
a model calculation we can show, however, the sensitivity
optical transition probabilities to the potential propertie
e.g., its anisotropy.

Polaron formation has been discussed for bound-exc
complexes in CdS in an early paper,5 for CuCl nanocrystals,6

and very recently in InAs self-assembled quantum dots7,8

Conceptually, Ref. 8 stresses the necessity to use a pol
concept for an adequate description of exciton-phonon p
nomena in quantum dots, as we do here. The authors per
a variational calculation for the lower part of the spectru
taking up to two-phonon states into account. We are c
cerned with higher excited states, thereby complementing
discussion in Ref. 8. We calculate transition energies for
polaron in a potentialV(r ) that is subjected to a radiatio
field. Since the experimental spectra are clearly two-pola
~namely, exciton! data, the presented theoretical discuss
accounts for the center-of-mass part of the bound exciton
can directly be transferred to the complete exciton-pola
system, as has been examined in detail by us and will
presented in a forthcoming publication. The main conc
sions with respect to the energy spectrum are unaffected
ing this approach.

The polaron in an arbitrary potentialV(r ) can be de-
scribed by a Hamiltonian of general type,

HP5(
n

«nan
1an1(

q
\v~q!bq

1bq

1 (
qn1n2

gqMqn1n2
bqan1

1 an2
1H.c. ~1!

Here,q, bq , bq
1 , v(q), andgq are wave vector, annihilation

and creation operators, dispersion, and coupling of the p
non branch under consideration;gq is the standard Fro¨hlich
coupling.9,10 The matrix elements

Mqn1n2
:5E d3reiq•rCn1

* ~r !Cn2
~r ! ~2!

contain the solutions of the eigenvalue problem

F p2

2m
1V~r !GCn~r !5«nCn~r !. ~3!

Herep,r ,n,m,an , andan
1 are momentum operator, positio

operator, quantum number, mass, and annihilation and
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ation operators of the particle of interest;V(r ) denotes an
effective potential that confines the particle.

If we restrict ourselves to the subspace of one-part
states, an arbitrary eigenstate ofHP has the general form

uF&5 (
N50

`

(
nq1•••qN

cnq1•••qN
an

1bq1

1
•••bqN

1 u0&, ~4!

where u0& denotes the Fock vacuum. In view of the Bo
character of the phonons, the coefficientscnq1•••qN

have to
be an infinite sequence of totally symmetric functions of
wave vectorsq1•••qN . It proves useful to extract the cou
plings from the unknown coefficientsc and to incorporate
the symmetry conditions explicitly. This is done by the r
placement

cnq1•••qN
5

~21!N

N! )
n51

N

gqn
* (

P(q1•••qN)
enq1•••qN

. ~5!

Here, P indicates a permutation of all momentaq1•••qN ;
the coefficiente is free of any symmetry requirements.
Ref. 11, the preceding substitution has been introduce
analyze the Fock-space equations of a free polaron; in c
plete analogy, we can derive the spectral properties ofHP
which are decisive to establish our final result.

The interaction between the three-dimensional polaron
a potential and the radiation field is described by the w
known minimal substitution. Our method to calculate thelo-
cal optical absorption spectrum of the system under con
eration is based on a generalization of the spectral ana
performed in Ref. 11. The following conditions are to
fulfilled:

~i! The potentialV(r ) violates completely the conserva
tion of total momentum~see Refs. 12,13 for further com
ments and technical details!.

~ii ! The initial state of the polaron system is the grou
state~low-temperature limit!.

~iii ! The phonon dispersion is taken in the for
v(q)5v.

Additionally, we require that the incoming photon has
sharp momentumq0 and a fixed polarizatione.

It turns out that the local optical absorption spectru
G(V) can be expressed by a functional form of the grou
state and asubsetof excited states of the confined partic
~the particle-phonon interaction included!. In the following,
we denote the corresponding energy eigenvalues and w
functions of the confined particle~the particle-phonon inter
action included! by EP

(m) and uFP
(m)&; in particular,EP

(0) and
uFP

(0)& are ground-state energy and ground-state wave fu
tion, respectively. The quantum numberm contains the
whole information about the corresponding eigenstate.
local optical absorption spectrum between bound-pola
statesG(V) calculated in first-order time-dependent pertu
bation theory with respect to the electron-photon interact
is given by

G}
1

V (
(m, j )Þ(0,0)

d~EP
(m)2EP

(0)1 j \v2\V!Pm j . ~6!
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Here, we have introduced the further abbreviationsG̃q
ª(v/(2p)3)ugqu2 (v is the quantization volume! and

Cmn :5(
l

Mq0mlE d3rC l* ~r !ep Cn~r !, ~7!

Smq1•••qj
5(

ln
Cln (

N5 j

`

)
n5 j 11

N E d3knG̃kn
elk j 11•••kN

(m)*

3 (
P(q1•••qjkj 11•••kN)

enq1•••qjkj 11•••kN

(0) , ~8!

Pm j :5
1

j ! )n51

j E d3qnG̃qn
uSmq1•••qj

u2. ~9!

A detailed derivation of Eq.~6! as well as the generalizatio
to the bound-exciton–phonon system will be given in
forthcoming publication. Direct inspection of Eq.~6! shows
that (1/V)Pm j is a measure for the absorption strength of t
corresponding transitions within the ladder of bound-pola
states. We emphasize that the existence of equidistant p
separated by the LO-phonon energy is a general prop
under conditions~i!–~iii !.

The presented model goes beyond previous theore
work ~either directly on polarons in quantum dots14 or appli-
cable to bulk15! that is based on the adiabatic approximatio
However, as has been clarified in the literature~for refer-
ences, see Refs. 12,16,17!, the adiabatic approximation fo
systems of Fro¨hlich type is applicable only in the strong
coupling regime (a@1), but is poor for weak and interme
diate coupling strengths. A nonadiabatic treatment is p
sented in Ref. 16 and used to calculate the avera
absorption coefficient. We avoid here the adiabatic appro
mation using the functional-integral method. Our model
also useful for systems with close-lying confined ener
states where next excited electronic states cannot be
glected. It also goes beyond the well-known Huang-Rh
model ~see Ref. 18 and the extended version of Ref. 1!.
This model is a special case of ours: it neglects the non
agonal part ofMqn1n2

in Eq. ~1!, thereby achieving analytica
solvability. Some shortcomings of this approximation a
pointed out in Ref. 8. The different point in our paper is th
we use a rigorous result for thespectrumof the bound po-
laron, which is valid for a whole class of potentialsV ~in-
cluding Yukawa potentials and potentials of oscillator typ!:
If E is a spectral point of the Hamiltonian, the same is tr
for E plus the LO-phonon energy. The most elegant proof
this property is provided by Feynman’s functional-integ
approach that shows that the exact partition function of
bound polaron has a prefactor, which is precisely the pa
tion function of free phonons. A functional analytical proof
contained in Ref. 12. It is precisely this~and only this! prop-
erty that we used to derive Eq.~6!.

We have performed a model calculation for a parabo
anisotropic potential of typeV(r );v1

2x1
21v2

2(x2
21x3

2),
wherev i is the potential strength in the corresponding spa
direction@the quantum numbersm have the general structur
m5(m1 ,m2 ,m3)]. An important result of our calculation is
4-3
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the statement that anisotropies in the potential may stron
modify the optical transition probabilities. An example is
lustrated in Fig. 3. The absorption strength is given for t
examples with different anisotropies of the effective poten
V. As can be seen, the obtained peak intensities are
tremely sensitive with respect to potential anisotropies. P
ing with the potential properties one can simulate both v
different values for the maximum intensity and for the inte
sity slope down to zero. The deviation from the Poisson
tensity distribution due to anisotropy can become mu
stronger than those reported as a result of nonadiabatic17

Such intensity variation should be observed, for example
the infrared absorption for transitions to excited polar
states. An anisotropy in the potential is therefore one po
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FIG. 3. Absorption strengths of excited states calculated fo
bound polaron in a potential of typeV(r );v1

2x1
21v2
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21x3

2).
Here, EP

(m)2EP
(0) corresponds to the detection energy and is

difference between the energies of the ground state and the ex
states with the quantum numbersm5(0,1,0) andm5(0,0,1) ~see
text for further explanations!. The plotted curves correspond to th
two casesv1@v2 ~black! andv1!v2 ~white!.
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bility to explain non-Poissonian intensity variation in the o
tical absorption. However, since we do not have access to
explicit wave functions in our calculation, line shapes a
the contribution of the continuum absorption cannot be d
cussed here. For example, the resonance with contin
states might result in Fano effects or density of states
hancements due to free carrier absorption.

The technological realization of submonolayer grow
now allows us to start with a detailed experimental study
bound polarons, addressing such problems as lifetime, di
moment, binding energy, or Raman scattering involvi
bound-polaron states. Submonolayer growth, for example
reported for both III-V and II-VI semiconductor quantum
structures.1,2,20 Nanoscale growth succeeded, e.g.,
molecular-beam epitaxy of CdSe on ZnSe, ZnCdSe,
ZnMgSSe21–26!. For quantum structures with a nominal lay
thickness of CdSe between 0.5 and 1.0 ML, high efficie
photoluminescence as well as optical gain has been obse
with emission wavelengths in the blue/violet spectral ran
But only little is known about the decoherence process,
the nonlinear optical properties of bound-polaron stat
However, bound polarons have a fascinating particular pr
erty: the common phonon state is shared by all polaro
Such a property has a close analogy to atoms in traps sha
a common phonon state, a well-studied system in ato
physics. By growing semiconductor-based submonola
structures in microcavities, we might exploit bound polaro
coupled to a cavity photon state. The excited polaron sta
can then be used as spectator states for any measure
Another interesting problem is the behavior under strong
tical pumping above the band gap. Strong field-induced n
linearities might be~coherently! transferred via the common
phonon to another polaron state. Many other interesting p
nomena are conceivable in semiconductor nanostruct
based on the bound-polaron concept.
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