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Effect of geometric anisotropy on optical nonlinearity enhancement for periodic composites
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The effect of geometric anisotropy on the optical nonlinearity enhancement for the composites with metal or
semiconductor spheriodal-shaped particles periodically in an insulating host is investigated. The frequency
dependences of effective nonlinear susceptibility are calculated with the Stroud-Hui relation and a series
expression of space-dependent electric field in periodic composites. The results show that for both metal-
insulator(MI) and semiconductor-insulat¢8l) composites, nonlinearity enhancement increases almost to its
maximum when the percolation networks of the inclusion phase form. The nonlinearity enhancement increases
to its maximum when the composites are transformed into the Boyd-Sipe layered composites. The behavior of
the nonlinearity enhancement near the percolation threshold is also investigated. A local minimum appears in
the nonlinear optical responses at the percolation threshold for the MI composites. For the SI composites the
local minimum appears when the ratio of the bound-electron number density to the effective mass of the
electron is large.
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[. INTRODUCTION proach their neighborhoods in the samg-plane. When the
aspect ratio reaches a critical value, the particles in each
Nonlinear-optical materials are of great practical impor-X,y-plane will touch one another, and series of two-
tance for future applications in real-time holography, opticaldimensional percolation networks are formed. As the aspect
correlators, phase-conjugators, and thresholding déice. ratio decreases further, the neighboring particles in the same
The optical nonlinearity enhancement of granular composite,y-plane will overlap, and the inclusion phase forms layers
materials has been extensively studied in recent yeafs. with holes periodically arranged in thefsee Fig. 1b)], and
The composites of interest are usually made of nonlineafurthermore, the composite forms a structure with layers of
metal or semiconductor particles embedded in an insulatinfuctuating thickness. We call these kinds of structure over-
host. Nonlinear susceptibility of the composites can bdapping. The extreme case of overlapping is a layered struc-
strongly enhanced relative to those of component materialgure with flat interfaces.
Anisotropy of microstructure of composite materials has a With the Stroud-Hui expression for the effective third-
pronounced effect on the nonlinearity enhancement. Withirorder optical nonlinearity ,> and an exact series expression
effective-medium approximatiofEMA), Yuenet al.investi-  of the local electric field in periodic compositéshe x, of
gated the optical nonlinearity enhancement of metal granuldihe composites is calculated for various kinds of microstruc-
composites  with  electric-field induced anisotropic ture. The results show that the third-order optical nonlinear-
microstructure’ Hauset al. studied the nonlinearity enhance- ity reaches almost to its maximum when the percolation net-
ment by using ellipsoidalspecifically, spheroidal-shaped works of the inclusion phase form. The has little increase
particles? In this work, we study the anisotropic composites, when the fluctuation of the thickness of the layers decreases
anisotropy of which stems from the geometric morphologyfurther.
of inclusions. A theory developed recently predicted that at percolation
The anisotropic composites studied here are composed tifiere is a minimum in nonlinear optical responses in metal-
identical spheroidal-shaped particles made of an isotropitnsulator (MI) composites. Analogous conclusion is ob-
metal or semiconductor, embedded in an isotropic linear intained in our calculations, although the percolation networks
sulating host in a simple cubic lattice. The orientations of then Ref. 7 and in this work are formed by different mecha-
principal axes of the spheroids are to be coincident with therisms. In Ref. 7 it is formed by increasing the volume frac-
lattice axes. The effective third-order optical nonlinearity oftion of inclusions, here it is formed by changing the shape of
the composites is now a function of the aspect ragio the inclusions and keeping the volume fraction of the inclu-
=c/a, wherea and c are the lengths of semiaxes of the sions constant.
spheroids in the(y) and thez directions, respectively. Our

studies mainly concern the composites consisting of oblate Il. THEORY
spheroids, that isy<1 (c<a). An electric field is applied _ ) )
along the minor axis, i.e., along tleeaxis. By changing the For a composite with weakly nonlinear components, to

aspect ratio of the spheroids and keeping the volume fractiofirSt order in the nonlinear susceptibility of the components,
of the inclusions unchanged, various kinds of microstructurdhe effective third-order nonlinear susceptibility is gived as
of the composites are formed. At first, each particle is within

a unit cell [s_ee Flg. B3] We caII_ this klnd_ of strl_Jcture Xezz pi)(i<|EIin(r)|2Eﬁn(r)>i/EA: (1)
nonoverlapping. With a decrease n the particles will ap- i
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FIG. 1. Schematic drawing of four unit cells fgr<1; (a) nonoverlapping oblate spheroids with semiaaemdc, all are less thah/2,
(b) layered networks with holes composed of the truncated oblate spheroids with seraianas. Herea is larger tharl/2 but less than
L/+2 andc is less tharL/2.

where y; and p; are the third-order nonlinear susceptibility 1 .

and the volume fraction of theth component, respectively. 01(k)= vf exp(—ik-r)dr (7)

()i denotes a volume average over the volume of itihe Vi

componentk, is the applied electric field ank,;, is the s the Fourier coefficient of the indicator function of the first

electric field in the linear limit wherg;=0. component? which depends on the shape of the inclusions.
For the geometric morphology considered here, the effec- The spheroids can be characterized by the aspect fatio

tive third-order nonlinear susceptibility of the composites is— /5. Here we only consider this kind of geometric struc-

a diagonal tensor and its componegfs’ (a=X,y,z) canbe  tyres that the inclusion particles are oblate spheroids, there-

expressed as fore we always havey<1 (c<a). »=1 corresponds to the
X structure where the inclusions are spheres. For a composite
1 X . . > .
Xga:Vf |Ejin(1)|2E2, (r)dr/E, (2)  Wwith a fixed vglue of the volume fract(|10)n of |n<(:2IgJS|ons, there
Vi are two special values af, denotedrn:”’ and 7™,

whereV is the volume of a unit cell and; is the volume of

the nonlinear phasénclusion phasgin the unit cell. The (1):6_p’ (2):3_p’ D= 477_320 ®
enhancement factor in the directiongg® is defined as Te " e V2 3V
9% =x2x1. (3 Whenn>7, a<L/2, whereL is the lattice constant, and

. . . the composite consists of isolat@abnoverlapping spheroi-
We assume that the size of the particles is much smallef,| inclusions n=7Y corresponds to the case whese
" [

than the optical wavelength, therefore the quasistatic ap-_ L/2 and the neighboring spheroids in eacly plane just

proximation can be used. The space-dependent electric fiel[guch one another. For these two kinds of microstructure
E,in(r) in the linear case for a two-component periodic com- '

posite is expressed as the seties 0(1n°e) (K)=3py[si nka)— (ka) cosfa)] I(ka)®,  (9)

Elin(r):EO[ é+|2’1 (1/\N)|C|E(I’)J, (4) wherep; is the volume fraction of inclusions,
V, 4mp/a\®
where —t_"7=
P1=v, 3\ (10
P11t P2gr .
W= ———, (5  andk satisfies
€278
K=I2+K2+(7kp)%; (1)

CF(r):Z, Z’ kaexpliky - 1)(Kq- k) 01(Kky _
1 ! here K, .k, ,k;) =(2m/L)(ny,ny,n;) andn,,ny,n, are inte-
—Kp)- - - (Ky_1- k) 01K 1~ k) (K, - €) 01(Ky). gers.
2)- - (kia k) fa(ki-1=ki)(ki- @) 6a(ki) When 7{P< n< 7, L/I2<a<L/\2, and the neighbor-
(6) ing spheroids in the samey plane will overlap, the inclu-
sion phase forms layers with holes periodically arranged in
) ) o 2 them. The real shape of the inclusions is not a spheroid, but
Eo, k is the reciprocal vector of the periodic structukeis  only the part of the spheroids within the unit cell. In this
the unit vector in the dlrec;t|on,2,2i indicates that the sum- case, we can evaluate the Fourier coefficiey{k) by divid-
mation is overk; for k;#0 andk;#k;_,, and ing the volume integral in Eq.7) into several parts. With a

In the above relations is a unit vector in the direction of
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procedure analogous to that used in Ref. 15, Fourier coeffi-
cients of the indicator function of the inclusion phase can be

expressed as

02 (k)= 692 (K)—[F (Kyz,ky) + F(Kyz, k) 1= 1 (Kyz, ky)

+1(kyz k) — 0°9) (K). (12)
In this relation,
F(kyz,kx)— k \/az—xzcos{k X)J yZ\/az x2)dx,
(13
L/2
I (kyz Ky = \/az— X2 cog Ky x).Jl(kyz\/a2 2)d
. (14
wherek,, satisfies
KZ,=K2+(77k,)?, (15

and J,(x) represents the Bessel function. In the calculation
of Eq. (12), the integrand in Eq(14) can be expanded as a

double series fornfcf. Ref. 15

| 27my i 1 EZyZaz "
( yz» ) L3 <o n| 4
n+1 (_1)|a—2|+2

L/2
21
><|=0 Tn+1=D)! Jo X< cogk,Xx)dx.

(16)

That is, n in the denominator should be corrected ras
(n! denotes the factorial afi); | in the denominator should
be corrected ald (I! denotes the factorial df); (k+1—1) in
the denominator should be corrected as+@—1)! and
please take note of the position of superscnipt

In the case ok,=0,

a_ < o) |
I(kyZ! ) _27777k L2| 0 ||(2|+1) ) 1 (17)
whereé=L/(2a). In the general case &+#0,
1 T “ I(3+20) yZa —
( yok) =(=1) 1(k L)? Z 2+1) 2 ) Ji(ky-a)
| 1 2 \2m
<3 O 09

wherel'(n) is the complete gamma function.
The expressmns oF(kyZ,kX) and I(kyz,kx) for some
special values okyz andk, are as follows:
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F(Oky) = sm(kxa) (kya)cogk,a)
7oodkeg

+ke= x5 C kXE , (29
(0k)= 2 cos(ka/Z). 20
k=2 7

F(0,0= h2(3a h), (21

a? 1
1(0,00=m7 21 (22)

whereh=a—L/2. By use of Eq.21) or Eq. (22), we can
give the expression of volume fraction of inclusions in this
case as

p1= 60 (k=0)=21(0,0— 6" (k=0)

3/a\?
2\L

a

L

47y

3

sl (23

E

IIl. NUMERICAL RESULTS AND DISCUSSION

By imposing an electric fiel&E, along the direction of the
minor axes of the oblate spheroids, i.e., thdirection, the
frequency dependences of the modulus of enhancement fac-
tor in the direction of the minor axes of the oblate spheroids
|gé? of the MI and semiconductor-insulaté®l) composites
with various kinds of geometric microstructure are calcu-
lated. First, the expansion coefficierﬁg(r) are calculated
by using Eq.(6). A truncated reciprocal lattice, , ny, and
n, of which varies from—N to + N, is adopted. The numeri-
cal results indicate thall=30 is enough to ensure the con-
vergency of these coefficients. Thep,(r) is calculated by
use of the series expression in E@4). The Pade
approximant®’is used in the calculations. Our calculations
show that the Padapproximant can give good convergent
results when the first 17 terms of the series are used. Adding
more terms improves the convergency a little. Symmetry is
imposed to reduce the area used in the calculations to one
eighth of the unit-cell area. A mesh is generated. The electric
field at the center of each division of the mesh is calculated.
Finally, by substituting the values &;,(r) into Eq.(2), we
can evaluate the nonlinear susceptibility for the composites.

A. Metal-insulator composite

For MI composites we adopt the Drude model for the
dielectric function of the metal inclusions,

=1 —COST 24
£1= _w(a)T-H)’ (24)
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FIG. 2. |gZ]—w curves for a fixed volume fraction of metal FIG. 3. HEP versusi/L for a fixed volume fraction of metal

phasep;=0.1 and w,7=5,20. For each fixedv,7, 7 is 1.0,  phasep;=0.1 andw,7=5, 10, 20, 40, and 100. The points of the
0.6667, 0.5, 0.3333, 0.25, 0.2, 0.194Y, the percolation thresh- right end of each curve are the results for perfect layered compos-
old), 0.1818, 0.1429, 0.0879;@2)), and O(perfect layered compos- ites. The values of/L at left vertical dashed line and at right one
ite) from left to right. correspond top{™) and 7{?), respectively.

wherew, denotes the plasmon frequency and a charac- for th | . The HEP i | :
teristic relaxation time. We choose the frequency indepen-Or the granular composites. The Increases amost to Its

. ) ' . . maximum as the composites are near the percolation thresh-
dent dielectric constant of the insulating hest=1.

Th dul fenh 0 f 7 functi ¢ old. A local minimum appears at the percolation threshold
e modulus of enhancement facfgg? as a function o (a/L=~0.508) in each HEPa/L curve. The depth of the

frequencyw for a fi>_<ed volume fractiorp_lzo.l and several local minima increases as,7 increases. The conclusion is
values ofw,7 ranging from 5 to 100 is calculated. In the ginijar 1o that proposed recently by Sarychev and Shdlaev.
calculatlons,_a series of values afra_nglng from 1t00is he HEP reaches its maximum as the composites with
adopted, which represents various kinds of microstructure 0Ipheroidal-shaped inclusions are transformed into the com-
the composites from the granular composites to the layerefgites with a perfect layer structure, that is, the Boyd-Sipe-
ones. In Fig. 2 we show the modulus of enhancement facto&pe layered composites

27 : _ ’
|ge] as a function of frequency for w,7=5,20, and sev- The dependences of the nonlinearity enhancement of the
eral values ofy. The results for;=0, that is, for the perfect  composites on the volume fraction of inclusions for geomet-

layer structure, are obtained from the relation given by Boyd;ic jsotropy composites, i.e., the composites with spherical
and Sipe"® It can be seen in this figure that there is a non-

linearity enhancement peak in eddi’ —  curve. For each 10
fixed value ofz, the width of the enhancement peak lessens ] P

while the position of the enhancement pe&®EP keeps al- 2 / \
most unshift with an increase 7. It can also be seen that 8r . /

the anisotropic morphology of the composites has pro- o
nounced effects on the nonlinearity enhancement. As the 6l 5001020304
morphology of the inclusions is changed from spherical to p
oblate spheroid and further to layered network, thatss, N .

lessens from 1 to O, the nonlinearity enhancement is in-
creased to orders of magnitude while the PEP obviously
shifts to the high frequency. P
In Fig. 3 we show the dependence of the height of the
enhancement peak$lEP) on the geometric anisotropy of
inclusions for several values af,. In this figure the geo-
metric anisotropy of inclusions is represented by a length 4 L L L
scalea/L instead ofy. For a fixed volume fractiop,, a/L : ) : )
is a function ofz and can be obtained by use of E¢0) in o/ o
the case of nonoverlapping inclusions and by use of(E8). P
in the case of overlapping inclusions. It is shown in this F|G. 4. |g?]—w curves in the case of the spherical inclusions
figure that the HEP increases rapidly with an increase iffor several values of a volume fraction of metal phpgenging in
w,7. For each fixed value ab,7, the HEP increases rapidly order of 0.4, 0.35, 0.25, 0.15, 0.1, and 0.05 from left to right. Here,
with the increase of geometric anisotropy of the inclusionsw,r=5. HEP versug is illustrated in the inset.
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inclusions, are also investigated. We plgf —  curves in
Fig. 4 for several values of volume fractign ranging from 120 '
0.05 to 0.4. It can be seen that for this kind of geometric 100k ®=25
microstructure, whep,<<0.25 the nonlinearity enhancement
increases with an increase pjy and reaches maximum at S B 3 gl
p;~0.25, then it decreases with further increas@4n This 2 = d
result coincide with the experimental ones for Mu:SiO,) = =~ e}
granular composite fims measured by a degenerate four "ot © ©
wave mixing schené. Comparing this figure with Fig. 2, T w2 4ot
we can see that the increase in the nonlinearity enhancement = = s
from the geometric anisotropy of the composites is far larger 20}
than that from the increase in the volume fraction of metal
phase. 0
0.2

B. Semiconductor-insulator composite

For Sl composites we adopt the Lorentz oscillator model

for the dielectric function of the semiconductor inclusions, FIG. 5.|9%% — w curves for a fixed volume fraction of semicon-
ductor phasep;=0.1 andwy=1.0, 1.75, and 2.5. For each fixed

w2 w7, 7 is 1.0, 0.6667, 0.5, 0.3333, 0.25, 0.2, 0.194X, the
E1=Eut —5—— (25)  percolation thresho)d 0.1818, 0.1429, 0.0879£*), and 0(per-
w; -0 Y fect layered composiidrom bottom to top.

with . . .
formed into the composites with a perfect layer structure. For

(26) each fixed value ofvy, the PEP keeps almost unshift gs
varies. This result is different from that for Ml composites.

wherew, is the bound-electron resonant frequengys the Calculations are carried out for different values of the
damping coefficient, andl,e, andm, are the bound-electron physical parameters appearing in the expression for the di-
number density, charge, and effective mass, respectively. Thalectric function of the semiconductor phase. The results
dielectric constant in vacuum is,. We choosew,=1, w;  show thatwy has remarkable effect on the nonlinearity opti-
=0.5, y=0.08, £.,=9. With these choices;; is a reason- cal properties of the composites, especially for the compos-
able simplified approximation to the complex dielectric func-ites near the percolation threshold. In Fig. 6 we show the
tion of GaAs® The nonlinear susceptibility of the semicon- dependences of the HEP on the geometric anisotropy of in-
ductor y; is taken to be unitary in our calculations. clusions as a function o&/L for several values ofwg

As has been done for the MI composites, the effects of the=1.0, 1.75, and 2.5, respectively. It can be seen that the
anisotropic morphology on the nonlinearity enhancement foHEP—a/L curves have the features similar to those in the
the SI composites are also investigated. The modulus of erMI composites. Whereas there is no local minimum in
hancement factojgZ? as a function of frequency is cal- HEP—a/L curve in the case of,=1.0, a local minimum
culated for various values of physical parameters and variougppears at the percolation threshold in each HER. curve
kinds of microstructures of the composites.

In the calculations we found that the nonlinear optical /F
responses of the Sl composites sensitively depend on the 104' overlap N
dielectric constant of the insulating hast. There is no sig-
nificant nonlinearity enhancement when the values gfis
small, and the enhancement obviously increases with an in-
crease ine,. This result is in analogy to that obtained with
the formulas by Hau®t al? The results presented in the
following are obtained foe,= 25 which has been adopted in
Ref. 5. The|gi ] — o curves are plotted in Fig. 5 for a series
of values ofn and several values @f,=1.0, 1.75, and 2.5,
respectively. The results are obtained for a fixed volume frac-
tion of inclusionsp, =0.1 and the values of the other param-
eters are the same as those chosen above. The resulgs for
=0 are also obtained from the Boyd-Sipe relattdsimilar Jd. . .
to the results for the Ml composites, there is a sharp nonlin- 10903 04 05 06 07 7| o
earity enhancement peak in eddfd] — w curve; the nonlin-
earity enhancement is increased to orders of magnitude with a/L
a decrease im; and the HEP reaches its maximum as the FIG. 6. HEP versus/L for a fixed volume fraction of semicon-
composites with spheroidal-shaped inclusions are transductor phasg;=0.1 andw,=1.0, 1.75, and 2.5.

wgz Ne../eqmg,

g nonoverlap

10°F

Height of Enhancement Peak

-
o
T
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in two cases ofwg=1.75 andwy=2.5. Because the results optical nonlinearity enhancement for the composites com-
are obtained with the same valuesf, we can see from Eq. posed of infinitely long nonlinear metal or semiconductor

(26) that different values ofv, corresponds to the different cylinders with elliptic cross section parallelly embedded in

values of the ratio of the bound-electron number density t@an insulating host in a rectangular array.

the effective mass of the electrad/my. Therefore we con- The extreme case of anisotropic microstructure of the
clude that the behavior of the nonlinear optical responses @omposites is a layered structure with flat interface. The re-
the percolation threshold depends Nhm, in the SI com-  sults in this case are highly consistent with those calculated
posites with geometric anisotropy. When the value of thedy use of the Boyd-Sipe relation for a layered composite. We
ratio N/mg is large, the minimum appears in the nonlinearcompare the results of our calculation with those calculated

optical responses at the percolation threshold. by use of the Boyd-Sipe relation in layered composites, and
we conclude that the nonlinearity enhancement increase to
IV. SUMMARY its maximum when the ordered granular composites are

transformed into the Boyd-Sipe layered composites. This

Granular composites are usually disordered on the miconclusion seems to be significant in designing and fabricat-
croscale. Recently, the researches on highly ordered periodjfg practical nonlinear-optical composite materials with a
granular composites, such as photonic crystal and elecstrong|y nonlinear response.
trorheological fluid, have been very active. Periodic compos- The behavior of the nonlinearity enhancement of geomet-
ites can be much more easily analyzed and some significatiigc anisotropy MI and SI composites near the percolation
conclusions can be gained from the investigations on théhreshold has been studied. For the MI composites, the re-
effect of microstructure on the effective properties of thesylts show that there is a local minimum in each HEP
composites. In this paper, we have investigated the third-—a/|_ curve near the percolation threshold. The depth of the
order optical nonlinearity enhancement for the MI and Sligcal minima increases with an increaseuipr. The conclu-
composites with periodic anisotropic microstructure. Thesjon is similar to that proposed recently by Sarychev and
composites are composed of metal or semiconductor sph&halaeV. For the SI composites, the results show that the
roids embedded in an insulating host in a simple cubic latratio of the bound-electron number density to the effective
tice. The frequency dependences of the effective nonlineahass of the electroN/m, has remarkable effect on the non-
susceptibility of the composites have been evaluated as |earity optical properties of the composites near the perco-
function of the geometric anisotropy of the inclusions andjation threshold, and a minimum appears in the nonlinear

hancement have been discussed. By tuning the shape of the

inclusions from spherical particles to oblate spheroids, one

can increase the nqnlinearity en_hancement of the composites ACKNOWLEDGMENTS
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