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Effect of geometric anisotropy on optical nonlinearity enhancement for periodic composites
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The effect of geometric anisotropy on the optical nonlinearity enhancement for the composites with metal or
semiconductor spheriodal-shaped particles periodically in an insulating host is investigated. The frequency
dependences of effective nonlinear susceptibility are calculated with the Stroud-Hui relation and a series
expression of space-dependent electric field in periodic composites. The results show that for both metal-
insulator~MI ! and semiconductor-insulator~SI! composites, nonlinearity enhancement increases almost to its
maximum when the percolation networks of the inclusion phase form. The nonlinearity enhancement increases
to its maximum when the composites are transformed into the Boyd-Sipe layered composites. The behavior of
the nonlinearity enhancement near the percolation threshold is also investigated. A local minimum appears in
the nonlinear optical responses at the percolation threshold for the MI composites. For the SI composites the
local minimum appears when the ratio of the bound-electron number density to the effective mass of the
electron is large.
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I. INTRODUCTION

Nonlinear-optical materials are of great practical imp
tance for future applications in real-time holography, opti
correlators, phase-conjugators, and thresholding devic1,2

The optical nonlinearity enhancement of granular compo
materials has been extensively studied in recent years2–12

The composites of interest are usually made of nonlin
metal or semiconductor particles embedded in an insula
host. Nonlinear susceptibility of the composites can
strongly enhanced relative to those of component mater
Anisotropy of microstructure of composite materials has
pronounced effect on the nonlinearity enhancement. Wit
effective-medium approximation~EMA!, Yuenet al. investi-
gated the optical nonlinearity enhancement of metal gran
composites with electric-field induced anisotrop
microstructure.3 Hauset al.studied the nonlinearity enhance
ment by using ellipsoidal~specifically, spheroidal-shaped!
particles.4 In this work, we study the anisotropic composite
anisotropy of which stems from the geometric morpholo
of inclusions.

The anisotropic composites studied here are compose
identical spheroidal-shaped particles made of an isotro
metal or semiconductor, embedded in an isotropic linear
sulating host in a simple cubic lattice. The orientations of
principal axes of the spheroids are to be coincident with
lattice axes. The effective third-order optical nonlinearity
the composites is now a function of the aspect ratioh
5c/a, where a and c are the lengths of semiaxes of th
spheroids in thex(y) and thez directions, respectively. Ou
studies mainly concern the composites consisting of ob
spheroids, that is,h<1 (c<a). An electric field is applied
along the minor axis, i.e., along thec axis. By changing the
aspect ratio of the spheroids and keeping the volume frac
of the inclusions unchanged, various kinds of microstruct
of the composites are formed. At first, each particle is wit
a unit cell @see Fig. 1~a!#. We call this kind of structure
nonoverlapping. With a decrease inh, the particles will ap-
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proach their neighborhoods in the samex,y-plane. When the
aspect ratio reaches a critical value, the particles in e
x,y-plane will touch one another, and series of tw
dimensional percolation networks are formed. As the asp
ratio decreases further, the neighboring particles in the s
x,y-plane will overlap, and the inclusion phase forms laye
with holes periodically arranged in them@see Fig. 1~b!#, and
furthermore, the composite forms a structure with layers
fluctuating thickness. We call these kinds of structure ov
lapping. The extreme case of overlapping is a layered st
ture with flat interfaces.

With the Stroud-Hui expression for the effective thir
order optical nonlinearityxe ,5 and an exact series expressio
of the local electric field in periodic composites,6 the xe of
the composites is calculated for various kinds of microstr
ture. The results show that the third-order optical nonline
ity reaches almost to its maximum when the percolation n
works of the inclusion phase form. Thexe has little increase
when the fluctuation of the thickness of the layers decrea
further.

A theory developed recently predicted that at percolat
there is a minimum in nonlinear optical responses in me
insulator ~MI ! composites.7 Analogous conclusion is ob
tained in our calculations, although the percolation netwo
in Ref. 7 and in this work are formed by different mech
nisms. In Ref. 7 it is formed by increasing the volume fra
tion of inclusions, here it is formed by changing the shape
the inclusions and keeping the volume fraction of the inc
sions constant.

II. THEORY

For a composite with weakly nonlinear components,
first order in the nonlinear susceptibility of the componen
the effective third-order nonlinear susceptibility is given a8

xe5(
i

pix i^uEl in~r !u2El in
2 ~r !& i /E0

4 , ~1!
©2003 The American Physical Society06-1
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FIG. 1. Schematic drawing of four unit cells forh,1; ~a! nonoverlapping oblate spheroids with semiaxesa andc, all are less thanL/2,
~b! layered networks with holes composed of the truncated oblate spheroids with semi-axesa andc. Herea is larger thanL/2 but less than
L/A2 andc is less thanL/2.
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wherex i and pi are the third-order nonlinear susceptibili
and the volume fraction of thei th component, respectively
^ & i denotes a volume average over the volume of thei th
component,E0 is the applied electric field andEl in is the
electric field in the linear limit wherex i50.

For the geometric morphology considered here, the ef
tive third-order nonlinear susceptibility of the composites
a diagonal tensor and its componentsxe

aa (a5x,y,z) can be
expressed as

xe
aa5

x1

V E
V1

uEl in~r !u2El in
2 ~r !dr /E0

4 , ~2!

whereV is the volume of a unit cell andV1 is the volume of
the nonlinear phase~inclusion phase! in the unit cell. The
enhancement factor in thea directionge

aa is defined as

ge
aa5xe

aa/x1 . ~3!

We assume that the size of the particles is much sma
than the optical wavelength, therefore the quasistatic
proximation can be used. The space-dependent electric
El in(r ) in the linear case for a two-component periodic co
posite is expressed as the series6

El in~r !5E0H ê1(
l 51

`

~1/w! lCl
E~r !J , ~4!

where

w5
p1«11p2«2

«22«1
, ~5!

Cl
E~r !5( 8

k1
•••( 8

kl
k̂1exp~ ik1•r !~ k̂1• k̂2!u1~k1

2k2!•••~ k̂ l 21• k̂ l !u1~k l 212k l !~ k̂ l•ê!u1~k l !.

~6!

In the above relations,ê is a unit vector in the direction o
E0 , k is the reciprocal vector of the periodic structure,k̂ is
the unit vector in thek direction,(ki

8 indicates that the sum

mation is overk i for k iÞ0 andk iÞk i 21, and
04510
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u1~k!5
1

VEV1

exp~2 ik•r !dr ~7!

is the Fourier coefficient of the indicator function of the fir
component,14 which depends on the shape of the inclusio

The spheroids can be characterized by the aspect rath
5c/a. Here we only consider this kind of geometric stru
tures that the inclusion particles are oblate spheroids, th
fore we always haveh<1 (c<a). h51 corresponds to the
structure where the inclusions are spheres. For a compo
with a fixed value of the volume fraction of inclusions, the
are two special values ofh, denotedhc

(1) andhc
(2) ,

hc
(1)5

6p8

p
, hc

(2)5
3p8

A2p
, p85

4pa2c

3V
. ~8!

Whenh.hc
(1) , a,L/2, whereL is the lattice constant, and

the composite consists of isolated~nonoverlapping! spheroi-
dal inclusions.h5hc

(1) corresponds to the case wherea
5L/2 and the neighboring spheroids in eachx-y plane just
touch one another. For these two kinds of microstructure

u1
(noe) ~k!53p1@sin~ k̄a!2~ k̄a!cos~ k̄a!#/~ k̄a!3, ~9!

wherep1 is the volume fraction of inclusions,

p15
V1

V
5

4ph

3 S a

L D 3

, ~10!

and k̄ satisfies

k̄25kx
21ky

21~hkz!
2; ~11!

here (kx ,ky ,kz)5(2p/L)(nx ,ny ,nz) andnx ,ny ,nz are inte-
gers.

Whenhc
(2),h,hc

(1) , L/2,a,L/A2, and the neighbor-
ing spheroids in the samex-y plane will overlap, the inclu-
sion phase forms layers with holes periodically arranged
them. The real shape of the inclusions is not a spheroid,
only the part of the spheroids within the unit cell. In th
case, we can evaluate the Fourier coefficientu1(k) by divid-
ing the volume integral in Eq.~7! into several parts. With a
6-2
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procedure analogous to that used in Ref. 15, Fourier co
cients of the indicator function of the inclusion phase can
expressed as

u1
(oe) ~k!5u1

(noe) ~k!2@F~ k̄xz ,ky!1F~ k̄yz ,kx!#5I ~ k̄xz ,ky!

1I ~ k̄yz ,kx!2u1
(noe) ~k!. ~12!

In this relation,

F~ k̄yz ,kx!5
4ph

L3k̄yz
E

L/2

a
Aa22x2 cos~kxx!J1~ k̄yzAa22x2!dx,

~13!

I ~ k̄yz ,kx!5
4ph

L3k̄yz
E

0

L/2
Aa22x2 cos~kxx!J1~ k̄yzAa22x2!dx,

~14!

wherek̄yz satisfies

k̄yz
2 5ky

21~hkz!
2, ~15!

and J1(x) represents the Bessel function. In the calculat
of Eq. ~12!, the integrand in Eq.~14! can be expanded as
double series form~cf. Ref. 15!

I ~ k̄yz ,kx!5
2ph

L3 (
n50

`
1

n!
S 2

k̄yz
2 a2

4
D n

3 (
l 50

n11
~21! la22l 12

l ! ~n112 l !! E0

L/2

x2l cos~kxx!dx.

~16!

That is, n in the denominator should be corrected asn!
~n! denotes the factorial ofn); l in the denominator should
be corrected asl ! ~l ! denotes the factorial ofl ); (k112 l ) in
the denominator should be corrected as (n112 l )! and
please take note of the position of superscriptn.

In the case ofkx50,

I ~ k̄yz,0!522ph
a

k̄yzL
2 (

l 50

`
Jl 21~ k̄yza!

l ! ~2l 11!
S j

k̄yza

2
D l

, ~17!

wherej5L/(2a). In the general case ofkxÞ0,

I ~ k̄yz,kx!5~21!nx21
ph

~kxL !2 (
l 50

`
G~312l !

G~21 l !
S j

k̄yza

2
D l

Jl~ k̄yza!

3 (
m50

l

~21!m
1

G~212l 22m! S 2

kxL
D 2m

, ~18!

whereG(n) is the complete gamma function.
The expressions ofF( k̄yz ,kx) and I ( k̄yz ,kx) for some

special values ofk̄yz andkx are as follows:
04510
fi-
e

n

F~0,kx!5
4ph

kx
3L3 Fsin~kxa!2~kxa!cos~kxa!

1kx

L

2
cosS kx

L

2D G , ~19!

I ~0,kx!522ph
cos~kxL/2!

~kxL !2
; ~20!

F~0,0!5
2ph

3L3
h2~3a2h!, ~21!

I ~0,0!5phF a2

L2
2

1

12G , ~22!

whereh5a2L/2. By use of Eq.~21! or Eq. ~22!, we can
give the expression of volume fraction of inclusions in th
case as

p15u1
(oe) ~k50!52I ~0,0!2u1

(noe) ~k50!

5
4ph

3 F3

2 S a

L D 2

2S a

L D 3

2
1

8G . ~23!

III. NUMERICAL RESULTS AND DISCUSSION

By imposing an electric fieldE0 along the direction of the
minor axes of the oblate spheroids, i.e., thez direction, the
frequency dependences of the modulus of enhancement
tor in the direction of the minor axes of the oblate sphero
uge

zzu of the MI and semiconductor-insulator~SI! composites
with various kinds of geometric microstructure are calc
lated. First, the expansion coefficientsCl

E(r ) are calculated
by using Eq.~6!. A truncated reciprocal lattice,nx , ny , and
nz of which varies from2N to 1N, is adopted. The numeri
cal results indicate thatN530 is enough to ensure the con
vergency of these coefficients. ThenEl in(r ) is calculated by
use of the series expression in Eq.~4!. The Pade´
approximant16,17 is used in the calculations. Our calculation
show that the Pade´ approximant can give good converge
results when the first 17 terms of the series are used. Add
more terms improves the convergency a little. Symmetry
imposed to reduce the area used in the calculations to
eighth of the unit-cell area. A mesh is generated. The elec
field at the center of each division of the mesh is calculat
Finally, by substituting the values ofEl in(r ) into Eq.~2!, we
can evaluate the nonlinear susceptibility for the composi

A. Metal-insulator composite

For MI composites we adopt the Drude model for t
dielectric function of the metal inclusions,

«1512
vp

2t

v~vt1 i !
, ~24!
6-3
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wherevp denotes the plasmon frequency andt is a charac-
teristic relaxation time. We choose the frequency indep
dent dielectric constant of the insulating host«251.

The modulus of enhancement factoruge
zzu as a function of

frequencyv for a fixed volume fractionp150.1 and severa
values ofvpt ranging from 5 to 100 is calculated. In th
calculations, a series of values ofh ranging from 1 to 0 is
adopted, which represents various kinds of microstructur
the composites from the granular composites to the laye
ones. In Fig. 2 we show the modulus of enhancement fa
uge

zzu as a function of frequencyv for vpt55,20, and sev-
eral values ofh. The results forh50, that is, for the perfec
layer structure, are obtained from the relation given by Bo
and Sipe.13 It can be seen in this figure that there is a no
linearity enhancement peak in eachuge

zzu2v curve. For each
fixed value ofh, the width of the enhancement peak lesse
while the position of the enhancement peak~PEP! keeps al-
most unshift with an increase invpt. It can also be seen tha
the anisotropic morphology of the composites has p
nounced effects on the nonlinearity enhancement. As
morphology of the inclusions is changed from spherical
oblate spheroid and further to layered network, that ish
lessens from 1 to 0, the nonlinearity enhancement is
creased to orders of magnitude while the PEP obviou
shifts to the high frequency.

In Fig. 3 we show the dependence of the height of
enhancement peaks~HEP! on the geometric anisotropy o
inclusions for several values ofvpt. In this figure the geo-
metric anisotropy of inclusions is represented by a len
scalea/L instead ofh. For a fixed volume fractionp1 , a/L
is a function ofh and can be obtained by use of Eq.~10! in
the case of nonoverlapping inclusions and by use of Eq.~23!
in the case of overlapping inclusions. It is shown in th
figure that the HEP increases rapidly with an increase
vpt. For each fixed value ofvpt, the HEP increases rapidl
with the increase of geometric anisotropy of the inclusio

FIG. 2. uge
zzu2v curves for a fixed volume fraction of meta

phase p150.1 and vpt55,20. For each fixedvpt, h is 1.0,
0.6667, 0.5, 0.3333, 0.25, 0.2, 0.191 (hc

(1) , the percolation thresh
old!, 0.1818, 0.1429, 0.0879 (hc

(2)), and 0~perfect layered compos
ite! from left to right.
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for the granular composites. The HEP increases almost t
maximum as the composites are near the percolation thr
old. A local minimum appears at the percolation thresh
(a/L'0.508) in each HEP2a/L curve. The depth of the
local minima increases asvpt increases. The conclusion i
similar to that proposed recently by Sarychev and Shala7

The HEP reaches its maximum as the composites w
spheroidal-shaped inclusions are transformed into the c
posites with a perfect layer structure, that is, the Boyd-Si
type layered composites.

The dependences of the nonlinearity enhancement of
composites on the volume fraction of inclusions for geom
ric isotropy composites, i.e., the composites with spher

FIG. 3. HEP versusa/L for a fixed volume fraction of meta
phasep150.1 andvpt55, 10, 20, 40, and 100. The points of th
right end of each curve are the results for perfect layered com
ites. The values ofa/L at left vertical dashed line and at right on
correspond tohc

(1) andhc
(2) , respectively.

FIG. 4. uge
zzu2v curves in the case of the spherical inclusio

for several values of a volume fraction of metal phasep ranging in
order of 0.4, 0.35, 0.25, 0.15, 0.1, and 0.05 from left to right. He
vpt55. HEP versusp is illustrated in the inset.
6-4
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EFFECT OF GEOMETRIC ANISOTROPY ON OPTICAL . . . PHYSICAL REVIEW B 67, 045106 ~2003!
inclusions, are also investigated. We plotuge
zzu2v curves in

Fig. 4 for several values of volume fractionp1 ranging from
0.05 to 0.4. It can be seen that for this kind of geome
microstructure, whenp1,0.25 the nonlinearity enhanceme
increases with an increase inp1 and reaches maximum a
p1'0.25, then it decreases with further increase inp1. This
result coincide with the experimental ones for MI~Au:SiO2)
granular composite films measured by a degenerate
wave mixing scheme12. Comparing this figure with Fig. 2
we can see that the increase in the nonlinearity enhance
from the geometric anisotropy of the composites is far lar
than that from the increase in the volume fraction of me
phase.

B. Semiconductor-insulator composite

For SI composites we adopt the Lorentz oscillator mo
for the dielectric function of the semiconductor inclusions

«15«`1
v0

2

v1
22v22 igv

, ~25!

with

v0
25Ne2«` /«0m0 , ~26!

wherev1 is the bound-electron resonant frequency,g is the
damping coefficient, andN,e, andm0 are the bound-electron
number density, charge, and effective mass, respectively.
dielectric constant in vacuum is«0. We choosev051, v1
50.5, g50.08, «`59. With these choices,«1 is a reason-
able simplified approximation to the complex dielectric fun
tion of GaAs.5 The nonlinear susceptibility of the semico
ductorx1 is taken to be unitary in our calculations.

As has been done for the MI composites, the effects of
anisotropic morphology on the nonlinearity enhancement
the SI composites are also investigated. The modulus of
hancement factoruge

zzu as a function of frequencyv is cal-
culated for various values of physical parameters and var
kinds of microstructures of the composites.

In the calculations we found that the nonlinear optic
responses of the SI composites sensitively depend on
dielectric constant of the insulating host«2. There is no sig-
nificant nonlinearity enhancement when the value of«2 is
small, and the enhancement obviously increases with an
crease in«2. This result is in analogy to that obtained wi
the formulas by Hauset al.4 The results presented in th
following are obtained for«2525 which has been adopted
Ref. 5. Theuge

zzu2v curves are plotted in Fig. 5 for a serie
of values ofh and several values ofv051.0, 1.75, and 2.5
respectively. The results are obtained for a fixed volume fr
tion of inclusionsp150.1 and the values of the other param
eters are the same as those chosen above. The resultsh
50 are also obtained from the Boyd-Sipe relation.13 Similar
to the results for the MI composites, there is a sharp non
earity enhancement peak in eachuge

zzu2v curve; the nonlin-
earity enhancement is increased to orders of magnitude
a decrease inh; and the HEP reaches its maximum as t
composites with spheroidal-shaped inclusions are tra
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formed into the composites with a perfect layer structure.
each fixed value ofv0, the PEP keeps almost unshift ash
varies. This result is different from that for MI composites

Calculations are carried out for different values of t
physical parameters appearing in the expression for the
electric function of the semiconductor phase. The res
show thatv0 has remarkable effect on the nonlinearity op
cal properties of the composites, especially for the comp
ites near the percolation threshold. In Fig. 6 we show
dependences of the HEP on the geometric anisotropy of
clusions as a function ofa/L for several values ofv0
51.0, 1.75, and 2.5, respectively. It can be seen that
HEP2a/L curves have the features similar to those in t
MI composites. Whereas there is no local minimum
HEP2a/L curve in the case ofv051.0, a local minimum
appears at the percolation threshold in each HEP2a/L curve

FIG. 5. uge
zzu2v curves for a fixed volume fraction of semicon

ductor phasep150.1 andv051.0, 1.75, and 2.5. For each fixe
vpt, h is 1.0, 0.6667, 0.5, 0.3333, 0.25, 0.2, 0.191 (hc

(1) , the
percolation threshold!, 0.1818, 0.1429, 0.0879 (hc

(2)), and 0~per-
fect layered composite! from bottom to top.

FIG. 6. HEP versusa/L for a fixed volume fraction of semicon
ductor phasep150.1 andv051.0, 1.75, and 2.5.
6-5
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YANG, ZHANG, AND TIAN PHYSICAL REVIEW B 67, 045106 ~2003!
in two cases ofv051.75 andv052.5. Because the result
are obtained with the same value of«` , we can see from Eq
~26! that different values ofv0 corresponds to the differen
values of the ratio of the bound-electron number density
the effective mass of the electron,N/m0. Therefore we con-
clude that the behavior of the nonlinear optical response
the percolation threshold depends onN/m0 in the SI com-
posites with geometric anisotropy. When the value of
ratio N/m0 is large, the minimum appears in the nonline
optical responses at the percolation threshold.

IV. SUMMARY

Granular composites are usually disordered on the
croscale. Recently, the researches on highly ordered per
granular composites, such as photonic crystal and e
trorheological fluid, have been very active. Periodic comp
ites can be much more easily analyzed and some significa
conclusions can be gained from the investigations on
effect of microstructure on the effective properties of t
composites. In this paper, we have investigated the th
order optical nonlinearity enhancement for the MI and
composites with periodic anisotropic microstructure. T
composites are composed of metal or semiconductor s
roids embedded in an insulating host in a simple cubic
tice. The frequency dependences of the effective nonlin
susceptibility of the composites have been evaluated a
function of the geometric anisotropy of the inclusions a
the effects of geometric anisotropy on the nonlinearity
hancement have been discussed. By tuning the shape o
inclusions from spherical particles to oblate spheroids,
can increase the nonlinearity enhancement of the compo
by orders of magnitude. Meantime, the response freque
obviously shifts to high frequency for the MI composites a
keeps almost unshift for the SI composites. These results
qualitatively similar to those in our previous reports,18 in
which we investigated the effect of geometric anisotropy
. E
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optical nonlinearity enhancement for the composites co
posed of infinitely long nonlinear metal or semiconduc
cylinders with elliptic cross section parallelly embedded
an insulating host in a rectangular array.

The extreme case of anisotropic microstructure of
composites is a layered structure with flat interface. The
sults in this case are highly consistent with those calcula
by use of the Boyd-Sipe relation for a layered composite.
compare the results of our calculation with those calcula
by use of the Boyd-Sipe relation in layered composites, a
we conclude that the nonlinearity enhancement increas
its maximum when the ordered granular composites
transformed into the Boyd-Sipe layered composites. T
conclusion seems to be significant in designing and fabri
ing practical nonlinear-optical composite materials with
strongly nonlinear response.

The behavior of the nonlinearity enhancement of geom
ric anisotropy MI and SI composites near the percolat
threshold has been studied. For the MI composites, the
sults show that there is a local minimum in each HE
2a/L curve near the percolation threshold. The depth of
local minima increases with an increase invpt. The conclu-
sion is similar to that proposed recently by Sarychev a
Shalaev.7 For the SI composites, the results show that
ratio of the bound-electron number density to the effect
mass of the electronN/m0 has remarkable effect on the non
linearity optical properties of the composites near the per
lation threshold, and a minimum appears in the nonlin
optical responses at the percolation threshold for largeN/m0.
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