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Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air
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This work presents a comprehensive study of acoustic interferometers based on sonic crystals, such as the
one reported by Cerveraet al. in Phys. Rev. Lett.88, 023902~2002!. This kind of interferometers consist of a
slab of rigid cylinders in air put in a periodic configuration. Their performance as a function of thickness and
symmetry configuration~square and hexagonal! is analyzed by our setup, which obtains the reflectance spectra
using the standing wave ratio technique. Experimental observations are fairly well simulated by a self-
consistent wave theory that incorporates all orders of multiple scattering. An homogenization procedure shows
that sound propagation inside the hexagonal-based crystals is isotropic while it is biaxial inside the square-
based crystals. A method able to extract the acoustic band structure from the reflectance spectra of the finite
crystals under study is also described. Finally, the robustness of the interference effects is also studied as a
function of positional disorder inside the unit cells in the lattice.
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I. INTRODUCTION

A photonic crystal1 is to light waves what a semiconduc
tor is to electrons: it allows the passage of waves at so
energies but no others. In other words, the allowable ener
are distributed in bands. In a similar manner, a fluid medi
with a periodic density variation define a system called
sonic crystal~SC!, which forbids sound propagation at ce
tain frequencies.2 The fundamental reason for the pheno
enon of band structure is the multiple scattering of waves
a periodic configuration of scatterers.

Recently, experimental observations have demonstr
that SC’s consisting of periodic arrays of metallic cylinde
~i.e., rigid scatterers! in air show stop-band and pass-ba
regions.3–11 On one hand, the presence of stop bands h
led to the proposal of using the SC’s to construct a n
generation of sound shields and filters.3–10 On the other
hand, their property of sound transmission in the pass-b
frequencies has been recently used11 to construct refractive
devices such as an acoustic lens for focusing sound w
and also an acoustic interferometer that works similar to
lightwave counterpart. Experiments on more complex str
tures called phononic crystals, where the waves can ha
mixed character~longitudinal and trasversal!, have also been
reported.12–15 Most of the experiments report zero-order a
tenuation spectra of sound transmission across the per
structure, just one work has reported reflectance propert9

The theoretical description of sonic and phononic crys
has employed two main strategies. One consists on b
structure calculations3–7,10,16,17of the corresponding infinite
system in order to match the gaps in the dispersion rela
with the attenuations in the transmission spectra. The o
0163-1829/2003/67~3!/035422~11!/$20.00 67 0354
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calculates the transmission spectra by different algorith
such as the transfer matrix method,18 finite differences,19–21

or by multiple scattering.9,22,23The drawback of the first ap
proach is that additional attenuation bands can appear in
zero-order spectra due to two reasons:~1! the presence of
deaf bands4 in the dispersion relation and~2! the existence of
diffraction effects above a certain cutoff frequency; i.e., t
possible scattering of sound to Bragg orders larger than
especular when it leaves the SC.5 On the other hand, the
other approaches usually produce good experimental
scription, but sometimes interesting physical phenomena
shielded if not a further analysis of the spectra is comple
by studying the symmetry character of the eigenmodes
their dispersion relation.

The purpose of this paper is to present a comprehen
analysis of structures similar to the one introduced in Ref.
used as an acoustic interferometer. Experiments have b
performed for several structures with variable thickness
two different symmetry configurations: hexagonal a
square. Theoretically, a self-consistent multiple scattering
proach has been developed containing some improvem
over the ones previously reported. Our simulations will
focused on the reflectance properties of these structu
which is a topic scarcely treated in the literature. It will b
shown that reflectance spectra is a good spectroscopic
characterizing the internal modes of SC clusters and can
used to obtain partially the two-dimensional~2D! acoustic
band structure. Thus, modes having their wavefronts para
to the surfaces of the cluster produce well defined zero
flectance features in the spectra when they are excited
sound waves impinging the cluster perpendicularly to its s
©2003 The American Physical Society22-1
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faces. These modes can be assigned to Bloch modes o
2D band structure.

The frequency and symmetry of acoustical modes p
dicted by the multiple scattering approach characterize fa
well the resonance features observed in the spectra. M
over, the spectra in the frequency regions below and ab
the gaps are similar to the ones expected from homogen
layers, whose characteristic impedance and effective so
velocity have been obtained by a fitting procedure.

As a result of our studies we concluded that the sou
velocity inside SC’s verify the following properties:~i! it is
always lower than in air,~ii ! it depends on the crystal thick
ness, and~iii ! it also depends on the parameters characte
ing the crystal~i.e., the lattice symmetry and the fraction
volume occupied by the cylinders!. Particularly, it has been
demonstrated that hexagonal lattice is isotropic with rega
to sound propagation while the square lattice behaves b
ally. Moreover, the reflectance of the SCs’ slabs is small
depends on the filling fraction; it increases as the filling fra
tion increases. Finally, the fairly good agreement found
tween theory and experiments has lead us to make pre
tions about the robustness of the interference effects a
function of the disorder in the lattice.

The paper is organized as follows. The theoretical
proach is presented in Sec. II while the experimental se
together with the sample descriptions are given in Sec.
The comparison between experiments and calculations
presented in Sec. IV, where it is explained how to get
band structure from the reflectance minima, and the res
of the homogenization procedure are also discussed. In
V the predictions about disordering effects are reported.
nally, Sec. VI summarizes the work.

II. THEORETICAL APPROACH: THE SELF-CONSISTENT
WAVE THEORY

A simplified approach~only including double-scattering
terms! of the treatment described below has been succ
fully applied to study the reflectance properties of a cluste
35 cylinders.9 A complete self-consistent procedure includi
all order of multiple scattering, which follows the semin
work of Twersky,24 has been reported by Chen and Ye23 to
study the transmission spectra of large structures. The pr
dure is briefly described below. In particular, we introduce
symmetry of the matrix elements that reduces the comp
tional effort of the numerical code.

Let us consider a cluster ofN cylinders located at posi
tionsRW b (b51,2, . . .N) and radiusrb . RW b is a vector in the
XY plane. The geometry of the problem and the varia
definitions are shown in Fig. 1.

If a external wavePext with temporal dependence e2 ivt

impinges the cluster, the total field around the cylindera is a
superposition of the external field and the radiation scatte
by the rest of cylindersb:

Pa~x,y!5Pext~x,y!1 (
bÞa

N

Pb
scatt~x,y!, ~1!

wherePb
scatt is the field scattered by theb cylinder.
03542
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Those fields can be expanded as a combination of Be
functions centered at the cylinder position. If the multipo
coefficients are (Ba) l , (Sa) l , and (Ab) l , for Pa , Pb

ext, and
Pscatt, respectively, the expression above can be cast into
following relation between coefficients:

~Ba! l5~Sa! l1 (
b51

N

(
l 852`

l 85`

~Gba! l l 8~Ab! l 8 , ~2!

Gba being the propagator fromb to a whose components
are

~Gba! l l 85~12dab!ei ( l 82 l )uabHl 82 l
(1)

~kr ab!, ~3!

where dab is the Kronecker delta (dab51 if a5b, and
dab50 if aÞb).

Notice that coefficientsSa are known, butBa andAa are
not. The boundary conditions at the cylinder’s surfaces
latesBa and Aa . Though the experiments involved hollow
aluminum ~Al ! cylinders, here, we use the simplifying a
sumption of rigid cylinders. This approach works fairly we
in the theoretical description of experiments in the range
frequencies under study.4,5 In addition, the thickness of the
metallic tubes and the huge density contrast between Al
air justified the approach.25 The t-scattering matrix relatesA2
andB2

~ ta! l l 85
Jl 21~kra!2Jl 11~kra!

Hl 11
(1) ~kra!2Hl 21

(1) ~kra!
d l l 8 . ~4!

Introducing these coefficient in Eq.~2! and after an easy
algebra we arrive at

~Aa! l2 (
b51

N

(
l 852`

l 85`

~ taGba! l l 8~Ab! l 85~ taSa! l . ~5!

By truncating the angular momentum withinu l 8u< l max,
Eq. ~5! reduces to a linear equation where the dimension
the relevant matrix isN(2l max11)3N(2lmax11). Thus, in

FIG. 1. Coordinate systems and definition of variables emplo
in the equations of the multiple-scattering algorithm~see Sec. II!.
2-2
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ACOUSTIC INTERFEROMETERS BASED ON TWO- . . . PHYSICAL REVIEW B 67, 035422 ~2003!
matrix form MA5S, whereA and S are column matrices
with elements A1l ,A2l , . . .ANl and
t1lS1l ,t2lS2l , . . . tNlSNl , respectively.M is a square matrix
where each element is a matrix of dimension (2l max11)
3(2lmax11). In short, the matrix elements can be expres
by

~Mab! l l 85dabd l l 82~ taGab! l l 8~12dab!. ~6!

When the structure contains a huge amount of cylind
the CPU time required in the calculations can be reduce
the half by using the following relation between the mat
elements:

~Mab! l l 85F ~12dab!~21!( l 82 l )
~ tb! l l 8

~ ta! l l 8

1dabG ~Mba! l l 8 .

~7!

This relation is obtained from the properties of the po
variablesuba2uab5p, andr ab5r ba . These properties im
ply that (Gab) l l 85(21)( l 82 l )(Gba) l l 8 , which introduced
into Eq. ~6! gives the identity in Eq.~7!.

Finally, the unknown coefficientA can be easily obtained
by matrix inversion, and the pressure field at any point o
side the cylinders is given by

P~x,y!5Pext~x,y!1 (
a51

N

Pa
scatt~x,y!5Pext~r ,u!

1 (
a51

N

(
l 52`

l 5`

~Aa! lHl
(1)~kr a!eil ua. ~8!

The normal modes of a finite system may be obtained
solving the following secular equation, which is obtain
from Eq. ~5! in absence of external incident wave; i.e
(Sa) l 850:

DN~v!5det@dabd l l 82~ taGab! l l 8~12dab!#50. ~9!

The solutions are complex resonance frequenciesv5v8
2 iv9. The real partv8 gives the eigenfrequency of the no
mal mode and its lifetime in this resonator can therefore
estimated byt51/(2v9). The procedure explained above
formally equivalent to the one previously employed to stu
clusters of 2D photonic crystals.26,27

The acoustic structure of an infinite periodic system c
be obtained taking into account that Bloch theorem applie
the coefficients as

~Ab! l 85ekW•RW b~A0! l 8 , ~10!

wherekW is a wave vector contained in the first Brillouin zon
of the Bravais lattice defined by the vectorsRW b . For the case
of a single scatterer per unit cell, like in the hexagonal a
square lattices, the secular equation for the acoustic b
modes is

det@d l l 82@ tG~kW ;v!# l l 8~12dRW !#50, ~11!

wheret[ta is the expression in Eq.~4!, and
03542
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@G~kW ;v!# l l 85(
RW

@G~RW ;v!# l l 8exp~ ikW•RW !, ~12!

where the sum(RW is over all lattice sites, and

@G~RW ;v!# l l 8[~G0b! l l 85~12dRW !ei ( l 82 l )uRHl 82 l
(1)

~kR!,
~13!

beingRW 5RW b2RW 0, andk is related tov through the sound
velocity in air. The expansion coefficients are calculated f
lowing the Ewald procedure.28

III. EXPERIMENTS

The experiments have been performed in a echo-
chamber. As a sound source we employed a collimated be
which were obtained by placing an omnidirectional spea
at the focus of a parabolic reflector.

The SC samples are constructed by hanging cylindr
rods~1 m long! on a frame with the appropriate symmetry.
particular, arrays of hollow aluminum cylinders of extern
radiusr52 cm and thickness 2 mm were put in two diffe
ent configurations; hexagonal and square. All the rows i
sample have the same lengthH, which in our samples is
determined by 12 rods. A schematic view of the experimen
setup is shown in Fig. 2. The parametera in the hexagonal
lattice is 6.35 cm, while in the square lattice is 11 cm.
other words, the fraction of volumef occupied by the rods in
the hexagonal case isf h5(2p/A3)(r/a)250.360 while for
the square latticef s5p(r/a)250.104. For the hexagona
lattice results are reported for three samples with three, f
and five layers of cylinders, which were constructed hav
their surfaces perpendicularly to theGX direction ~distance
between layersd5aA3/2). For the square lattice, the resu

FIG. 2. Schematic view of the experimental set up employed
the experiments. The sample represents an hexagonal array
surfaces perpendicular to theGX direction of the lattice. It is made
of 1033 cylinders. The dotted rectangle in front of the samp
defines the area explored by the robot. Measures are taken at p
separatedDx along theX axis andDy along they axis. a is the
lattice parameterD'2a, d5aA3/2. The shadowed region repre
sents the effective dimension of the sonic crystal according to
criterium of Ref. 31;L53aA3/2, H510a.
2-3
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SANCHIS, HÅKANSSON, CERVERA, AND SA´ NCHEZ-DEHESA PHYSICAL REVIEW B67, 035422 ~2003!
obtained in two samples with the same thickness~5 layers!
are reported; one oriented along theGX direction (d5a),
the other along theGM direction (d5a/A2).

In order to study the reflectance, pressure maps have
obtained in front of the sample by means of a compu
controlled automatic positioning system capable of sweep
a microphone through a grid of measuring points. T
steeper motors with a maximum resolution of 0.25 mm
step allows the movement along eachX and Y axis. The
pressure maps are obtained from a grid of 400 points;
points spacedDx510 mm along theX axis and 8 points
spacedDy540 mm along theY axis. The total area scanne
by the map is 49 cm328 cm ~see Fig. 2!. Nevertheless,
larger areas could be explored, if needed, by hand reloca
of the whole frame of the robot.

Sound pressure measurements are automatically take
means of a B&K 2144 frequency analyzer controlled by
GPIB interface. At each grid point the microphone samp
the sound with a sampling frequency of 15 kHz. The pr
sure spectrum with a resolution of 8 Hz is obtained by
analyzer, which makes the FFT of the data recorded by
microphone. A total of 256 spectra have been taken to g
erate the averaged spectrum finally assigned to each
point (xi ,yi). Thus, for a given frequency, the root-mea
square~r.m.s.! pressurePrms(xi ,yi) is obtained. To expres
the pressure in decibels we employ a reference pressu
20 mPa, thus

L~xi ,yi !~dB!520 log10@Pr.m.s.~xi ,yi !/Pref#. ~14!

The total time elapsed to construct one pressure map as
scribed above is about 5 h.

IV. RESULTS AND DISCUSSIONS

A. Ordered structures

The acoustic band structures for the corresponding infi
systems are plotted in Fig. 3. They are obtained from
secular equation, Eq.~11!. The gaps that forbids soun
propagation fairly agrees with zero-order transmission
periments reported in Refs. 4–6. The hexagonal lattice h
complete acoustic gap at the region 2498–3104 Hz, whic
determined by the gap in theGJ direction. Along theGX
direction a pseudogap exists in the 2109–3474 Hz freque
region. On the other hand, the square lattice only show
pseudogap along theGX direction: in the range 1308–168
Hz.

A parameter of interest regarding the sound propaga
in these structures is the sound velocity at large waveleng
where the frequency increases linearly with the wave vec
In other words, at frequencies where the phase velocityc8
5v/k) and group velocity (vg5]v/]k) coincide. Table I
gives the numerical predictions, which shows that the so
propagates inside the SC at velocities lower than in air; th
values depend on the filling fraction, being lower at highef.
The results for the hexagonal samples were reported befo11

and the velocity reduction, which was also demonstrated
perimentally, were explained as a impedance effect that
sults in an effective increase of the air density.29 From Table
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I we conclude that the hexagonal lattice behaves isotro
cally regarding sound propagation while the square latti
does biaxially. In this section it will be shown that the
predictions made for periodic systems are supported by
flectance measurements as well as by numerical calculat
based on the multiple-scattering technique, both perform
in finite sytems.

The pressure maps have been calculated by the mul
scattering approach described in Sec. II. The sums to
ordersl of the Hankel functions in Eq.~8! have been trun-
cated; only seven terms (23< l<3) were needed to get con
verged results (1% error!. To compare with experiments,
has been defined a theoretical r.m.s. pressurePtheo

2 (x,y)
5 1

2 uP(x,y)u2, which is the time-averaged square pressure
each point. The corresponding pressure~in dB! is

L theo~x,y!~dB!5203 log10„uP~x,y!u/a…, ~15!

FIG. 3. ~a! Acoustic bands of an hexagonal lattice~lattice pa-
rametera56.35 cm) of rigid cylinders~radius 2 cm! in air. ~b!
Acoustic bands for a square lattice (a511 cm) of cylinders with
equal radius. The insets show the corresponding Brillouin zones
the special points. The symbols represent the reflectance min
found in the spectra for the samples analyzed: three layers~full
squares!, four layers~full circles!, and five layers~empty circles!.
The diamonds corresponds to minima whose associated mod
above the difraction limit~see text!.

TABLE I. Sound speed~in m s21) inside a lattice of rigid cyl-
inders in air. Its dependence on the filling fractionf along the two
high symmetry direction in the two lattices hexagonal~h! and
square~s! is given. The values are obtained from the slope of
first acoustic band near the zone center of the Brillouin zone.

Hexagonal lattice Square lattice
f h GX GJ fs GX GM

0.051 329 329 0.058 329 331
0.090 320 319 0.104 318 317
0.202 298 298 0.234 293 302
0.360 276 277 0.415 266 277
2-4
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wherea is a parameter, which is adjusted to take into a
count that the actual incident pressure is not unity.

As a typical example, the top panel in Fig. 4 compares
pressure level measured and calculated along thex axis at
y50 for the case of a SC slab~five layers thick! with its
surfaces perpendicular to theGX direction in the hexagona
configuration. It corresponds to the case of an incident w
of 1750 Hz, and the theoretical curve~continuous line! were
obtained by usinga50.0025 in Eq.~15!. The center and
bottom panels in Fig. 4 show the complete pressure m
measured and calculated, respectivelly. The agreement fo
between both maps demonstrates that the multiple scatte
is a good approach to describe the observations.

The pressure maps in Fig. 4 show that a standing wav
formed in front of the sample that can be understood as
to the reflection suffered by the incident wave at the air/
interfaces. This is a general result at any frequency. Be
we describe how the reflectanceR is obtained from the
standing wave.

At a given frequencyv, the standing wave for the case
a sample withH→` can be reduced to the general on
dimensional form

P~x!5Aei (kx2vt)1Be2 i (kx2vt). ~16!

FIG. 4. ~Top panel! root-mean-square~r.m.s.! pressure~in dB!
measured~dots! and calculated~continuous line! along thex axis
(y520.05 cm) in front of the sample made of five rows of cyli
ders put in a hexagonal configuration, the rows being perpendic
to the GX direction of the Brillouin zone.~Middle panel! Surface
plot of the pressureL(x,y) @Eq. ~14!# obtained by the robot~lower
panel!. Surface plot of the pressureL theo calculated by using the
multiple scattering theory. The grey scale goes from black~low
pressure! to white ~high pressure!.
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The standing wave ratio~SWR!, which is defined as the ratio
between the maximum pressure to the minimum press
can be put as a function of the reflection coefficientr
5(B/A)5AR:

SWR5
Pmax

Pmin
5

A1B

A2B
5

11r

12r
. ~17!

From here,R can be cast as a function of SWR:

R5ur u25
SWR21

SWR11
. ~18!

Though our samples are finite in the direction perpendicu
to the impinging wave~the y axis in Fig. 2!, the pressure
pattern along thex axis effectively behaves as an ideal stan
ing wave ~see Fig. 4! and, therefore, the expression forR
above has been applied.

A word of caution has to be given, Eqs.~17!, ~18! used
SWR in decimal units, which can be extracted from the pr
sure maps~in dB! by using SWR510SWR(dB)/20. Thus, from
experiments, SWRexp(dB)5LP max(dB)2LP min(dB)520
3 log10@(11r )/(12r )#, while from the calculated maps
SWRtheo(dB)5203 log10(uPmaxu/uPminu).

Figures 5 and 6 plot the reflectanceR in SC slabs based

FIG. 5. Frequency dependence of the reflectanceR measured
~symbols! for samples based on a hexagonal array~lattice parameter
a56.35 cm) of rigid cylinders~radius 2 cm! in air. The continous
lines represent the predictions obtained from the self-consis
wave theory introduced in Sec. II. The vertical bars represents
acoustical modes. The bar position gives the real part of the mo
frequency and its lifetimet ~in reduced units! is represented by the
bar’s height. The shadowed regions represent the band gap in
band structure of the corresponding infinite periodic systems~see
Fig. 3!.
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on hexagonal and square symmetry, respectively. Figu
also presents the reflectance dependency of the slab t
ness, while Fig. 6 shows the behavior along the two h
symmetry directions in the square lattice. Both figures sh
that experimental observations~symbols! are fairly described
by the multiple-scattering theory~continuous lines!, where a
plane wave with ak-wave vector perpendicular to the air/S
interface is employed as the incident sound. Experiment
theory demonstrate thatR oscillates similar to the reflectiv
ity of a Fabry-Perot cavity for light waves. The experimen
spectra also show additional features~peaks and shoulders!
in between the zero reflectance frequencies. Those fea
clearly appear in the hexagonal samples~see the low fre-
quency regions in Fig. 5! and their position and shape a
maintained in the three samples anlyzed. Their observa
in the spectra from the square based samples~see Fig. 6! is
more dificult due to their low reflectance. The origin of the
features can be atributed to internal modes~of symmetry
different to the ones responsible of the zero reflectance
tures! that are excited by the fact that the actual impingi
wave has not a plane wave front. They are of no interes
the present work and will be analyzed elsewhere.

The vertical lines in Figs. 5 and 6 indicate the location
the acoustical modes~resonances! responsible of the zero
reflectance features in the spectra. They are computed a
roots of det(M)50 @see Eq.~9!# and their symmetry match
the ones of the modes responsible for the similar phen

FIG. 6. Frequency dependence of the reflectanceR measured
~symbols! in samples based on a square array~lattice parametera
511 cm) of rigid cylinders~radius 2 cm! in air. Results for samples
of dimension 1235 cylinders oriented along the two high symm
try directions in the lattice are shown. The continous lines repre
the result obtained by the self-consistent wave theory introduce
Sec. II. The vertical bars represents the acoustical modes. The
position gives the real part of the mode’s frequency and its lifeti
t ~in reduced units! is represented by the bar’s height. The shad
region represent the band gap in the band structure of the c
sponding periodic system~see Fig. 3!.
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enon in homogeneous slabs. As an example, Fig. 7 sh
several modes associated to the square-based slab. The
sults about resonances will be discussed below in a sepa
subsection.

1. Homogenization

Now, it seems worthwhile to find an equivalence betwe
the SC slab and a slab of some effective thicknessL contain-
ing a homogenous fluid in which the sound travels with
velocity ceff . The fact thatR50 at frequenciesnn (n inte-
ger! indicates that resonances exist inside the SC slab wh
wavelengthl is such that the slab thicknessL is an integer
number of half wavelengthsL5nl/2; in other words,nn
5n ceff /(2L). With this simplified assumption the oscilla
ing period is

Dn5nn112nn5ceff /~2L !. ~19!

Now, we assume that the front and rear surfaces of the c
tal are perpendicular to the propagation direction and that
distance between each surface and the center of the first
inder is half a layer separation. Take, for example, the@1,0#
orientation of the square lattice slab, which corresponds
the sound transmission in theG→X direction; the crystal
surfaces are put atx52a/2, andx5(M21)a1a/2, where
it has been considered that the first and last row of cylind
are located atx50 andx5(M21)a, respectively (M is the
number of layers!. Such surface condition in which the fo
lowing calculations are based is how the surface is norm
defined in a solid.30 The slabs’ thicknesses are determin
according to this surface definition. Thus, for the previou
described slabL5Ma.

Therefore, by analyzing the period of the oscillations
R, it is possible to obtain a first approach to the sound
locity inside an homogenized slab. However, the sim
model under Eq.~19! does not make it possible to get th
reflectance at the air/SC interface, which is the other par
eter needed to characterize the SC. To accomplish this
we fit R in the range of frequencies where the oscillatio
are observed with its analytical expression for a hom
enized layer of thicknessL30

R5
4R 0sin2~vL/ceff!

11R 0
222R0cos~2vL/ceff!

, ~20!

where R05(ZSC2Zair)
2/(ZSC1Zair)

2 is the reflectance a
normal incidence at the single interface. The fits to results
Figs. 5 and 6 have been performed in a frequency reg
below the theoretically predicted bandgap onset. Thus,
the samples based on the hexagonal~square! symmetry the
fitting is performed in the region 560–1910 Hz~510–1180
Hz!. The fitted parameters are given in Table II~hexagonal
samples! and Table III ~square samples!. Let us stress tha
because of Eq.~20! it is only possible to determine the rati
L/ceff , and therefore, the value assigned toceff has been
obtained from a valueL previously fixed by the surface defi
nition explained above. In spite of this uncertainity, the v
uesceff compare firly well with the ones predicted for infinit
systems~see Table I!, which indicates that a few monolayer
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FIG. 7. Pressure map of the resonant modes responsible of the first four reflectance minima observed in the spectrum of Fig.~a!. The
modes have their maxima and minima along theGX direction. The line plots above give a section taken aty520.05 cm. Their calculated
frequencies are~a! v15318.81324.5i , ~b! v25613.81215.05i , ~c! v35909.31176.0i , and~d!v451186.2197.9i .
a

c

,

f
tu

-

be
tive
use

t

tal
g by
of
are enough to get bulk properties. With regards toR 0, its
values are very low for all the systems analyzed. The f
that it is larger in the hexagonal-based samples (R 0
50.11–0.12) than in the square-based samples (R 0
50.017–0.034) can be attributed to the larger filling fra
tions of the hexagonal structures.

In order to compare with the equivalent optical systems
is convenient to know the ratioZSC/Zair . FromR0 this ratio
is 1.25–1.27 for the hexagonal systems and 1.07–1.09
the square ones, which have the same order of magni
than the refraction index of optical materials typically em
03542
ct

-

it

or
de

ployed in fabricating optical devices. Therefore, it can
stated that SC’s can be used to fabricate acoustical refrac
devices in a manner similar to the optical devices beca
they have the two following properties:~i! they are almost
transparent to sound and~ii ! they propagate the sound a
lower velocity than in air.

2. Resonances of a finite SC slab

The photonic scattering by a finite size photonic crys
has been treated analogously to the electronic scatterin
an atom in Ref. 26. In a similar manner, a finite cluster
2-7
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TABLE II. Parameters of a homogenized layer with thicknesL, whose reflectanceR @Eq. ~20!# fits the
one of a sonic crystal slab made of a few layers of rigid cylinders~of radius 2 cm! put in a hexagonal
configuration ~lattice constant 6.35 cm! array of rigid cylinders. Slabs with different thickness, but
oriented along theGX direction in the lattice are considered~see Fig. 9!. The values under the colum
experiment~theory! gives the fitted parameters to the experimental~theoretical! reflectance spectra.

Slab thickness Three layers Four layers Five layers
L ~m! 0.165 0.22 0.275

theory experiment theory experiment theory experimen

R0 0.11 0.11 0.11 0.11 0.12 0.12
ceff(m s21) 274 276 281 279 278 281
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scatterers in air also contains resonances~acoustical modes!
that are loosely confined in the cluster because of the
impedanceZSC being similar to that that of the surroundin
media ~the air!. Therefore, an acoustical mode has a la
field within the SC, which also does not vanish even outs
the SC because the surroundings media do not forbids
presence of sound at the same frequency. Any of th
modes may be regarded as an acoustical quasibound
and its energy spectra will have a finite width. Therefore,
scattering of a sound wave by this class of SC can cre
spectral features that will correspond to the acoustical mo
whose eigenfrequency and lifetime can be accurately de
mined by the procedure described in Sec. II.

Figure 7 shows the patternuP(x,y)u of four acoustical
modes associated to a cluster of 5312 cylinders ~black
circles! put in a square configuration. They correspond
resonances producing zero reflectance features in the sp
shown in Fig. 4~a!. The lineplots above each surface pl
represent the pressure along thex axis at a fixedy coordinate
(y520.055 m). The plots clearly show that these re
nances have wave fronts parallel to the cluster surfaces,
their wavelenghts are such that the slab thickness is an
ger numbern of half wavelengths~a! n51, ~b! n52, ~c!
n53, and~d! n54. Therefore, any of these modes will b
excited by an external plane wave having the same freque
and impinging the cluster with ak wave vector also perpen
dicular to the surfaces. This resonance excitation will p
duce a large transmission and it explains why the reflecta
becomes zero. The frequencies~the real part! of all the reso-
nances having the same symmetry along theGX direction

TABLE III. Parameters of the homogenized slab~thickness L!
whose reflectance fits the one of a sonic crystal slab made with
rows of rigid cylinders~radius 2 cm! put in a square confuration
~lattice constant 11 cm!. Two different slabs were studied, each o
oriented along one of the two high symmetry directions in the
tice. The values under the column experiment~theory! gives the
fitted parameters to the experimental~theoretical! reflectance spec
tra.

GX GM
L ~m! 0.55 0.47

Theory Experiment Theory Experiment

R0 0.034 0.034 0.017 0.019
ceff(m s21) 327 332 327 330
03542
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~including the ordersn55, 6, 7, and 8! are defined by the
position of the vertical lines in Fig. 6~a!. On the other hand
the height of the vertical lines indicates the resonance l
time tn , which is related the imaginary part of its frequenc
Heretn is normalized in the unit ofa/c ~see the scale to the
right!. The agreement between resonance frequencies~the
real part! and the existence of zero reflectance is almost ex
and confirm the analogy with the behavior in an homog
neous slab.

A complete analysis of the acoustical modes respons
of the minima in the reflectance spectra have also been
formed for the rest of samples under study. Their frequenc
are represented by the vertical lines in Figs. 5 and 6 and t
match fairly well with the reflectance minima. In regard wi
their symmetries, they are similar to the ones existing
homogeneous slabs, as it was shown in the examples of F
7~a!–7~d!. Nevertheless, the modes responsible for the fi
and the sixth minima for sound propagation along theGM
direction in the square-based sample@see Fig. 6~b!# have a
completely different symmetries. Their pressure patterns
given in Fig. 8. The left panel plots the mode responsible
the fifth minimum, which consists of a periodic distributio
of 2D s type interacting orbitals almost confined in the spa
between cylinders. The right panel is the mode associate
the sixth minimum, which consists of 2Ddx22y2-type inter-
acting orbitals located in the same space. These symme

ve

-

FIG. 8. Pressure map of the two acoustical modes respons
for the fifth ~left panel! and sixth~right panel! reflectance minima of
spectra shown in Fig. 6~b!. Only the pressure in the lower half o
the cluster is represented.
2-8
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ACOUSTIC INTERFEROMETERS BASED ON TWO- . . . PHYSICAL REVIEW B 67, 035422 ~2003!
are originated by the fact that the modes’ frequencies
above the diffraction limit~i.e., v>0.532pc/as , whereas

is the surface parallel period,as5A2a).
The correspondence found between resonance modes

reflectance minima can be used to obtain the acoustic b
structure below the diffraction limit in a manner similar
the one developed in photonic crystal slabs.32 In other words,
it is expected that the large transmission is associate
Bloch states of the crystal. Equation~20! shows that the
minima of R(v) are at the crystal momentumkn5(n/M )
3(G1/2), G1 is the first reciprocal lattice vector along th
propagation direction,M is the number of layers andn being
an integer (n51,2, . . . ).Following this procedure, the ban
dispersion determined from the reflectance minima obtai
with the hexagonal-based samples@G154p/(aA3)# having
M53, 4, and 5 layers~see Fig. 5! are represented by sym
bols in Fig. 3.

In regard to the spectra of theGX-square-based samp
@Fig. 6~a!#, whereG152p/a, a similar expression for the
crystal momenta can be employed for frequencies in the
band. Above the band gap, it is convenient to expresk
within the reduced-zone scheme.33 Thus, the frequencies a
which the reflectance minima are located can be associ
with km5(G1/2)(12m/M ), where 1<m<M , m51 should
be associated with the first peak above the pseudogapm
52 with the second peak, etc.; the white circles in Fig
represent the results.

For the GM -square-based sample@Fig. 3~b!# the proce-
dure described is not valid for the fifth and sixth minim
because they are above the diffraction limit. Neverthele
their high symmetry indicate that they must be associate
states at theG point of the BZ. Therefore, we analyzed th
pressure pattern of every state of the periodic structure lo
ing for the ones with very same symmetries. Figures 9~a! and
9~b! show the pressure pattern of those states, which belo
respectively, to the third and fourth bands in the dispers
relation. The diamonds in Fig. 3 represents the reflecta
minima (n552320 Hz and n652726 Hz) of these two
modes. The discrepancy of about 100 Hz between reflecta
minima and mode frequencies (n I52123 Hz; n II
52614 Hz) in the acoustic band structure~see Fig. 3! can be
attributed to finite size effects. In fact, a better agreemen
obtained if the comparison is made with the resonances
culated by the scattering method for the exact clustern5
52219 Hz andn652770 Hz).

To conclude, the procedure described above supports
reflectance measurements as a useful tool able to ge
band structure of SC by following a procedure applied
photonic crystal.33 To the best of our knowledge, this is th
first work where this procedure has been employed in S

It is also interesting to notice how the lifetime of th
resonances increase when their frequencies are closer t
acoustic band edges. This behavior is a consequence o
underlying band structure: when the wavevector associ
to the resonance is closer to the acoustic band edges
group velocity is lower and, therefore, has a larger lifetim
A similar behavior was also reported for photonic modes
2D photonic clusters.26
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B. Disordered structures

The results presented above support the theoretical m
employed in the description of the acoustic interferomete
In particular, the agreement with the experimental spec
indicates that a sound wave with a plane wave front is a g
approach to the actual sound waves generated in the ex
ments. These facts allow us to go a step further and, th
fore, this section is devoted to present the predictions
tained with our self-consistent wave theory regarding
robustness of the interference phenomenon against diso
in the lattice.

Here, only one class of disorder will be considered, wh
we named ‘‘weak disorder’’ because the periodicity of t
lattice ~hexagonal or square! is maintained but the cylinder’s
position in each unit cell is chosen at random. Thus, it will
assumed that the cylinders’ volume always is enclosed in
volume of the unit cell. Thus, for example, the cylinde
position inside a cell in the square lattice configuration is

FIG. 9. ~a! Pressure patern of the third state at theG point of the
Brillouin zone in a square lattice of rigid cylinders in air~I in Fig.
3!. ~b! Pressure pattern of the fourth state~II in Fig. 3!. The dots
represents the positions of the cylinders in the lattice.
2-9
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SANCHIS, HÅKANSSON, CERVERA, AND SA´ NCHEZ-DEHESA PHYSICAL REVIEW B67, 035422 ~2003!
x5«3~a/22R!,

y5«83~a/22R!, ~21!

where« and«8 are random numbers that take values in
segment@-1,1#; the value«5«850 gives the position in the
ordered lattice. A similar condition is used to determine
positions inside the cells of the hexagonal lattice.

In order to compare with ordered structures, the coe
cient r assigned to a disordered lattice is an average of
coefficients calculated in five different configurations. Th
Fig. 10 shows the frequency dependence ofr obtained for a
cluster made with five layers of cylinders~each layer has 12
cylinders! with hexagonal symmetry, the layers are align
perpendicularly to theGX direction. The dependence wit
the filling fraction f h is also shown. The continuous line
give the results obtained for the ordered cluster while
dotted lines represent the ones obtained when the posi
of the cylinders are random inside each unit cell in the
tice. Notice that conservation of the Bravais lattice does
guarantee the conservation of oscillations inr at frequencies
outside the bandgap because the Bloch theorem canno
applied in the disordered structures; there is not a mod
the SC with a definedkW vector to allow the sound propaga
tion inside the cluster. Therefore, the agreement betw
theory and experiment is not possible at any frequency
cause of the nonexistence of an underlying dispersion r

FIG. 10. Reflection coefficientsr calculated with the multiple
scattering algorithm for three different sonic crystal slabs (1235
cylinders! with hexagonal symmetry (a56.35 in Fig. 4!. All the
crystals are aligned along theGX direction but the cylinder’s radius
is different in each case~the filling fractions f h are given!. The
continouos lines represent results for the perfectly ordered lat
The dotted lines give the average of the results obtained from
‘‘weak disordered’’ distributions of cylinders~see text!.
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tion. Instead, the agreement is only possible at freque
regions where the standard homogenization procedure w
well. Thus, notice that atf h50.022, the agreement is foun
for impinging wavelenghths above a cutoff wavelengthlc
larger than the slab thickness (L527.5 cm);lc530 cm. For
f h50.09 the cutoff islc523 cm, which also correspond t
the total accessible length of the cylinders along the so
incident direction. Finally, for a large filling fractionf h
50.36 the cylinders positions have a volume accessible
is only a 8% of the cell’s volume; the cylinders positions
the disordered cluster are only perturbed with respect to
ideal positions and, therefore, the agreement with the res
in the ordered structure covers a large frequency region
conclusion, the hexagonal clusters with ‘‘weak disorde
have a reflectance coefficientsr that mimic fairly well the
behavior of perfectly ordered clusters, being the agreem
worse for decreasing filling fractions.

Figure 11 showsr corresponding to SC clusters made
five rows of cylinders~each row having 12 cylinders! based
on an square distribution of cylinders, the rows being p
pendicular to theGX direction. Results for three differen
filling fractions f s are shown:~a! 0.026, ~b! 0.104, and~c!
0.415. Their analysis gives conclusions similar than that d
cussed above for the hexagonal cluster.

V. SUMMARY

In conclusion, it has been shown that SC slabs made
2D distributions of rigid cylinders in air behaves for th

e.
e

FIG. 11. Reflection coefficient of a sample (1235 cylinders!
with square symmetry (a511 cm) oriented along theGX direction.
Three different filling fractionsf s are studied:~a! f s50.022, ~b!
f s50.103, and~c! f s50.230. The continouos lines represents
sults for the perfectly ordered lattice. The dotted lines give
average of the results obtained with five ‘‘weak disordered’’ dis
butions of cylinders~see text!. The shadowed regions represent t
bandgaps in the band structure of the corresponding periodic
tems.
2-10



e
ne
e

th
c
ite
el
pl
l o
du
p

e
re
an

an
im
re

zed
ect
m-
the

io
.
ica
r
We
tro

T.

le

-

.

a

Re

B
tte

n

i-

hys.

s

ACOUSTIC INTERFEROMETERS BASED ON TWO- . . . PHYSICAL REVIEW B 67, 035422 ~2003!
sound waves like Fabry-Perot cavities does for light wav
This work has presented a comprehensive study of this
class of acoustic interferometers recently introduced in R
11. Their behavior as a function of the thickness and
lattice symmetry has been studied by a experimental te
nique which allows one to obtain the reflectance of fin
structures. A theoretical description based on a s
consistent wave theory that contains all orders of multi
scattering has been proved to reproduce the experimenta
servations. On the other hand, a homogenization proce
has lead us to conclude that hexagonal lattice is isotro
with regards to sound propagation while the square lattic
biaxial. This phenomenon, which is similar to the one p
dicted in 2D photonic crystals based on hexagonal
square distributions of dielectric cylinders,34 supports the
paralelism between PC’s and SC’s. Also, the acoustic b
structure has been obtained from the reflectance min
found in the spectra of finite systems. Finally, disorde

*Author to whom the correspondence should be addresed. E
tronic mail: jose.sanchezdehesa@uam.es
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