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Phase-field approach to heterogeneous nucleation
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We consider the problem of heterogeneous nucleation and growth. The system is described by a phase-field
model in which the temperature is included through thermal noise. We show that this phase-field approach is
suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypoth-
eses. Thus we can investigate the influence of grain boundaries, localized impurities or any general kind of
imperfections in a systematic way. We also put forward the applicability of our model to study other physical
situations such as island formation, amorphous crystallization, or recrystallization.
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I. INTRODUCTION

Processes driven by nucleation and growth have attra
much attention during past decades, from a fundame
point of view1 and for tailoring some technological applic
tions. Some of them are: the recrystallization of deform
metals,2 controlling the nucleation and growth of islands o
terraces in order to get large scale arrays of nanostructu3

or the manufacturing of thin-film transistors which are t
basic devices for some applications as solar cells,4 random
access static memories,5 or active matrix-addressed flat-pan
displays.6

In all the above-mentioned processes, a metastable p
decays into a stable one via a fluctuation which produce
critical cluster of atoms~for instance, a critical island in the
case of terrace growth, or a critical atom cluster in the c
of crystallization!. This transition is called nucleation. At
certain fixed temperature, clusters with sizes greater tha
critical one become stable nuclei; otherwise they shrink
eventually vanish. Such a critical size arises from the co
petition between the surface tension and the chemical po
tial difference between phases, yielding an energy bar
that has to be overcome to build up a critical nucleus. For
examples presented above, the system can be consid
under certain conditions, two dimensional so it is straightf
ward to write the free energy of circular grain of radiusr:

DF~r !52prs2pr 2Dm/V, ~1!

where,s, Dm, andV are the surface tension, the chemic
potential difference between phases, and the mean vol
occupied by an atom, respectively.

Notwithstanding, in some practical situations this tran
formation is not perfectly homogeneous due to, for instan
the presence of physical boundaries, such as terrace s
the interplay between different kinds of particles, or the a
pearance of impurities,7 or even to some preexisting orde
embedded in the initial phase formed during
manufacturing.8 The lack of uniformity not only catalyze
the transformation but affects to the final size distribution
grains.9,10

Much work has been devoted to the study of homo
neous nucleation in different contexts,1,11–13 and to the so-
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called site saturation in which nucleation takes place jus
the beginning of the transformation,14 but only a few studies
were devoted to the intermediate situations in which nuc
ation is heterogeneous, both in space and in time. The sp
extent of heterogeneity can be measured using the fractio
transformed material~or more generically, the volume frac
tion of the newly transformed phase! onto the stable phas
which often obeys the Kolmogorov-Johnson-Mehl-Avra
~KJMA! equation:15

X~ t !512exp$2@~ t2t i !/tc#
m%, ~2!

wheret i is the incubation time,tc is the characteristic trans
formation time, andm is an exponent which characterizes t
degree of heterogeneity of the system and
dimensionality.9,10 For instance, for a two-dimensional sy
tem in the two limiting cases, i.e., homogeneous nuclea
and site saturation,m takes the values 3 and 2, respective

There have been some approaches to the problem of
erogeneous nucleation in the past. For instance, Kar
et al.16 generalized the homogeneous case by adding ran
contributions to the surface tension and the chemical po
tial, which affects the nucleation rate. A similarstatic ap-
proach was followed by Liu,17 who calculated the variation
suffered by the surface tension and the chemical poten
due to the presence of a circular impurity. Other authors s
as Enomoto18 or Weinberg19 considered a phenomenologic
time-dependent nucleation rate to analyze heterogene
nucleation. More recently, Castro and co-workers9,10 have
introduced a lattice model to determine both time-depend
and spatial effects of heterogeneities.

The main aim of this paper is analyze, both analytica
and numerically, the origin and effect of impurities or defec
on grain nucleation and subsequent growth. The rest of
paper is organized as follows. In Sec. II we introduce
phase-field model obtained from a functional free energy
report some results for homogeneous nucleation. In Sec
we include impurities through the boundary conditions of t
main equation and calculate the effect of those impurities
nucleation rate and KJMA exponent. In Sec. IV, we consid
a more general case in which the disorder can be due
mechanisms which are different with the ones presente
Sec. III. These mechanisms are introduced as quenc
©2003 The American Physical Society12-1
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MARIO CASTRO PHYSICAL REVIEW B67, 035412 ~2003!
noise. Finally, we end the paper by summarizing the m
results in Sec. V, focusing on the applicability of the equ
tions to different physical processes, and discussing fur
generalizations of the model.

II. EVOLUTION EQUATION

Phase-field models have been widely studied in the
few years as an efficient computational tool to simulate so
moving boundary problems which, in the so-called sharp
terface limit ~or sometimes thin interface limit, see below!,
are physically equivalent.14,20–26 Among them, Jou and
Lusk14 studied homogeneous nucleation and site satura
using a one-field phase-field model. The main objection
their approach is the fact that the critical clusters are crea
ad hocso, on the one hand, the model explains the KJM
equation just by construction and, on the other hand, it c
not explain the existence of an incubation time observed
the experiments. A similar approach was used by Royet al.12

to study nucleation in a phase-field model with nonlocal
teractions. Recently, more complex phase-field models h
been proposed for similar systems: The so called mu
phase-field models,27,28 in which every cluster appearing em
bedded in the metastable phase is described by its own
and, on the other hand, those models in which the phase
is coupled with another field representing the orientation
crystalline planes.29,30 The main problem concerning th
multiphase-field models is that the free energy depends
plicitly on the grain orientation~or phase!. This is solved by
the second ones but, besides this, what depends on the
orientation is the grain-boundary velocity. Although this se
ond kind of approach seems to be very promising, in b
cases the symmetry under rotations of the grain crystal
planes is broken.

In this paper we are interested only in the overall dyna
ics of the nucleation process, thus we simply generalize
model presented in Ref. 14, supplementing it with therm
noise to make explicit the temperature dependence of
system. To make clearer this generalization, we advance
the noise term is the driving force for nucleation, so it is n
needed to create artificially critical clusters every integrat
time step as in Ref. 14.

Let us introduce the main ingredients of the model. W
define an order parameterf, which takes the value21 in
the metastable phase and11 in the stable phase. The gra
boundary~which separates both phases! is located atf50.31

We also define a free-energy functional which takes into
count the grain-boundary energy and the chemical poten
difference between phases. Generically, we can define:

F@f~r ,t !#5E dxdzS W2

2
u¹fu21 f ~f!2lg~f! D , ~3!

where f (f) and g(f) are generic functions of the orde
parameter:f (f) is an even function off with local minima
at 61 andg(f) breaks the symmetry between phases.
we will see below,W is a typical length scale related to th
surface tension, andl is a dimensionless parameter propo
tional to the chemical potential difference between phas
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We will assume that the system relaxes towards equilibri
according to the following evolution equations:32

t] tf52
dF
df

1u⇒t] tf5W2¹2f2 f f~f!1lgf1u,

~4!

wheret is the typical time scale at which the atoms from
phase incorporate to the other;f f andgf denote the partial
derivatives off andg with respect tof. Finally, u(r ,t) is a
Gaussian white noise which stands for the thermal fluct
tions of the system, with zero mean and correlations given
the fluctuation-dissipation theorem:32

^u~r ,t !u~r 8,t8!&52tkBTd~r2r 8!d~ t2t8!, ~5!

T being the temperature at which the transformation ta
place.

To be more specific, we choose

f ~f!52f2/21f4/4. ~6!

The main advantage of this choice is that Eq.~4! admits a
simple stationary solution given by

f0~z!52tanhS z

A2W
D , ~7!

which represents a front of characteristic widthW placed at
z50. In the same way, we choose33

g~f!5f2
f3

3
. ~8!

The main reason to use Eq.~8! instead of the traditional one
g(f)5f, is that, in the first case,F has local minima at61
independently of the value ofl, otherwise, those minima
would bel dependent.

Using Eq.~7! we can make some considerations about
stability of a given fluctuation. To compare with the classic
nucleation theory,34 let us consider the free-energy differen
between a system which is initially at the metastable pha
and a circular grain of radiusR given approximately by
f0(r 2R). Thus it can be straightforwardly shown that,
the thin interface limit,22

DF[F@f5f0#2F@f521#.2pRs l2pR2Dm/V,
~9!

where s l52A2W/3 is the surface tension, andDm/V
5ldg, with dg5g(11)2g(21). This equation shows the
competition between the gain arising from the reduction
the grain perimeter, and that related to the increasing o
size. As we mentioned above, the critical radius arises fr
this competition. Thus if we take into account that e
@2DF(R)/kBT# can be interpreted as the barrier that has
be overcome to create a nucleus of radiusR, then the critical
radius is the one which minimizes that barrier, i.e., the o
which maximizesDF. Hence

R* 5
2A2W

3ldg
, ~10!
2-2
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of the system which are structurally different, namely, at do-
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and its corresponding critical free energy is given by

DF* 5
8pW2

9ldg
. ~11!

Once we have established the connection between
physical system and the model, let us numerically check
capability to reproduce the KJMA equation~2!. In Fig. 1 we
show the results from simulation using the Euler integrat
scheme,35 and the corresponding KJMA fit to the fraction o
transformed material,X(t), taking m53 ~measured as the
fraction of sites wheref.0). We have reproduced this re
sult for a wide range of parameters. The first important re
concluded from these simulations is related to the nonz
value of the incubation timet i . This time is almost always
present in the experiments, and is related to the free-en
difference between the wellf521 and the maximum of the
free energy separating this well with the one atf511.
Similar results were obtained by Elderet al.36 in the context
of eutectic growth. Despite the good agreement betw
simulations and theory, it is important to stress that the d
vation of KJMA equation makes uses of some assumptio
infinite system size, uniform nucleation, spherical particl
and constant growth rate. Some care must be taken in
respect. Despite Eq.~4! provides circular grains, those grain
do not grow at constant velocity. Actually, the grain radius
related to time through the following equation:

FIG. 1. Transformed fractionX(t) vs time for a 5003500 sys-
tem. (s) numerical integration of Eq.~4! with W51, t50.15, l
50.6, Dx51, Dt50.01, andkBT50.1, averaged over 100 runs
Solid line, KJMA fit with t i50.7560.01 andtc51.6860.01.
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V FR2R01R* lnS R2R*

R02R*
D G , ~12!

whereR0 is the initial grain radius andV is the grain growth
velocity which, in the thin interface limit, is given by

V5
3Wldg

A8t
. ~13!

Thus the velocity is constant just after a short time of ord
R* /V. Hence there are slight deviations of the numeri
data from the KJMA equation up to times of orderR* /V.
Besides this, the infinite size condition has not to be fulfill
necessarily. Actually, the KJMA equation is still valid whe
the number of grains contributing to growth is large, i.
when the system sizeL is much larger than the characterist
length scale related to nucleation and growth,l
5(V/N)1/3, N being the nucleation rate.13 Finally, the
KJMA equation does not take into account interfacial effe
that govern the growth just before the grains meet each ot
so there are also some differences between the nume
data and the KJMA equation predictions, in this case, at
later stages of the transformation. Fortunately, the mentio
deviations from the KJMA equation at short and long tim
are quite small. Notwithstanding, it is quite convenient
perform the fitting ofX(t) between the 1% and the 99% t
improve it ~see Ref. 13 for further details about the validi
of KJMA equation!.

To point out the crucial role played by thermal noise
Eq. ~4!, we show in Fig. 2 the spontaneous and continuo
nucleation and growth of grains, which are almost circu
despite the underlying integration lattice is square. In ot
words, the model captures all the essential ingredients
first-order transition, not only in terms of the free-ener
difference between phases, but also in terms of the dyna
cal path followed from the metastable phase to the sta
one.

III. NUCLEATION AT DEFECTS

In the previous section we have demonstrated the vali
of our model to describe homogeneous nucleation. This s
tion deals with nucleation in the neighborhood of some pa
,
nd

al-
ce
FIG. 2. Numerical integration of Eq.~4! with
W51, t50.15, l50.6, Dx51, Dt50.01, and
kBT50.1. From left to right, from top to bottom
corresponding times 1.0, 1.5, 2.0, 2.5, 3.0, a
3.5. The darker sites stand forf.21 and the
brighter ones forf.11. It can be clearly seen
how the initial metastable phase evolves into
most circular grains which nucleate and coales
continuously.
2-3
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FIG. 3. Numerical integration of Eq.~4! using
boundary condition~14!, with W51, t50.1,
Dx51, Dt50.005, and kBT50.15. The top
three figures correspond tol50.35 at times 1, 5,
and 10. The bottom three figures correspond
l50.6 at times 0.50, 0.75, and 1.00.
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main walls or at the surrounding of foreign particles. Th
we will consider two kinds of defects: Walls and circul
defects. Our main assumption here is that the particles in
metastable phase do not interact with the defects, whic
included in the model through the boundary condition

]f

]n
5¹f•nub50, ~14!

where the subscriptb stand for boundary; andn is the normal
coordinate to the defect boundary.

In order to clarify the relevance of this boundary con
tion on nucleation we have integrated Eq.~4! with the pre-
scribed condition~14!. Figure 3 shows how nucleation i
enhanced at the walls. Actually, this is the most relev
mechanism of nucleation when the chemical potential diff
ence between phases,Dm}l, is small. The situation change
dramatically if we increasel ~or if we raise the temperature!.
This can be better understood in the context of island form
tion in which l can be understood as the flux of particl
arriving at the surface. In such case, when the flux of p
ticles is large, islands nucleate everywhere in the sample
to the large probability of dimer formation,3 as can be seen in
Fig. 3.

As we have mentioned, the other interesting geometr
circular one. Thus Fig. 4 shows how nucleation is enhan
at the boundary of a circular impurity. Moreover, we can u
this result to relate the KJMA exponent,m, and the effect of
impurities using a finite concentrationc of circular impurities
of small radius. The results are plotted in Fig. 5, where ti
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has been rescaled to reveal the differences between sevem
values, for different temperatures. At this point, we want
stress that this dependence ofm on temperature has bee
obtained qualitatively in some Pd12xSix crystallization
experiments.38 Furthermore, if we change the concentrati
of impurities, we can also modify the value ofm ~see inset in
Fig. 5!. This result agrees with that in Ref. 10. Thus t
effect of temperature in KJMA equation is not only prese
in the characteristic timest i and tc , but even in the expo-
nentm in a nontrivial way.

IV. GENERALIZED HETEROGENEOUS NUCLEATION

The results reported in the last section demonstrates
our phase-field model is a powerful tool to further advance
the knowledge and modeling of nucleation and growth p
nomena, in the homogeneous case and in the situation w
impurities catalyze the transformation in a subtle way. N
withstanding, the heterogeneities of a sample are not alw
due to isolated impurities. This is the main reason for
generalization that we introduce in this section.

We will assume that nucleation is heterogeneous, not
phenomenological way as in other proposed models,39 but
sticking to the classic ideas due to Cahn.40 Thus the system
contains regions with some extra energy~for instance due to
some order produced during deposition of the amorph
material!, or at which nucleation is more probable. Let
show how we can cast this model on a mathematical foot
ly
FIG. 4. Numerical integration of Eq.~4! using
boundary condition~14! over the circle perimeter,
with W51, t50.1, l50.5, Dx51, Dt
50.005, andkBT50.1. From left to right and
from top to bottom, corresponding to equal
spaced times from 1 to 6.
2-4
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PHASE-FIELD APPROACH TO HETEROGENEOUS NUCLEATION PHYSICAL REVIEW B67, 035412 ~2003!
A. Quenched white noise

An intuitive way to introduce the latter idea in our mod
is sustained on the assumption that the chemical pote
depends locally on position, i.e.,

l→l1r~r !, ~15!

r(r ) being a Gaussian random variable with zero mean
correlations given by

^r~r !r~r 8!&5Ld~r2r 8!, ~16!

whereL measures the degree of heterogeneity of the sam
The main part of this generalization is that it does not ma
any specific assumption about the physical system un

FIG. 5. Fraction of transformed phaseX(t) vs scaled time for a
5003500 system, with W51, t50.25, l50.8, Dx51, Dt
50.005, averaged over 100 ensemble averages using a conc
tion of impurities c50.005, andkBT50.01 ~dashed line!, kBT
50.027~dotted line!, andkBT50.05 ~solid line!. Inset: KJMA ex-
ponentm for different values of the concentration of impuritiesc,
with W51, t50.25, l50.8, Dx51, Dt50.005, andkBT50.01.
03541
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consideration. Unfortunately, numerical simulations sugg
that it cannot provide a KJMA exponentm different from 3
~homogeneous nucleation!.37 Nevertheless, before explorin
new possibilities, we will show that the quenched wh
noise given by Eq.~16! unveils that disorder enhances nucl
ation ~Fig. 6!.

The fact that white noise is not capable to provide realis
values of m stems with intuition but, actually, it is very
physical. Let us make some calculations to show it clearly
we perform again the thin interface limit of Eq.~4! with l
→l1r(r ), we obtain the stochastic version of Eq.~9!.
Hence

DF52pRs l2pR2Dm/V1x~R!, ~17!

wherex(R) is given by

x~R!5dgE drr~r !Q~r 2R!, ~18!

Q being the Heaviside step function. The new noise te
x(R) has also zero mean and correlations given by

^x~R!x~R8!&5dgLpR2d~R2R8!. ~19!

For brevity, we denoteF5DF, F052pRs l2pR2Dm/V,
and D(R)5dgLpR2. Consequently, for every value ofR
the free energy is a random number with a distribution giv
by ~recall thatr is Gaussian!,

P~F !5
1

A2pD~R!
e2(F2F0)2/2D(R). ~20!

Taking into account that exp@2DF(R)/kBT# can be under-
stood as the barrier that has to be overcome to crea
nucleus of radiusR, the critical radius will be simply the one
which minimizes that barrier. In the simplest case whereL
50, this minimum is the same as the maximum ofDF, but

tra-
us
s

FIG. 6. Comparison between homogeneo
nucleation (L50, top panels! and heterogeneou
nucleation with quenched white noise (L50.3,
bottom panels!, at different times~from left to
right: t520, 50, and 100) with:W51, t51,
dx51, dt50.005,kBT50.1, andl50.4.
2-5
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MARIO CASTRO PHYSICAL REVIEW B67, 035412 ~2003!
the situation changes because nowDF is a random variable
Thus, in the physical system, we can only obtain informat
about its mean value:

^e2F/kBT&5E dFe2F/kBTP~F !5expF D~R!

2~kBT!2
2

F0

kBTG .

~21!

To be more specific, the critical radius is the solution of

d

dRS D~R!

2kBT
2F0D

R5R*
50⇒R* 5

2A2W

3dg~l1L/2kBT!
.

~22!

This is the result we were seeking: The critical radius dim
ishes so that the nucleation rate increases and also dep
on temperature. But, as we anticipated above, the only e
of quenched white noise is changing the time and len
scales of the system, but not the nucleation conditions n
essary to obtainm,3. Moreover, if we re-scale both lengt
and time, then the systems withL50 or L5” 0 cannot be
distinguished. There is another interesting point of t
theory which should be remarked. In some experiments
recrystallization thea priori value ofDF* is actually much
smaller than that measured from the experiments,2 confirm-
ing that there is some kind of disorder which affects sign
cantly this magnitude.

B. Quenched colored noise

At this point, we must collect some of the successful
gredients of the theory and try to find out which must be
new ones in order to provide a general model of hetero
neous nucleation. Then, the main question is: What was
plicit in the approach to heterogeneous nucleation in Sec
which is missing in Sec. IV A? The answer is related to t
new length scale introduced in Sec. III through the conc
tration of impurities~and which is proportional toc21/2).
Therefore we need both ingredients: disorder and a new
dependent length scale. The simplest way to include bot
by means of a quenched colored noise term:

^r~r !r~r 8!&5Le2(r2r8)2/2l c
2
. ~23!

For the sake of completeness we have performed the s
lations below using Ornstein-Uhlenbeck correlations35 in-
stead of Gaussian as in Eq.~23!, but the results did no
change significantly. With this choice we have the same fr
energy distribution of probabilityP(F) as in the white noise
case, and also introduced the required length scale. As
expected, the KJMA exponentm depends on the correlatio
length l c as we show in Fig. 7 as also the nucleation rate
larger than in the homogeneous case. These results ca
straightforwardly understood in terms of the involved ch
acteristic length scales, the nucleation, and growth len
scale, l 5(V/N)1/3, and the quenched noise correlatio
length, l c . Thus, if l c! l then the system hardly see the d
fects, and it is almost homogeneous, som.3. On the con-
trary, if l c@ l , as grains nucleate preferentially at the defec
and they grow so fast that they impinge to each other a
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mean distancel c , so there is not enough time to allow oth
grains to nucleate. Consequently,m.2 because every grain
that nucleates does it mainly at the beginning of the trans
mation. Note that these assumptions are valid whenever
l and l c are much smaller than the system sizeL. Notwith-
standing, some care must be taken when simulating
model using large values ofl c because the nucleation even
are restricted to the surroundings of the defects so there
not many grains to sustain the validity of the KJMA equ
tion.

Therefore the latter result contains relevant physical inf
mation relative to the basic conditions yielding an expon
m,3. For instance, it is consistent with those crystallizati
experiments of Si12xGex by Olivareset al.8 or recrystalliza-
tion of Pd12xSix by Price.38 In the first case that correlatio
length could be related to the concentration of preexist
SiGe crystals created during deposition, and in the sec
case with the former polycrystalline structure which has be
deformed before recrystallization.

V. DISCUSSION AND CONCLUSIONS

In this paper we investigated a phase-field model mod
ing nucleation and growth events, such as crystallizati
island formation, or recrystallization. Starting from a Lang
vin equation we have shown how it is a simple~and compu-
tationally efficient! way to explore homogeneous nucleatio
in terms of the well-known description provided by th
KJMA equation, Eq.~2!. Taking this equation as a startin
point, we have provided several approaches to the prob
of heterogeneous nucleation. The first approach is relate
the existence of defects which are inert for the main grow
material, such as wall domains or impurities. In both ca
we have shown how nucleation is enhanced near those
fects. Moreover, a finite concentration of isolated defects
able to modify the value of the KJMA exponentm, which
takes values lower thanm53, the known value for homoge
neous nucleation. This kind of defects can be suitable
study secondary crystallization, island nucleation in h
eroepitaxial systems~if one of the growing particles presen

FIG. 7. KJMA exponentm for different values of the correlation
length, usingW51, t50.15, l50.5, Dx51, Dt50.05, kBT
50.05, andL50.05. (s) and solid line, results from simulations
The dashed lines are a guide to the eye.
2-6
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PHASE-FIELD APPROACH TO HETEROGENEOUS NUCLEATION PHYSICAL REVIEW B67, 035412 ~2003!
a slow dynamics compared to the others!, or nucleation at
step edges in terrace growth. In particular, wall defects
be used to investigate the influence of a terrace step on is
formation ~note thatl plays the role of the flux of particle
arriving at the terrace!. In fact, the competition betwee
dimer formation and nucleation at step edges has been
ported in Ref. 3, and can be graphically seen in Fig. 3. G
eralizing the model to higher dimensions, this kind of w
defect could simulate the glass substrate on which the am
phous material is grown prior to crystallization. In the co
text of amorphous crystallization, circular defects can also
understood as crystals created at the growing stage, be
crystallization takes place.

We have also presented a generalized model for heter
neous nucleation which deals statistically with imperfectio
or impurities by means of a quenched noise term. The m
result is related to the fact that this quenched noise mus
spatially correlated to provide a general description in ter
of the KJMA exponent. As we mentioned above, the cor
lation length can be related to preexisting crystalline regi
embedded in the amorphous host or some deformed p
crystalline structure, but it may also be used to quantify
effect on island formation of mechanical stresses caused
the growth of multilayer devices.

Due to the general character of the model, it can be ea

*Email address: marioc@upco.es
1J. D. Gunton, J. Stat. Phys.95, 903 ~1999!.
2R. D. Doherty, Prog. Mater. Sci.42, 39 ~1997!.
3C. Castellano and P. Politi, Phys. Rev. Lett.87, 056102~2001!,

and references therein.
4R. Bergmann, G. Oswald, M. Albrecht, and J. H. Werner, So

State Phenom.51-52, 515 ~1996!.
5J. S. Im and R. S. Sposili, MRS Bull.21, 39 ~1996!.
6Y. Uemoto, E. Fujii, A. Nakamura, K. Senda, and H. Takgi, IEE

Trans. Electron DevicesED-39, 2359~1992!.
7Hereafter we will refer to impurity as amesoscopicinert object

for the growing material, to be understood as strange particl
imperfection.

8J. Olivares, A. Rodrı´guez, J. Sangrador, T. Rodrı´guez, C. Balles-
teros, and A. Kling, Thin Solid Films337, 51 ~1999!.

9M. Castro, A. Sa´nchez, F. Domı´nguez-Adame, and T. Rodrı´guez,
Appl. Phys. Lett.75, 2205~1999!.

10M. Castro, A. Sa´nchez, and F. Domı´nguez-Adame, Phys. Rev. B
61, 6579~2000!.

11M. Grant and J. D. Gunton, Phys. Rev. B32, 7299~1985!.
12A. Roy, J. M. Rickman, J. D. Gunton, and K. R. Elder, Phys. R

E 57, 2610~1998!.
13R. A. Ramos, P. A. Rikvold, and M. A. Novotny, Phys. Rev. B59,

9053 ~1999!.
14H.-J. Jou and M. T. Lusk, Phys. Rev. B55, 8114~1997!.
15A. E. Kolmogorov, Bull. Acad. Sci. USSR, Mat. Ser.1, 355

~1937!; W. A. Johnson and R. F. Mehl, Trans. AIME135, 416
~1939!; M. Avrami, J. Chem. Phys.7, 103 ~1939!.

16V. G. Karpov, Phys. Rev. B50, 9124~1994!; V. G. Karpov and D.
W. Oxtoby, ibid. 54, 9734~1996!.

17X. Y. Liu, J. Chem. Phys.112, 9949~2000!.
18Y. Enomoto, Acta Metall. Mater.38, 173 ~1990!.
03541
n
nd

re-
-

l
r-

-
e
re

e-
s
in
be
s
-
s

ly-
e
by

ily

generalized. For instance, a model that takes into accoun
possible time dependence of the disorder should include
fields: the phase-field and another one related to the mo
of impurities. Besides this, sometimes the nucleating gra
present some kind of anisotropy that should be included
the free-energy functional, given by Eq.~3!. Moreover, the
model presented is only suitable for isothermal transform
tions so, to study nonisothermal effects, we should cou
the phase field with an evolution equation for the tempe
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