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Phase-field approach to heterogeneous nucleation
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We consider the problem of heterogeneous nucleation and growth. The system is described by a phase-field
model in which the temperature is included through thermal noise. We show that this phase-field approach is
suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypoth-
eses. Thus we can investigate the influence of grain boundaries, localized impurities or any general kind of
imperfections in a systematic way. We also put forward the applicability of our model to study other physical
situations such as island formation, amorphous crystallization, or recrystallization.
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[. INTRODUCTION called site saturation in which nucleation takes place just at
the beginning of the transformatidfiput only a few studies
Processes driven by nucleation and growth have attractegiere devoted to the intermediate situations in which nucle-
much attention during past decades, from a fundamentadtion is heterogeneous, both in space and in time. The spatial
point of view! and for tailoring some technological applica- extent of heterogeneity can be measured using the fraction of
tions. Some of them are: the recrystallization of deformedransformed materialor more generically, the volume frac-
metals? controlling the nucleation and growth of islands on tion of the newly transformed phasento the stable phase
terraces in order to get large scale arrays of nanostructuresyhich often obeys the Kolmogorov-Johnson-Mehl-Avrami
or the manufacturing of thin-film transistors which are the(KIMA) equation™
basic devices for some applications as solar éeflmdom
access static memoriésr active matrix-addressed flat-panel X(t)y=1—exp{—[(t—7)/7c]™}, 2
displays®
In all the above-mentioned processes, a metastable phagerer, is the incubation timer, is the characteristic trans-
decays into a stable one via a fluctuation which produces grmation time, andnis an exponent which characterizes the
critical cluster of atomsfor instance, a critical island in the degree of heterogeneity of the system and its
case of terrace growth, or a critical atom cluster in the casgimensionality’'° For instance, for a two-dimensional sys-
of crystallization. This transition is called nucleation. At a tem in the two limiting cases, i.e., homogeneous nucleation
certain fixed temperature, clusters with sizes greater than gnd site saturationm takes the values 3 and 2, respectively.
critical one become stable nuclei; otherwise they shrink and There have been some approaches to the problem of het-
eventually vanish. Such a critical size arises from the COoMerogeneous nucleation in the past. For instance, Karpov
petition between the surface tension and the chemical potert 3116 generalized the homogeneous case by adding random
tial difference between phases, yielding an energy barriegontributions to the surface tension and the chemical poten-
that has to be overcome to build up a critical nucleus. For thgial, which affects the nucleation rate. A similatatic ap-
examples presented above, the system can be considergfloach was followed by Lid! who calculated the variation
under certain conditions, two dimensional so it is straightfor-suffered by the surface tension and the chemical potential
ward to write the free energy of circular grain of radius  due to the presence of a circular impurity. Other authors such
as Enomot® or Weinberd® considered a phenomenological
AF(r)=2mro—amr?AulQ, (1) time-dependent nucleation rate to analyze heterogeneous
nucleation. More recently, Castro and co-worRePshave
where,o, Ap, and() are the surface tension, the chemicalintroduced a lattice model to determine both time-dependent
potential difference between phases, and the mean volunmand spatial effects of heterogeneities.
occupied by an atom, respectively. The main aim of this paper is analyze, both analytically
Notwithstanding, in some practical situations this trans-and numerically, the origin and effect of impurities or defects
formation is not perfectly homogeneous due to, for instancepn grain nucleation and subsequent growth. The rest of the
the presence of physical boundaries, such as terrace stepsper is organized as follows. In Sec. Il we introduce a
the interplay between different kinds of particles, or the ap-phase-field model obtained from a functional free energy and
pearance of impuritie5,or even to some preexisting order report some results for homogeneous nucleation. In Sec. III,
embedded in the initial phase formed during itswe include impurities through the boundary conditions of the
manufacturing. The lack of uniformity not only catalyzes main equation and calculate the effect of those impurities in
the transformation but affects to the final size distribution ofnucleation rate and KIJMA exponent. In Sec. IV, we consider

grains1° a more general case in which the disorder can be due to
Much work has been devoted to the study of homogemechanisms which are different with the ones presented in
neous nucleation in different conteXts~*3and to the so- Sec. Ill. These mechanisms are introduced as quenched
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noise. Finally, we end the paper by summarizing the mainVe will assume that the system relaxes towards equilibrium
results in Sec. V, focusing on the applicability of the equa-according to the following evolution equatioffs:

tions to different physical processes, and discussing further ST
generalizations of the model. o b= — %+ 0= 7,b= WPV 2 — 4() + NG+ 6,

II. EVOLUTION EQUATION )

, . L where 7 is the typical time scale at which the atoms from a
Phase-field models have been widely studied in the Iasghase incorporate to the othér; andg,, denote the partial

few years as an efficient computational tool to simulate som erivatives off andg with respect tog. Finally, 6(r t) is a
moving boundary problems which, in the so-called sharp N"Gaussian white noise which stands for the thermal fluctua-

terface I|rr_1|t (or som_etlma% 55‘126'”‘9”“8 limit, see below tions of the system, with zero mean and correlations given by
are physically equivalent: Among them, Jou and the fluctuation-dissipation theoreth:

Lusk!* studied homogeneous nucleation and site saturation
using a one-field phase-field model. The main objection of (O(r,1)6(r' t"))y=27kgTo(r—r")d(t—t'), (5)
their approach is the fact that the critical clusters are created
ad hocso, on the one hand, the model explains the KIMAT being the temperature at which the transformation takes
equation just by construction and, on the other hand, it canPlace. -
not explain the existence of an incubation time obserllzed in To be more specific, we choose
the experiments. A similar approach was used by Btos.
to study nucleation in a phase-field model with nonlocal in- f(p)=—¢I2+ p*/4. ©®
teractions. Recently, more complex phase-field models havehe main advantage of this choice is that E4). admits a
been proposed for similar systems: The so called multisimple stationary solution given by
phase-field model&’;28in which every cluster appearing em-
bedded in the metastable phase is described by its own field z
and, on the other hand, those models in which the phase field $o(2)= —tank( \/——) : (7)
is coupled with another field representing the orientation of 2W
crystalline plane$®®® The main problem concerning the which represents a front of characteristic widthplaced at
multiphase-field models is that the free energy depends eX=0. In the same way, we chodSe
plicitly on the grain orientatiorfor phase This is solved by
the second ones but, besides this, what depends on the grain ¢
orientation is the grain-boundary velocity. Although this sec- 9(p)=¢- 3 ®)
ond kind of approach seems to be very promising, in both
cases the symmetry under rotations of the grain crystallindhe main reason to use E@) instead of the traditional one,
planes is broken. g( )= ¢, is that, in the first casef has local minima at- 1
In this paper we are interested only in the overall dynamindependently of the value of, otherwise, those minima
ics of the nucleation process, thus we simply generalize thwould be\ dependent.
model presented in Ref. 14, supplementing it with thermal Using Eq.(7) we can make some considerations about the
noise to make explicit the temperature dependence of thetability of a given fluctuation. To compare with the classical
system. To make clearer this generalization, we advance thaticleation theory,' let us consider the free-energy difference
the noise term is the driving force for nucleation, so it is notbetween a system which is initially at the metastable phase,
needed to create artificially critical clusters every integration2nd a circular grain of radiuRk given approximately by
time step as in Ref. 14. ¢o(r—R). Thus it can be straightforwardly shown that, in
Let us introduce the main ingredients of the model. Wethe thin interface limit?
define an order parameter, which takes the value-1 in
the metastable phase ardl in the stable phase. The grain AF=FL$= bl = Flp=—1]=27Ro— TR*Ap/Q,
boundary(which separates both phaséslocated atp=0." ©
We also define a free-energy functional which takes into acwhere o;=22W/3 is the surface tension, andu/Q
count the grain-boundary energy and the chemical potentiak \ g, with sg=g(+1)—g(—1). This equation shows the
difference between phases. Generically, we can define:  competition between the gain arising from the reduction of
the grain perimeter, and that related to the increasing of its
W2 5 size. As we mentioned above, the critical radius arises from
f[ﬁf’(r't)]:f dxdz(7|V¢| +H(#)—Ng(#) |, () this competition. Thus if we take into account that exp
[—AF(R)/kgT] can be interpreted as the barrier that has to
where f(¢) and g(¢) are generic functions of the order be overcome to create a nucleus of radRishen the critical
parameterf(¢) is an even function of with local minima radius is the one which minimizes that barrier, i.e., the one
at +1 andg(¢) breaks the symmetry between phases. Asvhich maximizesA 7. Hence
we will see belowW is a typical length scale related to the
surface tension, anl is a dimensionless parameter propor- * _2\/§W (10)
tional to the chemical potential difference between phases. - 3\6g
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1 1 _ *
i t=—| R—Ry+R*In , 12
0.8F \4 ° Ro—R* (
0'6-_ whereRy is the initial grain radius an¥f is the grain growth
O velocity which, in the thin interface limit, is given by
s 0.4}
. 3WA\ &g
0.2 V= . (13
| Ve
05 Thus the velocity is constant just after a short time of order

R*/V. Hence there are slight deviations of the numerical
data from the KIMA equation up to times of ordef/V.

Besides this, the infinite size condition has not to be fulfilled
necessarily. Actually, the KIMA equation is still valid when
the number of grains contributing to growth is large, i.e.,
when the system siZeis much larger than the characteristic
length scale related to nucleation and growth,

FIG. 1. Transformed fractioX(t) vs time for a 50 500 sys-
tem. (O) numerical integration of Eq4) with W=1, 7=0.15,\
=0.6, Ax=1, At=0.01, andkgT=0.1, averaged over 100 runs.
Solid line, KIMA fit with 7;=0.75+0.01 andr.=1.68+0.01.

and its corresponding critical free energy is given by

8rW?
AF*=

=(VIN)Y3 N being the nucleation rafé. Finally, the
KJIMA equation does not take into account interfacial effects
that govern the growth just before the grains meet each other,

(11)

9Ndg so there are also some differences between the numerical

data and the KIJMA equation predictions, in this case, at the

Once we have established the connection between thater stages of the transformation. Fortunately, the mentioned
physical system and the model, let us numerically check itgeviations from the KIMA equation at short and long times
capability to reproduce the KIMA equati¢®). In Fig. 1 we  are quite small. Notwithstanding, it is quite convenient to
show the results from simulation using the Euler integrationperform the fitting ofX(t) between the 1% and the 99% to
schemé’” and the corresponding KIMA fit to the fraction of jmprove it (see Ref. 13 for further details about the validity
transformed materialX(t), takingm=3 (measured as the of KIMA equation.
fraction of sites wherep>0). We have reproduced this re-  To point out the crucial role played by thermal noise in
sult for a wide range of parameters. The first important resulgq. (4), we show in Fig. 2 the spontaneous and continuous
concluded from these simulations is related to the nonzergycleation and growth of grains, which are almost circular
value of the incubation time; . This time is almost always despite the underlying integration lattice is square. In other
present in the experiments, and is related to the free-energyords, the model captures all the essential ingredients of a
difference between the wefi= —1 and the maximum of the first-order transition, not only in terms of the free-energy
free energy separating this well with the onedt+1.  difference between phases, but also in terms of the dynami-
Similar results were obtained by Elder al*® in the context  cal path followed from the metastable phase to the stable
of eutectic growth. Despite the good agreement betweegne.
simulations and theory, it is important to stress that the deri-
vation of KIMA equation makes uses of some assumptions:
infinite system size, uniform nucleation, spherical particles,
and constant growth rate. Some care must be taken in this In the previous section we have demonstrated the validity
respect. Despite E@4) provides circular grains, those grains of our model to describe homogeneous nucleation. This sec-
do not grow at constant velocity. Actually, the grain radius istion deals with nucleation in the neighborhood of some parts
related to time through the following equation: of the system which are structurally different, namely, at do-

Ill. NUCLEATION AT DEFECTS

FIG. 2. Numerical integration of Eq4) with
W=1, r=0.15,A=0.6, Ax=1, At=0.01, and
kgT=0.1. From left to right, from top to bottom,
corresponding times 1.0, 1.5, 2.0, 2.5, 3.0, and
3.5. The darker sites stand fgf=—1 and the

100 A ; w0e brighter ones forg=+1. It can be clearly seen
M - how the initial metastable phase evolves into al-
50 (I - mos.t circular grains which nucleate and coalesce
.’- 2 continuously.
1 - 1
1 50 100 1 50 100
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FIG. 3. Numerical integration of E¢4) using
boundary condition(14), with W=1, 7=0.1,
Ax=1, At=0.005, andkgT=0.15. The top
three figures correspond kxo=0.35 at times 1, 5,
and 10. The bottom three figures correspond to
A=0.6 at times 0.50, 0.75, and 1.00.

main walls or at the surrounding of foreign particles. Thushas been rescaled to reveal the differences between several
we will consider two kinds of defects: Walls and circular values, for different temperatures. At this point, we want to
defects. Our main assumption here is that the particles in thstress that this dependence mfon temperature has been
metastable phase do not interact with the defects, which isbtained qualitatively in some BRd,Si, crystallization

included in the model through the boundary condition experiments® Furthermore, if we change the concentration
9 of impurities, we can also modify the value mf(see inset in
—=V¢-n|,=0, (14  Fig. 5. This result agrees with that in Ref. 10. Thus the
an effect of temperature in KJIMA equation is not only present
where the subscrigii stand for boundary; andlis the normal ~ In the characteristic timeg; and 7, but even in the expo-
coordinate to the defect boundary. nentmin a nontrivial way.

In order to clarify the relevance of this boundary condi-
tion on nucleation we have integrated Ed) with the pre-
scribed condition(14). Figure 3 shows how nucleation is  IV. GENERALIZED HETEROGENEOUS NUCLEATION
enhanced at the walls. Actually, this is the most relevant . .
mechanism of nucleation when the chemical potential differ- 1€ results reported in the last section demonstrates that
ence between phasesy =\, is small. The situation changes our phase-field model is a powerful tool t_o further advance in
dramatically if we increask (or if we raise the temperatyre ~ the knowledge and modeling of nucleation and growth phe-
This can be better understood in the context of island formal0mena, in the homogeneous case and in the situation where
tion in which X can be understood as the flux of particlesimpurities catalyze the transformation in a subtle way. Not-
arriving at the surface. In such case, when the flux of parWithstanding, the heterogeneities of a sample are not always
ticles is large, islands nucleate everywhere in the sample duéue to isolated impurities. This is the main reason for the
to the large probability of dimer formatichas can be seenin generalization that we introduce in this section.
Fig. 3. We will assume that nucleation is heterogeneous, not in a
As we have mentioned, the other interesting geometry iphenomenological way as in other proposed motfetsyt
circular one. Thus Fig. 4 shows how nucleation is enhancesticking to the classic ideas due to Cdfiithus the system
at the boundary of a circular impurity. Moreover, we can usecontains regions with some extra ene(fyr instance due to
this result to relate the KIMA exponemt, and the effect of some order produced during deposition of the amorphous
impurities using a finite concentrati@of circular impurities  materia), or at which nucleation is more probable. Let us
of small radius. The results are plotted in Fig. 5, where timeshow how we can cast this model on a mathematical footing.

100 100

50 50

FIG. 4. Numerical integration of E@4) using
i boundary conditiori14) over the circle perimeter,

100
- 50n
1 .
TV 50 00 1 50 100 with W=1, 7=0.1, A=0.5, Ax=1, At
100
n Son
1
1 50 100 1 50 100

—
W
f=1

100 =0.005, andkgT=0.1. From left to right and
from top to bottom, corresponding to equally

spaced times from 1 to 6.
50

1

1 50

100
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I consideration. Unfortunately, numerical simulations suggest
that it cannot provide a KIMA exponent different from 3
08k 1 (homogeneous nucleatip? Nevertheless, before exploring
’ new possibilities, we will show that the quenched white
noise given by Eq(16) unveils that disorder enhances nucle-
0.6F e ation (Fig. 6).
= The fact that white noise is not capable to provide realistic
o values of m stems with intuition but, actually, it is very
041 ] physical. Let us make some calculations to show it clearly. If
we perform again the thin interface limit of EG4) with A
0.2 . —N+p(r), we obtain the stochastic version of E(f).
10 Hence
05 . 3 3 AF=2mRo— wR2A ulQ+ x(R), 17

(t-t)/t o
e where x(R) is given by
FIG. 5. Fraction of transformed phaxét) vs scaled time for a
500x500 system, with W=1, 7=0.25, A=0.8, Ax=1, At Y(R)= 5gf drp(r)®(r—R) (18)
=0.005, averaged over 100 ensemble averages using a concentra- '
tion of impurities c=0.005, andkgT=0.01 (dashed ling kgT . . . .
=0.027(dotted ling, andkgT=0.05(solid ling). Inset: KIMA ex- ® being the Heaviside step function. The new noise term

ponentm for different values of the concentration of impurities x(R) has also zero mean and correlations given by
with W=1, 7=0.25,A=0.8, Ax=1, At=0.005, anckgT=0.01. , 5 ,
(X(RIX(R"))=8gA TR?S(R—R"). (19

A. Quenched white noise For brevity, we denotd==AF, Fo=27Roj— mR?Au/Q,

An intuitive way to introduce the latter idea in our model and D(R)= 6gA wR2. Consequently, for every value &
is sustained on the assumption that the chemical potentighe free energy is a random number with a distribution given

depends locally on position, i.e., by (recall thatp is Gaussiah
(r) being a Gaussiazjelz;rof:rir\i;riable with zero m(iz)n and P(F)= ;e_(F_FO)z/ZD(R)- (20
gorrelatio?ws given by V27D(R)
(p(Np(r'))=AS(r—r"), (16) Taking into account that exp AF(R)/kgT] can be under-

stood as the barrier that has to be overcome to create a
whereA measures the degree of heterogeneity of the sampl@ucleus of radiu®, the critical radius will be simply the one
The main part of this generalization is that it does not makevhich minimizes that barrier. In the simplest case whére
any specific assumption about the physical system unde+0, this minimum is the same as the maximumAoF, but

FIG. 6. Comparison between homogeneous
nucleation \ =0, top panelsand heterogeneous
nucleation with quenched white noisé €0.3,
bottom panels at different times(from left to
right: t=20, 50, and 100) withwW=1, =1,
dx=1, dt=0.005,kgT=0.1, and\=0.4.
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the situation changes because n¥ is a random variable.
Thus, in the physical system, we can only obtain information
about its mean value:

D(R) Fo
2(kgT)? keT

(21
To be more specific, the critical radius is the solution of

22w
Fo =0=R*= .
- 359(N + A/2kgT)

(22

This is the result we were seeking: The critical radius dimin- FIG. 7. KIMA exponentn for different values of the correlation
ishes so that the nucleation rate increases and also deper) Roth ' u.singW=l =015 A=05 Ax—=1 At=0.05 kaT
on temperature. But, as we anticipated above, the only eﬁec=0.05, andA=0.05,. ©) a.md’solid I.in,e result,s from s.iml,JIatBions.
of quenched white noise is changing the time and length o déshed lines are a guide to the e)l/e.

scales of the system, but not the nucleation conditions nec-

essary to obtaim< 3. Moreover, if we re-scale both length
and time, then the systems with=0 or A#0 cannot be
distinguished. There is another interesting point of thi
theory which should be remarked. In some experiments o
recrystallization thea priori value of AF* is actually much
smaller than that measured from the experimémtsnfirm-

ing that there is some kind of disorder which affects signifi-
cantly this magnitude.

(e FlkaTy= f dFe‘F“‘BTP(F)=ex;{

d (D(R)
dR\| 2kgT

mean distancé;, so there is not enough time to allow other
grains to nucleate. Consequently=2 because every grain

at nucleates does it mainly at the beginning of the transfor-

ation. Note that these assumptions are valid whenever both
| andl. are much smaller than the system sizeNotwith-
standing, some care must be taken when simulating the
model using large values of because the nucleation events
are restricted to the surroundings of the defects so there are
not many grains to sustain the validity of the KIMA equa-

B. Quenched colored noise tion.

At this point, we must collect some of the successful in-  Therefore the latter result contains relevant physical infor-
gredients of the theory and try to find out which must be themation relative to the basic conditions yielding an exponent
new ones in order to provide a genera| model of heterogem<3. For instance, it is consistent with those CryStallization
neous nucleation. Then, the main question is: What was imexperiments of Si.,Ge, by Olivareset al® or recrystalliza-
plicit in the approach to heterogeneous nucleation in Sec. lifion of Pd_,Si, by Price® In the first case that correlation
which is missing in Sec. IV A? The answer is related to thelength could be related to the concentration of preexisting
new length scale introduced in Sec. Ill through the concenSiGe crystals created during deposition, and in the second
tration of impurities(and which is proportional t@™%?). case with the former polycrystalline structure which has been
Therefore we need both ingredients: disorder and a new irdeformed before recrystallization.
dependent length scale. The simplest way to include both is

by means of a quenched colored noise term: V. DISCUSSION AND CONCLUSIONS

<p(r)p(r,)>:Ae—(r—r')2/z|§_ (23) _ In this paper we investigated a phase-field model .mOQeI—
ing nucleation and growth events, such as crystallization,

For the sake of completeness we have performed the simisland formation, or recrystallization. Starting from a Lange-
lations below using Ornstein-Uhlenbeck correlatitn®-  vin equation we have shown how it is a simgéd compu-
stead of Gaussian as in E(3), but the results did not tationally efficienf way to explore homogeneous nucleation,
change significantly. With this choice we have the same freein terms of the well-known description provided by the
energy distribution of probability?(F) as in the white noise KJMA equation, Eq.(2). Taking this equation as a starting
case, and also introduced the required length scale. As wgoint, we have provided several approaches to the problem
expected, the KIMA exponem depends on the correlation of heterogeneous nucleation. The first approach is related to
lengthl, as we show in Fig. 7 as also the nucleation rate ighe existence of defects which are inert for the main growing
larger than in the homogeneous case. These results can heterial, such as wall domains or impurities. In both cases
straightforwardly understood in terms of the involved char-we have shown how nucleation is enhanced near those de-
acteristic length scales, the nucleation, and growth lengtliects. Moreover, a finite concentration of isolated defects is
scale, 1=(V/N)¥3, and the quenched noise correlation able to modify the value of the KIMA exponent which
length,l.. Thus, ifl <I then the system hardly see the de- takes values lower tham= 3, the known value for homoge-
fects, and it is almost homogeneous,me-3. On the con- neous nucleation. This kind of defects can be suitable to
trary, if I.>1, as grains nucleate preferentially at the defectsstudy secondary crystallization, island nucleation in het-
and they grow so fast that they impinge to each other at @roepitaxial system@f one of the growing particles presents
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a slow dynamics compared to the othemsr nucleation at generalized. For instance, a model that takes into account the
step edges in terrace growth. In particular, wall defects capossible time dependence of the disorder should include two
be used to investigate the influence of a terrace step on islarfiglds: the phase-field and another one related to the motion
formation (note that\ plays the role of the flux of particles of impurities. Besides this, sometimes the nucleating grains
arriving at the terrage In fact, the competition between present some kind of anisotropy that should be included in
dimer formation and nucleation at step edges has been regne free-energy functional, given by E). Moreover, the
ported in Ref. 3, and can be graphically seen in Fig. 3. Genmodel presented is only suitable for isothermal transforma-
eraliZing the model to hlgher dimenSionS, this kind of Wa”tions so, to Study nonisothermal effectsi we should Coup|e
defect could simulate the glass substrate on which the amoghe phase field with an evolution equation for the tempera-
phous material is grown prior to crystallization. In the con-tyre, similar to some prescriptions provided in the context of
text of amorphous crystallization, circular defects can also b@gnisothermal eutectic crystallizatiéh. Finally, there is
understood as crystals created at the growing stage, befoggyme work left to do related to the suitable range of param-
crystallization takes place. eters which allow comparisons with experimental data and
We have also presented a generalized model for heteroggtso to improve the efficiency of the numerical simulations,

neous nucleation which deals statistically with imperfectionsin particular when using circular impurities to simulate het-
or impurities by means of a quenched noise term. The maigrogeneous nucleation.

result is related to the fact that this quenched noise must be

spatially correlated to provide a general description in terms
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