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Long-range contributions to the total energy of an impurity in an extended substrate
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A study of the total energy of an isolated impurity in an extended substrate is presented. The approach is
based on the Green’s function embedding method within the density functional theory framework. We explic-
itly take care of the influence of an infinite substrate and introduce the contributions to the total energy of an
isolated impurity deriving from long range charge density oscillations. Total energies for a substitutional Al
atom in Mg and Na bulks calculated in this way are compared with those obtained by expressions limited to
smaller regions, focusing on accuracy and convergence as function of the self-consistent calculation volume. A
faster and variationalmonotoni¢ convergence is obtained by using the energy expression proposed in this
paper.
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[. INTRODUCTION physical properties of single isolated perturbations. A pos-
sible choice is a cluster representation of the substrate. But in
The physics of atomic impurities in an extended substratsuch finite size models the convergence of physical proper-
comprise a variety of very interesting phenomena. In the castes with the cluster size and geometry is not smdaihd a
of a magnetic impurity in a normal metal several theoreticalvery large volume of the system is needed %o.
and experimental efforts have been devoted to the Kondo Methods based on the use of Green’s functions are most
problem. In surface physics adatom bonding is crucial to thesuitable for treating the problem of a single perturbation in
understanding of crystal growth, of the magnetism of thinan extended substrate. All these methods share the same ap-
film, and of chemisorption induced reconstruction. proach, i.e., they solve the problem in a finite volume taking
In all these fields the knowledge of the total energy isinto account the infinite host via appropriate boundary con-
necessary to supply the energetics, the most stable configditions for the Green’s function. The Dyson equattéh?the
ration of the system and the input to determine other physicakorringa-Kohn-Rostoker methdd;** and the embedding
properties for comparison with experimerfer example, ~method>!® are well known examples. Once the single par-
the superconducting transition temperature or the crystdicle Green’s function of the interacting system is available
growth rate. Presently the total energy can be calculatedone could compute the total energy. But computational diffi-
within a first principle framework based on density func- culties are usually more severe in this case than for the su-
tional theory(DFT).! Most of such calculations for defects percell one. Consequently very feab initio calculations of
and impurities employ the supercell geométiy this ap-  total energies have been worked out by the Green’s function
proach a 3D array of celléor repeated slabsor a 2D one  approach.
(for adatoms describes the physical system as a periodic In this paper we shall compute the total energy of an
one. Within the LDA-GGA approach the supercell methodisolated impurity in an infinite solid by the embedding Green
performs efficiently. For example, results of the formationfunction method>® We shall focus on the total energy con-
energy of vacancies and impurities in a realistic metal, obvergence with the calculation parameters, especially as a
tained by the supercell geometry, are in very good agreemeifiinction of the embedding region volume. By exploiting the
with the experimental ones. The reported computational erroproperties of the Green function, we shall introduce a total
is of the order of 30 meV for a 32 atom supercelBut  energy expression which takes also into account the long-
impurities may be extremely dilutéénd a very low cover- range contributions of the extended substrate beyond the re-
age of adatoms may result into appreciable induced surfaagion in which the DFT problem is solved. Our infinite solid
resistivities> while one single adatom may cause measurablés modeled by jellium. Though we do not expect jellium to
surface long range charge density oscillatidh&uch effects  allow for calculating realistic impurity formation energies,
ask for the treatment of a single isolated defect in an exthis model is very convenient to study in a systematic way to
tended substrate. Calculations based on the supercell geomvhich extent the long-range perturbation induced by the de-
etry achieve a level of description equivalent to that of afect affects the total energy of the system. This because one
truly single impurity only when the volume of the system is can vary the size of the region where the DFT calculation is
very large. In practice, the size of this volume is determinedperformed in a continuous manner. By comparing total ener-
by the strength of the perturbation induced by the impurity. Ifgies computed by the new expression with those obtained
such a disturbance is not fully screened the calculated energyith the grand-canonical functiontiand with that of Puska
may depend on the slab thicknésBo correctly account for et al,'® we show that the proposed expression allows one to
these long range effects a too large volume and hence a tambtain a faster converging variation@honotonig total en-
high computational cost may be required. So it is interestingergy within a computational accuracy, which may range be-
to study geometries other than the supercell to describe theveen 1-20 meV according to the substrate.
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Section Il is devoted to illustrating how long-range chargeneutrality of the system. To take into account the effect of the
density oscillations may be taken into account by the Green'micomplete screening of the perturbation, we should intro-
function embedding method of Inglesfiéld® within the  duce in region Il a correctioAG{ to G). Then we should
DFT framework. Section Il deals with a description of the iterate the calculation o, with a new embedding potential
different expressions describing the impurity total energiesvemb+ Av o Obtained fronﬁﬁ+AGﬁ and so on. The imple-
and Sec. IV presents results for an Al substitutional impuritymentation of this iterative procedure is by no means
in Mg and Na bulk jellium. Finally Sec. V outlines the con- straightforward® and at a certain point even useless. By

clusions of this paper. choosing a large enough embedding voluvhe we can al-
ways reduce the importance 4fv ., in the calculation of
Il. SCHEME OF THE CALCULATION G,. In fact the resulting correction t@, would be a higher

order one which we can safely neglect. On the contrary the

We adopt an approach based on the embedding m€thodperturbation induced in region Il can be significant and need
(EM) in the framework of density functional theof®FT).  be considered carefully. The wavelength of the Friedel
This method is particularly suitable for the description of acharge density oscillations, obeying asymptotica”y an in-
nonperiodic isolated perturbation inside a bulk material or a;erse third power law in bulk?® \=7/k: (ke being the
the surface of a solid, because it explicitly takes into accountermi wave vector may be very long(in the case of Na
the effects of an infinite/semi-infinite substrate. In this ap-gescribed by the jellium model=6.4a,, a, being the
proach the whole space is divided into two regions: an emgohr radiug. This means that the lack of charge neutrality
bedding region containing the perturbation, e.g., due to agould be appreciable, even if we had chosen a very large
impurity, (region ) and the remaining spaceegion I). The  empedding volume for region I.
solution of the electronic problem in region Il is assumed to | this work we avoid the formidable task of solving self-
be known and the method derives a self-consistent singlgonsistently the KS equation in region Il and consider the
particle e_quation for the electronic system in region 1, forzero order approximation for the embedding potential,.
example in the Kohn-ShartkS) formulation of DFT. The e improve on the description of the substrate outside the
effects of an infinitely extended substrate outside region kmpedding region by taking into account a first order correc-
enters thisiembedding equation via a nonlocal energy de- tion AGY to GJ, which is obtained as the continuation®f
pendent potential, the embedding potentighy,, defined on g 5 matching Green’s function technique. The Appendix is
the surfaceS of region I. This potential guarantees the cor- geyoted to the analysis of this extrapolation procedure. Once
rect matching of the electron wave functions at the boundy qyantitatively satisfactory expression for the Green’s func-
aries of the two regions. One can recast the problem in termgon G,., in | and Il is obtained, the charge densinyr)
of a one particle Green's function. Hence the embeddingyecomes available all over the space. Then the total energy
equation becomes an equation 8y, the restriction of the  caicylation can be performed in the frame of any DFT ap-
global Green's function in+ll, G,,,, to region I, while 5 oximation for the exchange-correlation functional.
vempiS defined as the inverse of the Green’s funct@pon We point out that so far the only simplifying hypothesis
S for a particular choice of its boundary conditions. For aye make is to neglect the perturbation of the effective poten-
thorough (35e:2;Ocr|pt|on of the embedding method we refer tqj5| in || and the subsequent modification of the embedding
Inglesfield.™ _ _ potential acting at the surfacof region I. The importance

It is well known _that any localized .perturbatlon leads to agf guch perturbation is progressively reduced as the volume
nonlocal perturbation of the electronic systéior example,  of region | is increased. As a consequence, in this scheme of
charge density oscillations, wave function phase shiftsea|cylation, the embedding volum is the crucial physical
etc).” Consequently the study of this system would requireyarameter that drives the convergence of the calculated solu-
the solution of the KS equation in a very large, in principle tion, Of course, the finite dimension of the basis set on which
infinite, vol_ume. To tackle this difficulty one can apply thg we project the Hamiltonian is another aspect which may in-
EM assuming that most of the perturbation be screened iyyence the final solution. But, as discussed at the beginning
side a large enough volumg, i.e., that of region I. So we  f Sec. IV, such an effect becomes negligible with a suitable
are led to introduce an approximated description of the efpgice of the dimension of the basis set. Therefore we shall
fects that the substrate in region Il plays on region I. Thefycus on accuracy and convergence as functiol,of
simplest ongzero ordey is to assumés;, to be the Green'’s
function of the unperturbed syste@]O , that is to substitute
the exact embedding potential with that obtained frGih. IIl. THE IMMERSION ENERGY OF AN IMPURITY

In other words the effective potential of the KS equation in - \yg are interested in a first principle calculation of the
the region 1l is the unperturbed one. In this way we deteryyia) energy of an isolated impurity in an infinite solid, i.e.,
mine vemp and then calculate the self-consistent solution forgs 5 pylk vacancy, of a bulk interstitial or substitutional im-
G, . This solution is not in agreement with the previous hy-prity, and of an adsorbate at a solid surface. We recall that
pothesis which considers region Il to be unperturbed. Indeeg|;iihin the supercell framework, the formation enedyg.,

the Fermi energy is pinned by the infinite substrate and & o aqditional atonfinterstitial impurity, is defined as
flow of charge between the two regions takes place. Such

charge transfer is neglected in assuming region Il unper- i
turbed. Consequently there is an overall charge non- AEfm=E(N,A,V)—E(N,Vo) —E(A), ()
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whereE(N,A,Vy) andE(N,V) are the total energies of the r o
supercells of volum&/, containingN host atoms, an¥ with AEyin= J_M[U( €)—o (e)]e de
N atoms plus the impurityh, respectively;E(A) is the en-

ergy of the free atomic defect. For a substitutional impurity 0 013
Eq. (1) has to be modified in following way: - JRs(vaeff_pfveff)d r 4
AEfm=E(N=1AV)—E(N,Vo) +E(B)~E(A), (2 1 p(NP(r) o o
AECOU|:EJR3JR3 |r—r’| derder

where E(B) is the energy of the free substituted impurity.
For a vacancy Eqg1) or (2) are readily implemented. Note N
that each term in Eqs1) and(2) is finite because the super- B lf f p(r)p=(r )d3rd3r’ )
cell has a finite volume, and hence the concentration of im- 2 g3 )p3 [r—r'| '

purities is finite too. As the formation energy is customarily

defined at zero pressure, the relaxed volwnghould enter 0 0.3

the expression foE(N,A,V). If we want to treat an isolated AEy= JRa(Pixc—P—ch)d r. (6)
perturbation by this method, we observe that Edjsand(2)

give the proper result in the thermodynamic lihit V=V, o(e) is the density of state¢DOS) and p=p_+p. the

—o, though a DFT calculation does not appear feasible. charge density with an electronic. and a nuclear contribu-

In our approach we indeed deal with a single defect in ariion p, . The effective potential of the KS equation for the
infinitely extended system without introducing any artificial Impurity-substrate system ige;, in which the exchange-
periodicity. Hence the formation energies of an interstitialcorrelation term is calculated in the local density approxima-
and of a substitutional impurity are those defined in Egjs.  tion (LDA) of Ceperley and Aldet? Consequently Eq(6)
and(2), whereN, V, andV, are infinite. Obviously the first describesAE,. with the well known LDA expression. The 0
two terms on the right hand of Eqdl) and(2) are diverging apices denote the same quantities for the reference system.
quantities. To make such calculations viable it is necessary ts regards the kinetic contribution, the first term on the
introduce a reference systeRiand compute the energy dif- right-hand side of Eq4) requires the global induced density
ferencesAEjmp= Eimp+ sus— Er @Nd AEy,p= Eynp— Eg, With of states(IDOS), (€) — d°(¢), of the system which can be
respect to that oR. Ejypssup @nd Eyyp represent the total evaluated by means of Lloyd's formdfa
energy of the system constituted by the impurity interacting
with an extended host and by the unperturbed extended host,
respectively. Of course a possible choice may [Bg
=E,np- We wish to stress that the energy,, represents the . .
calculated one, for example by a DFT self-consistent apwhereG(e) andGy(e) are the Green’s functions of the in-
proach, for the system without the impurity. So its resultteracting and of the reference system, respectively. Each of
depends on the accuracy and the convergence parameterstid@ three contributions in Ed3) involves single or double
the calculation. On the other hand the reference system cditegrations which calls fop over the wholeR® space. Since
be chosen arbitrarily once its asymptotic behavior reflect thathe self-consistent computation is performed in a filée-
of the unperturbed substrate. With such a chadié®,,, and  bedding volume, the calculated expression @f is an ap-
AE,,, are finite. To this aim it will be more convenient to proximate one, which differs from the exact one, saydpy
select a reference system in which the energy can be calcés already pointed out, no charge conservation is imposed,
lated in the simplest way and represents only an additivénd we define the following excess/defect of the global
constant in the formation energy. In this way one can studgharge in the wholdimpurity plus the extended substrate
the variation ofAE;,, and AE,,, with the computation pa- system as
rameters without any spurious contributions from the refer-

ence system. We a_llso_point out that in this descriptioq the AleobEf 5P(r)d3r=fEFA0'(e)de—Z¢O, ®
impurity concentration is zero and substrate macroscopic re- R3 —

laxation effects may be safely ignored. where Z represents the variation of positive charge in the
In the following we shall present a total energy expres- P P 9

sion, which does not only take into account the lack Ofsystem determined by the impurity. The equality between the

charge neutrality, but also the contribution of the extendeéWO integrals follows from the charge neutrality of the refer-

substrate outside the embedding region. We consider in detaif '°© _system and of the pe_zrturbed one 'T solved exactly. _The
the energy differencé E,. = E; _E. for a bulk de- magnitude ofAQgq, may signal the quality of the approxi-
fect. referred to the infilnmi?e ré?g:ggkée ng/steRnIt can be mations in the calculated solution. Of course also the charge

written as the sum of the kinetic, the Coulomb and the” the emb/zd?.lr!?t\)/olume IIS rt]r?t (;olrllse(ved ang Wetlabe_ltr?uch
exchange-correlation contributions an excess/detici §2£Q'F’C' n the following we denote wi
vcoul(r) the electrostatic potential of the system

0 1 G(e)
Ao(e)=o(€)— 0o (e)=—;lmEIndetGo(6), (7)

AEimp= Eimp+sub_ Er=AEyn+ AEcout AExc, ()

Deo(r)= p(r’)
where we define Cou! RS [r—r’|

dsrrzveff(r)_vxc(r)- 9
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The energy functional of Eq.3) is not variational with re- 0 0.3

spect to the electronic charge density, because the KS equa- J']R?’—V (p—€xc—p €)1

tions are derived in a DFT framework assuming charge o

conservatiorf® If charge is not conserved as in the EM, such o 0 v a3
functional also becomes dependent on the choice of the en- - LS_V [Ap-exctp- (€™ €x)]d™r
ergy reference. As shown by Drittlet al,'” a generalized '

energy functional which includes a grand-canonical correc- _ 0., 0 ,0 3
tion to Eq.(3) must instead be used: _fRavl(APGXC“LPG xcAp-)d°r

= —02A Qi V), (12)

AEimp:AEkin+AECoul+AExc+ GFAQgIob- (10

whereAp_=p_— Pg, AQio(V1) :flep—d3r —Z, andvy,
This correction may restore global neutrality by placing uni-Eng%or(ig;] f(\)ll?clul\j\?s fﬁgr;hfhee;gzalrrﬁlpigggrg?Ig}fbnal pz)c;}taern;;al.
formly the chargeAQgqy at the Fermi level. In principle, . neutrality. Charge non-neutrality due to the finiteness of the

once _th|s corre_ct|on Is considered, th? functional is agalrémbedding region is already included in the grand-canonical
variational and independent of the choice of the energy ref | .. i Consequently the second energy expression is

erence. However, this implies the knowledge of the elec-

tronic charge density _ in the whole infinite volume, and

the assumption that the exact Fermi level of the system may

be obtained bybE/Sp_ even if the above quantities are cal- AE.. = J °F 0 d f 0,043
. . .. . imp=— - - —Veff— P— r

culated self-consistently only in a finite volume. Therefore it ~— "™ J, [o(e)=o7(e)]ede vl(p Vet P-er)

is clear that the approximations introduced in a DFT calcu-

: : : : : 1
lation of the interaction energy between_ an impurity and an + Ef (p veou—p° Uoc(>u|)d3r+f (p_ex
extended substrate may affect the variational character of v v

well established expressions. To get insight into this problem 0 043 O

we shall discuss and compare results determined by three = p- AT — 0, AQpc(V)) + €rAQgigp.- (13

energy expressions, which can be of working use. We refer to
them as the semilocal one, that of Pusial.'® and a new
one suggested in this paper. We shall see that none of them is

fully variational, but that the third one achieves an excellent ra?gfﬁg:];%:Cg]lecg?rggt;gaeggih'ne;h?elggf():% tg:g (ig;j the
level of variationality, once a computational error in the totalg ! P '

X . . . . are essentially finite volume energy calculations. On the
energy 1s a;agngd. In the first functional, the ele,Ctron'Cother hand, while the self-consistent calculation must neces-
charge density _ is assumed to be unp.erturbed outside thesarily be performed in finite volum¥,, that of the energy
volume of the self-consistent calculatiofy, so that the 41 in principle be extended to an infinite volume. We wish
space integral of kinetic, Coulomb, and exchange-correlatiog, propose a new expression, whose scope is to supply a
terms in Eq.(10) need not be performed ovér® but only  petter total energy for an impurity in an extended host. It will
inside V. The energy expression in Eqgl)—(6) takes the  take into account the contributions of integrals in the volume
form R3—V, by considering an improvegd_ with respect to the
unperturbed one outsidé, . We extrapolate _ all over the
space according to the procedure described in the Appendix
o« by means of the matching Green’s function technique. We
AEimsz' [U(e)—ao(e)]ede—f (p_ves—p v d3r start from the embedding self-consistent solution garin-
€ Vi sideV,, and we generate its continuation by using the un-
1 perturbed potentiai)gff outside the embedding region as in
+ Ef (p veou— p° vy d3r Egs. (A19) and (A20). We expect our results for the total
Vi energy to show a variational behavior at a much better level
of accuracy, i.e., monotonic and decreasing by increasing
+ j (p_€xc— p° egc)d3r + €rAQgiob- (11 volumeV, of the self-consistent treatment, than those of Eqs.
Vi (11 and(13). In practice, we perform calculations by fixing
a level of accuracy of the total energy priori. Then we
truncate the integration in Eqg4)—(6) at a volumeV,
An improved approximation is that of Puskaal® In this ~ +V,,, the volumeV, being outside the embedding region
schemep _ is still assumed to be unperturbed outsiebut  and bounded by it. The size o, depends on the required
a first order correction is introduced in the calculation oflevel of accuracy and the screening properties of the sub-
AE,.: strate. The new energy expression is
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€ o -3.909 4
Eimp:f [o(e)—o0"(€)]ede
“ -3.010 |
—f (p-vesr—p2ve )d3r+lf
vipvy e e 2,4y, ———l
Np(r')—po(r)p°(r’ ;_3,912.
Xf p()p()p()p()d3rd3r,
Vi+V, |r—r’|
-3.013 |
+ _€ e )d3r
fV +Vu(p “ P XC) -3.914 . . | L L :
4 5 6 7 8 9 10 11
—03AQioc Vi + Vi) + €rAQqiop- (14) Number of radial basis functions N
Since, as explained in Sec. I, we approximaggzvgﬁ out- FIG. 1. Energy variation of a substitutional Al defect in Mg

side the embedding region in volumg,, it follows that jeIIiL_lm bulk with respect to the numbé¥ of radial functions of the
Ty, (p-ver—pve)d®r =y (p-—p%)vged®r. basis set.
In the case of a jellium bulk impurity calculation, the

convenient reference system is the ideal jeIIium for whichattempt to consider a most general case. In fact Al is an atom

the total charge density°=0 everywhere and2,=v°. isa  which may form bonds of no specific ionic character, and Mg

constant. Furthermore the kinetic term is independent of thés a jell|um metal of intermediate density’=1.268

choice of the energy reference and settifg=0 the second X 102 a, °. We create a vacancy in jellium by taking away

integral overV, can be avoided. Exploiting the spherical & sphere of positive background of radiys-3.35a,, con-

symmetry in the Coulomb term, E¢L4) can be simplified in ~ taining exactly the valence electrons of the Mg substituted

this way: atom. The energy of the reference system is that competing
to an infinite uniform jellium with a vacancy, plus that of the

(e o B 0,043 isolated Al atom ¢ 6566.373 eV)%’ So, we can consider
ABjpp= JE [o(e)—o(e)]ede JVI(pUEff p-ver)dr AE;n, as the variation in the total energy when an Al atom
’ occupies a vacancy inside a jellium bulk.
p(r)p(r ) 5 s, Alinearized augmented plane walleAPW) basis set de-
vy .y ————d°rd°r scribes the solution of the KS equatithAll calculations are
v fr=r performed choosing an angular expansion in spherical har-
(f)Ach[V(f)] monics_up tol =S_9. The resul_ts are unaffected for a larger
Ir] expansion. Outside the muffin tin of radiugy=2.8 a4, the
Vi radial part of the LAPWs is expanded on a set of spherical
Ap_(NAp_(r') ., ., Bessel functiongo(knr), wherek,=nz/d for n=1N (N
fv fv '] — ., drdr =14) andd is suitably chosen larger than the radausf the
I I

embedding regionk?/2 is the kinetic energy cut off. In all
3 our energy calculation by Edq14) it is enough to fix the
+ fv +v (p—exc— P2 €0 A — v A Qi Vi + V) radius of the volume/,, at 100a, (for details see the Ap-
v pendiX. In Fig. 1 we show the variational convergence of the
+ €A Qgiop- (15 energy calculated by E@14) on increasing the dimensidw
of the radial set fors=6 a;. We observe that the LAPW
V. RESULTS method allows us to use a conveniently small nhumber of
' basis functions, since convergence is achieved quickly. We
We apply the energy expressions discussed in the previodgve checked that for fixed a monotonic decrease of the
section to a single impurity in a bulk metal, where the ex-total energy by increasinly is obtained for any of the three
tended substrate is described by jellium. Of course thienergy expressions in Egéll), (13), and (14). Different
choice does not allow for a realistic calculation of the impu-behaviors of the total energy calculated by those equations as
rity formation energies. However, the general character ofunction of s occur, once all the other abovementioned pa-
this substrate provides a benchmark system in which theameters have been chosen. This case permits a more inter-
long-range effects on the total energy can be analyzed in asting comparison of the three expressions presented in the
systematic and computationally agile way. previous section, and confirms that the embedding volume
In particular, we investigate the convergence of the totals the crucial parameter to monitor the quality of the conver-
energy calculation of a substitutional impurity, by using thegence of the solution, as already pointed out in Sec. Il. By
various approximations discussed in the previous sectioranalyzing total energies calculated by E@kl), (13), and
First we deal with an Al substitutional defect in a Mg sub- (14), we show that the energy terms in Ed4), taking into
strate. Our choice for such a system is motivated by theccount the long-range induced charge perturbation, contrib-
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FIG. 2. Energy variation with respect ®,=—3.914 eV of a FIG. 4. Electron charge density_(r) as function ofr. The

substitutional Al defect in Mg jellium bulk as function of the radius solid lines refer to the self-consistent result, the dashed one to the

s of the embedding region. The solid litgquaresis obtained with  extrapolated result.

Eq. (14), the dashed ongircles with Eqg. (13), and the dotted one ] ] ) )

(triangles with Eq. (11). embedding region of radius=9 a,. In Eq. (14) the contri-
butions outside V, are v AQp(Vi+Vy), [y, (p-€xc

ute to the variational behavior of the energy with respect to— p‘i egc)d%, and the Coulomb correction, whose values are
V| in an essential way. In Fig. 2 we report the dependence a259, 109, and-3 meV, respectively. The last two contribu-
the total energy on the embedding radai®r the three just tions are calculated with the extrapolated up to 1003,
mentioned different energy expressions. The convergedia the procedure described in the Appendix. Note that the
valueEy=—23.914 eV is defined within the accuracy which expression by Puskat al. in Eq. (13) only contains a con-
can be obtained by our best energy expression, that in Egribution outsideV, of the form v%AQ,(V,) =367 meV.
(14), for a calculation witns=9 a,. In this case itis 1 meV. All these terms have an oscillating behavior as a function of
The total energy worked out by the semilocal Etfl) (tri- s and the variationality of the energy in E@.4) stems from
angles exhibits a marked damping oscillation and it differs the inclusion of such energy corrections.
significantly fromE, even for larger embedding radii. That ~ The reliability of the extrapolategp_ depends on the
calculated by Eq(13), which only includes an extra contri- quality of the Green’s function evaluated on the sph®re
bution in exchange correlation term outside the embeddingmiting the region | of the self-consistent embedding calcu-
region, improves the result in a considerable way. Nonethefation. Of course, such Green’s function could be worked out
less, within the just mentioned accuracy, this curve does nakith other methods such those based on the Dyson
decrease monotonically. See Fig(ckcles showing that en-  approach:*2however, as shown by Ishida and Trigfithe
ergy oscillations are still present. On the other side the enembedding approach provides a more accurate description of
ergy calculated by Eq14) (squarepdisplays amonotonig  the Green’s function at the boundaries of the reg®in
variational behavior as function of the embedding radius  which the KS equation is solved. From the comparison of the
also shows a faster convergence with respesf 8o that its  electron charge density curves obtained by calculations with
value is already convergent fe=5.5 ag. different embedding radé we can verify the convergence of
To give a quantitative estimate of the terms which con-the extrapolateg (r) and, via this, appreciate its reliability.
tribute toE—E, in Figs. 2 and 3, we consider for example an In Fig. 4 we display _(r) calculated self-consistently inside
the embedding volumesolid line) and then extrapolated out-

+20 ™ side it (dashed ling as function of the distance from the
4 impurity nucleus for radiis=4.5a,, s=6a, and s
+15 | ‘\ =9 a,. In agreement with the calculated total energy we
o observe that all densitigs_(r) nearly coincide for embed-
= +10} ‘ ding radii larger than 5.85. On the other hand the curve
< computed withs=4.5 a, differs in a pronounced way from
E 405 the other ones. This is certainly due to a poorer screening of
the impurity. On the basis of these results one can safely
reduce for this system the radius ¥f from s=9 a; to s
00 ¢ =5.5a,. But we point out that the optimum embedding vol-
umeV, depends on the system under investigation. To illus-
‘-054_5 s 55 6 65 7 75 8 85 o trate this point, consider a less favorable situation of a sub-

s (@) stitutional impurity, e.g., an Al atom in a more dilute jellium
Na-like substrate, where larger charge oscillations may per-
FIG. 3. Magnified energies of Fig. 2. The solid litequaregis  Sist far away from the impurity. We have worked out the total
obtained with Eq(14), the dashed onircles ling with Eq. (13). energy as function o§ for the three energy expressions in
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1.5 S including contributions from a larger volume th&fp. They
can be worked out without a self-consistent calculation in the
remaining volume/,,, provided that an extrapolation proce-
dure of the Green’s function is implemented. The embedding
approach supplies a suitable method to extend the self-
consistent Green'’s function to the whole space, as discussed
in this paper. The total energy determined in this way is
05 %F. A : variational with respect to the embedding volume.
A We observe that for large enough regions of the self-
L N 1 consistent calculation, the long-range perturbation of the
electronic charge density does not affect total energies of a
1 s s 55 6 65 + 75 & 85 o bulk impurity in a relevant way. In fact the computed effects
s (ap) are small. On the other hand, a total energy expression ca-
pable to take into account electronic charge perturbations of
FIG. 5. Energy variation of a substitutional Al defect in Na a wider range could be an interesting contribution in other
jellium bulk as function ofs. Within the accuracy described in the areas of condensed matter, where the defect induced pertur-
text the converged value = +6.909 eV. Lines and symbols are bation is ill screened by the substrate. For example for ada-
the same as in Fig. 2. tom or localized defect at surfaces where STM experiments
have stressed the existence of Friedel's charge density oscil-
Egs.(11), (13), and(14) by a calculation with the same pa- |ation which extend beyond hundredsay.”*° Implementa-
rameters as before. We report them in Fig. 5. Here the energjon of the matching Green’s function total energy calcula-
oscillations are much larger than in the previous case byion for this lower symmetry system is by no means
using Egs(11) and(13), and are still appreciable within an straightforward. But we can try to estimate roughly how long
accuracy of 20 meV fos=9 a, in the results of Eq(14).  range effects compare for bulk impurities and adatoms. Re-
Note that the damping of these oscillations is slower. Thiscall that a convenient way to assess the lack of screening of
indicates that the volume of the self-consistent calculatiorgn impurity in a electronic system is given by the global
should be chosen larger. Indeed the Na valence bulk densipharge excess/defickQyp, as discussed in this paper. We
p°=3.93<10"% a5 ? is about three times smaller than that have verified that\ Qg Of an Al impurity in Mg is safely
of Mg and then much less effective in screening the impurityabout a factor 3 times smaller th&Q, for an adatom on
perturbation. a denser(Al-like) jellium surfacé® for calculations per-
We observe that the use of the jellium substrate does ndbrmed in the same volumes. Therefore much more signifi-
allow for calculating realistic formation energies. In com- cant changes due to the long range perturbed charge density
parison with results obtained for an impurity in a periodic should be expected for the total energy of a surface defect.
lattice, we overestimate them. In particular we founEﬁTLp
=—3.914 eV, and for an Mg atom in Mg jeII|umEi"r"n%= ACKNOWLEDGMENT
—1.770 eV. These results give our best estimation of the . N )
formation energy\ES, = —2.144 eV for Al in Mg bulk. On We are grateful to J. E. Inglesfield for a critical reading of
the other hand, we are confident about the accuracy of enef?€ manuscript.
gies calculated by our approach, since we have determined
free atom energies which coincide with the most recent =~ APPENDIX: EXTRAPOLATION VIA MATCHING
ones?® GREEN’'S FUNCTION TECHNIQUE
Finally we report that we have also computed the immer-

sion energy of an interstitial He atom in jellium bulk as a . ; S :
function of the host density, and that there is no appreciabléing region for bulk jellium has been suggested by Istiida.

difference in the results computed by Eq&l), (13), and Here we present a more general derivation which is indepen-
(14). This signals that the perturbation induced by He is WeIIdent of a particular system. L& be the boundary surface

screened inside the embedding region, and we remark thREtWeen two regions I and II, which represents the partition

the case of a substitutional impurity is generally more inter0! the space. Consider the Green's functf®g which satis-

esting to discuss long-range effects in the total energy prob!€S
lem.

1} s
05

0

E-Ey (V)

The extension of the Green’s function outside the embed-

[—V2+u(r)—E]Gy(r',r,E)=48(r"—r), (A1)

V. CONCLUSIONS with r’,r e Il. We are interested in calculatir@, the Green’s
rﬁunction which satisfies the same differential equationtsgs

In thi r we hav rri | energi lculati ; . . L
this paper we have carried out total energies calcu atom region Il but with a given boundary condition @

of atomic impurities in jelliumlike metals within the DFT
framework. We deal with an infinitely extended substrate by
the embedding method. We have demonstrated that a faster
convergent energy calculatigwith respect to the volum¥,

of the region where the KS equation is solyésiobtained by G(rs.rg,E)=Gy(rs.rg,E), (A3)

[— V240 (r)—E]G(r,r",E)=8(r—r"), (A2)
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with r,r”ell, rq,rzeS and whereG(rg,rs,E) is an arbi- G(r’):[Go(f')'gal'U+Q6)—Gé(f')]-g|- (A10)
trary boundary condition. In our calculatidd, will be the . )
Green’s function of the self-consistent solution in region | To derive Eq.(A10) we have used EqA3) noting that the

evaluated orS In this Appendix we shall derive the expres- first two terms on the right cancel out. o
sion of G(r’,r",E) in terms of Gy(r’,r”,E) and Exploiting the symmetry of the Green’s function with re-

Gy(rs,r,E). Multiplying Eq. (A1) by G(r,r",E) and (A2) spect to the exchange of the arguments in EL0) we
by Go(r’,r,E), and subtracting each other we obtain obtain

Go(r',r,E)V?G(r,r",E) = V?Go(r',1,E)G(r,I",E) 9(r")=G-[(1+Gp)-Go *-go(r") = go(r")].  (AL1)
=8(r'—1)G(r,r",E)—G(r',r,E)8(r—r"). (A4)  Finally substituting Eq(A11) in (A8) we have
Now consider the volume integral in the variablef Eq. G(r',r")=Go(r',r") = Go(r')-Go *-go(r")
(A4) over region Il. Making use of Green'’s theorem the vol- ) _q , o
ume integration in the left member of EGA4) can be trans- +H[Go(r')-Go = (I1+Go) = Go(r")]- G- [ (1
formed into a surface integral ov&such that +GD) -Gt go(r) —gh(r)]. (A12)
f (G (r'.r E)o’!G(rS,r”,E) This is the desired expression for the Green’s funci®n
0L s ang satisfying Eqs(A2), (A3) in terms of a generiG, andg, . It
, can be convenient to make a particular choice for the bound-
~ 9Go(r ’rs’E)G(r " E) | d2r ary condition onG, which simplifies Eq(A12). In the case
dng s S of embedding method calculations, it is useful to choose a

- - Gy which satisfies the same boundary condition of the em-
=G r",E)=Go(r',r",E), (A5) bedding potential

whereng is the unit vector normal t& pointing out of region

Il. We shall drop the energy argument since it is the same for dG(r',rs,E) 0

all the Green’s functions. We shall introduce a simplified ang e

notation using a center dot for the surface integral of the } o

product of two Green’s functions and omitting the argumentEduation(A12) then simplifies to

of the surface integration and we shall distinguish the . . ) 1 ,
Green’s function symbol in order to specify which one of the G(r',r")=Go(r',r") = Go(r")-Go = go(r")
arguments of the Green’s function belongstg(r”) will be / -1 -1 "

used if the first argument & (r,r") belongs taS, G if both +Go(r')-Go™-Gi-Go +Go(r"),  (Al4)
arguments belong t8 as inG(r¢,rg), and finallyG(r) re-  andG,* turns out to be just the embedding potential. With
fers toG(r,rg). The normal derivatives will be indicated by this choice ofG, the extrapolation procedure described by

(A13)

primed. With these notation@\5) takes the form Eqg. (A14) is readily implemented in all calculations, which
adopt the embedding method, without further numerical ef-
G(r',r")=Go(r',r")+Go(r')-g'(r")=Go(r")-g(r"). fort. This because the embedding potengigi* and the func-
(A6) tion G, are already ingredients of the self-consistent calcu-
Now set the first argument to belong toS lation.
In the case of jellium bulk the potentialin Eq. (Al) is a
g(r")=go(r")+Go-g'(r")—G4-ag(r”). (A7)  constant and an analytic expression@f(r,r’,E) is avail-
Using Eq.(A7) to expresg’(r”) we can rearrange EGA6) able:
so that Qiklr—r'|
G(r'.r") = Go(r' ")+ Go(r')- G M- [(1+ G- 9(r") Gl B

—go(r")]=Go(r')-g(r")=Go(r',r")
—=Go(r')-Go - go(r") +[Go(r')-Go *+ (1+Go)
—Go(r")]-9(r"), (A8)

whereG ;=G *(rs,rl) is the surface inverse Green’s func-
tion of Gy which satisfies

ko 2141 ,
= =7 2 g hikroh/ (kr.)Pi(cosy),

(A15)

wherek=\2E with a positive imaginary part if any. In Eq.
(A15) j, is the spherical Bessel functioh, is the spherical
Hankel function of the first kindP, is the Legendre polyno-

. , mial of angular quantum numbek, r_=min(r’), r-

LGO (rs:F)Go(rs . ro)drs=a(rs=rg).”  (A9)  —max(,r') andy the angle betweenandr’. Exploiting the
spherical symmetry of the system, such as the impurity prob-

Now set the second argumeriton Sin Eq. (A8): lem treated in this pape&,(r,r’,E) can be expressed as
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, 2141 |,
Gy(r.r ,E):Z —2-Gi(r.r' E)P(cosy). (A16)

Applying Eqg. (A12) we obtain
, k - 21+1 . ,
G(r,r B)= =7 2 - —Liikroh/(kr.)

+C(E)h/ (kr)h/(kr")]P (cosy),
(A17)
whereC,(E) is

i Gi(ssE) (ks
K h/(ks)h/(ks) h/(ks)’

and s is the radius of the embedding region I. From Eg.
(A17) and the following definition:

C(B)= (A18)

1 €F
p,(r):;lmﬁxG(r,r,E)dE, (A19)

the electron charge density_(r) becomes accessible all
over the space. In practice we divide the space into thre

PHYSICAL REVIEW B 67, 035408 (2003

regions: the embedding region | for whick<s, the region
where our extrapolation is more relevatr <s (typically

we choses=20 a;) and the regiors<<r <o where the Frie-

del asymptotic behavior g5 _(r) can be safely assumed. In
region | we calculatep _(r) by Eq.(A19) using the Green’s
function obtained from the self-consistent calculation. In the
intermediate region we use the Green’s function determined
by Eq.(Al17). In the asymptotic region we use

coskr
3

sinkr
r3

p_(N=p2+Ap_(r)=p° +A

(A20)

r

where the parametefsandB are calculated from a fitting of
p_(r) over the range of in the intermediate region where
the discrepancy of the charge density from its asymptotic
behavior could be safely neglected. The dependenéeanid

B on the embedding radéican be conveniently estimated by
a phase¢=arctai/B. For the system thoroughly investi-
gated in this paper, i.e., Al in jelliumlike Mg, and farin
between 5.8, and %, the uncertainty in the determination
of ¢ is 0.2° of angle at most.
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