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Long-range contributions to the total energy of an impurity in an extended substrate
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A study of the total energy of an isolated impurity in an extended substrate is presented. The approach is
based on the Green’s function embedding method within the density functional theory framework. We explic-
itly take care of the influence of an infinite substrate and introduce the contributions to the total energy of an
isolated impurity deriving from long range charge density oscillations. Total energies for a substitutional Al
atom in Mg and Na bulks calculated in this way are compared with those obtained by expressions limited to
smaller regions, focusing on accuracy and convergence as function of the self-consistent calculation volume. A
faster and variational~monotonic! convergence is obtained by using the energy expression proposed in this
paper.
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I. INTRODUCTION

The physics of atomic impurities in an extended substr
comprise a variety of very interesting phenomena. In the c
of a magnetic impurity in a normal metal several theoreti
and experimental efforts have been devoted to the Ko
problem. In surface physics adatom bonding is crucial to
understanding of crystal growth, of the magnetism of th
film, and of chemisorption induced reconstruction.

In all these fields the knowledge of the total energy
necessary to supply the energetics, the most stable con
ration of the system and the input to determine other phys
properties for comparison with experiments~for example,
the superconducting transition temperature or the cry
growth rate!. Presently the total energy can be calcula
within a first principle framework based on density fun
tional theory~DFT!.1 Most of such calculations for defect
and impurities employ the supercell geometry.2 In this ap-
proach a 3D array of cells~or repeated slabs! or a 2D one
~for adatoms! describes the physical system as a perio
one. Within the LDA-GGA approach the supercell meth
performs efficiently. For example, results of the formati
energy of vacancies and impurities in a realistic metal,
tained by the supercell geometry, are in very good agreem
with the experimental ones. The reported computational e
is of the order of 30 meV for a 32 atom supercell.3 But
impurities may be extremely diluted4 and a very low cover-
age of adatoms may result into appreciable induced sur
resistivities,5 while one single adatom may cause measura
surface long range charge density oscillations.6,7 Such effects
ask for the treatment of a single isolated defect in an
tended substrate. Calculations based on the supercell g
etry achieve a level of description equivalent to that o
truly single impurity only when the volume of the system
very large. In practice, the size of this volume is determin
by the strength of the perturbation induced by the impurity
such a disturbance is not fully screened the calculated en
may depend on the slab thickness.8 To correctly account for
these long range effects a too large volume and hence a
high computational cost may be required. So it is interest
to study geometries other than the supercell to describe
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physical properties of single isolated perturbations. A p
sible choice is a cluster representation of the substrate. B
such finite size models the convergence of physical prop
ties with the cluster size and geometry is not smooth,9 and a
very large volume of the system is needed too.10

Methods based on the use of Green’s functions are m
suitable for treating the problem of a single perturbation
an extended substrate. All these methods share the sam
proach, i.e., they solve the problem in a finite volume tak
into account the infinite host via appropriate boundary c
ditions for the Green’s function. The Dyson equation,11,12the
Korringa-Kohn-Rostoker method,13,14 and the embedding
method15,16 are well known examples. Once the single p
ticle Green’s function of the interacting system is availab
one could compute the total energy. But computational di
culties are usually more severe in this case than for the
percell one. Consequently very fewab initio calculations of
total energies have been worked out by the Green’s func
approach.

In this paper we shall compute the total energy of
isolated impurity in an infinite solid by the embedding Gre
function method.15 We shall focus on the total energy con
vergence with the calculation parameters, especially a
function of the embedding region volume. By exploiting th
properties of the Green function, we shall introduce a to
energy expression which takes also into account the lo
range contributions of the extended substrate beyond the
gion in which the DFT problem is solved. Our infinite sol
is modeled by jellium. Though we do not expect jellium
allow for calculating realistic impurity formation energie
this model is very convenient to study in a systematic way
which extent the long-range perturbation induced by the
fect affects the total energy of the system. This because
can vary the size of the region where the DFT calculation
performed in a continuous manner. By comparing total en
gies computed by the new expression with those obtai
with the grand-canonical functional,17 and with that of Puska
et al.,18 we show that the proposed expression allows one
obtain a faster converging variational~monotonic! total en-
ergy within a computational accuracy, which may range
tween 1–20 meV according to the substrate.
©2003 The American Physical Society08-1
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Section II is devoted to illustrating how long-range char
density oscillations may be taken into account by the Gree
function embedding method of Inglesfield15,19 within the
DFT framework. Section III deals with a description of th
different expressions describing the impurity total energ
and Sec. IV presents results for an Al substitutional impu
in Mg and Na bulk jellium. Finally Sec. V outlines the con
clusions of this paper.

II. SCHEME OF THE CALCULATION

We adopt an approach based on the embedding meth15

~EM! in the framework of density functional theory~DFT!.
This method is particularly suitable for the description o
nonperiodic isolated perturbation inside a bulk material o
the surface of a solid, because it explicitly takes into acco
the effects of an infinite/semi-infinite substrate. In this a
proach the whole space is divided into two regions: an e
bedding region containing the perturbation, e.g., due to
impurity, ~region I! and the remaining space~region II!. The
solution of the electronic problem in region II is assumed
be known and the method derives a self-consistent sin
particle equation for the electronic system in region I,
example in the Kohn-Sham~KS! formulation of DFT. The
effects of an infinitely extended substrate outside regio
enters this~embedding! equation via a nonlocal energy de
pendent potential, the embedding potentialvemb, defined on
the surfaceS of region I. This potential guarantees the co
rect matching of the electron wave functions at the bou
aries of the two regions. One can recast the problem in te
of a one particle Green’s function. Hence the embedd
equation becomes an equation forGI , the restriction of the
global Green’s function in I1II, GI1II , to region I, while
vemb is defined as the inverse of the Green’s functionGII on
S for a particular choice of its boundary conditions. For
thorough description of the embedding method we refe
Inglesfield.15,20

It is well known that any localized perturbation leads to
nonlocal perturbation of the electronic system~for example,
charge density oscillations, wave function phase sh
etc.!.21 Consequently the study of this system would requ
the solution of the KS equation in a very large, in princip
infinite, volume. To tackle this difficulty one can apply th
EM assuming that most of the perturbation be screened
side a large enough volumeVI , i.e., that of region I. So we
are led to introduce an approximated description of the
fects that the substrate in region II plays on region I. T
simplest one~zero order! is to assumeGII to be the Green’s
function of the unperturbed systemGII

0 , that is to substitute
the exact embedding potential with that obtained fromGII

0 .
In other words the effective potential of the KS equation
the region II is the unperturbed one. In this way we det
mine vemb and then calculate the self-consistent solution
GI . This solution is not in agreement with the previous h
pothesis which considers region II to be unperturbed. Ind
the Fermi energy is pinned by the infinite substrate an
flow of charge between the two regions takes place. S
charge transfer is neglected in assuming region II unp
turbed. Consequently there is an overall charge n
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neutrality of the system. To take into account the effect of
incomplete screening of the perturbation, we should int
duce in region II a correctionDGII

0 to GII
0 . Then we should

iterate the calculation ofGI with a new embedding potentia
vemb1Dvembobtained fromGII

01DGII
0 and so on. The imple-

mentation of this iterative procedure is by no mea
straightforward22 and at a certain point even useless. B
choosing a large enough embedding volumeVI , we can al-
ways reduce the importance ofDvemb in the calculation of
GI . In fact the resulting correction toGI would be a higher
order one which we can safely neglect. On the contrary
perturbation induced in region II can be significant and ne
be considered carefully. The wavelength of the Frie
charge density oscillations, obeying asymptotically an
verse third power law in bulk,6,23 l5p/kF (kF being the
Fermi wave vector!, may be very long~in the case of Na
described by the jellium modell.6.4 a0 , a0 being the
Bohr radius!. This means that the lack of charge neutral
could be appreciable, even if we had chosen a very la
embedding volume for region I.

In this work we avoid the formidable task of solving se
consistently the KS equation in region II and consider
zero order approximation for the embedding potentialvemb.
We improve on the description of the substrate outside
embedding region by taking into account a first order corr
tion DGII

0 to GII
0 , which is obtained as the continuation ofGI

via a matching Green’s function technique. The Appendix
devoted to the analysis of this extrapolation procedure. O
a quantitatively satisfactory expression for the Green’s fu
tion GI1II in I and II is obtained, the charge densityr(r )
becomes available all over the space. Then the total en
calculation can be performed in the frame of any DFT a
proximation for the exchange-correlation functional.

We point out that so far the only simplifying hypothes
we make is to neglect the perturbation of the effective pot
tial in II and the subsequent modification of the embedd
potential acting at the surfaceS of region I. The importance
of such perturbation is progressively reduced as the volu
of region I is increased. As a consequence, in this schem
calculation, the embedding volumeVI is the crucial physical
parameter that drives the convergence of the calculated s
tion. Of course, the finite dimension of the basis set on wh
we project the Hamiltonian is another aspect which may
fluence the final solution. But, as discussed at the beginn
of Sec. IV, such an effect becomes negligible with a suita
choice of the dimension of the basis set. Therefore we s
focus on accuracy and convergence as function ofVI .

III. THE IMMERSION ENERGY OF AN IMPURITY

We are interested in a first principle calculation of t
total energy of an isolated impurity in an infinite solid, i.e
of a bulk vacancy, of a bulk interstitial or substitutional im
purity, and of an adsorbate at a solid surface. We recall
within the supercell framework, the formation energyDEform

i

of an additional atom~interstitial impurity!, is defined as

DEform
i 5E~N,A,V!2E~N,V0!2E~A!, ~1!
8-2
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LONG-RANGE CONTRIBUTIONS TO THE TOTAL . . . PHYSICAL REVIEW B 67, 035408 ~2003!
whereE(N,A,V0) andE(N,V) are the total energies of th
supercells of volumeV0 containingN host atoms, andV with
N atoms plus the impurityA, respectively;E(A) is the en-
ergy of the free atomic defect. For a substitutional impur
Eq. ~1! has to be modified in following way:

DEform
s 5E~N21,A,V!2E~N,V0!1E~B!2E~A!, ~2!

where E(B) is the energy of the free substituted impurit
For a vacancy Eqs.~1! or ~2! are readily implemented. Not
that each term in Eqs.~1! and~2! is finite because the supe
cell has a finite volume, and hence the concentration of
purities is finite too. As the formation energy is customar
defined at zero pressure, the relaxed volumeV should enter
the expression forE(N,A,V). If we want to treat an isolated
perturbation by this method, we observe that Eqs.~1! and~2!
give the proper result in the thermodynamic limitN, V.V0
→`, though a DFT calculation does not appear feasible

In our approach we indeed deal with a single defect in
infinitely extended system without introducing any artific
periodicity. Hence the formation energies of an interstit
and of a substitutional impurity are those defined in Eqs.~1!
and ~2!, whereN, V, andV0 are infinite. Obviously the first
two terms on the right hand of Eqs.~1! and~2! are diverging
quantities. To make such calculations viable it is necessar
introduce a reference systemR and compute the energy dif
ferencesDEimp5Eimp1sub2ER andDEunp5Eunp2ER , with
respect to that ofR. Eimp1sub and Eunp represent the tota
energy of the system constituted by the impurity interact
with an extended host and by the unperturbed extended h
respectively. Of course a possible choice may beER
5Eunp. We wish to stress that the energyEunp represents the
calculated one, for example by a DFT self-consistent
proach, for the system without the impurity. So its res
depends on the accuracy and the convergence paramete
the calculation. On the other hand the reference system
be chosen arbitrarily once its asymptotic behavior reflect
of the unperturbed substrate. With such a choiceDEimp and
DEunp are finite. To this aim it will be more convenient t
select a reference system in which the energy can be ca
lated in the simplest way and represents only an addi
constant in the formation energy. In this way one can stu
the variation ofDEimp andDEunp with the computation pa-
rameters without any spurious contributions from the ref
ence system. We also point out that in this description
impurity concentration is zero and substrate macroscopic
laxation effects may be safely ignored.

In the following we shall present a total energy expre
sion, which does not only take into account the lack
charge neutrality, but also the contribution of the extend
substrate outside the embedding region. We consider in d
the energy differenceDEimp5Eimp1sub2ER for a bulk de-
fect, referred to the infinite reference systemR. It can be
written as the sum of the kinetic, the Coulomb and t
exchange-correlation contributions

DEimp5Eimp1sub2ER5DEkin1DECoul1DExc , ~3!

where we define
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DEkin5E
2`

eF
@s~e!2s0~e!#e de

2E
R3

~r2veff2r2
0 veff

0 !d3r , ~4!

DECoul5
1

2ER3
E

R3

r~r !r~r 8!

ur2r 8u
d3rd3r 8

2
1

2ER3
E

R3

r0~r !r0~r 8!

ur2r 8u
d3rd3r 8, ~5!

DExc5E
R3

~r2exc2r2
0 exc

0 !d3r . ~6!

s(e) is the density of states~DOS! and r5r21r1 the
charge density with an electronicr2 and a nuclear contribu
tion r1 . The effective potential of the KS equation for th
impurity-substrate system isveff , in which the exchange-
correlation term is calculated in the local density approxim
tion ~LDA ! of Ceperley and Alder.24 Consequently Eq.~6!
describesDExc with the well known LDA expression. The 0
apices denote the same quantities for the reference sys
As regards the kinetic contribution, the first term on t
right-hand side of Eq.~4! requires the global induced densi
of states~IDOS!, s(e)2s0(e), of the system which can be
evaluated by means of Lloyd’s formula25

Ds~e!5s~e!2s0~e!52
1

p
Im

d

de
ln det

G~e!

G0~e!
, ~7!

whereG(e) andG0(e) are the Green’s functions of the in
teracting and of the reference system, respectively. Eac
the three contributions in Eq.~3! involves single or double
integrations which calls forr over the wholeR3 space. Since
the self-consistent computation is performed in a finite~em-
bedding! volume, the calculated expression ofr2 is an ap-
proximate one, which differs from the exact one, say bydr.
As already pointed out, no charge conservation is impos
and we define the following excess/defect of the glo
charge in the whole~impurity plus the extended substrat!
system as

DQglob[E
R3

dr~r !d3r 5E
2`

eF
Ds~e!de2ZÞ0, ~8!

where Z represents the variation of positive charge in t
system determined by the impurity. The equality between
two integrals follows from the charge neutrality of the refe
ence system and of the perturbed one if solved exactly.
magnitude ofDQglob may signal the quality of the approxi
mations in the calculated solution. Of course also the cha
in the embedding volume is not conserved and we label s
an excess/deficit byDQloc . In the following we denote with
vCoul(r ) the electrostatic potential of the system

vCoul~r ![E
R3

r~r 8!

ur2r 8u
d3r 85veff~r !2vxc~r !. ~9!
8-3
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The energy functional of Eq.~3! is not variational with re-
spect to the electronic charge density, because the KS e
tions are derived in a DFT framework assuming cha
conservation.26 If charge is not conserved as in the EM, su
functional also becomes dependent on the choice of the
ergy reference. As shown by Drittleret al.,17 a generalized
energy functional which includes a grand-canonical corr
tion to Eq.~3! must instead be used:

DEimp5DEkin1DECoul1DExc1eFDQglob. ~10!

This correction may restore global neutrality by placing u
formly the chargeDQglob at the Fermi level. In principle
once this correction is considered, the functional is ag
variational and independent of the choice of the energy
erence. However, this implies the knowledge of the el
tronic charge densityr2 in the whole infinite volume, and
the assumption that the exact Fermi level of the system m
be obtained bydE/dr2 even if the above quantities are ca
culated self-consistently only in a finite volume. Therefore
is clear that the approximations introduced in a DFT cal
lation of the interaction energy between an impurity and
extended substrate may affect the variational characte
well established expressions. To get insight into this prob
we shall discuss and compare results determined by t
energy expressions, which can be of working use. We refe
them as the semilocal one, that of Puskaet al.,18 and a new
one suggested in this paper. We shall see that none of the
fully variational, but that the third one achieves an excell
level of variationality, once a computational error in the to
energy is assigned. In the first functional, the electro
charge densityr2 is assumed to be unperturbed outside
volume of the self-consistent calculationVI , so that the
space integral of kinetic, Coulomb, and exchange-correla
terms in Eq.~10! need not be performed overR3 but only
inside VI . The energy expression in Eqs.~4!–~6! takes the
form

DEimp5E
ev

eF
@s~e!2s0~e!#ede2E

VI

~r2veff2r2
0 veff

0 !d3r

1
1

2EVI

~r vCoul2r0 vCoul
0 !d3r

1E
VI

~r2exc2r2
0 exc

0 !d3r 1eFDQglob. ~11!

An improved approximation is that of Puskaet al.18 In this
schemer2 is still assumed to be unperturbed outsideVI but
a first order correction is introduced in the calculation
DExc :
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R32VI

~r2exc2r2
0 exc

0 !d3r

5E
R32VI

@Dr2exc1r2
0 ~exc2exc

0 !#d3r

.E
R32VI

~Dr2exc
0 1r2

0 e8xc
0 Dr2!d3r

.2 v̄xc
0 DQloc~VI!, ~12!

whereDr25r22r2
0 , DQloc(VI)5*VI

Dr2d3r 2Z, andvxc
0̄

is the mean value of the exchange-correlation poten
Equation~12! follows from the assumption of global charg
neutrality. Charge non-neutrality due to the finiteness of
embedding region is already included in the grand-canon
correction. Consequently the second energy expression

DEimp5E
ev

eF
@s~e!2s0~e!#ede2E

VI

~r2veff2r2
0 veff

0 !d3r

1
1

2EVI

~r vCoul2r0 vCoul
0 !d3r 1E

VI

~r2exc

2r2
0 exc

0 !d3r 2 v̄xc
0 DQloc~VI!1eFDQglob. ~13!

Except for the band integral in the kinetic term and t
grand-canonical correction, both expressions~11! and ~13!,
are essentially finite volume energy calculations. On
other hand, while the self-consistent calculation must nec
sarily be performed in finite volumeVI , that of the energy
can in principle be extended to an infinite volume. We wi
to propose a new expression, whose scope is to supp
better total energy for an impurity in an extended host. It w
take into account the contributions of integrals in the volu
R32VI by considering an improvedr2 with respect to the
unperturbed one outsideVI . We extrapolater2 all over the
space according to the procedure described in the Appe
by means of the matching Green’s function technique.
start from the embedding self-consistent solution forr2 in-
side VI , and we generate its continuation by using the u
perturbed potentialveff

0 outside the embedding region as
Eqs. ~A19! and ~A20!. We expect our results for the tota
energy to show a variational behavior at a much better le
of accuracy, i.e., monotonic and decreasing by increas
volumeVI of the self-consistent treatment, than those of E
~11! and~13!. In practice, we perform calculations by fixin
a level of accuracy of the total energya priori. Then we
truncate the integration in Eqs.~4!–~6! at a volumeVI
1VII , the volumeVII being outside the embedding regio
and bounded by it. The size ofVII depends on the require
level of accuracy and the screening properties of the s
strate. The new energy expression is
8-4
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DEimp5E
ev

eF
@s~e!2s0~e!#ede

2E
VI1VII

~r2veff2r2
0 veff

0 !d3r 1
1

2EVI1VII

3E
VI1VII

r~r !r~r 8!2r0~r !r0~r 8!

ur2r 8u
d3rd3r 8

1E
VI1VII

~r2exc2r2
0 exc

0 !d3r

2 v̄xc
0 DQloc~VI1VII !1eFDQglob. ~14!

Since, as explained in Sec. II, we approximateveff5veff
0 out-

side the embedding region in volumeVII , it follows that
*VII

(r2veff2r2
0 veff

0 )d3r 5*VII
(r22r2

0 )veff
0 d3r .

In the case of a jellium bulk impurity calculation, th
convenient reference system is the ideal jellium for wh
the total charge densityr050 everywhere andveff

0 5vxc
0 is a

constant. Furthermore the kinetic term is independent of
choice of the energy reference and settingveff

0 50 the second
integral overVII can be avoided. Exploiting the spheric
symmetry in the Coulomb term, Eq.~14! can be simplified in
this way:

DEimp5E
ev

eF
@s~e!2s0~e!#ede2E

VI

~r2veff2r2
0 veff

0 !d3r

1
1

2EVI

E
VI

r~r !r~r 8!

ur2r 8u
d3rd3r 8

1E
VII

Dr2~r !DQloc@V~r !#

ur u
d3r

1
1

2EVII

E
VII

Dr2~r !Dr2~r 8!

ur2r 8u
d3rd3r 8

1E
VI1VII

~r2exc2r2
0 exc

0 !d3r 2vxc
0 DQloc~VI1VII !

1eFDQglob. ~15!

IV. RESULTS

We apply the energy expressions discussed in the prev
section to a single impurity in a bulk metal, where the e
tended substrate is described by jellium. Of course
choice does not allow for a realistic calculation of the imp
rity formation energies. However, the general character
this substrate provides a benchmark system in which
long-range effects on the total energy can be analyzed
systematic and computationally agile way.

In particular, we investigate the convergence of the to
energy calculation of a substitutional impurity, by using t
various approximations discussed in the previous sect
First we deal with an Al substitutional defect in a Mg su
strate. Our choice for such a system is motivated by
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attempt to consider a most general case. In fact Al is an a
which may form bonds of no specific ionic character, and M
is a jellium metal of intermediate densityr051.268
31022 a0

23. We create a vacancy in jellium by taking awa
a sphere of positive background of radiusr s53.35a0, con-
taining exactly the valence electrons of the Mg substitu
atom. The energy of the reference system is that compe
to an infinite uniform jellium with a vacancy, plus that of th
isolated Al atom (26566.373 eV).27 So, we can conside
DEimp as the variation in the total energy when an Al ato
occupies a vacancy inside a jellium bulk.

A linearized augmented plane wave~LAPW! basis set de-
scribes the solution of the KS equation.16 All calculations are
performed choosing an angular expansion in spherical
monics up tol 59. The results are unaffected for a largel
expansion. Outside the muffin tin of radiusr MT52.8 a0, the
radial part of the LAPWs is expanded on a set of spher
Bessel functionsj 0(knr ), wherekn5np/d̄ for n51,N (N
514) andd̄ is suitably chosen larger than the radiuss of the
embedding region.kN

2 /2 is the kinetic energy cut off. In al
our energy calculation by Eq.~14! it is enough to fix the
radius of the volumeVII at 100a0 ~for details see the Ap-
pendix!. In Fig. 1 we show the variational convergence of t
energy calculated by Eq.~14! on increasing the dimensionN
of the radial set fors56 a0. We observe that the LAPW
method allows us to use a conveniently small number
basis functions, since convergence is achieved quickly.
have checked that for fixeds a monotonic decrease of th
total energy by increasingN is obtained for any of the three
energy expressions in Eqs.~11!, ~13!, and ~14!. Different
behaviors of the total energy calculated by those equation
function of s occur, once all the other abovementioned p
rameters have been chosen. This case permits a more
esting comparison of the three expressions presented in
previous section, and confirms that the embedding volumeVI
is the crucial parameter to monitor the quality of the conv
gence of the solution, as already pointed out in Sec. II.
analyzing total energies calculated by Eqs.~11!, ~13!, and
~14!, we show that the energy terms in Eq.~14!, taking into
account the long-range induced charge perturbation, con

FIG. 1. Energy variation of a substitutional Al defect in M

jellium bulk with respect to the numberN̄ of radial functions of the
basis set.
8-5
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C. MENCHINI, M. I. TRIONI, AND G. P. BRIVIO PHYSICAL REVIEW B67, 035408 ~2003!
ute to the variational behavior of the energy with respec
VI in an essential way. In Fig. 2 we report the dependenc
the total energy on the embedding radiuss for the three just
mentioned different energy expressions. The conver
valueE0523.914 eV is defined within the accuracy whic
can be obtained by our best energy expression, that in
~14!, for a calculation withs59 a0. In this case it is 1 meV.
The total energy worked out by the semilocal Eq.~11! ~tri-
angles! exhibits a marked damping oscillation and it diffe
significantly fromE0 even for larger embedding radii. Tha
calculated by Eq.~13!, which only includes an extra contri
bution in exchange correlation term outside the embedd
region, improves the result in a considerable way. None
less, within the just mentioned accuracy, this curve does
decrease monotonically. See Fig. 3~circles! showing that en-
ergy oscillations are still present. On the other side the
ergy calculated by Eq.~14! ~squares! displays a~monotonic!
variational behavior as function of the embedding radiuss. It
also shows a faster convergence with respect tos, so that its
value is already convergent fors55.5 a0.

To give a quantitative estimate of the terms which co
tribute toE2E0 in Figs. 2 and 3, we consider for example

FIG. 2. Energy variation with respect toE0523.914 eV of a
substitutional Al defect in Mg jellium bulk as function of the radiu
s of the embedding region. The solid line~squares! is obtained with
Eq. ~14!, the dashed one~circles! with Eq. ~13!, and the dotted one
~triangles! with Eq. ~11!.

FIG. 3. Magnified energies of Fig. 2. The solid line~squares! is
obtained with Eq.~14!, the dashed one~circles line! with Eq. ~13!.
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embedding region of radiuss59 a0. In Eq. ~14! the contri-
butions outside VI are vxc

0 DQloc(VI1VII), *VII
(r2exc

2r2
0 exc

0 )d3r , and the Coulomb correction, whose values a
259, 109, and23 meV, respectively. The last two contribu
tions are calculated with the extrapolatedr2 up to 100a0
via the procedure described in the Appendix. Note that
expression by Puskaet al. in Eq. ~13! only contains a con-
tribution outsideVI of the form vxc

0 DQloc(VI)5367 meV.
All these terms have an oscillating behavior as a function
s and the variationality of the energy in Eq.~14! stems from
the inclusion of such energy corrections.

The reliability of the extrapolatedr2 depends on the
quality of the Green’s function evaluated on the sphereS
limiting the region I of the self-consistent embedding calc
lation. Of course, such Green’s function could be worked
with other methods such those based on the Dy
approach;11,12 however, as shown by Ishida and Trioni,28 the
embedding approach provides a more accurate descriptio
the Green’s function at the boundaries of the regionS in
which the KS equation is solved. From the comparison of
electron charge density curves obtained by calculations w
different embedding radiis we can verify the convergence o
the extrapolatedr2(r ) and, via this, appreciate its reliability
In Fig. 4 we displayr2(r ) calculated self-consistently insid
the embedding volume~solid line! and then extrapolated out
side it ~dashed line! as function of the distancer from the
impurity nucleus for radii s54.5 a0 , s56 a0, and s
59 a0. In agreement with the calculated total energy w
observe that all densitiesr2(r ) nearly coincide for embed
ding radii larger than 5.5a0. On the other hand the curv
computed withs54.5 a0 differs in a pronounced way from
the other ones. This is certainly due to a poorer screenin
the impurity. On the basis of these results one can sa
reduce for this system the radius ofVI from s59 a0 to s
55.5 a0. But we point out that the optimum embedding vo
umeVI depends on the system under investigation. To ill
trate this point, consider a less favorable situation of a s
stitutional impurity, e.g., an Al atom in a more dilute jellium
Na-like substrate, where larger charge oscillations may p
sist far away from the impurity. We have worked out the to
energy as function ofs for the three energy expressions

FIG. 4. Electron charge densityr2(r ) as function ofr. The
solid lines refer to the self-consistent result, the dashed one to
extrapolated result.
8-6
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LONG-RANGE CONTRIBUTIONS TO THE TOTAL . . . PHYSICAL REVIEW B 67, 035408 ~2003!
Eqs.~11!, ~13!, and~14! by a calculation with the same pa
rameters as before. We report them in Fig. 5. Here the en
oscillations are much larger than in the previous case
using Eqs.~11! and ~13!, and are still appreciable within a
accuracy of 20 meV fors59 a0 in the results of Eq.~14!.
Note that the damping of these oscillations is slower. T
indicates that the volume of the self-consistent calculat
should be chosen larger. Indeed the Na valence bulk den
r053.9331023 a0

23 is about three times smaller than th
of Mg and then much less effective in screening the impu
perturbation.

We observe that the use of the jellium substrate does
allow for calculating realistic formation energies. In com
parison with results obtained for an impurity in a period
lattice, we overestimate them. In particular we foundDEimp

Al

523.914 eV, and for an Mg atom in Mg jelliumDEimp
Mg 5

21.770 eV. These results give our best estimation of
formation energyDEform

s 522.144 eV for Al in Mg bulk. On
the other hand, we are confident about the accuracy of e
gies calculated by our approach, since we have determ
free atom energies which coincide with the most rec
ones.29

Finally we report that we have also computed the imm
sion energy of an interstitial He atom in jellium bulk as
function of the host density, and that there is no apprecia
difference in the results computed by Eqs.~11!, ~13!, and
~14!. This signals that the perturbation induced by He is w
screened inside the embedding region, and we remark
the case of a substitutional impurity is generally more int
esting to discuss long-range effects in the total energy p
lem.

V. CONCLUSIONS

In this paper we have carried out total energies calcula
of atomic impurities in jelliumlike metals within the DFT
framework. We deal with an infinitely extended substrate
the embedding method. We have demonstrated that a fa
convergent energy calculation~with respect to the volumeVI
of the region where the KS equation is solved! is obtained by

FIG. 5. Energy variation of a substitutional Al defect in N
jellium bulk as function ofs. Within the accuracy described in th
text the converged value isE0516.909 eV. Lines and symbols ar
the same as in Fig. 2.
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including contributions from a larger volume thanVI . They
can be worked out without a self-consistent calculation in
remaining volumeVII , provided that an extrapolation proce
dure of the Green’s function is implemented. The embedd
approach supplies a suitable method to extend the s
consistent Green’s function to the whole space, as discu
in this paper. The total energy determined in this way
variational with respect to the embedding volume.

We observe that for large enough regions of the s
consistent calculation, the long-range perturbation of
electronic charge density does not affect total energies
bulk impurity in a relevant way. In fact the computed effec
are small. On the other hand, a total energy expression
pable to take into account electronic charge perturbation
a wider range could be an interesting contribution in oth
areas of condensed matter, where the defect induced pe
bation is ill screened by the substrate. For example for a
tom or localized defect at surfaces where STM experime
have stressed the existence of Friedel’s charge density o
lation which extend beyond hundreds ofa0.7,30 Implementa-
tion of the matching Green’s function total energy calcu
tion for this lower symmetry system is by no mea
straightforward. But we can try to estimate roughly how lo
range effects compare for bulk impurities and adatoms.
call that a convenient way to assess the lack of screenin
an impurity in a electronic system is given by the glob
charge excess/deficitDQglob, as discussed in this paper. W
have verified thatDQglob of an Al impurity in Mg is safely
about a factor 3 times smaller thanDQglob for an adatom on
a denser~Al-like ! jellium surface19 for calculations per-
formed in the same volumes. Therefore much more sign
cant changes due to the long range perturbed charge de
should be expected for the total energy of a surface defe
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APPENDIX: EXTRAPOLATION VIA MATCHING
GREEN’S FUNCTION TECHNIQUE

The extension of the Green’s function outside the emb
ding region for bulk jellium has been suggested by Ishida31

Here we present a more general derivation which is indep
dent of a particular system. LetS be the boundary surfac
between two regions I and II, which represents the partit
of the space. Consider the Green’s functionG0 which satis-
fies

@2¹21v~r !2E#G0~r 8,r ,E!5d~r 82r !, ~A1!

with r 8,rPII. We are interested in calculatingG, the Green’s
function which satisfies the same differential equation asG0
in region II but with a given boundary condition onS:

@2¹21v~r !2E#G~r ,r 9,E!5d~r2r 9!, ~A2!

G~r s ,r s9 ,E!5GI~r s ,r s9 ,E!, ~A3!
8-7



s-

l-

fo
ed
th
en
th
he

y

c-

-

nd-

e a
m-

ith
by
h
ef-

cu-

.

ob-

C. MENCHINI, M. I. TRIONI, AND G. P. BRIVIO PHYSICAL REVIEW B67, 035408 ~2003!
with r ,r 9PII, r s ,r s9PS and whereGI(r s ,r s9 ,E) is an arbi-
trary boundary condition. In our calculationGI will be the
Green’s function of the self-consistent solution in region
evaluated onS. In this Appendix we shall derive the expre
sion of G(r 8,r 9,E) in terms of G0(r 8,r 9,E) and
GI(r s ,r s9 ,E). Multiplying Eq. ~A1! by G(r ,r 9,E) and ~A2!
by G0(r 8,r ,E), and subtracting each other we obtain

G0~r 8,r ,E!¹2G~r ,r 9,E!2¹2G0~r 8,r ,E!G~r ,r 9,E!

5d~r 82r !G~r ,r 9,E!2G0~r 8,r ,E!d~r2r 9!. ~A4!

Now consider the volume integral in the variabler of Eq.
~A4! over region II. Making use of Green’s theorem the vo
ume integration in the left member of Eq.~A4! can be trans-
formed into a surface integral overS such that

E
S
S G0~r 8,r s ,E!

]G~r s ,r 9,E!

]ns

2
]G0~r 8,r s ,E!

]ns
G~r s ,r 9,E! Dd2r s

5G~r 8,r 9,E!2G0~r 8,r 9,E!, ~A5!

wherens is the unit vector normal toSpointing out of region
II. We shall drop the energy argument since it is the same
all the Green’s functions. We shall introduce a simplifi
notation using a center dot for the surface integral of
product of two Green’s functions and omitting the argum
of the surface integration and we shall distinguish
Green’s function symbol in order to specify which one of t
arguments of the Green’s function belongs toS: g(r 9) will be
used if the first argument ofG(r s ,r 9) belongs toS, G if both
arguments belong toS as inG(r s8 ,r s9), and finallyG(r ) re-
fers toG(r ,r s8). The normal derivatives will be indicated b
primed. With these notations~A5! takes the form

G~r 8,r 9!5G0~r 8,r 9!1G0~r 8!•g8~r 9!2G08~r 8!•g~r 9!.
~A6!

Now set the first argumentr 8 to belong toS

g~r 9!5g0~r 9!1G0•g8~r 9!2G08•g~r 9!. ~A7!

Using Eq.~A7! to expressg8(r 9) we can rearrange Eq.~A6!
so that

G~r 8,r 9!5G0~r 8,r 9!1G0~r 8!•G 0
21

•@~ I 1G08!•g~r 9!

2g0~r 9!#2G08~r 8!•g~r 9!5G0~r 8,r 9!

2G0~r 8!•G 0
21

•g0~r 9!1@G0~r 8!•G 0
21

•~ I 1G08!

2G08~r 8!#•g~r 9!, ~A8!

whereG 0
215G0

21(r s ,r s8) is the surface inverse Green’s fun
tion of G0 which satisfies

E
S
G0

21~r s ,r s8!G0~r s8 ,r s9!d2r s85d~r s2r s9!.8 ~A9!

Now set the second argumentr 9 on S in Eq. ~A8!:
03540
I

r

e
t
e

G~r 8!5@G0~r 8!•G 0
21

•~ I 1G08!2G08~r 8!#•GI . ~A10!

To derive Eq.~A10! we have used Eq.~A3! noting that the
first two terms on the right cancel out.

Exploiting the symmetry of the Green’s function with re
spect to the exchange of the arguments in Eq.~A10! we
obtain

g~r 9!5GI•@~ I 1G08!•G 0
21

•g0~r 9!2g08~r 9!#. ~A11!

Finally substituting Eq.~A11! in ~A8! we have

G~r 8,r 9!5G0~r 8,r 9!2G0~r 8!•G 0
21

•g0~r 9!

1@G0~r 8!•G 0
21

•~ I 1G08!2G08~r 8!#•GI•@~ I

1G08!•G 0
21

•g0~r 9!2g08~r 9!#. ~A12!

This is the desired expression for the Green’s functionG
satisfying Eqs.~A2!, ~A3! in terms of a genericG0 andGI . It
can be convenient to make a particular choice for the bou
ary condition onG0 which simplifies Eq.~A12!. In the case
of embedding method calculations, it is useful to choos
G0 which satisfies the same boundary condition of the e
bedding potential

]G0~r 8,r s ,E!

]ns
50. ~A13!

Equation~A12! then simplifies to

G~r 8,r 9!5G0~r 8,r 9!2G0~r 8!•G 0
21

•g0~r 9!

1G0~r 8!•G 0
21

•GI•G 0
21

•g0~r 9!, ~A14!

andG 0
21 turns out to be just the embedding potential. W

this choice ofG0 the extrapolation procedure described
Eq. ~A14! is readily implemented in all calculations, whic
adopt the embedding method, without further numerical
fort. This because the embedding potentialG 0

21 and the func-
tion G0 are already ingredients of the self-consistent cal
lation.

In the case of jellium bulk the potentialv in Eq. ~A1! is a
constant and an analytic expression ofG0(r ,r 8,E) is avail-
able:

G0~r ,r 8,E!5
eikur2r8u

4pur2r 8u

52
k

i (
l

2l 11

4p
j l~kr,!hl8~kr.!Pl~cosg!,

~A15!

wherek5A2E with a positive imaginary part if any. In Eq
~A15! j l is the spherical Bessel function,hl8 is the spherical
Hankel function of the first kind,Pl is the Legendre polyno-
mial of angular quantum numberl, r ,5min(r,r8), r .

5max(r,r8) andg the angle betweenr̂ andr̂ 8. Exploiting the
spherical symmetry of the system, such as the impurity pr
lem treated in this paper,GI(r ,r 8,E) can be expressed as
8-8
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GI~r ,r 8,E!5(
l

2l 11

4p
GI

l~r ,r 8,E!Pl~cosg!. ~A16!

Applying Eq. ~A12! we obtain

G~r ,r 8,E!52
k

i (
l

2l 11

4p
@ j l~kr,!hl8~kr.!

1Cl~E!hl8~kr !hl8~kr8!#Pl~cosg!,

~A17!

whereCl(E) is

Cl~E!52
i

k

GI
l~s,s,E!

hl8~ks!hl8~ks!
2

j l~ks!

hl8~ks!
, ~A18!

and s is the radius of the embedding region I. From E
~A17! and the following definition:

r2~r !5
1

p
ImE

2`

eF
G~r ,r ,E!dE, ~A19!

the electron charge densityr2(r ) becomes accessible a
over the space. In practice we divide the space into th
n

e
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regions: the embedding region I for whichr ,s, the region
where our extrapolation is more relevants,r , s̄ ~typically
we choses̄520 a0) and the regions̄,r ,` where the Frie-
del asymptotic behavior ofr2(r ) can be safely assumed. I
region I we calculater2(r ) by Eq. ~A19! using the Green’s
function obtained from the self-consistent calculation. In t
intermediate region we use the Green’s function determi
by Eq. ~A17!. In the asymptotic region we use

r2~r !5r2
0 1Dr2~r !5r2

0 1A
sinkr

r 3
1B

coskr

r 3
,

~A20!

where the parametersA andB are calculated from a fitting o
r2(r ) over the range ofr in the intermediate region wher
the discrepancy of the charge density from its asympto
behavior could be safely neglected. The dependence ofA and
B on the embedding radiis can be conveniently estimated b
a phasef5arctanA/B. For the system thoroughly invest
gated in this paper, i.e., Al in jelliumlike Mg, and fors in
between 5.5a0 and 9a0, the uncertainty in the determinatio
of f is 0.2° of angle at most.
s.

gy
-

at-
s

e
ith

-
ther
ause

l.
1G.P. Brivio and M.I. Trioni, Rev. Mod. Phys.71, 231 ~1999!.
2M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias, and J.D. Joa

nopoulos, Rev. Mod. Phys.64, 1045~1992!.
3N. Chetty, M. Weinert, T. Rahman, and J. Davenport, Phys. R

B 52, 6313~1995!.
4I. Lubomirsky, E. Gurovich, S.A. Safran, and D. Cahen, Eu

phys. Lett.45, 201 ~1999!.
5H. Ishida, Phys. Rev. B54, 10 905~1996!.
6J. Friedel, Adv. Phys.3, 446 ~1954!.
7N. Knorr, H. Brume, M. Epple, A. Hirstein, M.A. Schneider, an

K. Kern, Phys. Rev. B65, 115420~2002!.
8S.P. Bates, G. Kresse, and M.J. Gillan, Surf. Sci.385, 386~1997!.
9G. te Velde and E.J. Baerents, J. Chem. Phys.177, 399 ~1993!.

10H.X. Liu, H.L. Zhang, H.L. Ren, S.X. Ouyang, and R.Z. Yua
Ceram. Int.22, 79 ~1996!.

11J. Bormet, J. Neugebauer, and M. Scheffler, Phys. Rev. B49,
17 242~1994!.

12A.R. Drittler, P.J. Feibelman, and N.D. Lang, Phys. Rev. B26,
5433 ~1982!.

13V.S. Stepanyuk, W. Hergert, P. Rennert, K. Wildberger, R. Zel
and P.H. Dederichs, Phys. Rev. B54, 14 121~1996!.

14E.A. Smirnova, I.A. Abrikosov, B. Johansson, Y.K. Vekilov, A.N
Baranov, V.S. Stepanyuk, W. Hergert, and P.H. Dederichs, P
Rev. B59, 14 417~1999!.

15J.E. Inglesfield, J. Phys. C14, 3795~1981!.
16M.I. Trioni, S. Marcotulio, G. Santoro, V. Bortolani, G. Palumb

and G.P. Brivio, Phys. Rev. B58, 11 043~1998!.
17B. Drittler, M. Weinert, R. Zeller, and P.H. Dederichs, Phys. R

B 39, 930 ~1989!.
-

v.

-

r,

s.

.

18M.J. Puska, R.M. Nieminen, and M. Manninen, Phys. Rev. B24,
3037 ~1981!.

19M.I. Trioni, G.P. Brivio, S. Crampin, and J.E. Inglesfield, Phy
Rev. B53, 8052~1996!.

20J.E. Inglesfield, Comput. Phys. Commun.137, 89 ~2001!.
21J.M. Ziman,Principles of the Theory of Solids~Cambridge Uni-

versity Press, Cambridge, 1964!.
22M. Nekovee and J.E. Inglesfield, Prog. Surf. Sci.50, 149 ~1995!.
23N.D. Lang and A.R. Williams, Phys. Rev. B18, 616 ~1978!.
24D.M. Ceperley and B.J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
25P. Lloyd, Proc. Phys. Soc. London90, 207 ~1967!.
26P. Young, Density Functional Theory~Cambridge University

Press, Cambridge, 1988!.
27We performed the LDA calculation of the isolated atom ener

EA with the same muffin tin radius used for the interacting im
purity system. While this choice does not provide the best
tainable value ofEA , it allows for a compensation of the error
in the core level energy evaluation when computingDEimp . The
jellium vacancy energyDEvac is calculated with respect to th
ideal jellium with optimized parameters. On the one hand, w
this choice of the energy reference system, the quantityDEimp

5(Eimp1sub2EJ)2(Evac2EJ)2EA represents the energy re
quired to introduce an atom in a substrate vacancy. On the o
hand, such energy difference retains a variational nature bec
EA andDEvac are fixed additive constants.

28H. Ishida and M.I. Trioni, Phys. Rev. B63, 155108~2001!.
29URL http://math.nist.gov/DFTdata/atomdata/tables/ptable.htm
30M.F. Crommie, C.P. Lutz, and D.M. Eigler, Nature~London! 363,

524 ~1993!.
31H. Ishida, Phys. Rev. B51, 10 345~1995!.
8-9


