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Fission of multielectron bubbles in liquid helium
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The stability of multielectron bubbles~MEB’s! in liquid helium is investigated using the liquid-drop model
for fissioning nuclei. Whereas a critical positive pressure can make the bubble unstable against fissioning, a
small negative pressure suffices to introduce a restoring force preventing any small deformation of the bubble
to grow. We also find that there exists an energy barrier making MEB’s metastable against fissioning at zero
pressure. The results obtained here overcome the difficulties associated with the Rayleigh-Plesset equation
previously used to study bubble stability, and shed new light on the limits of achievable bubble geometries in
recently proposed experiments devised to stabilize MEB’s.
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I. INTRODUCTION

Multielectron bubbles~MEB’s! are fascinating entities
which appear when a surface of bulk helium covered b
two-dimensional~2D! film of electrons becomes unstable.1,2

MEB’s are cavities in the liquid helium, filled with electron
that form a 2D spherical layer at the inner surface of
bubble. Recent proposals to stabilize MEB’s3 have stimu-
lated theoretical investigations into its properties,4,5 since this
system holds the promise of studying the electron gas
controlled way, bereft from material impurities. The dens
of this electron gas can be tuned over more than four ord
of magnitude by pressurizing the liquid helium5 and this tun-
ability would make the observation of a hexatic phase4 and
the quantum melting of a ripplopolaron Wigner lattice6,7 ex-
perimentally feasible. For these investigations, both theo
ical and experimental, the question of the stability of mu
electron bubbles is of crucial importance. In this paper,
results reported in a recent letter5 on the pressure dependen
of the frequency of the modes of deformation of an MEB a
discussed in the framework of new results obtained using
Bohr model for fissioning.8

The energy and the radius of a multielectron bubble w
N electrons can be estimated by balancing the surface ten
with the electrostatic Coulomb repulsion.9 In this approxima-
tion, the energy of the MEB is proportional toN4/3, so that
the energy of a single bubble withN electrons is larger than
the energy of two bubbles at infinite distance and withN/2
electrons each. The lower energy of the fissioned bubble
led to speculations about the stability of multielectr
bubbles. Since MEB’s withN up to 108 were observed
experimentally,1,2 albeit in a transient manner~lasting a few
msec!, there must exist a formation barrier preventing t
fissioning of MEB’s. Early investigations ruled out gravit
tionally induced instabilities and tunneling decay of t
bubbles as possible fissioning mechanisms.9 Salomaa and
Williams10 considered dynamical stability against ‘‘boilin
off’’ a single electron from a multielectron bubble and foun
stability against this type of fission for bubbles withN
.15–20.

Preceding studies of the small amplitude oscillations
the bubble shape10,5 have shown that the quadrupole mode
0163-1829/2003/67~3!/035402~8!/$20.00 67 0354
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oscillation has a vanishing frequency when no pressur
applied on the liquid helium. Furthermore it was shown th
with increasing positive pressure successive modes ca
driven to a vanishing frequency.5 The amplitude of modes o
deformation that have a vanishing frequency can grow u
they become of the order of the bubble radius. This de
mational instability can lead to fissioning of the bubb
Salomaa and Williams10 have investigated the dynamics o
this deformational instability using coupled Rayleigh-Ples
equations for the deformation amplitudes and the bubble
dius, and found that when the initial amplitude of the qua
rupole mode of deformation is larger than;6% of the
bubble radius, the amplitude of the oscillation keeps grow
as a function of time. However, their method is not va
when the oscillation amplitude becomes comparable to
radius of the bubble; hence we need to develop a new
proach to describe the fission process.

II. THE BOHR MODEL FOR FISSIONING
MULTIELECTRON BUBBLES

In this paper, we apply the Bohr liquid-drop model
fissioning nuclei8 to MEB’s. This method is valid for both
small and large amplitude deformations of atomic nuclei a
describes the nucleus as a charged droplet with surface
sion. It was recently successfully improved to derive t
fragment mass asymmetries in nuclear fission.11 In such
models of nuclear fission, and similar models for the bre
ing up of homogeneously charged liquid droplets, an
proximation is used to calculate the properties of the fiss
process. This approximation consists of describing the
face of the splitting nucleus~or droplet! in terms of two or
three quadratic forms~spheroids and hyperboloids!. Such a
surface is parametrized in cylindrical coordinates through

r5H AaL2bL~z2 f L!2 for z0<z<z1

AaM2bM~z2 f M !2 for z1<z<z2

AaR2bR~z2 f R!2 for z2<z<z3

~1!

whereai is the square of the semimajor axis of the spher
along the radial direction. For a hyperboloid,ai is negative
( i 5L,M ,R); bi is the deformation parameter: the square
©2003 The American Physical Society02-1
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radial semimajor axis divided by the square of the longitu
nal semimajor axis;f i is the center of the spheroid~hyper-
boloid!; z05 f L2aL /AbL is the leftmost point of the shape
z35 f R1aR /AbR is the rightmost point of the shape.

These parameters are illustrated in Fig. 1. The surf
determined by Eq.~1! describes the shape of the bubble a
allows to investigate both spheroidal bubbles and emerg
spheroidal fragments. The shape parameters$aL ,aM ,aR%,
$bL ,bM ,bR%, $ f L , f M , f R%, $z1 ,z2% are not independent i
one imposes continuity and continuous derivatives at
meeting points of the quadratic forms. These conditions,
gether with fixing the origin atz0 to remove translations
from the set of shape changes under consideration, allow
eliminate five of the eleven variables. The six independ
parameters that are kept in our treatment a
aL , bL , aR , bR , f R2 f L , and z1. For a droplet of incom-
pressible fluid, there would be another constraint~that of
fixed volume! to remove one more parameter, but in the ca
of MEB’s the volume does not have to remain constant d
ing deformations.5

Within this model, an expression for the energy of
bubble with a given shape~fixed by choosing the shape pa
rametersaL , bL , aR , bR , f R2 f L, and z1) is obtained. The
stable shape of the bubble is found by minimizing the ene
as a function of the shape parameters—the shape param
set up a ‘‘shape space.’’ Both the case of the spherical,
split bubble and the case of a bubble split in two fragme
can be described with appropriate shape parameters, so
two cases can be represented by distinct points in the s
space. The dynamics of the fissioning of the multielect
bubble can then be studied by determining the energy a
the trajectories in shape space which go from the point r
resenting the spherical, unsplit bubble to the point repres
ing a bubble split in two. The unsplit bubble may have
higher energy than the fissioned bubble, but if there is
energy barrier along each trajectory in shape space, then
single bubble is metastable with respect to fissioning. T

FIG. 1. The model shape for a fissioning MEB consists of th
quadratic forms, for example two spheroids connected by a hy
boloidal neck as illustrated in this figure. The relation between
model shape and the parameters used in the text, expression~1!, is
shown in this figure.
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height of the energy barrier along the optimal fissioning t
jectory is the metastability energy barrier.

In Sec. III we set up the expression for the energy o
bubble with given shape parameters~the energy of a given
point in shape space!. In Sec. IV, we discuss the results of th
minimization of the energy in shape space and the results
the optimal trajectory for fissioning of a multielectro
bubble.

III. ENERGY OF A DEFORMED MEB

The energy of an MEB is determined as a function of t
shape of the bubble by three contributions:~i! the surface
tension energyEs5sS, where s53.631024 J/m2 is the
surface tension of liquid helium andS is the bubble surface
~ii ! the pressure-related energyEp5pV, wherep is the ~ex-
perimentally tunable! difference in pressure inside and ou
side the bubble andV is the volume of the MEB; and~iii ! the
electrostatic repulsion energyEC of the electrons. The firs
two terms are easily evaluated since the surface and vol
of the bubble are related straightforwardly to the shape
rameters. The surface is given by

S5 (
i 51,2,3[L,M ,R

pE
zi 212 f i

zi2 f i Aai1bi~bi21!x2dx, ~2!

where in the case of split bubbles (bM,0 andaM,0) the
integration domain should not include the region of space
between the bubble fragments. The volume is

V5E
f L2AaL /bL

f R1AaR /bR
dzpr2~z!, ~3!

where the cylindrical radiusr(z) is given by Eq.~1!. The
integral in expression~3! is a piecewise sum of integrals o
the type

E
za

zb
p@a1b~z2 f !2#dz

5pa~zb2za!2
b

3
@~zb2 f !32~za2 f !3#. ~4!

The evaluation of the electrostatic energy is greatly sim
fied by the observation12 that the quantum mechanical co
rection ~the exchange term! is negligible for the determina
tion of the total electrostatic energy. Furthermore t
electrons in the bubble are not smeared out throughout
bubble volume, but remain in a nanometer thin, effectiv
two-dimensional layer anchored to the helium surface.9,10

This layer conforms to the helium surface also when
bubble deforms.10 We will assume that the surface density
electrons is homogeneous along the surface and equalns
5N/S, whereN is the number of electrons andS is the area
of the deformed bubble. Some justification of this assum
tion comes from a recent calculation of the coupled ripplo
phonon modes of oscillation of an MEB.6 In the calculation
of Ref. 6, the coupling between the modes of deformation
the helium surface~‘‘ripplons’’ ! and the redistribution of the
surface density of electrons~‘‘phonons’’! was investigated,
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and it was derived that this coupling was weak enough no
affect strongly the oscillation frequencies of ripplons a
phonons. Within the assumptions described in this paragr
we may write the electrostatic repulsion energy as

EC5E d3rE d3r 8
~nse!.~nse!

«ur2r 8u
~5!

5
~2pnse!2

« E
z0

z3
dzE

z0

z3
dz8

2

pE0

`

dk cos@k~z2z8!#

3I 0~kr,!K0~kr.!r~z!r~z8!, ~6!

wherer,5min@r(z),r(z8)# is the smallest of the two cylin
drical radii andr.5max@r(z),r(z8)# is the largest.I 0 is the
modified Bessel function of the first kind with index 0, an
K0 is the modified Bessel function of the second kind w
index 0.

The total energy of a deformed bubble with given sha
parameters is then given by

E5sS1pV1EC . ~7!

Expressions~2!, ~3!, and~5! allow to calculate the total en
ergy E of the bubble for any point in the shape space d
cussed in the preceding section. In Ref. 5 the energy o
MEB undergoing small-amplitude oscillations was calc
lated. The total energy~7! of the deformed bubble used in th
present treatment agrees perfectly with the results of Re
in those cases where both the approaches are applicable.
the equilibrium radius of a spherical bubble, obtained
minimizing the expression~7! with respect to the radius, ob
viously agrees with the result of Ref. 5.

IV. RESULTS AND DISCUSSIONS

To describe the fissioning of the bubble through a sh
deformation, we will investigate the trajectory in shape sp
that has the lowest energy and that starts from the sphe
bubble with equilibrium diameterd5z32z052Rb . The
equilibrium radiusRb for the spherical bubble withN elec-
trons can be found by minimizing

Espherical54psRb
21

4p

3
pRb

31
N2e2

2«Rb
. ~8!

Whenp50, this radius isRb5A3 N2e2/(8p«s) ~for example,
with N5104 electrons in the bubble,Rb51.064mm). To
investigate the presence of an energy barrier stabilizing
MEB against fissioning, we calculate the minimum ene
~and shape! of a bubble as a function ofd5z32z0, the elon-
gation of the shape along the axis of symmetry~see Fig. 1!.

A. Zero pressure

The results of this minimization are shown in Fig. 2, f
an MEB with N5104 electrons atp50. For every given
value of d ~the x axis!, the shape parameter
aL , bL , aR , bR , f R–f L , z1 are varied under the constrain
z32z05d. The optimal variational energy per electronE/N
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given by expression~7! is shown in Fig. 2, along with the
optimal variational shape for some selected points~marked
by A,B,E!.

At d52Rb , we find that the optimal shape is a spheric
bubble~the point marked byA in Fig. 1!. At increasedd, the
optimal bubble shape becomes ellipsoidal~for example,
point B). The energy as a function ofd, for d,3.012mm, is
independent ofd. This is in agreement with previous resul
on the frequency of the vibrational modes of the bubble.10,5

The eigenmodes of vibration of the bubble surface are ch
acterized by spherical harmonic mode numbers$,,m%, and
the eigenfrequencies~at p50) are given by10,5

v~, !5A s

rRb
3 ~,22!~,221!. ~9!

The deformation corresponding to pointB in Fig. 2 is an,
52 eigenmode of the system. This mode has zero freque
according to expression~9!. This means that it does not co
energy to introduce small amplitude,52 deformations of
the bubble, and the energy should remain constant as a f
tion of d, as it does~see Fig. 2!.

The curve representing the minimum variational energy
a function of d has a sudden change of slope neard
53.012mm. The inset shows more results near this po
We found that near this point two different minima exis
corresponding to two topologically distinct shapes. On
horizontal part of the curve~dashed line containing pointB
or pointC in the inset of Fig. 2! the shape is an ellipsoid. O
the curve with negative slope~full curve containing pointE
or point D in the inset of Fig. 2!, the optimal shape is a
bubble split up into two fragments withN/2 electrons in each
of the fission fragments. These two topologies compete
the global minimum. Ford.3.012mm, the fissioned bubble
has lower energy: pointD is lower in energy than pointC.

Let’s investigate whether there exists some energy bar
stabilizing the elongated bubble of pointC against fission
towards the fissioned shape corresponding toD. To split up
an elongated bubble~C! into fission fragments (D), the
bubble shape has to deform through intermediate shape
those shown in Fig. 3. These intermediate shapes appea
during the fission trace out a trajectory in shape space, s
ing at the point corresponding toC and ending in the point
corresponding toD. This trajectory can be parametrized b
an interpolation parameter which is zero at the starting po
~C! and 1 at the endpoint (D). The energy of the intermedi
ate shape as a function of the interpolation paramete
shown in Fig. 3. It is clear that the two minima~elongated
bubble, interpolation parameter50, and split-up bubble, in-
terpolation parameter51! are separated by an energy barri
of the order of 0.2 eV per electron. During the process
fission, the elongated bubble has to be deformed to create
neck between the fission fragment and the parent bub
This deformation must involve high-, modes of deforma-
tions, which cost energyv(,).0. This gives rise to the
energy barrier shown in Fig. 3.

At this point it is also possible to clarify why the mai
limitation of the Bohr model of fissioning does not affect o
result. This limitation is that only the splitting off of a singl
2-3
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FIG. 2. ~Color! The minimum variational energy per electron~in eV! of anN5104 electron MEB atp50 is shown as a function of the
bubble elongationd ~microns!. This energy is obtained by minimizing expression~7! with respect to the shape parameters illustrated in F
1, and subject to the constraintz32z05d. The symbols~squares and diamonds! are the results of the minimization and the curves are gui
for the eye. For some points of interest (A,B,E) the corresponding shape of the bubble is illustrated. Two bubble shapes compete
minimum energy: an elliptically elongated bubble~points on the dashed curve! and the fissioned bubble~points on the full curve!. For d
,3.012mm the elongated bubble is the minimum energy shape whereas for largerd the fissioned bubble is the minimum energy shape
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fragment—albeit of any size—can be described. A fission
process whereby the bubble splits in three or more parts
not be modelled realistically using only three quadratic s
faces. Nevertheless it is clear that such a fissioning pro
would involve high-, modes of deformation: the more frag
ments appear at the surface, the more complicatedly it ha
be deformed. Such a fissioning process would therefore
quire even higher energy and its realization would be m
less likely. Note that the size of the fission fragments (N/2)
is in agreement with expression~8! for the energy of a
spherical bubble,Espherical(N)}N4/3. This can be easily
shown from minimizingEspherical(m)1Espherical(N2m) with
respect to the optimal fragment sizem.

B. Effect of positive pressure

In Ref. 5, it was shown that with increasing pressu
more and more eigenmodes of the bubble deformation ob
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vanishing frequencies. The pressure dependence of the
quency of these modes is given by5

v~, !5A,11

rRb
3 Fs~,21,12!12pRb2

N2e2

4p«Rb
3
,G ,

~10!

where Rb is now the equilibrium radius under pressur
which satisfies 2pRb14s5e2N2/(4p«Rb

3). The effect of
positive pressure is such that some modes of deforma
become ‘‘soft’’~i.e., have vanishing frequency!: for example,
for a bubble with 104 electrons at p53 mbar (Rb
50.95mm) the ,52 and ,53 modes of deformation are
unstable.5

Figure 4 shows the result for the minimum variation
energy of a bubble with 104 electrons atp53 mbar (Rb
50.95mm) as a function of the elongationd. As the bubble
deforms~along the curve containing pointsA,B,C, in Fig.
2-4
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FIG. 3. ~Color! When a 104 electron MEB at zero pressure is elongated more thand53.012mm, the minimization of the total energy
shows that it becomes energetically favorable to split the bubble in two equal fragments. However, in order to fission the elongate
it has to deform in such a way that a neck develops where the bubble can split in two. These intermediate shapes of the bubble
in energy than either the elongated shape~C! or the split bubble (D), and give rise to the presence of an energy barrier. PointsC andD in
this figure correspond to those of Fig. 2; the fission process traces out a trajectory in shape space connectingC andD and parametrized by
an interpolation parameter ranging from 0~C! to 1 (D).
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4!, its energy decreases. Also, in contrast with the ze
pressure case, the lowest-energy shape ford,2.68mm ex-
hibits deformations with both,52 and,53 character. This
is in agreement with Eq.~10!.

Again two bubble topologies compete for the global mi
mum: the solution where the shape is a singly connec
surface~squares in Fig. 4!, and the solution where the bubb
is split in two fragments ~circles in Fig. 4!. For d
,2.68mm the singly connected, unsplit bubble has t
lower energy, whereas at largerd, the fissioned bubble ha
lower energy.

The availability of higher angular momentum mod
~such as,53) allows the MEB to deform to create a ‘‘neck
connecting an emergent fission fragment with the ‘‘pare
bubble, without increasing the total energy of the bubble
the inset of Fig. 4, we show the variational energy of t
intermediate shapes assumed by the bubble during a fis
process going from pointC to point D in Fig. 4. The ‘‘inter-
polation parameter’’ traces out the trajectory in shape sp
during the fission process, as described in the discussio
Fig. 2 in the previous subsection. The energy barrier wh
was present in the case of zero pressure is no longer pre
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and we conclude that pressurized MEB’s are unstable w
the pressure is high enough to drive,.2 modes unstable.

In Ref. 5 it was shown that the pressure at which a p
ticular mode of deformation becomes unstable, is larger
bubbles with fewer electrons. Thus, when the pressure
raised so as to make a bubble withN electrons unstable an
fission that bubble, the resulting fission products withN/2
electrons may still be metastable. To fission also those fr
ments the pressure needs to be raised further.

C. Effect of negative pressure

Liquid helium can sustain a negative pressure of29 bar
(61 bar! before it cavitates.13 Here, a negative pressure o
the MEB means that the force associated with this pressu
directed outward, away from the bubble center. Shikin9 esti-
mated in a simplified model that MEB’s with a radius larg
than the zero-pressure equilibrium radiusRb(p50) may be
metastable in the sense that there exists a restoring f
which counteracts small deformations. Salomaa a
Williams10 found that the nonlinear coupling between t
2-5
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FIG. 4. ~Color! The minimum variational energy per electron of anN5104 electron MEB atp53 mbar is shown as a function of th
bubble elongationd ~in micron!. For some points of interest (A,B,C,D), the bubble shape is illustrated. In the inset, the energy is show
a function of the interpolation parameter which takes the shape parameters from pointC into those from pointD. Comparing this figure with
Figs. 2 and 3, it is clear that the bubble now can decrease its energy monotonically while splitting: applying a positive pressure,
.2 modes of deformation obtain a vanishing frequency can remove the energy barrier and make the MEB unstable.
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radial mode of oscillation and the deformational modes
oscillation may lead to a small increase in the time-avera
radius, stabilizing the bubble. A straightforward way to i
crease the bubble radius is by applying negative pressur
Ref. 5 we showed that for negative pressures all the eig
modes of deformation acquire a positive frequency.

The liquid-drop model of fission allows to describe defo
mations beyond the small-amplitude region of validity of t
Rayleigh-Plesset equations used in Ref. 10. Figure 5 sh
the result of negative pressures on the shape and fissionin
the bubble. The variational minimum energy is again sho
as a function of the elongation along the axis of symme
d5z32z0, for a bubble withN5104 electrons atp523
mbar (Rb51.5 mm). In contrast to unpressurized MEB
and MEB’s at positive pressure, now three geometries c
pete for the global minimum instead of two:~A! an ,52
deformed bubble,~B! the split-up bubble, and~C! a spherical
bubble with expanded radius. To deform the bubble from a
of these three shapes into another, intermediate shapes
to be assumed and an energy barrier will be present lik
the case of zero pressure.
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But, apart from this energy barrier, another energy bar
is present: from the increase of the energy with increasind
in Fig. 5, it is clear that there is a restoring force for sma
amplitude deformations. This restoring force was absent
p50 ~compare Fig. 5 with Fig. 2! and in the case ofp.0
the force was of opposite sign and driving the instabil
~compare Fig. 5 with Fig. 4!. The restoring force is related t
the lowest frequency of the eigenmodes,v(,52) which be-
comes positive at negative pressures, as derived in Re
The restoring force results in an additional energy barrier
0.15 eV per electron in the case studied here. We empha
that the additional energy barrier related to the intermed
bubble shapes~as illustrated by Fig. 3 for thep50 case! is
present also at negative pressures~but not at positive pres-
sures large enough to drive,.2 modes to zero frequency!.

Note furthermore that, if there is a driving force whic
can excite the deformation to large amplitude and overco
the barriers, the MEB may be destroyed in one of two wa
either by fissioning of the bubble, after which the fissi
fragments move away from each other, or the MEB m
keep expanding until it fills a volume large enough to cou
2-6



e
e
nal
e

FISSION OF MULTIELECTRON BUBBLES IN LIQUID HELIUM PHYSICAL REVIEW B67, 035402 ~2003!
FIG. 5. ~Color! The minimum variational energy per electron of anN5104 electron MEB atp523 mbar is shown as a function of th
bubble elongationd5z32z0 ~in micron!. Three geometries compete for the global minimum: the,52 mode of deformation of the bubbl
~point A), the split bubble~point B) and the spherical bubble with large radius~point C). At negative pressure, there exists an additio
energy barrier associated with a restoring force which prevents small-amplitude deformations (d,4 mm) from growing. The inset shows th
region near the maximum of the energy barrier in more detail.
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teract the negative pressure~i.e., the MEB serves as a nucle
ation center for cavitation!.

V. CONCLUSIONS

In this paper, the liquid drop model of fissioning was a
plied to the problem of multielectron bubbles in liquid h
lium. We found that, even though there exists, atp50, a
mode of deformation which can grow without increasing t
total energy of the bubble, there is still an energy barr
present which prevents fissioning of the bubble. This bar
was explained by the intermediate shapes that the fissio
bubble has to assume in order to create a neck betwee
emerging fission fragment and the parent bubble. These
termediate shapes involve eigenmodes of deformation w
cost substantial energy~0.2 eV per electron for a 10 00
electron bubble!. At positive pressure, these higher angu
momentum modes can obtain a vanishing frequency as
cussed in Ref. 5, and this causes the energy barrier to va
and the bubble to become unstable. However, at nega
pressure, when all the modes of deformation have a non
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nishing frequency, there is an additional element of stabi
in that there is a restoring force which counteracts sm
amplitude deformations. The present study, based on the
uid drop model, independently confirms and extends the c
clusions presented in a previous letter,5 namely, that a posi-
tive pressure can make the MEB unstable, whereas a s
negative pressure makes the MEB metastable against fis
The additional result presented in this paper is that also
zero pressure the MEB is metastable.
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