PHYSICAL REVIEW B 67, 035402 (2003

Fission of multielectron bubbles in liquid helium
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The stability of multielectron bubble®EB’s) in liquid helium is investigated using the liquid-drop model
for fissioning nuclei. Whereas a critical positive pressure can make the bubble unstable against fissioning, a
small negative pressure suffices to introduce a restoring force preventing any small deformation of the bubble
to grow. We also find that there exists an energy barrier making MEB'’s metastable against fissioning at zero
pressure. The results obtained here overcome the difficulties associated with the Rayleigh-Plesset equation
previously used to study bubble stability, and shed new light on the limits of achievable bubble geometries in
recently proposed experiments devised to stabilize MEB'’s.
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I. INTRODUCTION oscillation has a vanishing frequency when no pressure is
applied on the liquid helium. Furthermore it was shown that
Multielectron bubbles(MEB’s) are fascinating entities Wwith increasing positive pressure successive modes can be
which appear when a surface of bulk helium covered by alriven to a vanishing frequencyThe amplitude of modes of
two-dimensional2D) film of electrons becomes unstaBlé. deformation that have a vanishing frequency can grow until
MEB’s are cavities in the liquid helium, filled with electrons they become of the order of the bubble radius. This defor-
that form a 2D spherical layer at the inner surface of themational instability can lead to fissioning of the bubble.
bubble. Recent proposals to stabilize MEBRave stimu- Salomaa and Williamt8 have investigated the dynamics of
lated theoretical investigations into its propertlésince this  this deformational instability using coupled Rayleigh-Plesset
system holds the promise of studying the electron gas in &quations for the deformation amplitudes and the bubble ra-
controlled way, bereft from material impurities. The densitydius, and found that when the initial amplitude of the quad-
of this electron gas can be tuned over more than four ordergipole mode of deformation is larger than6% of the
of magnitude by pressurizing the liquid helitiand this tun-  bubble radius, the amplitude of the oscillation keeps growing
ability would make the observation of a hexatic pffased  as a function of time. However, their method is not valid
the quantum melting of a ripplopolaron Wigner latfiéex- ~ when the oscillation amplitude becomes comparable to the
perimentally feasible. For these investigations, both theoretradius of the bubble; hence we need to develop a new ap-
ical and experimental, the question of the stability of multi- proach to describe the fission process.
electron bubbles is of crucial importance. In this paper, the

results reported in a recent left@n the pressure dependence Il. THE BOHR MODEL FOR FISSIONING

of the frequency of the modes of deformation of an MEB are MULTIELECTRON BUBBLES

discussed in the framework of new results obtained using the . -

Bohr model for fissioning. In this paper, we apply the Bohr liquid-drop model of

The energy and the radius of a multielectron bubble Withfissicl)lnin% lnucléi to '\I/_lEE’SaTPiS me_thod ifs vaIi(_j for tl)o_th d
N electrons can be estimated by balancing the surface tensi all and large amp ltude deformations o ator_mc nuciei an
with the electrostatic Coulomb repulsidin this approxima- _escrlbes the nucleus as a chargeq droplet with surface ten-
tion, the energy of the MEB is proportional d%3, so that sion. It was recently successfully improved to derive the
the energy of a single bubble witk electrons is larger than fragment mass asymmetries in r_luclear fissforn such
the energy of two bubbles at infinite distance and hitt2 models of nuclear fission, and similar models for the break-

electrons each. The lower energy of the fissioned bubble hdgg up qf hqmogeneously charged liquid (_jroplets, an ap-
led to speculations about the stability of multielectron Proximation is used to calculate the properties of the fission

bubbles. Since MEB's withN up to 16 were observed process. This approximation consists of describing the sur-
experimentally;? albeit in a transient mannélasting a few face of the splitting nucleuéo_r drople} in terms of two or
mseg, there must exist a formation barrier preventing thethree qu_adratlc forméspherom!s a_nd hyperb_olowsSuch a
fissioning of MEB's. Early investigations ruled out gravita- surface is parametrized in cylindrical coordinates through

tionally induced instabilities and tunneling decay of the \/ﬁ <7<

bubbles as possible fissioning mechaniSn8alomaa and a-bi(z-T) for - z=z=2,
Williams®® considered dynamical stability against “boiling p=1 Vay—bu(z—fy)? for z;szs<z, (1)
off” a single electron from a multielectron bubble and found Jap—bg(z—fr)? for z,<z<z

stability against this type of fission for bubbles witk 3R~ br(z=1r) 2 ’

>15-20. wherea; is the square of the semimajor axis of the spheroid

Preceding studies of the small amplitude oscillations ofalong the radial direction. For a hyperbologl, is negative
the bubble shap&®have shown that the quadrupole mode of (i=L,M,R); b; is the deformation parameter: the square of
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] height of the energy barrier along the optimal fissioning tra-
5 _\ jectory is the metastability energy barrier.

S In Sec. Il we set up the expression for the energy of a
Yy @020 T 2 h bubble with given shape parametétke energy of a given
(@q) point in shape spageln Sec. IV, we discuss the results of the
of minimization of the energy in shape space and the results for
the optimal trajectory for fissioning of a multielectron

bubble.

(a/mb) " f

p(z) (um)

e (ay/b,) "

- ~

4l Ill. ENERGY OF A DEFORMED MEB

The energy of an MEB is determined as a function of the
shape of the bubble by three contributioris: the surface
2 (um) tension energyE,= oS, where o=3.6x10 % J/In? is the
surface tension of liquid helium arf8lis the bubble surface,
FIG. 1. The model shape for a fissioning MEB consists of three(ii) the pressure-related energy=pV, wherep is the (ex-
quadratic forms, for example two spheroids connected by a hypemperimentally tunabledifference in pressure inside and out-
boloidal neck as illustrated in this figure. The relation between theside the bubble and is the volume of the MEB; andii ) the
model shape and the parameters used in the text, expred$ios  electrostatic repulsion enerdy. of the electrons. The first
shown in this figure. two terms are easily evaluated since the surface and volume
of the bubble are related straightforwardly to the shape pa-

radial semimajor axis divided by the square of the longitudi-rameters. The surface is given by
nal semimajor axisf; is the center of the spheroithyper-

i—fi
boloid); zo=f, —a, /\b, is the leftmost point of the shape; s= > sz Ja+bi(b—1)xZ4dx, (2
z3=fr+agr/\bg is the rightmost point of the shape. I=123=LMR - Jz_4-f;

These parameters are illustrated in Fig. 1. The surfacgnhere in the case of split bubbleb{<0 anda, <0) the
determined by Eq(1) describes the shape of the bubble andintegration domain should not include the region of space in
allows to investigate both spheroidal bubbles and emergingetween the bubble fragments. The volume is
spheroidal fragments. The shape paramefegs,ay ,ag},

{by by, brt, {fL.fm.fr}, {21,22} are not independent if V_J'fRﬂW
one imposes continuity and continuous derivatives at the §
meeting points of the quadratic forms. These conditions, to-

gether with fixing the origin atz, to remove translations Where the cylindrical radiup(z) is given by Eq.(1). The
from the set of shape changes under consideration, allows {gtegral in expressioii3) is a piecewise sum of integrals of
eliminate five of the eleven variables. The six independentn® type

parameters that are kept in our treatment are: 2

a_,b ,ar,bg, fg—f_, and z;. For a droplet of incom- f mla+b(z—f)?]dz

pressible fluid, there would be another constrdihiat of Z3

fixed volume to remove one more parameter, but in the case b

of MEB'’s the volume does not have to remain constant dur- =ma(z,—2)— =[(zo— )3—(z,—D3]. (@)
ing deformations. 3

Within this model, an expression for the energy of aThe evaluation of the electrostatic energy is greatly simpli-
bubble with a given shapéixed by choosing the shape pa- fied by the observatidA that the quantum mechanical cor-
rametersa, , b, , ar, bg, fr—f, andz;) is obtained. The rection (the exchange teris negligible for the determina-
stable shape of the bubble is found by minimizing the energyion of the total electrostatic energy. Furthermore the
as a function of the shape parameters—the shape parametetectrons in the bubble are not smeared out throughout the
set up a “shape space.” Both the case of the spherical, urbubble volume, but remain in a nanometer thin, effectively
split bubble and the case of a bubble split in two fragmentdwo-dimensional layer anchored to the helium surfat®.
can be described with appropriate shape parameters, so theBais layer conforms to the helium surface also when the
two cases can be represented by distinct points in the shaeibble deforms? We will assume that the surface density of
space. The dynamics of the fissioning of the multielectrorelectrons is homogeneous along the surface and equal to
bubble can then be studied by determining the energy along N/S, whereN is the number of electrons ar®is the area
the trajectories in shape space which go from the point repef the deformed bubble. Some justification of this assump-
resenting the spherical, unsplit bubble to the point represention comes from a recent calculation of the coupled ripplon-
ing a bubble split in two. The unsplit bubble may have aphonon modes of oscillation of an MEBIn the calculation
higher energy than the fissioned bubble, but if there is amf Ref. 6, the coupling between the modes of deformation of
energy barrier along each trajectory in shape space, then tliee helium surfacé“ripplons” ) and the redistribution of the
single bubble is metastable with respect to fissioning. Thesurface density of electron$phonons”) was investigated,

dzmp*(2), ()

L—\a /b,
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and it was derived that this coupling was weak enough not tgiven by expressiori7) is shown in Fig. 2, along with the
affect strongly the oscillation frequencies of ripplons andoptimal variational shape for some selected poimsirked
phonons. Within the assumptions described in this paragrapby A,B,E).

we may write the electrostatic repulsion energy as At d=2Ry,, we find that the optimal shape is a spherical
bubble(the point marked by in Fig. 1). At increased, the
3 3. ,(NL).(NL) optimal bubble shape becomes ellipsoidédr example,
EC:f d rf d°r W (®)  pointB). The energy as a function df for d<3.012xm, is

independent ofl. This is in agreement with previous results

(2mne)? (5 [z 2 [ on the frequency of the vibrational modes of the butiffe.

:—Sj dzj dz’—f dkcogk(z—2')] The eigenmodes of vibration of the bubble surface are char-
€ 2y ) m™Jo acterized by spherical harmonic mode numbgtsn}, and

, the eigenfrequencie@t p=0) are given b}’*
X1o(kp )Ko(kp-)p(2)p(2)), ©) genfrequenciegit p=0) are given by

where p_-=min[p(2),p(Z')] is the smallest of the two cylin- B \/i _ 2

dricgl_radii andp>=m§\>{p(z),p(z’)_] is the Iar.ge.stlo is the w(t)= pRﬁM 2)(E"-1). ©)
modified Bessel function of the first kind with index 0, and . _ o .

K, is the modified Bessel function of the second kind with The deformation corresponding to poitin Fig. 2 is anf

index 0. =2 eigenmode of the system. This mode has zero frequency
The total energy of a deformed bubble with given shapeaccording to expressiof®). This means that it does not cost
parameters is then given by energy to introduce small amplitude=2 deformations of
the bubble, and the energy should remain constant as a func-
E=0S+pV+E;. (7)  tion of d, as it doegsee Fig. 2

i The curve representing the minimum variational energy as
Expressiong2), (3), and(5) allow to calculate the total en- a function of d has a sudden change of slope nehr

ergy E of the bubble for any point in the shape space dis-_3 415 ,m. The inset shows more results near this point.
cussed in the preceding section. In Ref. 5 the energy of afje found that near this point two different minima exist,

MEB undergoing small-amplitude oscillations was caIcu—COrres ; ; -
: ponding to two topologically distinct shapes. On the
lated. The total energ§?) of the deformed bubble used in the horizontal part of the curvédashed line containing poir&

present treatment agrees perfectly with the results_ of Ref. 3, pointC in the inset of Fig. 2the shape is an ellipsoid. On
in those cases where both the approaches are applicable. Al curve with negative slopéull curve containing poinE
the equilibrium radius of a spherical bubble, obtained byor point D in the inset of Fig. 2 the optimal shape is a

minimizing the expressioh?) with respect to the radius, ob- bubble split up into two fragments witki/2 electrons in each
viously agrees with the result of Ref. 5. of the fission fragments. These two topologies compete for
the global minimum. Fod>3.012 um, the fissioned bubble
IV. RESULTS AND DISCUSSIONS has lower energy: poirD is lower in energy than poin.

Let’s investigate whether there exists some energy barrier
tabilizing the elongated bubble of poi@t against fission
(Iﬁwards the fissioned shape correspondin@®tdo split up
an elongated bubbléC) into fission fragments ), the
bubble shape has to deform through intermediate shapes, as
those shown in Fig. 3. These intermediate shapes appearing
during the fission trace out a trajectory in shape space, start-

_ A N2e2 ing at the point corresponding © and ending in the point
EsPhenica 4 7o R2+ ——pR3+ —-. (8)  corresponding td. This trajectory can be parametrized by
3 2eRy an interpolation parameter which is zero at the starting point

Whenp=0, this radius iR,=3/N?e%/(8 e o) (for example, (C) and 1 at the endpoint)). The energy of the intermedi-
with N=10" electrons in the bubbleR,=1.064xm). To &€ shape as a function of the interpolation parameter is
investigate the presence of an energy barrier stabilizing th&hown in Fig. 3. It is clear that the two mininialongated
MEB against fissioning, we calculate the minimum energyPubble, interpolation parameted, and split-up bubble, in-
(and shapeof a bubble as a function af=z;— z,, the elon- terpolation parameterl) are separated by an energy barrier,

gation of the shape along the axis of symmesge Fig. 1 qf the order of 0.2 eV per electron. During the process of
fission, the elongated bubble has to be deformed to create the

neck between the fission fragment and the parent bubble.

This deformation must involve high-modes of deforma-
The results of this minimization are shown in Fig. 2, for tions, which cost energy(£)>0. This gives rise to the

an MEB with N=10" electrons atp=0. For every given energy barrier shown in Fig. 3.

value of d (the x axig, the shape parameters At this point it is also possible to clarify why the main

a_, by, ar,br, fg—f_,z; are varied under the constraint limitation of the Bohr model of fissioning does not affect our

Z3—25=d. The optimal variational energy per electrefN result. This limitation is that only the splitting off of a single

To describe the fissioning of the bubble through a shape
deformation, we will investigate the trajectory in shape spac
that has the lowest energy and that starts from the spheric
bubble with equilibrium diameted=z;—2z,=2R,. The
equilibrium radiusR,, for the spherical bubble with elec-
trons can be found by minimizing

A. Zero pressure
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FIG. 2. (Color) The minimum variational energy per electréin eV) of anN=10" electron MEB afp=0 is shown as a function of the
bubble elongatiom (microng. This energy is obtained by minimizing expressi@hwith respect to the shape parameters illustrated in Fig.
1, and subject to the constraing— z,=d. The symbolgsquares and diamondare the results of the minimization and the curves are guides
for the eye. For some points of interegt,B,E) the corresponding shape of the bubble is illustrated. Two bubble shapes compete for the
minimum energy: an elliptically elongated bubkifeints on the dashed curvand the fissioned bubbig@oints on the full curve Ford
<3.012um the elongated bubble is the minimum energy shape whereas for thtberfissioned bubble is the minimum energy shape.

fragment—albeit of any size—can be described. A fissioningzanishing frequencies. The pressure dependence of the fre-
process whereby the bubble splits in three or more parts camuency of these modes is given®by
not be modelled realistically using only three quadratic sur-
faces. Nevertheless it is clear that such a fissioning process @) \/€+1
w = -4
pRY

N2e?

would involve high¢ modes of deformation: the more frag- o(£?+€+2)+2pRy— 301
. . 4778 Rb

ments appear at the surface, the more complicatedly it has to (10)

be deformed. Such a fissioning process would therefore re-

quire even higher energy and its realization would be muchvhere R, is now the equilibrium radius under pressure,

less likely. Note that the size of the fission fragmert82)  which satisfies pR,+40=e?N?/(47wsR}). The effect of

is in agreement with expressiof8) for the energy of a
spherical bubble,ESP'C¥N)«<N*3. This can be easily
shown from minimizingesP"®"¥ m) + ESPMeCY N —m) with
respect to the optimal fragment sige

B. Effect of positive pressure

positive pressure is such that some modes of deformation
become “soft”(i.e., have vanishing frequenkyor example,
for a bubble with 16 electrons atp=3 mbar R,
=0.95um) the =2 and{¢=3 modes of deformation are
unstable’

Figure 4 shows the result for the minimum variational
energy of a bubble with TOelectrons atp=3 mbar R,

In Ref. 5, it was shown that with increasing pressure,=0.95um) as a function of the elongatiah As the bubble
more and more eigenmodes of the bubble deformation obtaideforms(along the curve containing poins,B,C, in Fig.
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FIG. 3. (Color) When a 106 electron MEB at zero pressure is elongated more thaB.012 um, the minimization of the total energy
shows that it becomes energetically favorable to split the bubble in two equal fragments. However, in order to fission the elongated bubble,
it has to deform in such a way that a neck develops where the bubble can split in two. These intermediate shapes of the bubble are higher
in energy than either the elongated shé&pgor the split bubble D), and give rise to the presence of an energy barrier. P@rasdD in
this figure correspond to those of Fig. 2; the fission process traces out a trajectory in shape space céhaadiihgnd parametrized by
an interpolation parameter ranging from(©) to 1 (D).

4), its energy decreases. Also, in contrast with the zeroand we conclude that pressurized MEB's are unstable when
pressure case, the lowest-energy shapedfol.68 um ex-  the pressure is high enough to dri¢e>2 modes unstable.
hibits deformations with botli =2 and¢ =3 character. This In Ref. 5 it was shown that the pressure at which a par-
is in agreement with Eq(10). ticular mode of deformation becomes unstable, is larger for
Again two bubble topologies compete for the global mini- bubbles with fewer electrons. Thus, when the pressure is
mum: the solution where the shape is a singly connecteghised so as to make a bubble withelectrons unstable and
surface(squares in Fig. # and the solution where the bubble fission that bubble, the resulting fission products whtr2

is split in two fragments(circles in Fig. 4. For d  glectrons may still be metastable. To fission also those frag-
<2.68um the singly connected, unsplit bubble has thements the pressure needs to be raised further.

lower energy, whereas at largdy the fissioned bubble has
lower energy.

The availability of higher angular momentum modes
(such ag = 3) allows the MEB to deform to create a “neck” o ] ) )
connecting an emergent fission fragment with the “parent”  Liquid helium can sustain a negative pressure-&f bar
bubble, without increasing the total energy of the bubble. I =1 bay before it cavitates’ Here, a negative pressure on
the inset of Fig. 4, we show the variational energy of thethe MEB means that the force associated with this pressure is
intermediate shapes assumed by the bubble during a fissighirected outward, away from the bubble center. SHikisti-
process going from poir to pointD in Fig. 4. The “inter-  mated in a simplified model that MEB’s with a radius larger
polation parameter” traces out the trajectory in shape spacthan the zero-pressure equilibrium radiRg(p=0) may be
during the fission process, as described in the discussion ofietastable in the sense that there exists a restoring force
Fig. 2 in the previous subsection. The energy barrier whichwhich counteracts small deformations. Salomaa and
was present in the case of zero pressure is no longer presek¥jlliams!® found that the nonlinear coupling between the

C. Effect of negative pressure
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FIG. 4. (Color) The minimum variational energy per electron of lds 10* electron MEB atp=3 mbar is shown as a function of the
bubble elongationl (in micron). For some points of interesA(B,C,D), the bubble shape is illustrated. In the inset, the energy is shown as
a function of the interpolation parameter which takes the shape parameters fror@ rimthose from poinD. Comparing this figure with
Figs. 2 and 3, it is clear that the bubble now can decrease its energy monotonically while splitting: applying a positive pressufe so that
>2 modes of deformation obtain a vanishing frequency can remove the energy barrier and make the MEB unstable.

radial mode of oscillation and the deformational modes of But, apart from this energy barrier, another energy barrier
oscillation may lead to a small increase in the time-averaged present: from the increase of the energy with increading
radius, stabilizing the bubble. A straightforward way to in-in Fig. 5, it is clear that there is a restoring force for small-
crease the bubble radius is by applying negative pressure. Bmplitude deformations. This restoring force was absent for
Ref. 5 we showed that for negative pressures all the eigerp=0 (compare Fig. 5 with Fig. 2and in the case gp>0
modes of deformation acquire a positive frequency. the force was of opposite sign and driving the instability
The liquid-drop model of fission allows to describe defor- (compare Fig. 5 with Fig. ¥ The restoring force is related to
mations beyond the small-amplitude region of validity of thethe lowest frequency of the eigenmoded{ =2) which be-
Rayleigh-Plesset equations used in Ref. 10. Figure 5 showsomes positive at negative pressures, as derived in Ref. 5.
the result of negative pressures on the shape and fissioning he restoring force results in an additional energy barrier of
the bubble. The variational minimum energy is again showr0.15 eV per electron in the case studied here. We emphasize
as a function of the elongation along the axis of symmetrythat the additional energy barrier related to the intermediate
d=2z3—2,, for a bubble withN=10" electrons atp=—3  bubble shapeas illustrated by Fig. 3 for the=0 casg is
mbar R,=1.5um). In contrast to unpressurized MEB’s present also at negative pressutest not at positive pres-
and MEB's at positive pressure, now three geometries comsures large enough to drive>2 modes to zero frequenky
pete for the global minimum instead of tw@d) an {=2 Note furthermore that, if there is a driving force which
deformed bubble(B) the split-up bubble, an(C) a spherical can excite the deformation to large amplitude and overcome
bubble with expanded radius. To deform the bubble from anyhe barriers, the MEB may be destroyed in one of two ways:
of these three shapes into another, intermediate shapes hasi¢her by fissioning of the bubble, after which the fission
to be assumed and an energy barrier will be present like ifragments move away from each other, or the MEB may
the case of zero pressure. keep expanding until it fills a volume large enough to coun-
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FIG. 5. (Color) The minimum variational energy per electron of s 10* electron MEB atp= —3 mbar is shown as a function of the
bubble elongatio=z;—z, (in micron). Three geometries compete for the global minimum:#&ke2 mode of deformation of the bubble
(point A), the split bubblg(point B) and the spherical bubble with large radig®int C). At negative pressure, there exists an additional
energy barrier associated with a restoring force which prevents small-amplitude deformdtichg«n) from growing. The inset shows the
region near the maximum of the energy barrier in more detail.

teract the negative pressuiiee., the MEB serves as a nucle- nishing frequency, there is an additional element of stability

ation center for cavitation in that there is a restoring force which counteracts small
amplitude deformations. The present study, based on the lig-
V. CONCLUSIONS uid drop model, independently confirms and extends the con-

clusions presented in a previous lefteramely, that a posi-

_In this paper, the liquid drop model of fissioning was ap-tive pressure can make the MEB unstable, whereas a small
plied to the problem of multielectron bubbles in liquid he- negative pressure makes the MEB metastable against fission.
lium. We found that, even though there exists,pat0, a  The additional result presented in this paper is that also at
mode of deformation which can grow without increasing thezero pressure the MEB is metastable.
total energy of the bubble, there is still an energy barrier
present which prevents fissioning of the bubble. This barrier
was explained by the intermediate shapes that the fissioning ACKNOWLEDGMENTS
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