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Accurate density functional calculations for the phonon dispersion relations of graphite layer
and carbon nanotubes
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Accurate calculations for the phonon dispersion relations of single-wall armchair and zigzag nanotubes are
presented. The calculations are performed using a plane-wave basis set and density functional theory. To ensure
the accuracy of the presented calculations, the phonon dispersion relation of an isolated graphite layer is
calculated and the results are compared to experiment. Errors are small, but some notable discrepancies
between experiment and theory are observed and discussed. For armchair and zigzag nanotubes the dependence
of Raman-active and infrared-active modes on the radius is investigated in detail concentrating on the modes
in the G band. The results are compared to those predicted by the zone-folding method using the calculated
force constants for graphite. We find a general softening of most high-frequency modes and a substantial
lowering of one particular longitudinah; mode in metallic tubes. We associate this mode with the Breit-
Wigner-Fano lines observed usually in metallic tubes. The precise electronic mechanism leading to the soft-
ening of the longitudinaA; mode is discussed in detail.
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[. INTRODUCTION directly used in the determination of the vibrational proper-
ties of nanotubes. Comparedab initio methods, TB meth-

Since the discovery of carbon nanotubesuch attention ods are faster and offer the possibility to treat much larger
has been devoted to the investigation of their vibrationakystems??~*’ But ab initio methods are superior in terms of
properties, experimentally as well as theoretically. Amongtheir predictive capabilities. It has been shown that the pho-
other things, the vibrational spectra are useful for the charnon dispersion relations of diamond and graphite can be pre-
acterization or identification of different nanotubes in experi-dicted within a few percent accuraty-° Such methods have
mental samples. Theoretically, zone-folding techniques werbeen used for nanotubes, but presently always in a rather
used initially for an approximate evaluation of the vibra- approximate fashion: in Ref. 20, for instance, a local basis
tional spectra of carbon nanotubes. Although this approacket method was used for the evaluation of the phonon spec-
yields a good qualitative understanding of manytrum of selected tubes. Although these calculations amply
properties 8 it also has several shortcomings. First, thedemonstrate the feasibility of large-scale first-principles cal-
force constant$FC's) are usually fitted to the experimentally culations for carbon nanotubes, issues like basis set com-
observed phonon dispersion relation of graphiteAny in-  pleteness and accuracy kepoint sampling remain to be ad-
accuracy in the experiment will therefore affect the accuracyressed. This is exemplified by the observation that a
of the predicted frequencies. This problem is particularly seminimal sp® basis set was applied in Ref. 20, and as a result
vere for low-frequency modes, corresponding to the elastiof this approximation, the frequencies of the high-frequency
regime. Additionally, the zone-folding approach neglects curoptical bands were overestimated by approximately
vature effects, and finally the force constants are usually chat00 cm* compared to the experimerig-2!
sen in a very restrictive manner, for instance, such that the Plane-wave calculations are in that respect superior and
full Hessian is the sum of two-atom Hessians, where theseore reliable. For the radial breathing mode, such calcula-
two-atom Hessians are diagonal in a coordinate frame whickions were reported in Ref. 22, and the aim of this work is to
axes are formed bgi) the line connecting the two atom@,) extend these calculations to the full phonon dispersion rela-
a normal to the graphene plane (grapheonee sheet of tions of carbon nanotubes. We also tried to make our calcu-
graphité, and(iii) a vector orthogonal téi) and (ii).>38 lations technically as precise as possidkeppint sampling,

Valence force fields are more general than the zonebasis sefs so that our results are essentially exact in the
folding method, since they allow nonharmonic potential enimits established by the local density approximation. To
ergy surfaces and bending forces. In Ref. 9 the valence forcachieve this aim, we first calculated the force constants and
field model was used with a force field fitted to experimentalthe phonon dispersion relation of a single graphite layer
datal® But it is again questionable whether curvature ef-(Sec. Il B). At this step extensive tests with respect to the
fects(which are not directly included in the fitting data base electron-ion potential and with respect to tkgpoint sam-
are correctly accounted for, and the correct description opling were performed. These calculations also yield a well-
elastic modes is also not necessarily guaranteed. founded set of force constants for graphene that can be used

A completely different route is taken in tight-bindifigB)  for the prediction of the dispersion relations of nanotubes
and ab initio density functional calculations. In the latter, using the zone-folding technique. In Sec. Il C, we present
experiments only serve as a test database, but they are rnbiese phonon dispersion relations for,1if) armchair and
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(n,0) zigzag tubes fon=9-11 andn=7-18, respectively, TABLE I. Comparison of experimental and calculated frequen-

and compare them with exact frozen phonon density func¢i€S Of @ graphite sheet at tfie and M points. Values for *soft
tional calculations. This allows to access how curvature af-P AW and "hard PAW” are the results of calculations with the two
fects the frequencies. We find a general softening of mos‘g'fferent potentials. All values are in cth.

high-frequency modes and a substantial lowering of one par-

ticular longitudinalA; mode in metallic tubes. As discussed Soft PAW Hard PAW Experiment
in our recent work, we associate this mode with the Breit- T’ 890 896 868
Wigner-Fano lines observed with Raman spectroscopy in 1595 1597 15821587°¢
metallic tube$? The electronic mechanism that leads to this
softening is discussed in detail in Sec. IV. We finish with our M 475 476
conclusions in Sec. V. 618 627

636 641

1339 1347

Il. METHODOLOGY 1380 1373
1442 1434

A. First-principles calculations

Our first-principles calculations are based on densityReference 35.
functional theory(DFT) in the local density approximation "@(Ezg,), Refs. 35-37.
(LDA) (see, e.g., Refs. 24 and 28nd employ a plane-wave ‘o(Ei,), Refs. 35 and 38.
basis set®?’ As in our previous work'see Ref. 2Pwe use
the Viennaab initio simulation packagévasp),”***where in For calculating the force constants central differences
the most recent version the interaction between the ions anglere used. One carbon atom was displaced into two direc-
electrons is described by the projector augmented-Wave tions: one in plane and one orthogonal to the plane of the
(PAW) method in the implementation of Kresse and graphite layer. The displacement length was 0.03 A in both
Jouberf* The projector augmented-wave method uses theases. The full Hessian matrix was constructed by using the
exact valence wave functions instead of nodeless pseudsymmetry of the graphite layer.
wave functions usually applied in the context of pseudopo-
tential calculations. This improves the transferability and re-
liability of the potentials. C. Nanotubes

In the present PAW potentials, thes 2nd 2p orbitals are The nanotubes were placed into square-shaped cells, so
treated as valence orbitals and two partial waves are used f@iat neighboring tubes were separatgdat® A vacuum. The
any s andp orbitals. Two carbon potentials were used in theinitial geometry was constructed using the interatomic dis-
present work{(i) a hard potential with a radial cutoff of 1.2 tance as obtained for graphene.
a.u. and 1.5 a.u. for theandp partial waves, respectively,  The geometry of the nanotubes was optimized before per-
and(ii) a soft potential with a radial cutoff of 1.5 a.u. for the forming the FC calculations. In the case of zigzag tubes, the
s and 1.85 a.u. for the partial waves. The hard potential tube radius and the coordinate(coordinate parallel to the
yields accurate results at a plane-wave cutoff of 400 eVtube main axis were optimized simultaneously. The height
whereas the soft potential gives reliable results already at &f the tube supercell was not optimized, but test calculations
plane-wave cutoff of 250 eV. It will be demonstrated that theon narrow tubes show that the difference between the used
soft potential leads to reliable results for the vibration fre-height and the optimal height is less than 1%.
quencies(Table ), and therefore most of the calculations  |n the case of armchair tubes, it turned out that optimizing
presented here were performed with the soft potential.  the radius was sufficient for reducing the forces to a reason-
ably small value. For armchairs the resulting forces were
smaller than 0.08 eV/A per atom, and for zigzag tubes the
forces were less than 0.04 eV/A per atom after geometry

We first optimized the lattice constant of a single graphiteoptimization.
layer and obtained a value af=2.458 A. This corresponds The FC calculations were done using central finite differ-
to a carbon-carbon distanceaf.=1.419 A, which is iden- ences. For calculating thé-point frequencies, we used the
tical to the experimental value of Ref. 32. For the calculationelementary cell only. For the phonon dispersions of selected
of the force constants of the graphite layer, a parallelogramtubes[(10,10) and (10,0)] supercells containing four el-
shaped supercell containing 128 atoms was used. The grapbmentary cells were applied.
ite layers were separated I8 A vacuum. Five irreducible To derive all force constants, it is sufficient to displace a
I'-centeredk points were used to sample the Brillouin zone single atom into three orthogonal directions: parallel to the
(corresponding to a 2424 Monkhorst-Packk-point grid in  tube axis ), towards the center of the tubg)( and parallel
the Brillouin zone of the primitive cell It must be empha- to the tube surfacey). The displacement was 0.03 A, and
sized that such a dengepoint set is required to reduce the we used positive and negative displacements for each direc-
errors to a fraction of a percent. We used a smearing width ofion. The complete set of force constants was calculated ap-
0.6 eV but tests indicate that the results for graphene arglying the symmetry of the tube. A reasonable calculational
fairly insensitive to the width of the smearing function. setup was determined by performing extensive test calcula-

B. Phonon dispersion relation of graphene
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1,4 row (R), (ii) rotation in the second roWA), and (iii ) translation in
the direction of the tube axis in the third roflv).

FIG. 1. Creation of the unit cell of armchair and zigzag nano-Of Dpp). In this section we briefly recapitulate the issues
tubes. Dashed box ig) contains a four-atom graphite unit cell, regafqu glymmetry, focusing on zigzag and armchair
which can be replicated and rolled up in either ¥er Y direction tubes?~®+>3
to form the(b) zigzag or(c) armchair unit cell. The gray stripes in Armchair and zigzag tubes can be built starting from a
(b) and (c) show the rings formed by atoms 1-4. rectangular four atom graphite superc@ig. 1) instead of

the usual parallelogram-shaped two-atom primitive cell. By
i replicating the rectangular unit celltimes along the shorter
tions on several tubgg4,4), (8,0), and (12,0)] and also a o the longer side and rolling it up to form a cylinder one

rectangular graphene supercell corresponding to a zigzaghtains the unit cell oftf,0) zigzag or fi,n) armchair tubes.
tube (14,0). We decided to use 13 irreducikl@oints for  The primitive cell of the nanotube can also be described by
semiconducting zigzag tubes, 33 irreduciklpoints for me-  four coaxial rings with a common radius[compare Figs.
tallic zigzag tubes, and 57 irreducibkepoints for armchair  1(b) and Xc)]. By means of this construction, the symmetry
tubes. The k points in reciprocal coordinates were group of (0,0) and ,n) tubes always contains tti%, group
(0,0n/24)2w/a,, n=0,1,2...,12, for semiconducting zig- &S & subgroup. Since infinitely long armchairr{) and zig-
zag tubes, (0,8/64)2m/a,, n=0,1,2...,32, for metallic 239 _(n,O) tubes also h_ave an inversion center, they have
zigzag tubes, and (0)@112)2m/a,, n=0,1,2...,57, for D,®i symmetry, whera represents the group of the tube

. ) : inversion symmetry:
(metallio armchair tubes. We had to use these ddapeint At the T point, vibrational modes ofr(0) and @,n)

grids in order to describe the electronic states around thg,eq can be classified according to the irreducible represen-
Fermi energy correctly. Although most phonon modes argaiion to (i) 12 A modes, (i) 12 (doubly degeneratecE,

rather insensitive to thé-point sampling, one particular modes, wher is an integer &k<n/2, and, optionally(iii )
mode couples strongly to the electronic states at the Ferng doubly degenerate® modes for evem. The modes can be
energy and changes significantly when the numberkof further characterized by their behavior with respect to inver-
points is reduced. Hence, when we tried to reducetpeint  sion and the twofold axis for rotatiorCg). As follows from
grids, substantial errors were found for this particular modegroup theory’* the A,, and E;, modes are infrared active,
(see Sec. IV. Even with this fine-grained sampling, the ei- while Ay, E;4, andE,q are Raman active. All other modes
genvalue spectrum remains rather coarse around the Fer@ie silent.

level, and this in turn can lead to errors in the determination FOr achiral nanotubes, the displacement patterns can be
of the Fermi energy. To reduce these errors the eigenstat€4Visaged in a simple manner: i@modes all atoms on one
were broadenetsmearegiusing a scheme devised by Meth- of the rings illustrated in Fig. 1 move in phase, either parallel

. to the tube axigz) or radial (perpendicular to the tube axis

fessel and Paxtoft. For the metallic tubes, the parameters ; - ; o
X _ | llel to th I fol , th t |
o0=0.1 eV andN=1 were used throughout the calculations or axial (parallel to the ring In zone folding, the vibrationa

. o o 2 2 frequencies of these modes are identical to the frequency at
since tests indicate that this yields a reasonable description (af] d g y

) - : ) move in exactly the opposite direction.
changed the frequencies by at most 5 ¢mlt is estimated All remaining modes are standing waves on the rings

that this is the typical accuracy of our present caIcuIations.[FigS_ 1b) and 1c)] or on the linegin zone folding, Fig. 3

which follow the same pattern #smodes. They are denoted
asE,, where 4 is the number of nodes of the waveA (
modes can be considered as waves with zero npdgs.
To discuss the differences between zone-folding and exachodes can also be regarded as standing waves, where
ab initio calculations in more detail, we characterized theequals the number of atoms in the ring; i.e., the number of
modes al” according to the symmetry of the nanotubBs,{  nodes is the same as the number of atoms in the ring. Since

D. Symmetry classification of modes in nanotubes
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FIG. 4. Phonon dispersion relation of the graphene sheet. The
solid lines show the results of ttab initio force constant approach
for the soft potential. The open squares represent the reflection
electron-energy-loss spectroscofJEELS data of Oshimeet al.
(Ref. 21 and the solid circles correspond to the high-resolution
electron-energy-loss spectroscoffREELS data of Siebentritt
et al. (Ref. 11).

(6,0) (6,6) We also tested the sensitivity of the phonon dispersion
o . relation to the magnitude of the displacement used in the

FIG. 3. Zone folding in zigza§(5,0), (6,0] and armchaif(5,9, finjte differences. Larger displacements make the results less
(6,6)] tubes. The hexagons indicate the Brillouin zone of a graph|teprone to numerical noise, which is present in the forces, be-
layer. Solid horizontal lines map to the lifgZ in the nanotube. cause the electronic ground state is only determined with
Points that map td’ in the nanotube are indicated with open circles finite precision. But they can spoil the accuracy due to the
and labeled according to the symmetry the corresponding phonona?nharmonicity of the forces. We have found that the dis-
will have in the nanotube. Gray dashed lines are guidelines toplacement can be enlarged from 0.03 A to 0.05 A without a
the eye. noticeable change of the phonon frequencies, if central dif-
ferences are used.

To evaluate the accuracy of our vibrational frequencies,
we compare the calculated dispersion relation with experi-
ments for graphitéFig. 4). It is first noted that modes cor-
Fesponding to a movement of graphite planes with respect to
. . each other are of course not correctly described by the
dOUbIY degenerated for zigzag gnd armchair tUb?S' present calculations, since only a single isolated graphite

An important result of these simple arguments Is (h)aA layer is investigated here. This concerns mainly the experi-
mOdeS do not show a radius dependency in zone f(_)ldlng anﬁental branch with a frequency of 100 chat thel point.

(ii) there are 12 classes O_f Phonon modes in achiral tUbe%ut other frequencies are hardly affected by the interaction
one for eaphA mode(Fig. 2); (ii ). eachE mode cqrrespond_s between graphite planes, as a comparison of the present pho-
to a certf':unA mode, and the dn‘fergnce Of. the‘F respective o, dispersion relation with previous calculations for bulk
frequencies goes towards zero for increasing diameters. graphite showsgsee in particular Ref. 19For the remaining
branches the current calculations are more precise than those
Il. RESULTS presented in Ref. 19, since longer-ranged force constants in
the graphite plane were considered. Table | shows that our
frequencies agree well with the measured Raman modes, al-

The phonon dispersion relation of a single graphite layethough theG mode at 1595 cm® lies roughly 10 cm* too
is shown in Fig. 4, together with a comparison with high. With the present PAW potential and similkipoint
experiment!?*Results for thd” andM point are also shown densities, calculations for buliraphiteyield a frequency of
in Table I. For the graphite layer we tested two different1600 cm ! for the G mode, suggesting that DFT gives the
PAW potentials. The first on¢hard is more accurate but same frequency for th& mode in graphite and graphene.
requires a plane-wave cutoff of 400 eV, whereas the second For the dispersion relation, the agreement between theory
one (soft) yields converged results already at a plane-waveand experiment is generally also very goddg. 4). Along
cutoff of 250 eV. In our test calculations we found that bothI"-K our results agree with experiment within the experimen-
potentials yield almost identical phonon frequencies afithe tal error bars(see scatter of experimental dataThe com-
andM point (Table ) and hence we decided to use the softparison alongl’-M reveals larger discrepancies. M, the
potential for the remainder of this work. frequency of the shear horizont@H) mode is significantly

the waves must be closel8,modes are only present im0)
and (h,n) tubes with evem. In zone folding, theB modes
correspond to the ends of the lines crossinghhpoint (see
Fig. 3). Note that the ends of these lines map to equivalen
points of the graphene Brillouin zone; thus tBenodes are

A. Graphite
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lower than in the experiment. On the other hand, the longithe low- or high-frequency regions. The differences in pho-
tudinal acoustidLA) mode lies above the experimental val- non dispersion resulting from the use of 20 to(28) neigh-
ues. We note that other first-principles calculations are irbors are negligible.
general agreement with our result€®3 which indicates As an additional test for the reliability of the truncated
that we either observe one of the cases, where density funforce constant matrix, we calculated the elastic stiffness. To
tional theory fails to predict the correct dispersion relation,this end, the stiffnesswas first independently calculated by
or that the experimental data are not completely reliableéStraining the graphene sheet either parallel toxiee y di-
alongT'-M. rection(see Fig. 3by 1+ € (¢=0.00, 0.01, 0.0Rand fitting
Finally, we note that the longitudinal optitO) mode the energy with a quadratic curve
shows the characteristic overbending also observed in the
experiment. The overbending is so strong that the LO mode E—E + S 5 s=(92—E
lies below the SH mode at theM point. This behavior 0T3¢ g€z’
is in agreement with all published first-principles
calculations:®2%% but presently, the experimental data for Due to the threefold symmetry, an isotropic value is expected
the LO mode are too scarce closeMdo allow validation of and we found this indeed confirmed=61 eV/atom). The
this theoretical result. We note that force constants are usiglastic stiffness can be calculated also by summing the inter-
ally fitted with the assumption that the LO and ‘Skhodes ~ atomic force constants
do not cross alond’-M.

@

N| =

a,B
. ,;23[ﬁ(aﬁ)d]ﬁiDi;(aﬁ)dj[ﬁ(aﬁ)a], 2
B. Force constants for graphene bi=Le

Table Il shows the force constants for a graphite layer asvherefq is a unit vector either parallel toory. D;;(ag) are
derived from our first-principles calculations. The force con-the Cartesian components of the interatomic force constant

stants decay falrly rapldly At the 15th neighbor they arematrix between atom# and B, and ﬁ(aﬁ) is the vector
reduced by at least a factor of 300 and 4000 compared to théynnecting atoma and 8. The indexa runs over all atoms
nearest neighbor for in plane./) and out of plane ),  in the primitive cell and3 over the entire interaction range.
respectively. The table includes two sets of force constantsghe summation gives a value st 63 eV/atom. We empha-
which are redundant due to inversion symme&oms num-  sjze that this value is very sensitive to the point of truncation,
ber 5 and 5 and atoms number 10 and )0 Note that the  since force constants enter quadratically with the distance in
neighbors 20 and 20are not redundant in this manner. The Eq. (2). Hence, the small deviation from the more precise
discrepanCies for the two redundant sets give an eStimatiO\Vh|ue calculated by Straining the graphene sheet is accept-
for the numerical reliability of the tabulated constaf@em-  aple. The experimental value for the elastic stiffness can be
pare respective columns with radial derivativeShe dis-  estimated from the value of the elastic constant of graphite,
crepancy between these two set is at most 0.0005 eV/A;,—1.06 TPa, and the experimental lattice constants of
which is a factor of 10 000 smaller than the force constant fogyraphite, a,=2.462 A, c,=6.707 A, yielding a value of
the nearest neighbor and about 100 times smaller than thg, x c,,=58.2 eV/atonf® which is in excellent agreement
force constant at the 14th neighbor, indicating that the precigjith the elastic stiffness calculate from the strained graphene
sion o_f the present calcula_tion is indeed sufficient. It is, hOW'sheet, demonstrating the accuracy of our density functional
ever, important to emphasis that even very small errors in thea|culations. Sound velocities are also related to elastic con-
force constants can have a substantial effect on lowstants. For simplicity we calculated them from the slope of
frequency modes. From the approximate errors and a simplgcoustic branchegFig. 4) and found values of 16 km/s and
error analysis we can estimate that high-frequency modes atg5 km/s for the transversal acoustitA) and LA modes.

correct to within 0.3 cm' and frequencies around This is in good agreement with the sound velocities extracted
200 cmi' are correct to within 2 cm', but very-low-  fom experimental datél4 and~24 km/s)2%2!

frequency modes (20-50 ¢ might be wrong by up to
10 cmi L,

It would be interesting to compare our force constants to
those fitted to experimental data, but unfortunately, the val- The phonon dispersion relations of the (10,10) and (10,0)
ues even for the first neighbor differ already by up to 30%.tubes were calculated exactly by means of large supercells
We also note that the common assumption that the forceontaining an isolated nanotube, as explained in Sec.(4 C
constant matrix is diagonal in a basis spanned by the vectdimes replicated elementary cells, i.e., 160 atoms for both
connecting the two atomg&adial pari and the orthogonal tubes. Thek-point mesh was correspondingly reduced by a
vector (angular pantis not fulfilled, e.g., for the second and factor of 4 compared to the values specified in Sec. Il C.
fourth neighbors. Figure 6 shows a comparison of these exaetinitio calcu-

Though the force constants decay reasonably, it is ndfations with zone-folding results for the tub¢$0,10 and
possible to restrict them to a small number of neighborg10,0. For zone folding, we used the force constants derived
without losing accuracy. Neglecting the force constants befrom theab initio calculations for the flat sheet as calculated
fore the 20th neighbor causes significant changes in eithén the previous section. Since we use one consistent poten-

C. Nanotubes
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TABLE II. Interatomic force constants (eVZA for graphite be-
tween atom 0 andh as calculated by first principle§iumbering
scheme and axis are shown in Fig. Second derivatives of the
energyE are given with respect to the coordinatesy, andz and
also with respect to the longitudindl) and transversaft) direc-
tions. Longitudinal is the direction parallel to the connection of the
two atoms, and transversal is parallel to the layer plane and perpen
dicular to the longitudinal direction.

@ o 0?.,0?0,.?.’. ®
bybybodybybodely
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+0.0155 +0.0180 +0.0000 —0.0089 ) ) ) ) ) ) ]
,o +0.0032 —0.0064 —0.0076 —0.0021 10,0013 FIG. 6. Phonon dispersion rela_tlons and vibrational den§|ty of
—0.0064 —0.0042 —0.0021 +0.0066 states for the armchaid0,10 an_d 2|gzaq_10,0) tubes. Gray thick
o —0.0350 +0.0000 —0.0869 +0.0000 _ o 0iq lines show brar_wche_s of the ra_dlal breathing mode. The VDOS pan-
+0.0000 —0.0869 +0.0000 —0.0350 els show the vibrational density of states for zone-foldidgshed

line) andab initio (solid line) calculations.
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FIG. 7. Raman- and infrared-active modekassified according to the symmetry representajiddanel(a) shows the calculated Raman
frequencies an¢b) the zone-folding Raman frequencies. Pareland(d) display the calculated and zone-folding values for infrared-active
frequencies, respectively. In all panels, horizontal lines indicate the zone-foldmgde frequencies. Letters A, R, and L indicate the
direction of the vibratior(Fig. 2): radial, axial, and longitudinglparalle) to the tube axis.

tube might have somewhat larger error bars. Note that thatomic forces due to curvature effects. The difference is
I'-point phonon frequencies do not depend on how often tharound 3%, but the shift is not uniform among the frequen-
cell is replicated. cies. We discuss the differences between zone-folding and
As can be seen in Fig. 6, the agreement betvad®emitio  full ab initio calculations in more detail in the next section.
and zone-folding calculations is remarkably good. The major Figure 7 shows the frequencies of the Raman- and
difference between these two results is in the low-frequencynfrared-active modes identified according to the irreducible
part of the spectrum. The rise of the low-frequency phonorrepresentations of thB,®i group (D4 for odd orD,, for
branches is slower in zone folding. The reason for this is a&venn) (Ref. 34 and(Fig. 7). Modes were also classified by
failure of the zone-folding approach to describe the branchethe direction in which the movement of atoms is most in-
of the radial breathing mode and the two translational modetense(Fig. 2): R (radial), perpendicular to the tube surface
perpendicular to the tube axig @ndy). In zone folding, the (e.g., radial breathing mogte. (longitudina), parallel to the
radial breathing mode is predicted to have zero frequencyube axis;A (axial), the direction perpendicular to radial and
while the two translational modes have finite frequency. Oflongitudinal (e.g., rotation around the tube axitet us first
course, the fullab initio calculations for nanotubes do not discuss zone foldingd modes are shown as straight lines in
have this deficiencies. the two graphs for zone foldingFigs. 1b) and 7d)]. To
Another difference, which is physically more interesting guide the eye, these lines are also shown in abeinitio
is a general softening of thab initio modes compared to subpanels, and circles present the exact resulté foodes.
zone folding visible in the vibrational density of states of Since we present the Raman-active and IR-active modes in
Fig. 6. This is caused mainly by a weakening of the inter-separate graphs, one usually finds circles that converge for
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1640 A The full ab initio calculations show a similar behavior, but
J E, (&) o Ap(A) some details are clearly different. Generally, the exact It
1620 * A (L) y rent. ly, xact results
s A E, (A) are lower than the zone-folding values with the exception of
1600 . El (Ww) the longitudinalA,(L) mode in insulating tubetstarg. The
= 1580 o E,(A) frequency shift with respect to zone folding is rather uniform
5 s E, (L) and approximately 10 cit for larger tubes. For the three
N 1560_ o exp. 1 largest tubes, th&, modes(squares are how almost sym-
§ 1540 & exp.2 metrically split by approximately 20 cit with respect to
g 1520' the central graphite frequency,=1595 cm?! (theory.
= ] These values compare well with recent polarized Raman
1500 studies of Joricet al. where a symmetric splitting of thg,
1 480', ] modes by 28 cm! was observed with respect to the experi-
: . : mentalG band of graphiteexperimentw,=1580 cn*).**
1460 560,08 0.1 012 0.4 0.6 0.13 02 However, experiments using parallel, crossed, and circularly
1/Diameter (A™) polarized light find theE, modes overlapping in frequency
with the A; modes®®
FIG. 8. Phonon frequencies in tlieband calculated bgb initio For large insulating tubes, th&;(A) modes andA,(L)

density functional theory. Phonons are characterized by their Symmodes(open triangles and starslmost coincide and are

metry and direction of vibration. Note that ally, By, andEz ooqi0d around 1597 cit. The E4(L) and Ay(A) modes
modes in theG-band region are shown irrespective of their parity. (solid triangles and open circleare also very close in fre-

Experimental results for the frequency of the BWF line from Ref. - 1
41 and Ref. 42 are shown by open and solid diamonds. Dashed lirfdu€ncy and found at roughly 1580 ch ie., 20 cm
shows the linear fit folA;(L) mode in metallic tubes. lower than theE;(A) and A;(L) modes. These values are

also in reasonable agreement with Raman and polarized Ra-

larger tubes towards the zone-folding value in one of the twd" Studies’** where oneE, and anA, mode were ob-
rger tubes towards the zon 9 d around 1590 c¢m, and the other sets &; andA,

graphsa) or (c). We however remind the reader that thg, sme:ézs were observed at 1567 ¢

r(;)c(jjiﬁsnarlf S”?:t Aarr:lc:), dg‘:ﬁ{?\%;gijh&gr};&:::n?rzaf]s' The most interesting feature, however, is the significant

terns Oh;ve)z/ seoith:r even or odd s mmetrp de endinp or(1erp of the frequency of the longitudindly(L) mode in
) : y y dep 9 % etallic tubes compared to insulating tubes. The frequency

whethern is even or odd. For instance, for tli&8,0 tube, d is th for 7i hai d chiral tub it

the A, (R) (IR-active mode at 495 cm! has the same dis- rop is the same for zigzag, armchair, and chiral tubes wit

placezrl:1ent pattern as thé,(R) (Raman-active mode at similar radii. For the linear fit of the frequency dependence

1g - i i = —_
roughly the same frequency for t7,0 tube. on the inverse diametef(d)=f,— «/d the parameterd,

: - . . =1619 cm ! and «=866 cm * A are obtained. A linear fit
But in any case, deviations of circles from straight lines_ . .
with the assumption that the frequency approaches

are indications for curvature effects. The curvature effect o 1 . _ )
other modes can be recognized by comparing the zon%l—595 cm * for 1/d—0 yieldsa=637 cm * A, but does not

folding and theab initio panels. Clearly, curvature effects are it the_theoretical regults very satisfactqry. This indicates a
rather small for all high-frequency modes. But a general softd€viation from2 a simple linear behavior, also observed
ening is visible at smaller radii, leading to a decrease of th&xperimentally: _ _ _ _ _
frequency of theE;4(A) (open trianglel Ey (L) (solid tri- We now return-m our dlscussuBn to Flg 7. For the inter-
angle$, andE,4(L) (solid squares The change is roughly mediate fr_equenues around 800 cha similar softening as
5% for the smallest tube considered here. for the high-frequency modes is observed both for the
This is more clearly shown in Fig. 8, in which we con- Raman- and IR-active branchd€,4(R), gray triangle;
centrate on thés-band modes as a function of the inverse A, (R), gray circld. At even lower frequencies (500 ¢ih)
diameter(the same results as a function of the diameter wer¢he differences between zone-folding and faifi initio cal-
shown in Ref. 2R Since we have discussed most of theculations are generally larger and in the opposite direction.
results already in Ref. 23, the following discussion is keptThis part of the spectrum is dominated by vibrations in the
short. The zone-folding predictions are now shown as lines(x,y) plane(radial and axigl Three modes show a peculiar
with labels indicating their symmetry. Zone folding predicts behavior: the frequency dependence of the radial breathing
a singleA mode, a small splitting between the longitudinal mode[A4(R), gray circleg exhibits the characteristia/r
and axialE; modes, and a slightly larger splitting between scaling, where is the tube radius and=1144 cm * A, in
the two E, modes* The splitting is not quite symmetric good agreement with previous calculations using the same
with respect to the central graphite frequeney, since our plane-wave  code but different  pseudopotentials
force constants lead to a rather strong increase of the L1170 cm * A).?2 By fitting to Ar B we obtained the values
frequency fromI' to M (overbending so that the average A=1068 cm ' AB andB=0.95. The valud is smaller than
frequency is higher than for graphite. In Ref. 43 an averagd, which is due to the bond softening for narrower tubes. It
decrease of the frequencies was found with a different set dias been emphasized that the téhavior is a natural con-
force constants fitted to experimental results. sequence of elastic continuum theory applied to nanottfes.
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TABLE lll. Weighted average of angles between the displace- j) K, &

ment direction and the tube axis for selected phonon modes of the 2 Vi
(12,6) tube. Weights are proportional to the displacement amplitude v )
of each atom. Vo
0
=1 e,
Frequency (cm-) a (deg K+0$

Ai(L) 1570 3.8
A (A) 1578 86.3 FIG. 9. (a) Conventions used in the tight-binding Hamiltonian.
E,(L) 1582 16 Displacement patterns of the longitudin@xial) A; mode in (b)
EL(A) 1597 88.6 zigzag (armchaiy and (c) armchair(zigzag tubes.¢ is the phase
El(L) 1566 1é difference between the two carbon atoms in the unit cell

2 ' in rad/2m).
E»(A) 1614 88.4 ( )

the observation of Reichkt al, that symmetry does not re-

A second mode, which converges towards 495 trfor quire modes to be exactly longitudinal or transversal in chiral
large tubes, exhibits a similar behavigray circles in Figs. ;[jube_s,_ but for the ﬁartu;]ular tube v(\;ebhave_ cr(;?sm:]ered, the
7(@) and 7c)]. For the tubes with evem, it has A, (R) ewa_tl_ons_ are sma er_t an reported by Resttal. T usa
symmetry and is IR active, but for tubes with oddt has classification into longitudinal and transversal modes is still
A(R) symmetry and sho’uld be Raman active. Using th useful. Our tube is, however, wider than the ones considered
né?ation of Fig. 1 its displacements patternist T eby Reichet al, and further studies are required to shed more

Finally we want to comment on the Iowest—frequencyIight on this subject.
mode observed below 100 crhin the graphs for the Raman
frequenciegFig. 7(a)]. This mode is related to the ZA mode B. Mode softening

in graphite, which has a quadratic dispersion refationqor  Aq shown in the previous section, in nanotubes, the vibra-

—0, and hence approaches zero quadratically with increagy,nq) frequencies are generally lower than one would expect
ing tube radiug(at least in zone folding In nanotubes, the 5 he pasis of zone folding. This observation is not new, and

mode causes a distortion from a circular to an elliptic shape, first_principles calculations agree that curvature lowers

Our calculations show considerable noise in the frequency ok,o interatomic force constarfSThe effect is most likely
this mode, which is related to error propagation that affect§g|ateqd to a weaketr bonding in the circumferential direc-
low-frequency modes ,m!JCh stronger than high-frequency;,p, jn 5 curved graphite layer. This is also confirmed by the
modes. Nevertheless, it is clear that the frequency of thalyseration that the axia,(A) mode is one of the modes
mode is substantially lower in the exact calculations than i hat is most strongly affected by curvature, wheréfs

zone folding. This possibly points to an instability of large semiconducting tubgshe longitudinalA, (L) mode is essen-
nanotubes towards an elliptic deformation. However, up tc{ially independent of the radiusee Fig. 8

the radii we have investigated here, all tubes remain stable The most important outcome of our calculations is, how-

towards such a deformation. ever, the large drop of the frequency of the longitudinal optic
A;(L) mode inall metallic nanotubesirrespective of their
IV. DISCUSSION chirality). The corresponding displacement patterns of the
A1(L) modes in zigzag and armchair tubes are indicated in
Figs. 9b) and 9c). An A; mode with a similar frequency
As discussed in the Sec. Il D, the phonon modes ofdependence is also observed experimentally in metallic
achiral nanotubes split into longitudinal and transversahanotubes and well known for its peculiar Breit-Wigner-
modes, which might be further divided into radial and axialFano line shape in Raman spectroscopy. Compared to graph-
modes. Recently Reiclet al*® pointed out that while in ite the frequency shift was observed to be proportional to the
achiral tubes the inversion symmetry allows a division intoinverse diameted of the tube,a/d, with a=440 cm * A.4®
longitudinal and transversal modes, in chiral tubes such &his is in reasonable agreement with our value @f
classification is meaningless. Since this might significantly=637 cnmi t A. Visually, the agreement of the present den-
alter the results for the mode softening, we performed tessity functional calculations with two more recent indepen-
calculations on the metallic chiral (12,6) tube. As far as thedent measurements is even better, as evidenced by £i§?8.
mode softening is concerned we find similar results as for th&he theoretical frequencies are roughly 10—20 érhigher
achiral tubed(see also Fig. 1 of Ref. 23Furthermore, the than the experimental ones, which corresponds to the dis-
angle between thd,, E;, andE, modes and the tube axis crepancy between theory and experiment for the LO mode in
was analyzed for the (12,6) nanotube. For this tube all totallgraphite. Such a discrepancy is therefore not unexpected. In
symmetric modesA;) reasonably line up with the expected Ref. 46, it has been suggested that the frequency drop is
directions(deviations are less than 0.6°), with the exceptionrelated to a coupling of thé&;(A) modes to plasmons in
of the longitudinal and axiaG-band modes, which deviate metallic tubes. The coupling mechanism proposed in our re-
by about 3.8%Table Ill). For theE; andE, modes in theG cent theoretical wor® also involves electronic states at the
band, the deviations are also tiny. Our calculations confirm=ermi level. It is based on the observation that fhgL)

A. Phonon eigenvectors
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FIG. 10. Complex tight-binding matrix elemense®™ki to the
three neighboring atoms at the pointkrspace, where the twe
bands cross each oth@) in undistorted graphite; = —k,=1/3,

(b) for a longitudinal mode in zigzag tubé&s= —k,=1/3— 5, and

(o) for a longitudinal mode in armchair tubek;=1/3+6,
k,=—1/3+ 6. In all three cases, the three complex humbers sum to
zero.

A

mode opens a gap at the Fermi level in all metallic tubes FIG. 11. Electronic band structure of graphite according to Eq.
irrespective of chirality. This mechanism does not involve(3). The negative branch at lower energies corresponds to filled
plasmons in the common sense, but both mechanisms hagktes, whereas the branch at energies higher &ato empty

in common that they should yield roughly adlghift of the states. Phonons that couple to the electronic states at the Fermi level
A, mode compared to the LO mode of graphite, since in®
metallic tubes, the electronic density of states per carbon R R R
atom at the Fermi level is proportional to the inverse of theHerek; andk, are parametrizing thi point, with k=k;b;
diameter. A more recent study of Joeo al,*? however, ob- —k,b,, whereb; are the reciprocal lattice vectors of the
served a frequency shift proportional tadd/ Although our  graphite plane. This Hamiltonian describes two bands that
calculations also do not exhibit strictly adlfrequency shift, intersect at one particular point in the Brillouin zone.

they deviate significantly from the suggested?lbehavior. Additionally, for a half-filled 7= band, as in the case of

It is important to remark that in the diameter range of 10—16undoped graphite, the Fermi level is located exactly at the
A covered in the present study, the data of Jeti@l. seem  position where the two bands intersect. This band crossing
to agree with our results except for the mentioned constarpoint, where the Hamiltonian has one double-degenerated
error of 10 cm ! (solid diamonds in Fig. B A 1/d? shiftis,  eigenvaluee=0, is determined by the requirement that the
at first sight, also not compatible with a coupling of plas- off-diagonal elements of the matrix become zero:

mons to phonons. Further theoretical and experimental work _ ,

is required in order to resolve this issue. [Vo+ V18714V, el?me| = 0. 4

In the remainder of the section we will discuss the cou- N\ —
pling mechanism between electronic states at the Fermi Ievé:cr;ﬁ]gs;feg;gr?ﬁ 2 e::ng:ggzi)_\i/s() s;/t}sfi;/é ?g:ﬁs_dtiekto
’ 1~ 2

and phonons. The discussion always refers to metallic tubes:.+1/3 which corresponds to thi and K’ points in

Partlcular attention is devoted to symmetry consideration raphite!’#3 The graphical solution of conditiofd) is illus-
which are also relevant for a coupling between plasmons an ated in Fig. 10a)
phonons. An important outcome of this symmetry anglyss 'S The two—dimeﬁsional band structure of graphite corre-
bt ol e (L) Brnorcan coupelo he lctonc or- sporing to Eq3) i shown n i, 11 Ony a few phonors

' 99 2 uple to the electronic states at the Fermi level. In linear

22 ;éi?;?g&ﬂ?\otﬂzneiogﬁmgn(t:;nvr\}géégwer the(A) mode response theory, the modifications resulting from a phation
P ) are described by

Let us first make some simple considerations regarding
the character of the wave functions at the Fermi level. In (V7))
graphite, two bands cross the Fermi level at khgoint*’ > (fi—f)———, (5)
The states have essentiajtycharacter with thep orbitals 1] (€—¢))
aligned normal to the tubule surface ponding. They can  \yherew; and ¢; are the wave function and the eigenvalue
be described reasonably by a tight-binding Hamiltonian witheorresponding to the one-electron stité is the number of
zero on-site enerdV. If only nearest-neighbor interactions electrons in this statef(=0 or f,=2), andV, is the effec-
are considered, the Hamiltonian of a graphitelike system tjye deformation potential corresponding to this particular

re shown by arrows.

reduces to a simple>22 matrix phonon modex. If the occupied state has a Bloch wave
. vectork; and the filled state a Bloch wave vectqr, a finite
0 compl.conjug coupling is only found, when the phonon wave vectoqis
Vo+V,e27Ki4 V,el 27k 0 ' ) =ki—k;; hence onlyl"-point phonons ané&-point phonons

couple to the states at the Fermi leysée Fig. 1L In the
whereVy, V4, andV, are the tight-binding hopping matrix present work, we are mainly interested in Raman-active
elements between nearest neighbprtempare Fig. @)]. modes. With the exception of (30) zigzag tubeskK-point
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a) no displacement o 9(b), the point where the bands intersect shifts away flom

o_%)_o to (1/3- 8)(b,+b,) [Fig. 1ab)]. In the second case, corre-

sponding to Fig. &) and Fig. 10c), one bond strengthens
(V1) and the second one weakens), leading to a shift of

- the crossing point to (1/88)b, + (1/3— 8)b,.

How this affects the two-dimensional band structure of
graphite is illustrated in Fig. 12. As already mentioned, two
bands intersect at thi€ point (in fact there are two distinct
points K and K’, which cannot be linked by a reciprocal
lattice vector, but for simplicity we will concentrate on one
of these symmetry-inequivalett pointg. For a pattern in
which one bond is elongated, corresponding to the transverse
mode in armchair tubegand longitudinal mode in zigzag
tubeg, the crossing point shifts away frokhtowardsI" [Fig.
12(b)]. For the longitudinal mode in armchair tubésnd
FIG. 12. (a) Electronic band structure of graphene in the vicinity transverse mode in Zigzag tub)'es)n the other hand, the

of theK point. The bands have a conical shape neaktpeint, and  crossing point moves perpendicular to the lifi& [Fig.
the tip of the cone is located exactlykatPanelgb) and(c) indicate 12(0)].

the changes in the band structure for two phonon metiGsand The band structure of nanotubes near the Fermi level is
SH*). The thick lines indicate the band structure of an armchair

tube, which is obtained by intersecting the gray plane with the twoObtalned by the intersection of the two-dimensional band

cones. Only the second displaceméodrresponding toA(L) in structure of graphenécones with those planes, which are

armchair tubesopens a gap, whereas the first displacement onIyaIIOWed bgl the Cond.'tlons imposed by the  wrapping
moves the intersection point. procedure? For armchair tubes, the resulting band structure

arounde is indicated in Fig. 12 using thick lines. The lon-
phonons, generally, do not fold back to thepoint, in nano- gitudinal mode opens a gap in the armchair tube, since the

tubes, as indicated in Fig. 3, and are not Raman active. Fiqip of the cones has moved perpendicular to the allowed

ure 3 also indicates thét-point phonons have, symmetry ines, whereas the transverse mode leads only to a shift of

in (3n,0) zigzag tubes, which implies that these modes ardo a differentk point. For the zigzag tubes, the arguments are

not Raman active for realistic wide tubes12). similar, but the allowed lines are perpendicular to those for
Therefore, one can concentratelmoint phonons. From armchair tubes, and hence it is again the LO mode that opens
the observation that the filled and unoccupied states in thi'€ 9ap- In gene&gl, Ithe d|5£la$emenrt1 pattern,”wth l;novhes
vicinity of the Fermi level are orthogonal, it additionally fol- (N€ ¢one perpendicular to the lines that are allowed by the
lows that both atoms in the primitive cell of graphite must periodicity imposed by the wrapping procedure, will create

move in the opposite direction to result in a nonzero couth€ largestgap. This is in all cases tgL) mode, irrespec-
pling element: tive of chirality. Finally, it is important to emphasis that the

gap opening is equally large for positivdimerization and
negative(bond elongationdistortions. Hence the gap opens
(Wi|V, W)= fQ‘Pi(f)‘l'f(f)VK(f)dsr- when the ions swing back and forth in a way compatible with
the A;(L) mode.
If the occupied and unoccupied states are in phase on one of At intermediate(electroni¢ temperatures the opening of
the atoms, orthogonality of the wave functiow§ and V; the gap clearly reduces the energy, which is required to dis-
requires that they are out of phase on the second atonbort the nanotube by an amount roughly proportional to the
Hence, for maximal coupling, the deformation potential mustsquare of the gafy.>! But it cannot eliminate the conven-
have an opposite sign on both atoms realized only by ational restoring forces, stemming from the other parts of the
out-of-phase movement of the two atoms in the primitiveelectronic spectrum and from the direct interaction between
cell. Furthermore, in graphite, out-of-plane modes do nothe ionic cores. Thus the gap opening leads only to the mode
change the distance between neighboring atoms to first ordespftening and not to a permanent structure distortion. Since
and therefore the hopping elemeiMsremain unaffected to the density of states arourg is additionally inversely pro-
first order. Combining these three observations, we deduggortional to the radius of the tube, tig(L) mode is softer
that at thel’ point only the SH and LO modes of graphite for smaller tubes with a larger density of stateseat*® As
couple to the electronic states at the Fermi l€egle acous- an example for this process the band structure of distorted
tic mode couples too, but this is not of relevance for thezigzag tubes was already presented in our previous #ork.
present study; see Ref. #9 Our final comment concerns the Raman activity of the
To study in detail, how thé&-point SH and LO modes of A;(L) mode in metallic tubes. The Raman activity is related
graphite influence the band structure of graphite in the vicinto the change of the polarizability. In a metallic tube, the
ity of the K point, we turn again to the graphical solution of screening is infinite for long-range charge fluctuations paral-
Eq. (4). If the matrix elementV, is decreased toy— 6V, lel to the tube, corresponding to an infinite polarizability par-
which corresponds to the bond elongation shown in Figallel to the tube axe&ompare Ref. 52 But any distortion of

s
s
&

&
s
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the tube compatible to th&;(L) mode opens a gap and previous studies, insofar that we find a general softening of
decreases the polarizability to a finite value. Hence the pothe high-frequency modes for small tubes. Qualitativalyd
larizability changes discontinuously for th&;(L) mode, sometimes quantitatiyethe dispersion relations are, how-
which indicates an infinite Raman coupling tensor for thisever, well described by the zone-folding approach. The ex-
particular mode. Based on this simple argument we expect eeptions are the known deficiencies in the low-frequency

very strong coupling of thé (L) mode to incident light. part of the vibrational spectrum.
Finally, we have analyzed in detail the behavior of the
V. CONCLUSIONS modes in theG band. In theG band, a general softening of

_ ) ~all modes is again visible. The only exception is thglL)

The first part of this work concentrated on the derivationmgode which is hardly influenced by curvature, since the
of an accurate set of force constants for graphite. These forggonds are not softened in the direction parallel to the tube.
constants were calculated usia initio density functional  on the other hand, tha,(A) mode, having the same fre-
theory. We uset_al this set of force constants to calculate thﬂuency as thé\;(L) mode in graphite, softens considerably.
phonon dispersion relation of graphite and found reasonablep s the splitting of these two modes is a good measure for
agreement with experiment, although some notable discreRne pond softening induced by curvature. The softening of
ancies were obse_rved in the vicinity of thé point. In par- A;(A) mode and a slight strengtheningf(L) mode leads
ticular, the theoretical SH mode has a too low frequency, angy the almost symmetric arrangement Bb(A), E,(A)

the theoretical frequency of the LA optic mode is somewhat, Ay(L), Ej(L)+A(A), and Ex(L) modes around the
too high compared to experiment. These discrepancies at%aphiteG mode.

difficult to reconcile with the fact that the agreement is al- Finally, a significant softening of tha,(L) mode in me-

most perfect in the vicinity of th&' andK points, suggesting  tajjic tubes is observed in our calculations. This is linked to a
that further experimental work might be required to fully hang gap opening at the Fermi level, a mechanism that is
resolve this issue. As an additional test for the reliability of .o miniscent of Peierls distortions. But here the gap opens
the tabulated force constants, the elastic stiffness was calcynen the ions swing back and forth from their ground-state
lated and compared to experiment. Again good agreememnosition. The mechanism underlying this process is ex-

was found. o , lained by means of a simple model based on a tight-binding
We then presented results for the vibrational properties ofyamiltonian.

a large number of achiral nanotubes, calculated either using

zone.foldmg Wlth.th(.? previously cqlculated force constants ACKNOWLEDGMENTS
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