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Accurate density functional calculations for the phonon dispersion relations of graphite layer
and carbon nanotubes

O. Dubay and G. Kresse
Institut für Materialphysik, Universita¨t Wien and Center for Computational Material Science, Sensengasse 8, A-1090 Wien, Aus
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Accurate calculations for the phonon dispersion relations of single-wall armchair and zigzag nanotubes are
presented. The calculations are performed using a plane-wave basis set and density functional theory. To ensure
the accuracy of the presented calculations, the phonon dispersion relation of an isolated graphite layer is
calculated and the results are compared to experiment. Errors are small, but some notable discrepancies
between experiment and theory are observed and discussed. For armchair and zigzag nanotubes the dependence
of Raman-active and infrared-active modes on the radius is investigated in detail concentrating on the modes
in the G band. The results are compared to those predicted by the zone-folding method using the calculated
force constants for graphite. We find a general softening of most high-frequency modes and a substantial
lowering of one particular longitudinalA1 mode in metallic tubes. We associate this mode with the Breit-
Wigner-Fano lines observed usually in metallic tubes. The precise electronic mechanism leading to the soft-
ening of the longitudinalA1 mode is discussed in detail.

DOI: 10.1103/PhysRevB.67.035401 PACS number~s!: 63.22.1m, 63.20.Dj, 63.20.Kr, 71.15.Mb
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I. INTRODUCTION

Since the discovery of carbon nanotubes,1 much attention
has been devoted to the investigation of their vibratio
properties, experimentally as well as theoretically. Amo
other things, the vibrational spectra are useful for the ch
acterization or identification of different nanotubes in expe
mental samples. Theoretically, zone-folding techniques w
used initially for an approximate evaluation of the vibr
tional spectra of carbon nanotubes. Although this appro
yields a good qualitative understanding of ma
properties,2–8 it also has several shortcomings. First, t
force constants~FC’s! are usually fitted to the experimental
observed phonon dispersion relation of graphite.2–8 Any in-
accuracy in the experiment will therefore affect the accur
of the predicted frequencies. This problem is particularly
vere for low-frequency modes, corresponding to the ela
regime. Additionally, the zone-folding approach neglects c
vature effects, and finally the force constants are usually c
sen in a very restrictive manner, for instance, such that
full Hessian is the sum of two-atom Hessians, where th
two-atom Hessians are diagonal in a coordinate frame wh
axes are formed by~i! the line connecting the two atoms,~ii !
a normal to the graphene plane (graphene5one sheet of
graphite!, and~iii ! a vector orthogonal to~i! and ~ii !.2,3,8

Valence force fields are more general than the zo
folding method, since they allow nonharmonic potential e
ergy surfaces and bending forces. In Ref. 9 the valence f
field model was used with a force field fitted to experimen
data.10,11 But it is again questionable whether curvature
fects~which are not directly included in the fitting data bas!
are correctly accounted for, and the correct description
elastic modes is also not necessarily guaranteed.

A completely different route is taken in tight-binding~TB!
and ab initio density functional calculations. In the latte
experiments only serve as a test database, but they are
0163-1829/2003/67~3!/035401~13!/$20.00 67 0354
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directly used in the determination of the vibrational prop
ties of nanotubes. Compared toab initio methods, TB meth-
ods are faster and offer the possibility to treat much lar
systems.12–17 But ab initio methods are superior in terms o
their predictive capabilities. It has been shown that the p
non dispersion relations of diamond and graphite can be
dicted within a few percent accuracy.18,19Such methods have
been used for nanotubes, but presently always in a ra
approximate fashion: in Ref. 20, for instance, a local ba
set method was used for the evaluation of the phonon s
trum of selected tubes. Although these calculations am
demonstrate the feasibility of large-scale first-principles c
culations for carbon nanotubes, issues like basis set c
pleteness and accuracy ofk-point sampling remain to be ad
dressed. This is exemplified by the observation tha
minimal sp3 basis set was applied in Ref. 20, and as a re
of this approximation, the frequencies of the high-frequen
optical bands were overestimated by approximat
100 cm21 compared to the experiments.10,11,21

Plane-wave calculations are in that respect superior
more reliable. For the radial breathing mode, such calcu
tions were reported in Ref. 22, and the aim of this work is
extend these calculations to the full phonon dispersion r
tions of carbon nanotubes. We also tried to make our ca
lations technically as precise as possible (k-point sampling,
basis sets!, so that our results are essentially exact in t
limits established by the local density approximation.
achieve this aim, we first calculated the force constants
the phonon dispersion relation of a single graphite la
~Sec. II B!. At this step extensive tests with respect to t
electron-ion potential and with respect to thek-point sam-
pling were performed. These calculations also yield a w
founded set of force constants for graphene that can be
for the prediction of the dispersion relations of nanotub
using the zone-folding technique. In Sec. III C, we pres
these phonon dispersion relations for (n,n) armchair and
©2003 The American Physical Society01-1
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(n,0) zigzag tubes forn59 –11 andn57 –18, respectively,
and compare them with exact frozen phonon density fu
tional calculations. This allows to access how curvature
fects the frequencies. We find a general softening of m
high-frequency modes and a substantial lowering of one
ticular longitudinalA1 mode in metallic tubes. As discusse
in our recent work, we associate this mode with the Bre
Wigner-Fano lines observed with Raman spectroscopy
metallic tubes.23 The electronic mechanism that leads to th
softening is discussed in detail in Sec. IV. We finish with o
conclusions in Sec. V.

II. METHODOLOGY

A. First-principles calculations

Our first-principles calculations are based on dens
functional theory~DFT! in the local density approximation
~LDA ! ~see, e.g., Refs. 24 and 25! and employ a plane-wav
basis set.26,27 As in our previous work~see Ref. 22! we use
the Viennaab initio simulation package~VASP!,28,29where in
the most recent version the interaction between the ions
electrons is described by the projector augmented-wa30

~PAW! method in the implementation of Kresse a
Joubert.31 The projector augmented-wave method uses
exact valence wave functions instead of nodeless pse
wave functions usually applied in the context of pseudo
tential calculations. This improves the transferability and
liability of the potentials.

In the present PAW potentials, the 2s and 2p orbitals are
treated as valence orbitals and two partial waves are use
any s andp orbitals. Two carbon potentials were used in t
present work:~i! a hard potential with a radial cutoff of 1.
a.u. and 1.5 a.u. for thes andp partial waves, respectively
and~ii ! a soft potential with a radial cutoff of 1.5 a.u. for th
s and 1.85 a.u. for thep partial waves. The hard potentia
yields accurate results at a plane-wave cutoff of 400
whereas the soft potential gives reliable results already
plane-wave cutoff of 250 eV. It will be demonstrated that t
soft potential leads to reliable results for the vibration f
quencies~Table I!, and therefore most of the calculation
presented here were performed with the soft potential.

B. Phonon dispersion relation of graphene

We first optimized the lattice constant of a single graph
layer and obtained a value ofa52.458 Å. This correspond
to a carbon-carbon distance ofaCC51.419 Å, which is iden-
tical to the experimental value of Ref. 32. For the calculat
of the force constants of the graphite layer, a parallelogra
shaped supercell containing 128 atoms was used. The gr
ite layers were separated by 8 Å vacuum. Five irreducible
G-centeredk points were used to sample the Brillouin zo
~corresponding to a 24324 Monkhorst-Packk-point grid in
the Brillouin zone of the primitive cell!. It must be empha-
sized that such a densek-point set is required to reduce th
errors to a fraction of a percent. We used a smearing widt
0.6 eV,33 but tests indicate that the results for graphene
fairly insensitive to the width of the smearing function.
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For calculating the force constants central differenc
were used. One carbon atom was displaced into two di
tions: one in plane and one orthogonal to the plane of
graphite layer. The displacement length was 0.03 Å in b
cases. The full Hessian matrix was constructed by using
symmetry of the graphite layer.

C. Nanotubes

The nanotubes were placed into square-shaped cells
that neighboring tubes were separated by a 9 Å vacuum. The
initial geometry was constructed using the interatomic d
tance as obtained for graphene.

The geometry of the nanotubes was optimized before p
forming the FC calculations. In the case of zigzag tubes,
tube radius and thez coordinate~coordinate parallel to the
tube main axis! were optimized simultaneously. The heig
of the tube supercell was not optimized, but test calculati
on narrow tubes show that the difference between the u
height and the optimal height is less than 1%.

In the case of armchair tubes, it turned out that optimiz
the radius was sufficient for reducing the forces to a reas
ably small value. For armchairs the resulting forces w
smaller than 0.08 eV/Å per atom, and for zigzag tubes
forces were less than 0.04 eV/Å per atom after geome
optimization.

The FC calculations were done using central finite diff
ences. For calculating theG-point frequencies, we used th
elementary cell only. For the phonon dispersions of selec
tubes @(10,10) and (10,0)] supercells containing four e
ementary cells were applied.

To derive all force constants, it is sufficient to displace
single atom into three orthogonal directions: parallel to
tube axis (z), towards the center of the tube (x), and parallel
to the tube surface (y). The displacement was 0.03 Å, an
we used positive and negative displacements for each d
tion. The complete set of force constants was calculated
plying the symmetry of the tube. A reasonable calculatio
setup was determined by performing extensive test calc

TABLE I. Comparison of experimental and calculated freque
cies of a graphite sheet at theG and M points. Values for ‘‘soft
PAW’’ and ‘‘hard PAW’’ are the results of calculations with the tw
different potentials. All values are in cm21.

Soft PAW Hard PAW Experiment

G 890 896 868a

1595 1597 1582,b1587c

M 475 476
618 627
636 641
1339 1347
1380 1373
1442 1434

aReference 35.
bv(E2g2

), Refs. 35–37.
cv(E1u), Refs. 35 and 38.
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ACCURATE DENSITY FUNCTIONAL CALCULATIONS . . . PHYSICAL REVIEW B 67, 035401 ~2003!
tions on several tubes@(4,4), (8,0), and (12,0)] and also
rectangular graphene supercell corresponding to a zig
tube (14,0). We decided to use 13 irreduciblek points for
semiconducting zigzag tubes, 33 irreduciblek points for me-
tallic zigzag tubes, and 57 irreduciblek points for armchair
tubes. The k points in reciprocal coordinates wer
(0,0,n/24)2p/az , n50,1,2, . . .,12, for semiconducting zig
zag tubes, (0,0,n/64)2p/az , n50,1,2, . . .,32, for metallic
zigzag tubes, and (0,0,n/112)2p/az , n50,1,2, . . .,57, for
~metallic! armchair tubes. We had to use these densek-point
grids in order to describe the electronic states around
Fermi energy correctly. Although most phonon modes
rather insensitive to thek-point sampling, one particula
mode couples strongly to the electronic states at the Fe
energy and changes significantly when the number ok
points is reduced. Hence, when we tried to reduce thek-point
grids, substantial errors were found for this particular mo
~see Sec. IV!. Even with this fine-grained sampling, the e
genvalue spectrum remains rather coarse around the F
level, and this in turn can lead to errors in the determinat
of the Fermi energy. To reduce these errors the eigens
were broadened~smeared! using a scheme devised by Met
fessel and Paxton.33 For the metallic tubes, the paramete
s50.1 eV andN51 were used throughout the calculatio
since tests indicate that this yields a reasonable descriptio
the electronic density of states close to the Fermi energy
to accurate interatomic force constants. Test calculati
with twice as manyk points and half the smearing widths
changed the frequencies by at most 5 cm21. It is estimated
that this is the typical accuracy of our present calculation

D. Symmetry classification of modes in nanotubes

To discuss the differences between zone-folding and e
ab initio calculations in more detail, we characterized t
modes atG according to the symmetry of the nanotubes (Dnd

FIG. 1. Creation of the unit cell of armchair and zigzag nan
tubes. Dashed box in~a! contains a four-atom graphite unit cel
which can be replicated and rolled up in either theX or Y direction
to form the~b! zigzag or~c! armchair unit cell. The gray stripes i
~b! and ~c! show the rings formed by atoms 1–4.
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or Dnh). In this section we briefly recapitulate the issu
regarding symmetry, focusing on zigzag and armch
tubes.3–6,15,34

Armchair and zigzag tubes can be built starting from
rectangular four atom graphite supercell~Fig. 1! instead of
the usual parallelogram-shaped two-atom primitive cell.
replicating the rectangular unit celln times along the shorte
or the longer side and rolling it up to form a cylinder on
obtains the unit cell of (n,0) zigzag or (n,n) armchair tubes.
The primitive cell of the nanotube can also be described
four coaxial rings with a common radiusr @compare Figs.
1~b! and 1~c!#. By means of this construction, the symmet
group of (n,0) and (n,n) tubes always contains theDn group
as a subgroup. Since infinitely long armchair (n,n) and zig-
zag (n,0) tubes also have an inversion center, they h
Dn^ i symmetry, wherei represents the group of the tub
inversion symmetry.3,5

At the G point, vibrational modes of (n,0) and (n,n)
tubes can be classified according to the irreducible repre
tation to ~i! 12 A modes,~ii ! 12 ~doubly degenerated! Ek
modes, wherek is an integer 1<k,n/2, and, optionally,~iii !
6 doubly degeneratedB modes for evenn. The modes can be
further characterized by their behavior with respect to inv
sion and the twofold axis for rotation (C28). As follows from
group theory,34 the A2u and E1u modes are infrared active
while A1g , E1g , andE2g are Raman active. All other mode
are silent.

For achiral nanotubes, the displacement patterns can
envisaged in a simple manner: forA modes all atoms on one
of the rings illustrated in Fig. 1 move in phase, either para
to the tube axis~z! or radial ~perpendicular to the tube axis!
or axial ~parallel to the ring!. In zone folding, the vibrationa
frequencies of these modes are identical to the frequenc
the G and M points of the graphene sheet.3–6,34 Figure 2
illustrates the corresponding displacement patterns for s
modes. ForB modes, two neighboring atoms on one rin
move in exactly the opposite direction.

All remaining modes are standing waves on the rin
@Figs. 1~b! and 1~c!# or on the lines~in zone folding, Fig. 3!,
which follow the same pattern asA modes. They are denote
as En , where 2n is the number of nodes of the wave. (A
modes can be considered as waves with zero nodes! B
modes can also be regarded as standing waves, when
equals the number of atoms in the ring; i.e., the numbe
nodes is the same as the number of atoms in the ring. S

-

FIG. 2. Displacement patterns for theA modes of zigzag and
armchair tubes. Arrows show~i! change of the radius in the firs
row ~R!, ~ii ! rotation in the second row~A!, and~iii ! translation in
the direction of the tube axis in the third row~L!.
1-3
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O. DUBAY AND G. KRESSE PHYSICAL REVIEW B67, 035401 ~2003!
the waves must be closed,B modes are only present in (n,0)
and (n,n) tubes with evenn. In zone folding, theB modes
correspond to the ends of the lines crossing theM point ~see
Fig. 3!. Note that the ends of these lines map to equival
points of the graphene Brillouin zone; thus theB modes are
doubly degenerated for zigzag and armchair tubes.

An important result of these simple arguments is that~i! A
modes do not show a radius dependency in zone folding
~ii ! there are 12 classes of phonon modes in achiral tu
one for eachA mode~Fig. 2!; ~iii ! eachE mode corresponds
to a certainA mode, and the difference of their respecti
frequencies goes towards zero for increasing diameters.

III. RESULTS

A. Graphite

The phonon dispersion relation of a single graphite la
is shown in Fig. 4, together with a comparison wi
experiment.11,21Results for theG andM point are also shown
in Table I. For the graphite layer we tested two differe
PAW potentials. The first one~hard! is more accurate bu
requires a plane-wave cutoff of 400 eV, whereas the sec
one ~soft! yields converged results already at a plane-wa
cutoff of 250 eV. In our test calculations we found that bo
potentials yield almost identical phonon frequencies at thG
andM point ~Table I! and hence we decided to use the s
potential for the remainder of this work.

FIG. 3. Zone folding in zigzag@~5,0!, ~6,0!# and armchair@~5,5!,
~6,6!# tubes. The hexagons indicate the Brillouin zone of a grap
layer. Solid horizontal lines map to the lineG,Z in the nanotube.
Points that map toG in the nanotube are indicated with open circl
and labeled according to the symmetry the corresponding pho
will have in the nanotube. Gray dashed lines are guidelines
the eye.
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We also tested the sensitivity of the phonon dispers
relation to the magnitude of the displacement used in
finite differences. Larger displacements make the results
prone to numerical noise, which is present in the forces,
cause the electronic ground state is only determined w
finite precision. But they can spoil the accuracy due to
anharmonicity of the forces. We have found that the d
placement can be enlarged from 0.03 Å to 0.05 Å withou
noticeable change of the phonon frequencies, if central
ferences are used.

To evaluate the accuracy of our vibrational frequenci
we compare the calculated dispersion relation with exp
ments for graphite~Fig. 4!. It is first noted that modes cor
responding to a movement of graphite planes with respec
each other are of course not correctly described by
present calculations, since only a single isolated grap
layer is investigated here. This concerns mainly the exp
mental branch with a frequency of 100 cm21 at theG point.
But other frequencies are hardly affected by the interact
between graphite planes, as a comparison of the present
non dispersion relation with previous calculations for bu
graphite shows~see in particular Ref. 19!. For the remaining
branches the current calculations are more precise than t
presented in Ref. 19, since longer-ranged force constan
the graphite plane were considered. Table I shows that
frequencies agree well with the measured Raman modes
though theG mode at 1595 cm21 lies roughly 10 cm21 too
high. With the present PAW potential and similark-point
densities, calculations for bulkgraphiteyield a frequency of
1600 cm21 for the G mode, suggesting that DFT gives th
same frequency for theG mode in graphite and graphene.

For the dispersion relation, the agreement between the
and experiment is generally also very good~Fig. 4!. Along
G-K our results agree with experiment within the experime
tal error bars~see scatter of experimental data!.11 The com-
parison alongG-M reveals larger discrepancies. AtM, the
frequency of the shear horizontal~SH! mode is significantly

e

ns
to

FIG. 4. Phonon dispersion relation of the graphene sheet.
solid lines show the results of theab initio force constant approach
for the soft potential. The open squares represent the reflec
electron-energy-loss spectroscopy~REELS! data of Oshimaet al.
~Ref. 21! and the solid circles correspond to the high-resolut
electron-energy-loss spectroscopy~HREELS! data of Siebentritt
et al. ~Ref. 11!.
1-4



g
l-
i

un
n
bl

t
od

s
or

s

a
n
re
t

nt

e
ti

/
fo
t

ec
w
th

ow
p
a

d

t
a
%
rc
ct
l
d

n
or
be
th

o-

d
To
y

ted

ter-

tant

.
-
on,
e in
ise
ept-
be

ite,
of

t
ene
nal
on-
of

d

ted

,0)
ells

oth
a

C.

ed
ed
ten-

ACCURATE DENSITY FUNCTIONAL CALCULATIONS . . . PHYSICAL REVIEW B 67, 035401 ~2003!
lower than in the experiment. On the other hand, the lon
tudinal acoustic~LA ! mode lies above the experimental va
ues. We note that other first-principles calculations are
general agreement with our results,19,20,39 which indicates
that we either observe one of the cases, where density f
tional theory fails to predict the correct dispersion relatio
or that the experimental data are not completely relia
alongG-M .

Finally, we note that the longitudinal optic~LO! mode
shows the characteristic overbending also observed in
experiment. The overbending is so strong that the LO m
lies below the SH* mode at theM point. This behavior
is in agreement with all published first-principle
calculations,19,20,39 but presently, the experimental data f
the LO mode are too scarce close toM to allow validation of
this theoretical result. We note that force constants are u
ally fitted with the assumption that the LO and SH* modes
do not cross alongG-M .

B. Force constants for graphene

Table II shows the force constants for a graphite layer
derived from our first-principles calculations. The force co
stants decay fairly rapidly. At the 15th neighbor they a
reduced by at least a factor of 300 and 4000 compared to
nearest neighbor for in plane (x,y) and out of plane (z),
respectively. The table includes two sets of force consta
which are redundant due to inversion symmetry~atoms num-
ber 5 and 58 and atoms number 10 and 108). Note that the
neighbors 20 and 208 are not redundant in this manner. Th
discrepancies for the two redundant sets give an estima
for the numerical reliability of the tabulated constants~com-
pare respective columns with radial derivatives!. The dis-
crepancy between these two set is at most 0.0005 eV
which is a factor of 10 000 smaller than the force constant
the nearest neighbor and about 100 times smaller than
force constant at the 14th neighbor, indicating that the pr
sion of the present calculation is indeed sufficient. It is, ho
ever, important to emphasis that even very small errors in
force constants can have a substantial effect on l
frequency modes. From the approximate errors and a sim
error analysis we can estimate that high-frequency modes
correct to within 0.3 cm21 and frequencies aroun
200 cm21 are correct to within 2 cm21, but very-low-
frequency modes (20–50 cm21) might be wrong by up to
10 cm21.

It would be interesting to compare our force constants
those fitted to experimental data, but unfortunately, the v
ues even for the first neighbor differ already by up to 30
We also note that the common assumption that the fo
constant matrix is diagonal in a basis spanned by the ve
connecting the two atoms~radial part! and the orthogona
vector~angular part! is not fulfilled, e.g., for the second an
fourth neighbors.

Though the force constants decay reasonably, it is
possible to restrict them to a small number of neighb
without losing accuracy. Neglecting the force constants
fore the 20th neighbor causes significant changes in ei
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the low- or high-frequency regions. The differences in ph
non dispersion resulting from the use of 20 to 23~all! neigh-
bors are negligible.

As an additional test for the reliability of the truncate
force constant matrix, we calculated the elastic stiffness.
this end, the stiffnesss was first independently calculated b
straining the graphene sheet either parallel to thex or y di-
rection~see Fig. 5! by 16e (e50.00, 0.01, 0.02! and fitting
the energy with a quadratic curve

E5E01
s

2
e2 S s5

]2E

]e2 D . ~1!

Due to the threefold symmetry, an isotropic value is expec
and we found this indeed confirmed (s561 eV/atom). The
elastic stiffness can be calculated also by summing the in
atomic force constants

1

2 (
i , j 51,2,3

a,b

@RW ~ab!q̂#q̂iDi j ~ab!q̂ j@RW ~ab!q̂#, ~2!

whereq̂ is a unit vector either parallel tox or y. Di j (ab) are
the Cartesian components of the interatomic force cons
matrix between atomsa and b, and RW (ab) is the vector
connecting atomsa andb. The indexa runs over all atoms
in the primitive cell andb over the entire interaction range
The summation gives a value ofs563 eV/atom. We empha
size that this value is very sensitive to the point of truncati
since force constants enter quadratically with the distanc
Eq. ~2!. Hence, the small deviation from the more prec
value calculated by straining the graphene sheet is acc
able. The experimental value for the elastic stiffness can
estimated from the value of the elastic constant of graph
c1151.06 TPa, and the experimental lattice constants
graphite, a052.462 Å, c056.707 Å, yielding a value of
V03c11558.2 eV/atom,40 which is in excellent agreemen
with the elastic stiffness calculate from the strained graph
sheet, demonstrating the accuracy of our density functio
calculations. Sound velocities are also related to elastic c
stants. For simplicity we calculated them from the slope
acoustic branches~Fig. 4! and found values of 16 km/s an
26 km/s for the transversal acoustic~TA! and LA modes.
This is in good agreement with the sound velocities extrac
from experimental data~14 and'24 km/s).20,21

C. Nanotubes

The phonon dispersion relations of the (10,10) and (10
tubes were calculated exactly by means of large superc
containing an isolated nanotube, as explained in Sec. II C~4
times replicated elementary cells, i.e., 160 atoms for b
tubes!. The k-point mesh was correspondingly reduced by
factor of 4 compared to the values specified in Sec. II
Figure 6 shows a comparison of these exactab initio calcu-
lations with zone-folding results for the tubes~10,10! and
~10,0!. For zone folding, we used the force constants deriv
from theab initio calculations for the flat sheet as calculat
in the previous section. Since we use one consistent po
1-5
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TABLE II. Interatomic force constants (eV/Å2) for graphite be-
tween atom 0 andn as calculated by first principles~numbering
scheme and axis are shown in Fig. 5!. Second derivatives of the
energyE are given with respect to the coordinatesx, y, andz and
also with respect to the longitudinal~l! and transversal~t! direc-
tions. Longitudinal is the direction parallel to the connection of t
two atoms, and transversal is parallel to the layer plane and per
dicular to the longitudinal direction.

n S]x0
]xn

]x0
]yn

]y0
]xn

]y0
]yn

D S]r0
]rn

]r0
]tn

]t0
]rn

]t0
]tn

D ]z0
]zn

1
110.2054 10.0000
10.0000127.3244

127.3244 10.0000
10.0000 110.2054 16.3182

2 20.7888 13.4419
12.8814 12.8600

14.6859 20.2811
10.2794 22.6147 20.5063

3 20.1210 21.2247
21.2247 11.2931

20.8281 20.0000
20.0000 12.0002 10.4160

4 10.5662 10.3115
10.3116 20.7382

20.4057 20.6482
20.6483 10.2337 20.4943

5 10.1064 10.0000
10.0000 10.5238

10.5238 10.0000
10.0000 10.1064 10.0693

5’ 10.4188 10.1807
10.1807 10.2102

10.5231 10.0000
10.0000 10.1059 10.0695

6 20.1777 10.1593
10.1730 10.0144

10.1103 10.0070
20.0067 20.2736 20.0118

7 10.0769 20.1758
20.1760 20.1217

20.1944 20.1061
20.1059 10.1496 20.0083

8 10.0129 10.0000
10.0000 20.4507

20.4507 10.0000
10.0000 10.0129 10.0644

9 10.0400 20.0463
20.0462 10.0422

10.0081 10.0325
10.0324 10.0741 10.0259

10 20.0015 10.1908
20.0149 10.0603

10.1120 20.0597
10.1460 20.0532 20.0065

10’ 20.0313 10.1735
20.0321 10.0900

10.1119 20.1459
10.0597 20.0532 20.0065

11 20.0335 20.0920
20.0920 10.0728

20.0866 10.0000
10.0000 10.1259 10.0019

12 10.0201 10.0048
10.0436 10.0479

10.0619 10.0193
20.0195 10.0061 10.0013

13 20.0033 20.0018
20.0018 20.0495

20.0315 20.0226
20.0226 20.0213 20.0041

14 20.0088 10.0237
10.0238 20.0854

20.0762 20.0343
20.0344 20.0180 20.0083

15 10.0714 10.0334
10.0334 10.0327

10.0907 20.0001
20.0001 10.0134 10.0013

15’ 10.0135 10.0000
10.0000 10.0906

10.0906 10.0000
10.0000 10.0135 10.0013

16 20.0017 20.0288
20.0287 20.0373

20.0530 10.0046
10.0045 10.0140 10.0018

17 20.0031 10.0258
10.0058 10.0093

10.0191 20.0044
10.0156 20.0129 10.0004

17’ 20.0074 10.0232
10.0033 10.0136

10.0190 20.0156
10.0043 20.0128 10.0004

18 20.0019 20.0332
20.0332 20.0277

20.0436 20.0210
20.0210 10.0140 20.0006

19 10.0001 10.0155
10.0155 10.0180

10.0270 10.0000
10.0000 20.0089 10.0001

20 10.0032 20.0064
20.0064 20.0042

20.0076 20.0021
20.0021 10.0066 10.0013

20’ 20.0350 10.0000
10.0000 20.0869

20.0869 10.0000
10.0000 20.0350 10.0018
03540
tial, any differences are a direct consequence of curva
effects and, hence, a good measure of their importance
the phonon dispersion.

The 4-times-replicated zigzag cell has the same he
~17.0 Å! as the graphene super-cell in they direction~Fig. 5!.
We expect that force constants beyond this range are z
The height of the 4-times-replicated armchair supercel
smaller~9.8 Å!; thus the dispersion relation for the (10,10

n-

FIG. 5. Graphite single-layer supercell with the numberi
scheme for the table of the force constants~Table II!.

FIG. 6. Phonon dispersion relations and vibrational density
states for the armchair~10,10! and zigzag~10,0! tubes. Gray thick
lines show branches of the radial breathing mode. The VDOS p
els show the vibrational density of states for zone-folding~dashed
line! andab initio ~solid line! calculations.
1-6
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FIG. 7. Raman- and infrared-active modes~classified according to the symmetry representations!. Panel~a! shows the calculated Rama
frequencies and~b! the zone-folding Raman frequencies. Panels~c! and~d! display the calculated and zone-folding values for infrared-ac
frequencies, respectively. In all panels, horizontal lines indicate the zone-foldingA mode frequencies. Letters A, R, and L indicate t
direction of the vibration~Fig. 2!: radial, axial, and longitudinal~parallel! to the tube axis.
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tube might have somewhat larger error bars. Note that
G-point phonon frequencies do not depend on how often
cell is replicated.

As can be seen in Fig. 6, the agreement betweenab initio
and zone-folding calculations is remarkably good. The ma
difference between these two results is in the low-freque
part of the spectrum. The rise of the low-frequency phon
branches is slower in zone folding. The reason for this i
failure of the zone-folding approach to describe the branc
of the radial breathing mode and the two translational mo
perpendicular to the tube axis (x andy). In zone folding, the
radial breathing mode is predicted to have zero freque
while the two translational modes have finite frequency.
course, the fullab initio calculations for nanotubes do no
have this deficiencies.

Another difference, which is physically more interestin
is a general softening of theab initio modes compared to
zone folding visible in the vibrational density of states
Fig. 6. This is caused mainly by a weakening of the int
03540
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-

atomic forces due to curvature effects. The difference
around 3%, but the shift is not uniform among the freque
cies. We discuss the differences between zone-folding
full ab initio calculations in more detail in the next sectio

Figure 7 shows the frequencies of the Raman- a
infrared-active modes identified according to the irreduci
representations of theDn^ i group ~Dnd for odd orDnh for
evenn) ~Ref. 34! and~Fig. 7!. Modes were also classified b
the direction in which the movement of atoms is most
tense~Fig. 2!: R ~radial!, perpendicular to the tube surfac
~e.g., radial breathing mode!; L ~longitudinal!, parallel to the
tube axis;A ~axial!, the direction perpendicular to radial an
longitudinal ~e.g., rotation around the tube axis!. Let us first
discuss zone folding.A modes are shown as straight lines
the two graphs for zone folding@Figs. 7~b! and 7~d!#. To
guide the eye, these lines are also shown in theab initio
subpanels, and circles present the exact results forA modes.
Since we present the Raman-active and IR-active mode
separate graphs, one usually finds circles that converge
1-7
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O. DUBAY AND G. KRESSE PHYSICAL REVIEW B67, 035401 ~2003!
larger tubes towards the zone-folding value in one of the
graphs,~a! or ~c!. We however remind the reader that theA1u

modes are silent and, therefore, not shown in the gra
Additionally someA modes with identical displacement pa
terns have either even or odd symmetry depending
whethern is even or odd. For instance, for the~18,0! tube,
the A2u(R) ~IR-active! mode at 495 cm21 has the same dis
placement pattern as theA1g(R) ~Raman-active! mode at
roughly the same frequency for the~17,0! tube.

But in any case, deviations of circles from straight lin
are indications for curvature effects. The curvature effect
other modes can be recognized by comparing the zo
folding and theab initio panels. Clearly, curvature effects a
rather small for all high-frequency modes. But a general s
ening is visible at smaller radii, leading to a decrease of
frequency of theE1g(A) ~open triangles!, E1u(L) ~solid tri-
angles!, andE2g(L) ~solid squares!. The change is roughly
5% for the smallest tube considered here.

This is more clearly shown in Fig. 8, in which we co
centrate on theG-band modes as a function of the inver
diameter~the same results as a function of the diameter w
shown in Ref. 23!. Since we have discussed most of t
results already in Ref. 23, the following discussion is ke
short. The zone-folding predictions are now shown as lin
with labels indicating their symmetry. Zone folding predic
a singleA mode, a small splitting between the longitudin
and axialE1 modes, and a slightly larger splitting betwee
the two E2 modes.43 The splitting is not quite symmetric
with respect to the central graphite frequencyvg , since our
force constants lead to a rather strong increase of the
frequency fromG to M ~overbending! so that the average
frequency is higher than for graphite. In Ref. 43 an aver
decrease of the frequencies was found with a different se
force constants fitted to experimental results.

FIG. 8. Phonon frequencies in theG band calculated byab initio
density functional theory. Phonons are characterized by their s
metry and direction of vibration. Note that allA1 , E1, and E2

modes in theG-band region are shown irrespective of their pari
Experimental results for the frequency of the BWF line from R
41 and Ref. 42 are shown by open and solid diamonds. Dashed
shows the linear fit forA1(L) mode in metallic tubes.
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The full ab initio calculations show a similar behavior, bu
some details are clearly different. Generally, the exact res
are lower than the zone-folding values with the exception
the longitudinalA1(L) mode in insulating tubes~stars!. The
frequency shift with respect to zone folding is rather unifo
and approximately 10 cm21 for larger tubes. For the thre
largest tubes, theE2 modes~squares! are now almost sym-
metrically split by approximately 20 cm21 with respect to
the central graphite frequencyvg51595 cm21 ~theory!.
These values compare well with recent polarized Ram
studies of Jorioet al. where a symmetric splitting of theE2

modes by 28 cm21 was observed with respect to the expe
mentalG band of graphite~experimentvg51580 cm21).44

However, experiments using parallel, crossed, and circul
polarized light find theE2 modes overlapping in frequenc
with the A1 modes.45

For large insulating tubes, theE1(A) modes andA1(L)
modes ~open triangles and stars! almost coincide and are
located around 1597 cm21. The E1(L) and A1(A) modes
~solid triangles and open circles! are also very close in fre
quency and found at roughly 1580 cm21, i.e., 20 cm21

lower than theE1(A) and A1(L) modes. These values ar
also in reasonable agreement with Raman and polarized
man studies,43,44 where oneE1 and anA1 mode were ob-
served around 1590 cm21, and the other sets ofE1 andA1

modes were observed at 1567 cm21.
The most interesting feature, however, is the signific

drop of the frequency of the longitudinalA1(L) mode in
metallic tubes compared to insulating tubes. The freque
drop is the same for zigzag, armchair, and chiral tubes w
similar radii. For the linear fit of the frequency dependen
on the inverse diameterf (d)5 f 02a/d the parametersf 0

51619 cm21 anda5866 cm21 Å are obtained. A linear fit
with the assumption that the frequency approac
1595 cm21 for 1/d→0 yieldsa5637 cm21 Å, but does not
fit the theoretical results very satisfactory. This indicate
deviation from a simple linear behavior, also observ
experimentally.42

We now return in our discussion to Fig. 7. For the inte
mediate frequencies around 800 cm21 a similar softening as
for the high-frequency modes is observed both for
Raman- and IR-active branches@E1g(R), gray triangle;
A2u(R), gray circle#. At even lower frequencies (500 cm21)
the differences between zone-folding and fullab initio cal-
culations are generally larger and in the opposite directi
This part of the spectrum is dominated by vibrations in t
(x,y) plane~radial and axial!. Three modes show a peculia
behavior: the frequency dependence of the radial breath
mode@A1g(R), gray circles# exhibits the characteristicA/r
scaling, wherer is the tube radius andA51144 cm21 Å, in
good agreement with previous calculations using the sa
plane-wave code but different pseudopotenti
(1170 cm21 Å).22 By fitting to Ar2B we obtained the values
A51068 cm21 ÅB andB50.95. The valueB is smaller than
1, which is due to the bond softening for narrower tubes
has been emphasized that the 1/r behavior is a natural con
sequence of elastic continuum theory applied to nanotube22

-

.
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ACCURATE DENSITY FUNCTIONAL CALCULATIONS . . . PHYSICAL REVIEW B 67, 035401 ~2003!
A second mode, which converges towards 495 cm21 for
large tubes, exhibits a similar behavior@gray circles in Figs.
7~a! and 7~c!#. For the tubes with evenn, it has A2u(R)
symmetry and is IR active, but for tubes with oddn it has
A1g(R) symmetry and should be Raman active. Using
notation of Fig. 1 its displacements pattern is1122.

Finally we want to comment on the lowest-frequen
mode observed below 100 cm21 in the graphs for the Rama
frequencies@Fig. 7~a!#. This mode is related to the ZA mod
in graphite, which has a quadratic dispersion relation foqW
→0, and hence approaches zero quadratically with incre
ing tube radius~at least in zone folding!. In nanotubes, the
mode causes a distortion from a circular to an elliptic sha
Our calculations show considerable noise in the frequenc
this mode, which is related to error propagation that affe
low-frequency modes much stronger than high-freque
modes. Nevertheless, it is clear that the frequency of
mode is substantially lower in the exact calculations than
zone folding. This possibly points to an instability of larg
nanotubes towards an elliptic deformation. However, up
the radii we have investigated here, all tubes remain sta
towards such a deformation.

IV. DISCUSSION

A. Phonon eigenvectors

As discussed in the Sec. II D, the phonon modes
achiral nanotubes split into longitudinal and transver
modes, which might be further divided into radial and ax
modes. Recently Reichet al.45 pointed out that while in
achiral tubes the inversion symmetry allows a division in
longitudinal and transversal modes, in chiral tubes suc
classification is meaningless. Since this might significan
alter the results for the mode softening, we performed
calculations on the metallic chiral (12,6) tube. As far as
mode softening is concerned we find similar results as for
achiral tubes~see also Fig. 1 of Ref. 23!. Furthermore, the
angle between theA1 , E1, andE2 modes and the tube axi
was analyzed for the (12,6) nanotube. For this tube all tot
symmetric modes (A1) reasonably line up with the expecte
directions~deviations are less than 0.6°), with the except
of the longitudinal and axialG-band modes, which deviat
by about 3.8°~Table III!. For theE1 andE2 modes in theG
band, the deviations are also tiny. Our calculations confi

TABLE III. Weighted average of angles between the displa
ment direction and the tube axis for selected phonon modes o
(12,6) tube. Weights are proportional to the displacement amplit
of each atom.

Frequency (cm21) a ~deg!

A1~L! 1570 3.8
A1~A! 1578 86.3
E1~L! 1582 1.6
E1~A! 1597 88.6
E2~L! 1566 1.8
E2~A! 1614 88.4
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the observation of Reichet al., that symmetry does not re
quire modes to be exactly longitudinal or transversal in ch
tubes, but for the particular tube we have considered,
deviations are smaller than reported by Reichet al. Thus a
classification into longitudinal and transversal modes is s
useful. Our tube is, however, wider than the ones conside
by Reichet al., and further studies are required to shed mo
light on this subject.

B. Mode softening

As shown in the previous section, in nanotubes, the vib
tional frequencies are generally lower than one would exp
on the basis of zone folding. This observation is not new, a
all first-principles calculations agree that curvature low
the interatomic force constants.20 The effect is most likely
related to a weakerp bonding in the circumferential direc
tion in a curved graphite layer. This is also confirmed by t
observation that the axialA1(A) mode is one of the mode
that is most strongly affected by curvature, whereas~for
semiconducting tubes! the longitudinalA1(L) mode is essen-
tially independent of the radius~see Fig. 8!.

The most important outcome of our calculations is, ho
ever, the large drop of the frequency of the longitudinal op
A1(L) mode inall metallic nanotubes~irrespective of their
chirality!. The corresponding displacement patterns of
A1(L) modes in zigzag and armchair tubes are indicated
Figs. 9~b! and 9~c!. An A1 mode with a similar frequency
dependence is also observed experimentally in meta
nanotubes and well known for its peculiar Breit-Wigne
Fano line shape in Raman spectroscopy. Compared to gr
ite the frequency shift was observed to be proportional to
inverse diameterd of the tube,a/d, with a5440 cm21 Å.46

This is in reasonable agreement with our value ofa
5637 cm21 Å. Visually, the agreement of the present de
sity functional calculations with two more recent indepe
dent measurements is even better, as evidenced by Fig. 841,42

The theoretical frequencies are roughly 10–20 cm21 higher
than the experimental ones, which corresponds to the
crepancy between theory and experiment for the LO mod
graphite. Such a discrepancy is therefore not unexpected
Ref. 46, it has been suggested that the frequency dro
related to a coupling of theA1(A) modes to plasmons in
metallic tubes. The coupling mechanism proposed in our
cent theoretical work23 also involves electronic states at th
Fermi level. It is based on the observation that theA1(L)

-
he
e

FIG. 9. ~a! Conventions used in the tight-binding Hamiltonia
Displacement patterns of the longitudinal~axial! A1 mode in ~b!
zigzag ~armchair! and ~c! armchair~zigzag! tubes.w is the phase
difference between the two carbon atoms in the unit c
~in rad/2p).
1-9
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O. DUBAY AND G. KRESSE PHYSICAL REVIEW B67, 035401 ~2003!
mode opens a gap at the Fermi level in all metallic tub
irrespective of chirality. This mechanism does not invol
plasmons in the common sense, but both mechanisms
in common that they should yield roughly a 1/d shift of the
A1 mode compared to the LO mode of graphite, since
metallic tubes, the electronic density of states per car
atom at the Fermi level is proportional to the inverse of
diameter. A more recent study of Jorioet al.,42 however, ob-
served a frequency shift proportional to 1/d2. Although our
calculations also do not exhibit strictly a 1/d frequency shift,
they deviate significantly from the suggested 1/d2 behavior.
It is important to remark that in the diameter range of 10–
Å covered in the present study, the data of Jorioet al. seem
to agree with our results except for the mentioned cons
error of 10 cm21 ~solid diamonds in Fig. 8!. A 1/d2 shift is,
at first sight, also not compatible with a coupling of pla
mons to phonons. Further theoretical and experimental w
is required in order to resolve this issue.

In the remainder of the section we will discuss the co
pling mechanism between electronic states at the Fermi l
and phonons. The discussion always refers to metallic tu
Particular attention is devoted to symmetry considerati
which are also relevant for a coupling between plasmons
phonons. An important outcome of this symmetry analysi
that only theA1(L) phonon can couple to the electronic co
tinuum states at the Fermi level, which seems to suggest
an electron-phonon coupling cannot lower theA1(A) mode
as assumed in the experimental work.42,46

Let us first make some simple considerations regard
the character of the wave functions at the Fermi level.
graphite, two bands cross the Fermi level at theK point.47

The states have essentiallyp character with thep orbitals
aligned normal to the tubule surface (p bonding!. They can
be described reasonably by a tight-binding Hamiltonian w
zero on-site energy.47 If only nearest-neighbor interaction
are considered, thep Hamiltonian of a graphitelike system
reduces to a simple 232 matrix

S 0 compl.conjug.

V01V1ei2pk11V2ei2pk2 0 D , ~3!

whereV0 , V1, andV2 are the tight-binding hopping matri
elements between nearest neighbors@compare Fig. 9~a!#.

FIG. 10. Complex tight-binding matrix elementsVie
2p iki to the

three neighboring atoms at the point ink space, where the twop
bands cross each other~a! in undistorted graphite,k152k251/3,
~b! for a longitudinal mode in zigzag tubesk152k251/32d, and
~c! for a longitudinal mode in armchair tubesk151/31d,
k2521/31d. In all three cases, the three complex numbers sum
zero.
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Herek1 andk2 are parametrizing thekW point, with kW5k1bW 1

2k2bW 2, where bW i are the reciprocal lattice vectors of th
graphite plane. This Hamiltonian describes two bands t
intersect at one particular point in the Brillouin zone.

Additionally, for a half-filled p band, as in the case o
undoped graphite, the Fermi level is located exactly at
position where the two bands intersect. This band cross
point, where the Hamiltonian has one double-degenera
eigenvaluee50, is determined by the requirement that t
off-diagonal elements of the matrix become zero:

uV01V1ei2pk11V2ei2pk2u50. ~4!

For a perfect graphene plane,gªV05V15V2 holds due to
symmetry, and the condition~4! is satisfied fork152k2
561/3, which corresponds to theK and K8 points in
graphite.47,48 The graphical solution of condition~4! is illus-
trated in Fig. 10~a!.

The two-dimensional band structure of graphite cor
sponding to Eq.~3! is shown in Fig. 11. Only a few phonon
couple to the electronic states at the Fermi level. In lin
response theory, the modifications resulting from a phonok
are described by

(
i j

~ f i2 f j !
^C i uVkuC j&

~e i2e j !
, ~5!

whereC i and e i are the wave function and the eigenval
corresponding to the one-electron statei, f i is the number of
electrons in this state (f i50 or f i52), andVk is the effec-
tive deformation potential corresponding to this particu
phonon modek. If the occupied state has a Bloch wav
vectorki and the filled state a Bloch wave vectorkj , a finite
coupling is only found, when the phonon wave vector isq
5ki2kj ; hence onlyG-point phonons andK-point phonons
couple to the states at the Fermi level~see Fig. 11!. In the
present work, we are mainly interested in Raman-act
modes. With the exception of (3n,0) zigzag tubes,K-point

to

FIG. 11. Electronic band structure of graphite according to E
~3!. The negative branch at lower energies corresponds to fi
states, whereas the branch at energies higher thaneF to empty
states. Phonons that couple to the electronic states at the Fermi
are shown by arrows.
1-10



Fi

ar

th
l-
s

ou

e

to
us

a
ive
no
rd

u
te

h

f
in

of

ig

-
s

of
o

t
l
e

erse

l is
nd

ng
re
-
the
ed
f
are
for
ens
ves
the
te

e

s
ith

f
dis-
the
-
the
en

ode
nce

rted
.

he
ed
he
ral-
r-

ity

a
tw

nl

ACCURATE DENSITY FUNCTIONAL CALCULATIONS . . . PHYSICAL REVIEW B 67, 035401 ~2003!
phonons, generally, do not fold back to theG point, in nano-
tubes, as indicated in Fig. 3, and are not Raman active.
ure 3 also indicates thatK-point phonons haveEn symmetry
in (3n,0) zigzag tubes, which implies that these modes
not Raman active for realistic wide tubes (n.12).

Therefore, one can concentrate onG-point phonons. From
the observation that the filled and unoccupied states in
vicinity of the Fermi level are orthogonal, it additionally fo
lows that both atoms in the primitive cell of graphite mu
move in the opposite direction to result in a nonzero c
pling element:

^C i uVkuC j&5E
V

C i~r !C j* ~r !Vk~r !d3r .

If the occupied and unoccupied states are in phase on on
the atoms, orthogonality of the wave functionsC i and C j
requires that they are out of phase on the second a
Hence, for maximal coupling, the deformation potential m
have an opposite sign on both atoms realized only by
out-of-phase movement of the two atoms in the primit
cell. Furthermore, in graphite, out-of-plane modes do
change the distance between neighboring atoms to first o
and therefore the hopping elementsVi remain unaffected to
first order. Combining these three observations, we ded
that at theG point only the SH and LO modes of graphi
couple to the electronic states at the Fermi level~one acous-
tic mode couples too, but this is not of relevance for t
present study; see Ref. 49!.

To study in detail, how theG-point SH and LO modes o
graphite influence the band structure of graphite in the vic
ity of the K point, we turn again to the graphical solution
Eq. ~4!. If the matrix elementV0 is decreased tog2dV,
which corresponds to the bond elongation shown in F

FIG. 12. ~a! Electronic band structure of graphene in the vicin
of theK point. The bands have a conical shape near theK point, and
the tip of the cone is located exactly atK. Panels~b! and~c! indicate
the changes in the band structure for two phonon modes~LO and
SH* ). The thick lines indicate the band structure of an armch
tube, which is obtained by intersecting the gray plane with the
cones. Only the second displacement@corresponding toA(L) in
armchair tubes# opens a gap, whereas the first displacement o
moves the intersection point.
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9~b!, the point where the bands intersect shifts away fromK

to (1/32d)(bW 11bW 2) @Fig. 10~b!#. In the second case, corre
sponding to Fig. 9~c! and Fig. 10~c!, one bond strengthen
(V1) and the second one weakens (V2), leading to a shift of

the crossing point to (1/31d)bW 11(1/32d)bW 2.
How this affects the two-dimensional band structure

graphite is illustrated in Fig. 12. As already mentioned, tw
bands intersect at theK point ~in fact there are two distinc
points K and K8, which cannot be linked by a reciproca
lattice vector, but for simplicity we will concentrate on on
of these symmetry-inequivalentK points!. For a pattern in
which one bond is elongated, corresponding to the transv
mode in armchair tubes~and longitudinal mode in zigzag
tubes!, the crossing point shifts away fromK towardsG @Fig.
12~b!#. For the longitudinal mode in armchair tubes~and
transverse mode in zigzag tubes!, on the other hand, the
crossing point moves perpendicular to the lineGK @Fig.
12~c!#.

The band structure of nanotubes near the Fermi leve
obtained by the intersection of the two-dimensional ba
structure of graphene~cones! with those planes, which are
allowed by the conditions imposed by the wrappi
procedure.50 For armchair tubes, the resulting band structu
aroundeF is indicated in Fig. 12 using thick lines. The lon
gitudinal mode opens a gap in the armchair tube, since
tip of the cones has moved perpendicular to the allow
lines, whereas the transverse mode leads only to a shift okF
to a differentk point. For the zigzag tubes, the arguments
similar, but the allowed lines are perpendicular to those
armchair tubes, and hence it is again the LO mode that op
the gap. In general, the displacement pattern, which mo
the cone perpendicular to the lines that are allowed by
periodicity imposed by the wrapping procedure, will crea
the largest gap. This is in all cases theA1(L) mode, irrespec-
tive of chirality. Finally, it is important to emphasis that th
gap opening is equally large for positive~dimerization! and
negative~bond elongation! distortions. Hence the gap open
when the ions swing back and forth in a way compatible w
the A1(L) mode.

At intermediate~electronic! temperatures the opening o
the gap clearly reduces the energy, which is required to
tort the nanotube by an amount roughly proportional to
square of the gap.47,51 But it cannot eliminate the conven
tional restoring forces, stemming from the other parts of
electronic spectrum and from the direct interaction betwe
the ionic cores. Thus the gap opening leads only to the m
softening and not to a permanent structure distortion. Si
the density of states aroundeF is additionally inversely pro-
portional to the radius of the tube, theA1(L) mode is softer
for smaller tubes with a larger density of states ateF .46 As
an example for this process the band structure of disto
zigzag tubes was already presented in our previous work23

Our final comment concerns the Raman activity of t
A1(L) mode in metallic tubes. The Raman activity is relat
to the change of the polarizability. In a metallic tube, t
screening is infinite for long-range charge fluctuations pa
lel to the tube, corresponding to an infinite polarizability pa
allel to the tube axes~compare Ref. 52!. But any distortion of
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the tube compatible to theA1(L) mode opens a gap an
decreases the polarizability to a finite value. Hence the
larizability changes discontinuously for theA1(L) mode,
which indicates an infinite Raman coupling tensor for t
particular mode. Based on this simple argument we expe
very strong coupling of theA1(L) mode to incident light.

V. CONCLUSIONS

The first part of this work concentrated on the derivati
of an accurate set of force constants for graphite. These f
constants were calculated usingab initio density functional
theory. We used this set of force constants to calculate
phonon dispersion relation of graphite and found reason
agreement with experiment, although some notable disc
ancies were observed in the vicinity of theM point. In par-
ticular, the theoretical SH mode has a too low frequency,
the theoretical frequency of the LA optic mode is somew
too high compared to experiment. These discrepancies
difficult to reconcile with the fact that the agreement is
most perfect in the vicinity of theG andK points, suggesting
that further experimental work might be required to fu
resolve this issue. As an additional test for the reliability
the tabulated force constants, the elastic stiffness was ca
lated and compared to experiment. Again good agreem
was found.

We then presented results for the vibrational propertie
a large number of achiral nanotubes, calculated either u
zone folding with the previously calculated force consta
or using a fullab initio approach. Since all calculations re
lied on essentially the same potential and the same fi
principles code, a direct assessment of how curvature aff
the frequencies is possible. Our observations are simila
se
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previous studies, insofar that we find a general softening
the high-frequency modes for small tubes. Qualitatively~and
sometimes quantitative!, the dispersion relations are, how
ever, well described by the zone-folding approach. The
ceptions are the known deficiencies in the low-frequen
part of the vibrational spectrum.

Finally, we have analyzed in detail the behavior of t
modes in theG band. In theG band, a general softening o
all modes is again visible. The only exception is theA1(L)
mode which is hardly influenced by curvature, since t
bonds are not softened in the direction parallel to the tu
On the other hand, theA1(A) mode, having the same fre
quency as theA1(L) mode in graphite, softens considerab
Thus the splitting of these two modes is a good measure
the bond softening induced by curvature. The softening
A1(A) mode and a slight strengthening ofA1(L) mode leads
to the almost symmetric arrangement ofE2(A), E1(A)
1A1(L), E1(L)1A1(A), and E2(L) modes around the
graphiteG mode.

Finally, a significant softening of theA1(L) mode in me-
tallic tubes is observed in our calculations. This is linked to
band gap opening at the Fermi level, a mechanism tha
reminiscent of Peierls distortions. But here the gap op
when the ions swing back and forth from their ground-st
position. The mechanism underlying this process is
plained by means of a simple model based on a tight-bind
Hamiltonian.
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