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Intraband polarization as the source of degenerate four-wave mixing signals in asymmetric
semiconductor quantum well structures
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We have developed a formalism for calculating the coherent response of asymmetric semiconductor quan-
tum well structures to ultrashort optical pulses. We work in an excitonic basis and include exciton-exciton
interactions via the long-wavelength portion of the excitonic intraband polarization. We apply this formalism to
the calculation of degenerate four-wave mixing intensities of a biased semiconductor superlattice and find that
many aspects of the four-wave mixing signals are most naturally interpreted as directly resulting from the
scattering of excitons off of the intraband polarization grating. We furthermore develop an extremely accurate
method of factoring the dynamical equations that does not suffer from the problem encountered by the
semiconductor Bloch equations in the Hartree-Fock approximation.
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I. INTRODUCTION

There has been considerable interest over the pas
years or so in the stationary states and dynamics of elect
and holes in biased semiconductor superlattices~BSSL’s!,
coupled double quantum wells~CDQW’s!, and other asym-
metric quantum well structures~AQWS’s!. This interest has
been generated both by the ability to investigate fundame
questions of semiconductor physics in systems in which
configuration can be specifically tailored, and by the pos
bility of developing new semiconductor devices. Initial
both the experimental and theoretical interest centered on
existence and nature of the stationary states in these sys
More recently work has been focused on the coherent
namics of the optically generated carriers. Theintrabanddy-
namics have been examined through the direct detectio
the THz field generated by the oscillating electronic wa
packets created via short-pulse excitation, whileinterband
dynamics have been investigated through pump-probe
periments and time-integrated, time-resolved, and spect
resolved degenerate four-wave mixing~DFWM! experi-
ments. Although it is generally recognized that there is n
essarily a strong connection between the intraband and in
band polarization dynamics in these systems, the pre
nature of this relationship is not always apparent in the t
oretical formalisms used to date to treat them. In this w
we show that in AQWS’s, the intraband polarization is t
dominant source of the DFWM and pump-probe signals.

The most common approaches that have been used in
past to treat the dynamics of electrons and holes near
semiconductor bandedge are the semiconductor Bloch e
tions ~SBE’s!,1–4 and various forms of the dynamics co
trolled truncation~DCT! theory.5–8 The SBE’s have been
used successfully to describe a wide range of experime
results, including the ac Stark effect and Rabi oscillations2,9

They have the advantage that when used in the Hartree-F
~HF! approximation, they are in principle non-perturbative
the optical field. In has been shown, however, that the SB
0163-1829/2003/67~3!/035329~17!/$20.00 67 0353
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within the HF approximation neglect the crucial electro
hole correlations within an exciton when carried out beyo
first order in the optical electric field.6,10–15The DCT theory
on the other hand can in principle treat all correlations
actly to any desired order in the optical field. However, o
key difficulty that arises in a DCT calculation is the trea
ment of the exciton-exciton~XX ! Coulomb interaction. A
realistic evaluation of the Coulomb matrix elements is e
tremely computationally intensive. As a result, most DC
calculations employ some sort of simplification. The mo
common simplifications are to treat the system in a quasi
approximation,7,8,10–12,16,17to employ a contact or on-site po
tential for the Coulomb interaction between carriers,6,18 or to
introduce effective interaction parameters.15 This makes it
computationally feasible to include additional features in
model such as disorder16,19 and electron-phonon
interactions.18 Thus, DCT has been successfully employed
calculate the interband polarization up to fifth order in t
optical field in bulk semiconductors and single quantu
wells.12,20 It has also been employed to calculate the int
band polarization of CDQW’s and BSSL’s to secon
order.14,18 However, to our knowledge, DCT has never be
used to calculate the third order interband polarization
such complicated ASQW’s with or without simplifying th
Coulomb interaction.

There have been a large number of papers demonstra
that the inclusion of carrier-carrier correlations are import
in the calculation of DFWM signals in bulk semiconducto
and quantum wells.7,8,10–12,15–17In these papers it is show
that SBE’s in the HF approximation lead to errors even
second order in the optical field. One of the key featu
missing from the Hartree-Fock approximation is the corre
tion between the electron and hole within a single excit
This correlation is missing essentially because these e
tions employ a free electron-hole basis to perform the ca
lation. Hence when the HF factoring is performed, the c
relations between the electron and hole inside the exciton
not treated correctly. This intraexcitonic correlation is au
©2003 The American Physical Society29-1
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matically incorporated into any theory that employs an ex
tonic basis.

The excitonic basis has been employed by a numbe
authors14,18,21,22In particular, it has been used to investiga
the intraband dynamics of CDQW’s~Ref. 18! and BSSL’s
~Ref. 14! to second order. To treat interactions to third ord
and beyond requires the evaluation of exciton-exciton in
actions. This has been done in the excitonic basis for a si
quantum well in a magnetic field.21 However, the treatmen
of more complicated systems such as an AQWS to th
order can become very computationally intensive if one d
not find an efficient way of dealing with the exciton-excito
interactions. It is with this aim in mind that this work ha
been performed.

In this paper we present a new formalism for the calcu
tion of DFWM and pump-probe signals in AQWS’s. The tw
key features of our approach are that~1! it employs an exci-
tonic basis that includes the center-of-mass~c.m.! wave vec-
tor of the excitons and~2! it expresses the interexcitoni
interaction in terms of the intraband polarization in the lon
wavelength limitP,

intra. As discussed above, the advantage
the excitonic basis is that it ensures that electron-hole co
lations within an exciton are treated correctly. Furthermo
keeping track of the c.m. wave vectors of the excitons allo
us to determine which terms in our dynamical equation c
tribute to radiation in a given direction.

We base our excitonic theory on the quasi-Bosonic tre
ment of Hawton and Nelson23 that has been used succes
fully in the calculation of the second-order intraband pol
ization of a BSSL.14 The treatment of the interexcitoni
interaction viaP,

intra neglects XX correlations and treats X
interactions in the dipole approximation. In a systemwith
inversion symmetry, such as a bulk semiconductor, the in
excitonic interaction would be zero in the dipole approxim
tion (P,

intra50), and the interaction would then be govern
entirely by XX correlations7,10–12,15–17and perhaps biexci
tonic effects.20,24 However, in AQWS’s, due to the broke
symmetry of the system, a large macroscopic intraband
larizationP,

intra generally arises. The contribution ofP,
intra to

the interexcitonic interactions is thus dominant over a
short-range interexcitonic Coulomb effects arising from X
correlations. It is therefore a very good approximation
neglect the XX correlations in AQWS’s, as we do in th
work.

The XX interaction is incorporated in the Hamiltonian b
expressing the long-wavelength portion of the Coulomb
teraction as a spatial integral overP,

intra
•P,

intra. The Hamil-
tonian is written in an excitonic basis and used to obtain
equations of motion for exciton correlation functions that a
then used to calculate the DFWM signal to third order in
optical field. This result is obtained in the spirit of DC
without factorization. We show, however, that a factorizati
at the level of the XX interactions is possible that yiel
almost identical results to the unfactored equations.

To provide a concrete system with which to demonstr
our approach we calculate the DFWM signals from a BSS
This is an interesting system in part because of the l
history of investigations into the electron states and dyna
03532
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ics in periodic structures in dc electric fields, and in part d
to the clear signatures of interband and intraband dynam
in these systems. The electronic stationary states in a p
odic potential with periodd in the presence of an external d
electric fieldEdc are localized in a one-band approximatio
and have energiesEn5E01enEdcd, wheren is an integer.25

These equally spaced states form the so-called Wannier S
ladder~WSL! in the BSSL; they were first evidenced expe
mentally by Mendezet al.,26 and have been theoreticall
treated with the inclusion of excitonic effects by a number
authors.27–30

Shortly after the experimental observation of the WS
states, the dynamical behavior of excitons in BSSL’s w
investigated both theoretically31 and experimentally.32–38 It
has long been predicted39 that the centroid of electronic wav
packets in a periodic potential with an external electric fie
will undergo periodic oscillations with a frequencyvB
5edEdc/\. These are the well known Bloch oscillation
~BO’s!, where vB is the BO frequency. Experimentally
Bloch-oscillating electronic wave packets can be created
an undoped BSSL by using an ultrashort (;100 fs) across-
bandgap optical pulse. This results in the creation of a Blo
oscillating electron-hole wave packet that is a coherent
perposition of excitonic WSL states.31–33 The evidence for
Bloch-oscillating wave packets has been obtained eit
through time-integrated degenerate four-wave mix
~DFWM! signals,32,33,38the direct detection of the THz field
generated by the oscillating excitonic intraband dipole,34 or
through oscillations of the excitonic peaks in spectrally
solved DFWM experiments.35–37.

To date, there have been few calculations of DFWM s
nals for biased superlattices. Some of the earliest calculat
of DFWM signals in a BSSL were done by Von Plessen a
Thomas.40 This work presented the first prediction that th
signature of BO would appear in the DFWM signals. The
calculations were performed on the basis of noninterac
electrons and holes; they thus ignored excitonic effe
which are very important in these systems as it is excit
that are predominantly created. Some later theories have
cluded excitonic effects in a phenomenological way by tre
ing the BSSL as a sort of generic multilevel system.33 The
BSSL has also been modeled using the SBE’s in the
approximation.41–44 As discussed above, such calculatio
neglect the intraexcitonic electron-hole correlations, wh
have been shown to be very important in this system.6,45 Our
work is the first calculation of the DFWM signals in a BSS
that includes both the intraexcitonic electron-hole correlat
along with the XX interaction. We find that the DFWM sig
nals are most naturally seen as the result of excitons sca
ing off of the grating created by the intraband polarizatio

The paper is organized as follows. In Sec. II we write t
Hamiltonian in terms of exciton annihilation and creatio
operators, external fields and excitonic polarization. In S
III we derive the equations of motion for the exciton oper
tors in the Heisenberg picture. We use these to obtain a
tem of equations for the phenomenologically damped co
lation functions that give the DFWM and pump-prob
signals to third order. In Sec. IV we present a factored v
sion of the equations. In Sec. V we present the results
9-2
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INTRABAND POLARIZATION AS THE SOURCE OF . . . PHYSICAL REVIEW B 67, 035329 ~2003!
numerical calculations of intraband polarization and tim
resolved and time-integrated DFWM signals for a BSSL.
present our conclusions in Sec. VI.

II. THE EXCITON HAMILTONIAN

In this section we obtain a Hamiltonian describing ex
tons in an AQWS in the presence of optical and THz elec
fields. We include explicitly in our Hamiltonian only th
electrons in the highest energy valence band~VB! miniband
and the lowest energy conduction band~CB! miniband. From
here on we call these the system electrons. We treat the
tric field effects of any charges~ions and electrons! that are
not included inUext(r ) by introducing an effective static di
electric constant« in the usual way. Thus we take the a
electric field~optical plus THz! seen by the system electron
E5D/«, to arise from externally applied fields as modifie
by «5«0(11x) wherex is the electric susceptibility of the
background charges. Using the usual dipole approxima
for the interaction of the system electrons withE, the Hamil-
tonian can be written in the form

H5(
a

F pa
2

2me
1Uext~ra!G1Vcoul2E d3r E ~r ,t !•Pex~r ,t !,

~2.1!

where

Vcoul5(
a

Va
self1 (

aÞb

e2

8p«ura2rbu
~2.2!

is the screened Coulomb energy, including the self-ene
Va

self of each of the system electrons andPex is the polariza-
tion due to the system electrons~excitons!. The subscripta
labels the system electron with momentumpa and position
ra . The mass of the electron isme and its charge is2e. The
applied ac field is the sum of a THz field and an optical fie

E~r ,t !5ETHz~r ,t !1Eopt~r ,t !. ~2.3!

In what follows, the time dependence in the electric field a
polarization is implicit and will not usually be explicitly in
cluded. The screened Coulomb energy can be written as46

Vcoul5
«

2E d3r E i
2~r !, ~2.4!

where Ei(r ) is the longitudinal component of the electr
field arising from the system electrons. The electric field s
isfiesDÄ«E1Pex. Since the system is globally neutral, th
longitudinal part of the displacement field is zero, and it th
follows that Pi

ex(r )52«Ei(r ), wherePi
ex(r ) is the longitu-

dinal portion of the exciton polarization. Using this result,w
obtain

Vcoul5
1

2«E d3r Pi
ex~r !•Pi

ex~r !5
1

2«E d3kuP i
ex~k!u2,

~2.5!

whereP i
ex(k) is the Fourier transform ofPi

ex(r ).
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Calculating Pi
ex(r ) exactly is clearly an extremely de

manding task; instead, we look for a suitable approximati
There are two key pieces that we need to include in
expression forVcoul. First, it must accurately contain th
Coulomb interaction between an electron and hole withi
single exciton. Second, it must include the major contrib
tion to the interaction between excitons. For the DFWM e
periments considered in this work, the optical field that c
ates the excitons consists of two pulses with central ang
frequenciesvc , amplitudesEi , and wave vectorsK i for i
5$1,2%. Because we wish to calculate the generated T
radiation and DFWM signals, we are interested in the port
of the polarization created by these optical pulses that va
on length scales on the order of the optical wavelength
larger. The wavelengths of these modes are thus large
tive to the size of the bound excitons, which is given rough
by the exciton Bohr radiusa0.

For the experiments that we are interested in modelli
the exciton-exciton correlations~e.g., biexcitonic effects! are
not considered to be particularly important. We thus treat
Coulomb interaction between carriers in the long-wavelen
limit as follows. We break the integral overk in Eq. ~2.5!
into an integral near the origin ofk space~long-wavelength
portion! and an integral over the rest of the space. Thus

Vcoul5Vlong1Vshort. ~2.6!

We then form electron-hole pairs labeled byg and extract
from Vcoul the pieces which contain the interaction betwe
the electron and hole within each pair. As is shown in A
pendix A, onlyVshort contributes to the electron-hole intera
tion within each exciton. The remaining portion of the Co
lomb interactionVlong can be written simply as

Vlong5
1

2«E d3R P,,i
ex ~R!•P,,i

ex ~R!, ~2.7!

whereP,,i
ex (R) is the longitudinal part of the excitonic po

larization in the long-wavelength approximation. The Ham
tonian thus becomes

H5(
g

Hg
ex2E d3R E~R!•Pex~R!

1
1

2«E d3R P,,i
ex ~R!•P,,i

ex ~R!, ~2.8!

whereHg
ex is defined by

(
g

@Hg
ex2Vshort#[(

a
F pa

2

2me
1Uext~ra!G .

As is discussed at the end of Appendix A, we can saf
replaceVshort in the definition ofHg

ex by the full Vcoul as long
as the system is large compared to the exciton Bohr rad
thus,Hg

ex is indeed the usual single-exciton Hamiltonian. W
show in Appendix A that in the long-wavelength limit, th
spatial dependence in the polarization arises from the cen
of-mass spatial position of the excitons. Therefore, the in
gration variableR in Eq. ~2.8! is simply the exciton center o
mass position.

The excitonic polarization can be written as the sum
interband and intraband polarizations~see Appendix B!. The
9-3
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M. M. DIGNAM AND M. HAWTON PHYSICAL REVIEW B 67, 035329 ~2003!
longitudinal polarization in Eq.~2.8! contains both the inter
band polarization P,

inter(R), and intraband polarization
P,

intra(R) contributions. However, as is shown in Appendix
the interband contribution to this polarization is genera
negligible. In addition, because in practice the extent of
AQWS in thez direction is much less than the spatial peri
of the intraband polarization, we can replaceP,i

ex (R) in the
last term in the Hamiltonian by the full intraband polariz
tion arising from the excitons. Thus, the Hamiltonian b
comes

H5(
g

Hg
ex2E d3R E~R!•P,~R!

1
1

2«E d3R P,
intra~R!•P,

intra~R!, ~2.9!

where P,(R)5P,
inter(R)1P,

intra(R). Note thatE(R) in the
above Hamiltonian does not include any static external b
fields, as these have been incorporated into the potentia
ergy in Hg

ex. The third term in Eq.~2.9! contains the XX
Coulomb interactions in the long-wavelength limit.

We now wish to write the Hamiltonian in second
quantized form. As in earlier work,14 we employ a basis o
excitonic states in the presence of the external dc elec
field Edc. The envelope functions for these states can
written in the form

Cm,K~re ;rh!5
eiK i•Ri

AA
xm,Kz

~r i ;Z,z!, ~2.10!

wherem represents the quantum numbers of internal moti
K5(K i ,Kz) is the center of mass wave vector,rÄ(r i ,z) is
the electron-hole separation,RÄ(Ri ,Z) is the position of the
center of mass of the exciton,A is the transverse area of th
structure, andxm,Kz

(r i ;Z,z) is the usual envelope functio
for the internal motion and center-of-mass motion in thez
direction.27 In this basis, the noninteracting exciton Ham
tonian in second-quantized form can be written as

H0
ex[(

m,K
\vm

KBm,K
† Bm,K , ~2.11!

whereBm,K
† is the creation operator for a exciton with cent

of mass wave vectorK , internal quantum numbersm and
energy\vm

K . Because the optical photon momenta are
small, the wave vectors of the optically excited excitons w
also be small. Thus in the following, we shall employ t
approximationvm

K.vm
KÄ0[vm . The only way to generate

larger momentum excitons is through scattering, and si
these will not contribute directly to the polarization, we n
glect them in this work.

For the two-pulse DFWM experiments that we are mo
elling, the incident optical fields of pulse 1 and pulse 2 ha
definite wave vectorsK1 andK2 respectively. Furthermore
we consider applied THz fields that also have a definite w
vector. Thus, the total applied ac field can be written as
crete Fourier series in the form
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K

EKeiK•R. ~2.12!

In the long-wavelength limit, therefore, the polarization c
also be written as a discrete Fourier series that will cont
wave-vectors such asK1 , K2, and 2K22K1, etc. Thus we
write

P,~R!5 (
K

K,KM

eiK•RPK , ~2.13!

where
PK5PK

inter1PK
intra, ~2.14!

PK
inter andPK

intra are theK th Fourier components of the inter
band and intraband polarizations, respectively, and the su
only over small wave vectorsuK u,uK Mu for uK Mu!2p/a0.
As is shown in Appendix B, the intraband component in t
usual dipole approximation is given by

PK
inter5

1

V (
m

@MmBm,2K
† 1Mm* Bm,K#, ~2.15!

where

Mm5M0AAE dZxm,0* ~r i50;Z,z50! ~2.16!

is the interband dipole matrix element, withM0 being the
bulk interband dipole matrix element. The intraband comp
nent of the polarization again in the dipole approximation
given by

PK
intra5

1

V (
K8

(
m,m8

Gm,m8Bm,K8
† Bm8,K1K8 , ~2.17!

where

Gm,m8[2eE
V
d3reE

V
d3rhCm,0* ~re ;rh!~re2rh!Cm8,0~re ;rh!

~2.18!

is the intraband dipole matrix element between two excito
states. Equations~2.15!–~2.17! are general. However, as i
discussed in Appendix B, Eq.~2.18! is only valid for bound
excitons. The more general expression for bound and
bound excitons is given in Appendix B.

The Hamiltonian is thus finally given simply by

H5H0
ex1V (

K

K,KM S 2E2K•PK1
1

2«
P2K

intra
•PK

intraD .

~2.19!

One key feature of this Hamiltonian is its dependence on
K . This is important if one is to calculate the nonlinear i
tensity propagating in a particular direction; for example, t
9-4
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electric field of the DFWM signal propagating in the 2K2

2K1 direction is proportional toP2K22K1

inter . Thus, it is essen-

tial that we keep track of the different Fourier components
the polarization in our calculation. This is analogous to
spatial Fourier expansion approach employed by previ
authors47 when employing the SBE’s. Without keeping trac
of the exciton c.m. momenta, we find that there arises
ambiguity as to which terms should be kept when expand
to a given order in the optical field~see Sec. III!.

We stress that the Hamiltonian as derived above is gen
and may be applied to any AQWS. For infinite superlattic
or multiple quantum well structures, the c.m. wave vectorK
is three dimensional. However, for a finite superlattice
nonperiodic AQWS,K is restricted to the plane perpendic
lar to the growth axis (x-y plane! and the internal quantum
numberm is taken to include the c.m. motion of the excito
in the z direction.

III. EXCITON DYNAMICS

Now that we have the Hamiltonian for the system of
teracting excitons in external optical and THz fields, we c
determine the dynamics by: finding the excitonic station
states and energy levels, calculating the equations of mo
for the relevant correlation functions, and then calculat
the time dependence of the nonlinear polarization. We
sume that the excitonic states have been calculated and
proceed with determining the dynamical equations.

Using the Hamiltonian given by Eq.~2.19!, the equations
of motion i\dBm,K

† /dt5@Bm,K
† ,H# become
a
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i\
dBm,K

†

dt
5@Bm,K

† ,H0
ex#2V(

K8
E2K8•@Bm,K

† ,PK8#

1
V

2« (
K8

$P2K8
intra

•@Bm,K
† ,PK8

intra
#

1@Bm,K
† ,PK8

intra
#•P2K8

intra %. ~3.1!

After substitution of Eqs.~2.15! and~2.17!, the second com-
mutator in Eq.~3.1! becomes

@Bm,K
† ,PK8#5

1

V (
m8

Mm8
* @Bm,K

† ,Bm8,K8#

1
1

V (
m8,m9,K9

Gm8,m9Bm8,K9
†

@Bm,K
† ,Bm9,K91K8#.

~3.2!

As has been shown by Hawton and Nelson,23 the commu-
tators for the excitonic operators take the form

@Bm,K ,Bm8,K8
†

#5dm,m8dK ,K8

22 (
m9,m-

Xm9,m-
m,m8;K ,K8Bm-,K8

† Bm9,K . ~3.3!

The second term in Eq.~3.3! is simply the effect of phase
space filling ~PSF! and quantifies the degree to which th
excitons deviate from ideal Bosons. Putting the above th
equations together and neglecting nonresonant terms in
usual rotating-wave approximation, we obtain
i\
dBm,K

†

dt
52\vmBm,K

† 1E2K
opt

•Mm* 1 (
m8,K8

E2K8
THz

•Gm8,mBm8,K2K8
†

12 (
m8,m9,m-,K8

\vm8Xm9,m-
m8,m;K8,KBm8,K8

† Bm-,K
† Bm9,K8

22 (
m8,m9,m-,K8

E2K8
opt

•Mm8
* Xm9;m-

m8;m;K8,KBm-,K
† Bm9,K822 (

m8,m9,m-,m-8,K8,K9

E2K8
THz

•Gm8,m9Xm-,m-8

m9,m;K81K9,K
Bm8,K9

†

3B
m-8,K

†
Bm-,K81K92

1

«V (
m8,m9,m-9,K8,K9

Gm8,m9•Gm-9,mS$B
m-9,K2K8

†
;Bm8,K9

† Bm9,2K81K9%

1
2

«V (
K8,K9,K-

(
m8,m9,m--

(
m-,m-8,m-9

Gm8,m9•Gm-9,m--X
m-,m-8

m--,m;K81K-,K
S$Bm8,K9

† Bm9,2K81K9 ;B
m-9,K-

†
B

m-8,K

†
Bm-,K81K-%,

~3.4!
ex-
n be

he
whereS$A;B%[ 1
2 $AB1BA% is a symmetrizer. In fact, one

can show that in the limit of a large system (V→`), the
symmetrization is unnecessary, as the extra terms that
added all go to zero asV→`. As a result of this, it is easy to
re

see that the order of the exciton operators in the above
pression is of no consequence and the symmetrizers ca
ignored.

We stress that the treatment of the XX interaction in t
9-5
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long-wavelength limit is very different than the HF approx
mation employed in the SBE approach. In the language
ployed by many authors,7,8,10–12,15–17the HF approximation
includes only first order Coulomb effects, and misses
higher correlations. In those works, it is often found that
higher correlations largely cancel out the effects of the fi
order Coulomb terms. The same separation of Coulomb
fects is not exhibited within our formalism, as we explicit
include electron-hole correlations within excitons and o
neglect small-wavelength XX correlations. Thus, our a
proach includes many of the higher-order correlations d
cussed in work by previous authors.

We now use the above dynamic equation to obtain
expressions for the interband and intraband correlation fu
tions up to third order in the optical field. The time deriv
tives of the operator products can be obtained by sim
using the product rule of differential calculus and Eq.~3.4!.
To obtain the expectation values, we employ phenome
logical damping to account for processes such as car
carrier scattering, electron-phonon interactions, impurit
and defects. We consider now the case where there are
optical pulses with central frequencyvc and with wave vec-
tors K1 and K2 incident on the superlattice. Thus, the to
external optical field is given by

Eopt~R,t !5E1~ t !ei (K1•RÀvct)1E2~ t !ei (K2•R2vct)1c.c.,
~3.5!

so that we have

E2K j
opt ~ t !5Ej* ~ t !eivct. ~3.6!

We consider a THz field with a single wave vectorKT . Now,
uKTu!uK1u,uK2u and there is a spread in the wave vectors
the optical pulses associated with the finite dimensions of
beams. Thus,uKTu is much less than the standard deviatio
of the optical pulses and so we neglectKT in the remainder
of the paper and set

EK
THz~ t !5dK ,0E

THz~ t !. ~3.7!

Using these expressions for the external ac fields, we ob
the equations of motion for the correlation functions up
third order in the optical field. The matrix that quantifies P
is given by23

Xm9,m-
m,m8;K ,K8'Xm9,m-

m,m8;0,0
5(

k
ck

m,0* ck
m8,0ck

m9,0* ck
m-,0 .

~3.8!

Because the momenta of the optically created excitons

small, and the dependence ofXm9,m-
m,m8;K ,K on K andK 8 is very

weak, we have neglected theK dependence in the final ex

pression. To simplify notation, we shall denoteXm9,m-
m,m8

5Xm9,m-
m,m8;0,0 from now on. In the above expression fo

Xm9,m-
m,m8;0,0, theck

m,K are the expansion coefficients of the e
citon envelope function,Cm,K(re ;rh), in the free electron-
hole basis, as described in Appendix B.
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From the above results, we can easily derive the equat
of motion for the correlation functions required to calcula
the DFWM signal in the 2K22K1 direction. Neglecting
propagation effects within the structure in the usual w
the DFWM opticalfield in the 2K22K1 direction to third
order is simply proportional toP2K22K1

inter(3) . Thus the DFWM

intensity in this direction is proportional to
u(1/V)(mMm^Bm,2K22K1

† & (3)u2, where the superscript (3) de

notes third order in the optical fields. Note that our notati
is that the order of a given correlation function is usua
simply given by the number of exciton operators in the fun
tion. When this is not the case, the order of the function
given as a superscript, as, for example, in the case
^Bm,2K22K1

† & (3). Thus the DFWM signal is determined by th

dynamical equation for the creation operator for the excito
moving in the 2K22K1 direction. From Eq.~3.4!, the equa-
tion of motion for ^Bm,2K22K1

† & (3) is

i\
d^Bm,2K22K1

† & (3)

dt

52S \vm
0 1

i\

Tm
(221̄)D ^Bm,2K22K1

† & (3)

2
1

«V (
m8,m9,m-

Gm8,m9•Gm-,m^Bm-,K2

† Bm8,K2

† Bm9,K1
&

1ETHz
•(

m8
Gm8,m^Bm8,2K22K1

† & (3). ~3.9!

Equation~3.9! depends explicitly upon the third-order corr
lation function ^Bm-,K2

† Bm8,K2

† Bm9,K1
&; the equation of mo-

tion of ^Bm-,K2

† Bm8,K2

† Bm9,K1
& depends~either explicitly or

implicitly ! upon the second and first order correlation fun
tions ^Bm,K2

† Bm8,K1
&, ^Bm,K2

† Bm8,K2

† &, ^Bm,K1

† &, and ^Bm,K2

† &.

The equations of motion for these correlation functions
easily derived from Eq.~3.4! by using the product rule. The

Tm
(221̄) in Eq. ~3.9! are the phenomenological time constan

associated with interband dephasing. This and the time c
stants associated with the other correlations functions are
cussed in Sec. V. Note that many of the terms found in
~3.4!—including terms in the sums overK 8 andK 9—are not
found in Eq.~3.9! because they are necessarily higher th
third order in the optical field. As we show below, this is n
the case for the third-order equations for^Bm,K

† & (3) for all K .
There are a number of interesting features contained

Eq. ~3.9!. First, this equation does not contain any PSF ter
~either explicitly or implicitly!. This arises because PSF do
not result in a change in the exciton momentum. As a re
PSF does not occur until fifth order for DFWM calculation
It has been noted by previous authors employing the SB
~Ref. 44! that the PSF is very small in this system. Howev
here we show that to third order it is rigorously zero. T
9-6
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ability to determine that PSF does not contribute to the th
order DFWM signal is due entirely to the fact that we ke
track of the c.m. wave vectors of the excitons.

It is interesting to note that PSF does contribute to
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signal in a pump-probe experiment. For example, to th
order in the optical fields, the dynamic equation for the c
relation function needed to calculate the pump-probe sig
in the K2 direction is
i\
d^Bm,K2

† & (3)

dt
52S \vm1

i\

Tm
(1)D ^Bm,K2

† & (3)1ETHz
•(

m8
Gm8;m^Bm8,K2

† & (3)12 (
m8,m9,m-,i 51,2

\vm8Xm9,m-
m8,m ^Bm-,K2

† Bm8,K i

† Bm9,K i
&

22 (
m8,m9,m-,i 51,2

Ei* eivct
•Mm8

* Xm9,m-
m8,m ^Bm-,K2

† Bm9,K i
&22ETHz

• (
m8,m9,m-,m-8,i 51,2

Gm8,m9Xm-,m-8

m9,m

3^B
m-8,K2

†
Bm8,K i

† Bm-,K i
&2

1

«V (
m8,m9,m-,i 51,2

Gm8,m9•Gm-,m^Bm-,K2

† Bm8,K i

† Bm9,K i
&. ~3.10!
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In addition to the last term that describes excitons scatte
off of the grating created via the intraband polarization, th

are also a number of PSF terms~terms containingXm9,m-
m8,m ).

Although most of these PSF terms can be shown to be n
ligible, the third term may not be. This term is essentia
giving the renormalization of the exciton energy due to P
and may be large at high densities.

IV. FACTORED DYNAMICAL EQUATIONS

A simplified version of the dynamical equations f
DFWM or pump-probe signals arises if one is willing
assume that the triple-operator correlation functions can
factored. This factoring results in a considerable decreas
computational time and also leads to improved physical
sight into the dynamical equations.

We factorize ^Bm-,Kn

† Bm8,K i

† Bm9,K j
& into ^Bm8,K i

† &

3^Bm-,Kn

† Bm9,K j
& or ^Bm-,Kn

† &^Bm8,K i

† Bm9,K j
&. The justifica-

tion for this factorization as opposed tôBm-,Kn

† Bm8,K i

† &

3^Bm9,K j
& lies in the physical meaning of^Bm-,Kn

† Bm9,K j
& as

an intraband correlation function. This will be nonzero ev
when only one exciton is present, whereas^Bm-,Kn

† Bm8,K i

† & is

associated with biexcitons which are not important in t
system.

We consider the equation of motion for^Bm,2K22K1

† & (3)

which yields the DFWM signal. Using the factorizatio
^Bm-,Kn

† Bm8,K i

† Bm9,K j
&5^Bm8,K i

† &^Bm-,Kn

† Bm9,K j
&, the second

last term in Eq.~3.9! becomesEK12K2

intra(2)
•(m8Gm8,m^Bm8,K2

† &,

where EK
intra(2)[21/e^PK

intra(2)& is simply the K th Fourier
component of the THz field generated by the intraband
larization to second order. As a result of the factoring, we
longer need to compute ^Bm,K2

† Bm8,K2

† & or

^Bm,K2

† Bm8,K2

† Bm9,K1
&. This results in a huge reduction o

computational time, as it is the calculation
^Bm,K2

† Bm8,K2

† Bm9,K1
& that requires the vast majority of th
g
e

g-

F

e
in
-

n

s

-
o

computational effort in the unfactored equations. Throu
the factoring procedure, the physics of the source term
the DFWM signal in the 2K22K1 direction becomes clear
the excitons optically created with wave vectorK2 are scat-
tered by the grating created by the intraband cross polar
tion with wave vectorK22K1 that arises from the exciton
created by the two pulses. This term is identical in form
the term that arises from the interaction with the THz fie
with the main differences being the order and wave vecto
the ^Bm8,K

† & factor and the source of the THz field. In th
next section, we will show that this factoring procedure c
be very accurate.

V. NUMERICAL RESULTS

The system that we shall model in all of the following
a GaAs/Ga0.7Al0.3As superlattice with well widths of 67 Å
and barrier widths of 17 Å. This is the structure of the s
perlattice which was studied in many recent DFW
experiments.35–37The physical parameters used to model t
system~effective masses, band off sets, etc.! are the same as
those employed in a number of earlier works.27,31 The elec-
tron miniband width for this system is approximatelyDe
538 meV, while the heavy-hole miniband width isDh
53 meV. The calculations are all done for a dc electric fie
of Edc515 kV/cm and no THz field (ETHz50). This gives a
free-particle Bloch oscillation period oftB5328 fs, with
corresponding WSL level spacing of\vB512.6 meV.

In general, the quantum number of internal motionm la-
bels both the state of motion along the superlattice axis~ex-
citonic WSL index! as well as the in-plane motion. In thi
work, we consider the response due only to 1s heavy-hole
excitons. Although the light hole excitons and excitons w
higher in-plane energy are included in our formalism, to si
plify the calculations we neglect these here; when the e
tation is performed with the exciting laser centered below
center of the excitonic WSL (vc,v0), it has been shown
that the effect of the these other states is small.31 The basis
set used in the calculation of the excitonic states is the
9-7
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M. M. DIGNAM AND M. HAWTON PHYSICAL REVIEW B 67, 035329 ~2003!
called two-well exciton basis that we have employed in
number of earlier works.14,27,31This basis set takes accou
of the exact Coulomb interaction between the electrons
holes and has been shown to produce accurate excitonic
ergy levels and oscillator strengths.27 In performing this cal-
culation, we employ a basis set of 11 two-well states rang
in electron-hole separation from25d to 15d. We find that
extending the basis set has negligible effect on any of
results presented here.

In Fig. 1 we plot the linear absorption spectrum due to
1s excitons in this structure under the 15 kV/cm bias. T
absorption peaks are labeled by the quantum numberm of
the excitonic WSL state associated with each peak. For s
dc field strengths, this quantum number can be thought o
the excitonic analog of the WSL indexn for the single-
particle WSL; thus the electron-hole separation in thez di-
rection is given approximately bymd.27 Also shown on the
plot is the power spectrum of one of the exciting puls
when it is centered on them50 WSL state—that is when
vc5v0.

The experiments being modeled are DFWM experime
where two pulses are incident on the sample with wave v
torsK1 andK2, with pulse peaks arriving at timest1 andt2,
respectively, with a temporal separationt21[t22t1. The
pulses are Gaussian, with a temporal FWHM of 90 fs~spec-
tral FWHM of 20 meV!. The central frequency of the pulse
is denoted byvc . This takes on different values in the var
ous calculations presented below, but is always chosen
thatv22<vc<v2. We set the intensity of the two pulses
be equal and we fix the photoexcited exciton density
superlattice period to be 1010 cm22 in all instances. This is
accomplished by adjusting the optical pulse peak inten
for the pulses.

The phenomenological dephasing times are chosen

FIG. 1. The calculated absorption spectrum~solid! of the 67/17
superlattice under a bias of 15 kV/cm. Superimposed upon the s
trum ~dashed! is the power spectrum of the exciting pulse when
central frequency is at them50 exciton WSL frequency (vc

5v0). The quantum numberm of the excitonic WSL state assoc
ated with each peak is given above the peak.
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agree with recent experimental results.45 The interband
dephasing timeTm

( j )5Tinter is set to a value of 1 ps~indepen-
dent of m and K ), while the intraband dephasing tim

Tm,m8
(21̄)

5Tintra is given a value of 1.5 ps~independent of
m,m8, andK ). The other dephasing times cannot be so e

ily gathered from experiment. For the dephasing timeTmm8m9
(221̄)

associated with ^Bm,K2

† Bm8,K2

† Bm9,K1
&, unless otherwise

stated, we use the value that one would obtain in a facto

approximation.Tmm8m9
(221̄)

5Tmm8m9
(221̄) fact, where

1

Tmm8m9
(221̄) fact

[
1

Tinter
1

1

Tintra
. ~5.1!

Similarly, we use the result for the factored expression
the dephasing timeTm,m8

(22) associated witĥ Bm,K2

† Bm8,K2

† &:

Tm,m8
(22)

5Tm,m8
(22) fact, where Tm,m8

(22) fact[ 1
2 Tinter. Of course, this

choice of dephasing times will affect the results and will gi
the best agreement between the factored and unfactore
sults. However, as we show shortly, the value ofTm,m8

(22) has
practically no effect on the results whent21.0. Although it

is not clear exactly what value should be used forTmm8m9
(221̄) ,

we find that essentially the only effect on the time-integra
DFWM signal of changing this time constant is to change
overall intensity of the signal with no significant change
the dependence ont21. Of course, when the factored equ
tions are used, the only dephasing times that enter the e
tions are the interband and intraband dephasing times.

In calculating the DFWM intensities, we make the sta
dard approximation and neglect propagation effects. Thi
valid as long as the number of periods of the superlattic
not too large. In this approximation the DFWM intensity
simply proportional to the absolute value squared of the
pectation value of the third-order interband polarization w
wave vector 2K22K1.

In Fig. 2 we plot the time integrated degenerate four-wa
mixing ~TIFWM! intensity as a function of the time dela
t21 between pulse 2 and pulse 1. This is plotted for six d
ferent central laser frequencies. In each plot, we present
results from the unfactored~solid! and factored~dashed!
equations. As can be seen, the results from the factored e
tions are essentially identical to those of the unfactored eq
tions. In most cases, the two lines cannot even be dis
guished on this scale.

To make a fair comparison between factored and unf
tored results, we must look at the effect of the values u

for the time constantsTm,m8
(22) and Tmm8m9

(221̄) on the results. In
Fig. 3 we plot the TIFWM signal for the casevc5v22 using
the factored and unfactored equations. If Fig. 3~a!, we exam-
ine the effect ofTm,m8

(22) on the TIFWM signal. As can be seen
the factored equations yield almost identical results fort21
*0, but the rise time of the signal can differ considerab
for t21,0 whenTm,m8

(22) is far from being equal toTm,m8
(22) fact.

The measurement of the rise time could thus be used to
vide a sensitive measure of the best value forTm,m8

(22) . The
published experimental TIFWM data fort21,0 in BSSL’s

c-
9-8
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INTRABAND POLARIZATION AS THE SOURCE OF . . . PHYSICAL REVIEW B 67, 035329 ~2003!
do not extend far enough in time to obtain a sensitive m
sure of this rise time.33 However, it is clear from this data
that Tm,m8

(22) is not much greater thanTm,m8
(22) fact, otherwise the

signals fort21,0 would be much stronger. Also, one wou
not expect a shorter time thanTm,m8

(22) factas this is a measure o
exciton-exciton correlations. Thus, it appears from that av
able data thatTm,m8

(22) .Tm,m8
(22) fact.

In Fig. 3~b!, we examine the effect ofTmm8m9
(221̄) on the

TIFWM signal. In the inset to Fig. 3~b!, we have plotted the
TIFWM signal for vc5v22 for three different values o

Tmm8m9
(221̄) . The main effect of changingTmm8m9

(221̄) is to change
the overall intensity of the signal. Thus, to aid in the co
parison, in the main part of Fig. 3~b!, we have multiplied
curves~a! and~c! by factors of 3 and 1/2.6 so as to make
curves equal att2150. As can be seen the agreement b
tween the three curves is excellent. Thus, apart from an o
all intensity ~which is extremely difficult to measure!, the
factored equations always give excellent results for posi
time delays and thus our picture of the intraband polariza
driving the TIFWM signal is validated. We have also exa

ined the effect ofTmm8m9
(221̄) on the time-resolved DFWM signa

~not shown!. We find that the decay time and overall amp

FIG. 2. The calculated TIFWM intensity as a function of th
time delayt21 between pulse 2 and pulse 1 for different cent
frequencies of the exciting laser. The different plots correspon
central frequencies of~a! vc5v22, ~b! vc5v21, ~c! vc5v0, ~d!
vc5v01vB/3, ~e! vc5v11, ~f! vc5v12. In each plot, the solid
curve is the result using the full dynamical equations, while
dashed curve is the result using the factored equations. The sc
the same for all plots, and the solid square in each plot marks
maximum intensity found whenvc5v22.
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tude are affected byTmm8m9
(221̄) , but that the general ‘‘shape’’ o

the signal is relatively insensitive to this time constant.
Returning to Fig. 2~a!, wherevc5v22 we see the ex-

pected oscillations in the intensity that are associated w
BO and have been experimentally observed by ma
authors.32,33,38,45As the central laser frequency is increase
the peak intensity of the TIFWM signal decreases@Figs.
2~b!, 2~c!, and 2~d!#. This decrease arises because theintra-
bandpolarization with wave vectorK22K1 is decreasing as
the central laser frequency approachesv01vB/3. As has
been discussed both theoretically31 and experimentally,35–37

if one ignores the excitonic effects, then when a single la

l
to

e
is

e

FIG. 3. The calculated TIFWM intensity as a function of th
time delayt21 between pulse 2 and pulse 1 forvc5v22 for differ-
ent choices of time constants. In~a! we plot curves whenTm,m8

(22)

takes the valuesTm,m8
(22) fact/2 ~dashed!, Tm,m8

(22) fact ~solid!, and 2Tm,m8
(22) fact

~dotted!, whereTmm8m9
(221̄)

5Tmm8m9
(221̄) fact in all cases. In~b! we plot curves

when Tmm8m9
(221̄) takes the valuesTmm8m9

(221̄) fact/2 ~dashed!, Tmm8m9
(221̄) fact

~solid!, and 2Tmm8m9
(221̄) fact ~dotted!, whereTm,m8

(22)
5Tm,m8

(22) fact in all cases.
To aid in the comparison in~b!, we have shifted the curves vert
cally such that they all coincide att2150 ~see text!; the inset shows
the curves before shifting.
9-9
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M. M. DIGNAM AND M. HAWTON PHYSICAL REVIEW B 67, 035329 ~2003!
pulse is applied that is centered atvc5v0, the electronic
wave packet undergoes an exact breathing mode. When
citonic effects are taken into account,31 the wave packet no
longer undergoes a pure breathing motion, but has some
polar component. It is found from calculations that the m
tion is closest to a breathing mode whenvc5v01vB/3.

When the laser is centered away fromv0 then, even when
only say themth excitonic WSL state is excited, a dipole
suddenly created by the pulse. This dipole is due to the s
den creation of an electron-hole pair that are separated
approximatelymd. Now, when intraband dephasing is tak
into account, this dc dipole will decay. We thus call this t
quasi-dc component to the intraband polarization. It will pl
an important role in the remainder of this section. It is fou
that the quasi-dc component of the intraband polarizatio
nearly zero whenvc5v01vB/3–the same laser fre
quency for which the motion approaches a breathing m
~see Fig. 4!.

To demonstrate the dependence of the intraband pola
tion on vc , in Fig. 4 we plot the real part of intraban
polarization with wave numberuK22K1u , denoted byP(21̄)

intra ,
for t2150. We note that there is also a spatially unifor
component to the intraband polarization. However, as
does not affect the DFWM signals, we do not consider t
here. The intraband polarization is spatially dependent an
is only the K22K1 Fourier component that drives th

FIG. 4. The calculated intraband polarization with wave vec
K22K1 as a function of time for zero time delay between the t
pulses (t2150). The polarization is plotted at the positionR50
~see text!. The different plots correspond to central frequencies
~a! vc5v22, ~b! vc5v21, ~c! vc5v0, ~d! vc5v01vB/3, ~e!
vc5v11, ~f! vc5v12. The scale is the same for all plots, but th
origin is shifted.
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DFWM signal. Thus, we have to be careful as to what
plot if we are to assess the relative amplitudes of the in
band polarization. Therefore, in Fig. 4 we plotP(21̄)

intra evalu-
ated at the spatial location where the energy density of
polarization is a maximum. Whent2150, this simply corre-
sponds to the positionR50. In general,P(21̄)

intra contains an
oscillating portion and a quasi-dc component that initia
centers the polarization away fromP(21̄)

intra
50. As can be seen

in the figure, both the initial oscillation amplitude and th
quasi-dc component ofP(21̄)

intra is largest forvc5v62, and
smallest forvc5v01vB/3. We also see that the quasi-d
component changes sign as expected as one goes fromvc
,v0 to vc.v0. Also, from Fig. 4~d! we see that, although
the initial polarization amplitude is very small, it grows i
time. This is due to the rephasing of the different compone
that occurs as a result of the different oscillation frequenc
arising from differences in the excitonic energy-lev
spacings.36

Note that whenvc5v22 the BO frequency is consider
ably higher than whenvc5v12. This is due to the fact tha
the excitonic WSL states have a larger energy separa
when m.0 than whenm,0, as has been discussed b
Lachaineet al.14 From experimental results,45 we would ex-
pect that this frequency change should also be reflecte
the intraband polarization. The THz radiation emitted due
the Bloch-oscillating carriers can be determined by tak
the second time derivative of the intraband polarizatio
Hence, using the results in Figs. 2 and 4, we can compare
oscillation frequencies found in TIFWM calculations wit
those found in THz emission. It can be seen by inspection
Figs. 1, 2~a!, 2~f!, 4~a!, and 4~f! that when well-defined BO
are present the two frequencies are essentially the same
are given by the energy separation of the dominant excito
peaks for the chosen excitation energy.

Another interesting feature appears when the system
excited near the breathing mode condition. In Figs. 2~c!,
2~d!, and 2~e!, we find that there is a local minimum~dip! at
t2150, whereas for the other cases this is a global maxim
in the intensity. The appearance of this dip is reminiscen
the dip that was experimentally observed for certain cen
laser frequencies in the TIFWM signals arising from coh
ent excitation of light and heavy hole magnetoexcitons
bulk GaAs.48 The origin for this is again the moving in an
out of the breathing-mode condition. In Fig. 5 we plot t
intraband polarizationP(21̄)

intra when vc5v01vB/3 for t21

50 andt2156tB/2. As can be seen, both the amplitude a
the quasi-dc component of theP(21̄)

intra are much larger when
t2156tB/2 than whent2150. This is because the delay o
the second pulse by half a BO period creates a wavepa
with a different phase relationship between the different
citonic states, such that the condition that lead to the bre
ing motion when t2150 no longer exists and a large
amplitude intraband polarization with large dc componen
created. We find that both the ac and quasi-dc compon
contribute to creating the dip in TRFWM; thus the TIFWM
signal is generally large whenever theP(21̄)

intra is large.
As far as we know, the appearance of the dip att2150 in

a BSSL has not been observed experimentally to date.

r

f
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INTRABAND POLARIZATION AS THE SOURCE OF . . . PHYSICAL REVIEW B 67, 035329 ~2003!
reason for this is likely that the effect is masked in expe
ments by the contributions of the unbound excitonic sta
that are not included in our calculations. As has been
scribed in previous works,31 when the laser is centered we
below them50 excitonic state, very few unbound exciton
states are created. However, whenvc*v0 then relatively
large numbers of unbound excitons will be created, and
wavepackets formed from these states will not exhibi
breathing mode. To experimentally observe the dip in
TIFWM signal exhibited in our calculations, you would hav
to remove the portions of the laser spectrum between th
excitonic peaks. This is experimentally feasible, but has
been done to date.

We also see that as the condition for a breathing mod
approached, the TIFWM signal exhibits a doubling of t
oscillation frequency. Frequency doubling in the TIFW
signal has been observed experimentally33 at low electric
fields, where it is seen to be the result of creating excito
wavepackets that have strong components from excito
WSL states that are separated by roughly 2vB , with a very
weak component from the state in between, e.g., the wo
occur if only the m521,11 states are part of the wav
packet. This effect, however, it has not been observed for
relatively high fields considered here, where the consecu
states are in principle optically created~see Fig. 1!. The
source of this double-frequency beating is essentially
same as that for the dip: the intraband polarization is se
tive to the time delayt21. We find in this case that it is
largely the quasi-dc component ofP(21̄)

intra that generates the
frequency doubling. We find~not shown! that whent2150,
the quasi-dc component ofP(21̄)

intra is small; it is large and
positive whent21.tB/2, small again whent21.tB , large

FIG. 5. The calculated intraband polarization with wave vec
K22K1 as a function of time for a central laser frequency at
near breathing-mode conditionvc5v01vB/3. The polarization is
plotted at the positionR for which it is a maximum~see text!. The
different plots correspond to different time delays between the
pulses~a! t2152tB/2, ~b! t2150, and~c! t2151tB/2. The scale
and origin is the same for all plots.
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and negative whent21.3tB/2, and small again whent21

.tB . Thus, the double frequency is associated with the f
that the quasi-dc component of the intraband polarizat
goes through two minima whent21 runs over a timetB .
When we are far from the breathing mode condition@Figs.
2~a!, 2~c!, 4~a!, and 4~c!#, the quasi-dc component of th
intraband polarization is large enough that it never a
proaches zero for anyt21. This is why the double frequenc
is not observed when excitation is far from the breathin
mode condition. As with the dip att2150, this effect would
be masked by the dynamics of the unbound excitons.

To summarize the TIFWM results, we find that when t
behavior of the intraband polarizationP(21̄)

intra as a function of
t21 is known, one can understand essentially all features
the TIFWM signals. Both the oscillating and quasi-dc pa
of P(21̄)

intra play a role in determining the TIFWM peak inten
sity, oscillation frequency, and signal att2150. However the
quasi-dc portion is of primary importance in determining t
appearance of frequency doubling.

In Fig. 6 we present the calculated results for the tim
resolved degenerate four wave mixing~TRFWM! intensity
for zero time delay (t2150) as a function of time for differ-
ent central laser frequencies. Again we find only a very sm
difference between the results from the factored and un
tored equations. The only significant difference is seen
the case that is closest to a breathing mode@Fig. 6~d!#, and
even in this case the difference only occurs at times when

r

o

FIG. 6. The calculated time-resolved DFWM intensity as
function of time for zero time delay between the two pulses (t21

50). The different plots correspond to central frequencies of~a!
vc5v22, ~b! vc5v21, ~c! vc5v0, ~d! vc5v01vB/3, ~e! vc

5v11, ~f! vc5v12. The scale is the same for all plots.
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M. M. DIGNAM AND M. HAWTON PHYSICAL REVIEW B 67, 035329 ~2003!
DFWM signal intensity is very low. The general effect of th
time constants has been discussed earlier.

One interesting feature of the TRFWM results is the d
pendence of the time required for the signal to reach its g
bal maximum onvc . When the intraband polarization i
large @Figs. 6~a!, 6~b!, 6~e!, and 6~f!# the maximum is
reached in a time of about 0.9 ps, which is approximat
Tinter. This is in accord with the usual expectations.49 On the
other hand, when we are close to the breathing mode s
tion, the peak is only reached after about 1.5 ps. This de
in reaching a maximum is due to the delay in the peaking
the intraband polarization, which only peaks after about 1
in this case@see Fig. 4~d!#.

It is apparent from Fig. 6 that whenvc is close tov0,
both the TIFWM and TRFWM signals exhibits a compone
at double the BO frequency. The effect here is rather dif
ent than that observed in the TIFWM case. It is essentially
interbandeffect and occurs whenever three excitonic sta
participate in the wave packet with comparable amplitud
From the factored equation for^Bm,2K22K1

† & (3), you can see

that even if the intraband polarization is essentially dc, y
will still get beating at roughly 2vB that is comparable to the
beating atvB in the TRFWM signal if three consecutiv
^Bm8,K2

† & are comparable in magnitude. From Fig. 1, you c

see that this will only occur ifvc is close tov0. It will be
particularly strong whenvc.v11 as is observed in the TR
FWM signals. Thus, the fact that this oscillation at doub
the frequency occurs in the TRFWM signal at nearly t
samevc as frequency doubling occurred in the TIFWM si
nal is essentially a coincidence. It would be possible
choose exciting pulses such that the double frequency w
appear forvc5v22 without having the double frequency i
the TIFWM signal. We thus see that in contrast to t
TIFWM signal, the temporal evolution of the TRFWM sig
nal responds largely to interband effects not intraband on

VI. CONCLUSION

In this work we have presented a new formalism for t
calculation of DFWM and pump-probe signals in bias
asymmetric quantum well systems. The formalism is ba
on a excitonic approach with interexcitonic interactio
treated via the long-wavelength portion of the intraband
larization. The dynamical equations we have developed
be simplified by a factorization scheme that does not lea
the well-known problem of neglecting the important intrae
citonic electron-hole correlations. This factorization is ve
accurate whent21.0, and thus opens the door to the pos
bility of treating complicated systems to even higher ord
without running into extreme computational difficulties
computational time limitations. We have applied this form
ism to the calculation of the intraband and DFWM sign
from a biased semiconductor superlattice, and find in part
lar that the TIFWM signal is largely determined by the b
havior of the intraband polarization.

The numerical results presented here were obtained
cluding only the 1s excitonic states. This is sufficient fo
many excitation conditions, where it is largely 1s excitons
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that are created optically. In future work, however, we pl
to extend the basis used in the numerical calculations to
clude excitons of higher in-plane excitation so as to exte
the range of validity of the results. The other main simpli
cation employed in the calculations presented here is
phenomenological treatment of dephasing. Due to the s
plification of the basis equations provided by the factori
approximation, it should be possible to incorporate electr
phonon interactions in this calculation without undue co
putational complexity. We are also currently working t
wards this result.
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APPENDIX A: EXPRESSION FOR THE INTRA-
EXCITONIC COULOMB INTERACTION

In this appendix, we show that in the expression for t
Coulomb interaction, we can replace the longitudinal int
band polarization by the full intraband polarization and n
glect the contribution of the longitudinal interband polariz
tion. We also show that the long-wavelength portion of t
Coulomb interaction does not contribute to the electron-h
interaction energy of a single exciton.

We take the dimensions of the superlattice to beLx3Ly
3Lz , whereLz,,Lx ,Ly . Let P,(R,t) be the form of the
long wavelength portion of the polarization within the supe
lattice. Outside of the superlattice the polarization is taken
be zero. Because the polarization inside the superlattic
generated by the plane-wave optical electric field, we c
write it in the form ~see Appendix B!

P,~R,t !5 (
K

K,KM

PK~ t !eiK•R. ~A1!

Thus, we can express the Fourier transform of the full po
ization as

P~k,t ![
1

~2p!3/2E d3R P,~R,t !e2 ik•R ~A2!

5
1

~2p!3/2 (
K

K,KM

PK~ t !sin c@~kx2Kx!Lx/2#

3sin c@~ky2Ky!Ly/2#sin c@~kz2Kz!Lz/2#, ~A3!

where sin c(x)[sin(x)/x. From this, we see thatP(k,t) is
only appreciable ifuki2Ki u,2p/Li for i 51,2,3.

The longitudinal portion of the polarization is given by

Pi~k,t !5
k

k Fk•P~k,t !

k G , ~A4!

where k5uku. As is shown in Appendix B, the excitoni
polarization can be broken into two parts: an intraband p
9-12
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INTRABAND POLARIZATION AS THE SOURCE OF . . . PHYSICAL REVIEW B 67, 035329 ~2003!
tion and an interband portion. We denote these byP,
intra(R,t)

and P,
inter(R,t), respectively. Let us consider the intraba

polarization first. As discussed in Appendix B, due to t
symmetry in thex-y plane, this only has az component.
Thus, our expression for the longitudinal intraband polari
tion is simply

P i
intra~k,t !5

kkz

k2
P intra~k,t !. ~A5!

The contribution of this polarization to the Coulomb ener
is

Vlong
intra5

1

2«E d3kuP i
intra~k,t !u2

5
1

~2p!3 (
K,K 8

K,K8,KM

PK
intra~ t !•PK8

intra* ~ t !
1

2«

3)
i

E d3k
kz

2

k2
sin c@~ki2Ki !Li /2#

3sin c@~ki2Ki8!Li /2#. ~A6!

In the limit thatLx ,Ly become very large we obtain

Vlong
intra5

1

4p«A (
K ,Kz8

K,K8,KM

PK i ,Kz

intra ~ t !•PK i ,K
z8

intra*
~ t !

3E dkz

kz
2

~K i
21kz

2!
sin c@~kz2Kz!Lz/2#

3sin c@~kz2Kz8!Lz/2#. ~A7!

In the actual DFWM experiments of interest, theK is
either zero, or is the difference between two optical pho
momenta. Hence in the usual geometry where both be
only make a small angle with thez axis ~surface normal!
K i!2p/l. Also, if the two optical beams make the sam
angle with thez axis thenKz50; thus, in general, we hav
thatKz!2p/l. As an example, consider a superlattice of
periods of approximately 7 nm each. Even for this lar
structure, Lz.231027 m and sincel.800 nm, KLz/2
!1. In most AQWS’s, such as CDQW’s,Lz will not be
nearly so large, and so for a general AQWS, we can wri

E dkz

kz
2

~K i
21kz

2!
sin c@~kz2Kz!Lz/2#sin c@~kz2Kz8!Lz/2#

.
2p

Lz
. ~A8!

The error in this last expression is easily seen to be less
pK i . As stated above, this is much less that 2p/Lz and so is
negligible. Thus, we see that we can write
03532
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e

an

Vlong
intra.

1

4p«A (
K ,Kz8

K,K8,KM

PK i ,Kz

intra ~ t !•PK i ,K
z8

intra*
~ t !

3E dkzsin c@~kz2Kz!Lz/2#sin c@~kz2Kz8!Lz/2#

5
1

2«E d3R P,
intra~R,t !•P,

intra~R,t !. ~A9!

That is, we can replace the longitudinal portion of the int
band polarization by the total polarization. This is the k
result of the first part of this appendix.

Next let us consider the interband contribution toVlong.
As can be seen from Eq.~2.15!, the interband polarization is
parallel to the bulk interband dipole vector matrixM0. In
GaAs grown in the^100& direction, this vector has no
z-component for heavy-hole excitons. Thus we have for
longitudinal component of the interband polarization

P i
inter~k,t !5

kki

k2
P inter~k,t !, ~A10!

whereki is in the direction ofM0 in the x-y plane. In the
limit that Lx ,Ly become very large, there is only a significa
contribution if kx.Kx and ky.Ky . Hence, similar to what
we found above, we see that

Vlong
inter.

1

2pA (
K ,Kz8

K,K8,KM

PK i ,Kz

inter ~ t !•PK i ,K
z8

inter*
~ t !

1

2«

3E dkz

K i
2

~K i
21kz

2!
sin c@~kz2Kz!Lz/2#

3sin c@~kz2Kz8!Lz/2#. ~A11!

In principle, we could use this expression in our Ham
tonian. However, in the experiments under consideration,
optical beams are nearly parallel to thez axis, and hence they
have a very smallK i . One can show that

Vlong
inter<

1

2«V (
K ,Kz8

K,K8,KM

K iLzPK i ,Kz

inter ~ t !•PK i ,K
z8

inter*
~ t !.

BecauseK iLz!1, we see thatVlong
inter is very small. In fact,

even without this argument, we know that the interband
pole contributed by an exciton is on the order ofea, wherea
is the lattice constant of GaAs, whereas the intraband con
bution of an exciton is on the order ofed. Thus the intraband
contribution toVlong will generally be much larger than th
interband contribution, and in the case of heavy-hole ex
tons, as we see above it will be negligible. Finally, becau
the intraband and interband polarizations are orthogonal~for
heavy-hole excitons! there are no interband-intraband cro
terms inVlong. Thus we obtain our final result for the long
wavelength portion of the Coulomb potential

Vlong5
1

2«E d3R P,
intra~R,t !•P,

intra~R,t !. ~A12!
9-13
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M. M. DIGNAM AND M. HAWTON PHYSICAL REVIEW B 67, 035329 ~2003!
We now consider the issue of whetherVlong would con-
tribute to the interaction energy of a single exciton. In o
derivation of the Hamiltonian, we replacedVshort by the full
Vcoul in the single exciton HamiltonianHg

ex. If this is justi-
fied, then we must show thatVlong does not contribute to the
energy of an individual exciton, as so can be safely ad
back into toVshort without error. The long-wavelength con
tribution to Coulomb interaction in the Hamiltonian is give
by

Vlong5
V

2« (
K

K,KM

P2K
intra

•PK
intra. ~A13!

Thus we have

Vlong5
1

2«V (
K8,K9,KM

(
m,m8,m9,m-

Gm,m8•Gm9,m-

3Bm,K8
† Bm8,K82KBm9,K9

† Bm-,K91K . ~A14!

The state of a single exciton is given simply by

uCn,Q&5Bn,Q
† u0&. ~A15!

Thus, if we take the expectation value ofVlong for a single
exciton, we obtain

^Cn,QuVlonguCn,Q&5
1

2«V
Gn,n•Gn,n . ~A16!

Now, theGn,n are given approximately by

Gn,n.2edn, ~A17!

where herend gives the average electron-hole separation
the exciton in thez direction. Thus, as long asn is finite then
in the limit that the volume becomes infinite, the expectat
value ofVlong will be zero. Ifnd is comparable to the larges
dimension of the superlattice, then the expectation value
not go to zero. However, no excitons with such lar
electron-hole separations will be optically generated, a
those that have scattered into such states will no longer
tribute to the DFWM signal. The excitons that are genera
will have electron-hole separations that are no more than
400 Å (3a0). The lateral size of the beam is about 50 m
crons. Thus (nd)2/A will be on the order of 1026, and as-
suming a superlattice that is 50 periods, this gives a valu
the expectation value of about 1029 eV. Using similar argu-
ments, it is easy to show that there is negligible contribut
to the exciton energy at the level of second order pertur
tion theory as well. Thus, it is justified to include the fu
Vcoul in the single-exciton Hamiltonian in place ofVshort.

APPENDIX B: INTRABAND AND INTERBAND
POLARIZATION

In this Appendix, we consider the calculation of the p
larization. In the dipole approximation the second quantiz
polarization operator is

P~r !52ec†~r !rc~r !, ~B1!
03532
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ĉ~r !5(
b,k

ab,kcb,k~r !, ~B2!

where

cc,ke
~r !5

eikei•r i

AA
fkez

c ~z!uc~r ! ~B3!

and

cv,kh
~r !5

eikhi•r i

AA
fkhz

v ~z!uv~r ! ~B4!

are the full wave functions for conduction and valence ba
electrons in the superlattice, respectively, whereuc(r ) and
uv(r ) are the periodic portion of the bulk wave functions
zone center. The operatorab,k annihilates an electron in ban
b with wave vectork, while ĉ(r ) annihilates an electron a
r . In the usual way, the polarization operator can be writ
as

P~r !52e(
k,k8

ak
†ak8cc,k* ~r !rcc,k8~r !

1e(
k,k8

b2k8
† b2kcv,k* ~r !rcv,k8~r !

2e(
k,k8

ak
†b2k8

† cc,k* ~r !rcv,k8~r !

2e(
k,k8

b2kak8cv,k* ~r !rcc,k8~r !

2e(
k

cv,k* ~r !rcv,k~r !, ~B5!

where ak
†5ac

† ,k , creates an electron in the CB andb2k
†

[av,k creates a hole in the VB. The the last term of Eq.~B5!
is an arbitrary constant which will be omitted from here o
as it does not affect the dynamics.

The transformations between the electron and hole op
tors and the electron-hole operatorsBke ,kh

† are given by Haw-

ton and Nelson:23

Bke ,kh

† 5ake

† bkh

† , ~B6!

ak
†ak85(

kh

Bk,kh

† Bk8,kh
, ~B7!

and

bk
†bk85(

ke

Bke ,k
† Bke ,k8 , ~B8!

whereBke ,kh

† creates an electron-hole pair where the elect

~hole! has wave vectorke (kh). Thus, in terms of these pai
operators the polarization becomes
9-14
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INTRABAND POLARIZATION AS THE SOURCE OF . . . PHYSICAL REVIEW B 67, 035329 ~2003!
P~r !52e (
ke ,kh

Bke ,kh

† cc,ke
* ~r !rcv,2kh

~r !

2e (
ke ,kh

Bke ,kh
cv,2kh

* ~r !rcc,ke
~r !

2e (
ke ,kh ,ke8

Bke ,kh

† Bk
e8 ,kh

cc,ke
* ~r !rcc,k

e8
~r !

1e (
ke ,kh ,kh8

Bke ,kh

† Bke ,k
h8
cv,2k

h8
* ~r !rcv,2kh

~r !.

~B9!

Finally, we move to the true exciton operatorsBm,K
† through

the relations

Bm,K
† 5(

k
ck

m,KBk,K
† ~B10!

and the inverse transformation

Bk,K
† 5(

m
~ck

m,K !* Bm,K
† , ~B11!

whereBm,K
† creates an exciton with envelope function

C̃m8,K~r ;R!5Cm,K~re ;rh!

[(
k

ck
m,Keikei•rei

AA
fkez

c ~ze!
eikhi•rhi

AA
f2khz

v* ~zh!,

~B12!

where ck
m,K are the expansion coefficients,fkez

c (ze)

@fkhz

v (zh)# is the conduction-band~valence-band! electron

envelope function for the superlattice in thez direction, K
5ke1kh is the center-of-mass wave vector of the excit
andk5(mhke2mekh)/M is the relative electron-hole wav
vector, whereM5me1mh . We can also define the electro
hole separation coordinater5re2rh and center-of-mass co
ordinatesR5(mere1mhrh)/M . Using this transformation
we obtain the following expression for the polarization o
erator

P~r !52e(
m

(
k,K8

ck
m,K8* Bm,K8

† cc,geK81k
* ~r !

3rcv,2ghK81k~r !

2e(
m

(
k,K8

ck
m,K8Bm,K8cv,2ghK81k

* ~r !

3rcc,geK81k~r !

2e(
m,m8

(
ke ,kh ,ke8

c
ghke2gekh

m,ke1kh* c
ghk

e82gekh

m8,ke81kh Bm,ke1kh

†

3Bm8,k
e81kh

cc,ke
* ~r !rcc,k

e8
~r !
03532
-

1e(
m,m8

(
ke ,kh ,kh8

c
ghke2gekh

m,ke1kh* c
ghke2gek

h8

m8,ke1kh8 Bm,ke1kh

†

3Bm8,ke1k
h8
cv,2k

h8
* ~r !rcv,2kh

~r !. ~B13!

TheK th Fourier component of the polarization operator
thus defined as

PK5
1

VE d3r P~r !e2 iK•r. ~B14!

Thus the polarization in the long-wavelength limit is give
simply by

P,~R!5 (
K

K,KM

PKeiK•R, ~B15!

where the sum is restricted to include onlyK that correspond
to long wavelengths (uK u,uK Mu). The Fourier components
of the polarization can be written as the sum of the interba
and intraband polarizations

PK5PK
inter1PK

intra, ~B16!

where

PK
inter52

e

V (
m

(
k,K8

ck
m,K8* Bm,K8

†

3E d3rcc,geK81k
* ~r !rcv,2ghK81k~r !e2 iK•r

2
e

V (
m

(
k,K8

ck
m,K8Bm,K8

3E d3rcv,2ghK81k
* ~r !rcc,geK81k~r !e2 iK•r

~B17!

is the interband portion of the polarization and

PK
intra52

e

V (
m,m8

(
ke ,kh ,ke8

c
ghke2gekh

m,ke1kh* c
ghk

e82gekh

m8,ke81kh Bm,ke1kh

†

3Bm8,k
e81kh

E d3recc,ke
* ~re!recc,k

e8
~re!e

2 iK•re

1
e

V (
m,m8

(
ke ,kh ,kh8

c
ghke2gekh

m,ke1kh* c
ghke2gek

h8

m8,ke1kh8 Bm,ke1kh

†

3Bm8,ke1k
h8

3E d3rhcv,2k
h8

* ~rh!rhcv,2kh
~rh!e2 iK•rh ~B18!

is the intraband portion.
The Fourier components of the interband polarizat

may be written in the form
9-15
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PK
inter5

1

V (
m,K8

Mm,K8
K Bm,K8

†
1

1

V (
m,K8

Mm,K8
2K*Bm,K8 ,

~B19!

where the interband dipole matrix element is given by

Mm,K8
K [2e(

k
ck

m,K8*

3E d3rcc,geK81k
* ~r !rcv,ghK82k~r !e2 iK•r.

~B20!

Using standard methods of envelope function theory, i
straight forward to show that this can be written as

Mm,K8
K

5d2K ,K8Mm
K , ~B21!

where

Mm
K[M0AE dzCm,K* ~0,0,z;0,0,z! ~B22!

andM0 is the bulk dipole interband matrix element, defin
by

M0[e
i\pcv

Egapm0
, ~B23!

where

pvc[
1

VE d3ruc* ~rh!puv~r !. ~B24!

Now, the excitonic envelop function can be written as

Cm,K~re ;rh!5
eiK i•Ri

AA
xm,Kz

~r i ;Z,z!. ~B25!

Using this we can write the exciton dipole matrix element

Mm
K5M0AAE dZxm,Kz

* ~r i50;Z,z50!. ~B26!

We note that in practice, the dependence ofMm
K on K is very

weak and in fact, in the bulk case it is independent ofK . We
therefore neglect this dependence in actual calculatio
Thus, the interband polarization is finally given by

PK
inter5(

m
@MmBm,2K

† 1Mm* Bm,K#. ~B27!

Now, we turn our attention to the intraband portion of t
polarization. Using the relation

dk,k85E d3rcb,k8
* ~r !cb,k~r ! ~B28!

for b5v or b5c, this becomes
03532
it

s

s.

PK
intra52

e

V (
m,m8

(
K8,K9

Bm,K8
† Bm8,K9

3E d3red
3rhCm,K8

* ~re ;rh!uuc~re!u2uuv~rh!u2

3@ree
2 iK•re2rhe2 iK•rh#Cm8,K9~re ;rh!. ~B29!

Using standard methods, we can rewrite this as

PK
intra52

e

V (
m,m8

(
K8,K9

Bm,K8
† Bm8,K9

3E d3rhd3rhe2 iK•RCm,K8
* ~re ;rh!

3@~ghr1R!e2 iK•ghr2~2ger1R!e1 iK•ger#

3Cm8,K9~re ;rh!. ~B30!

This is a general result. However, if we are only consider
bound excitons, then the integrand in the above expres
will be negligible unlessur u&a0, where a0 is the exciton
Bohr radius. For higher bound states the exciton may ext
over many Bohr radii, but regardless, they will genera
satisfy the inequalityK•r!1 for the long-wavelength wave
vectors that we are considering. Thus, for bound excitons,
obtain

PK
intra.2

e

V (
m,m8

(
K8,K9

Bm,K8
† Bm8,K9

3E d3rhd3rhe2 iK•RCm,K8
* ~re ;rh!rCm8,K9~re ;rh!.

~B31!

Using Eq.~B25! for the exciton envelope function, we finall
obtain

PK
intra5

1

V (
m,m8

Gm,m8(
K8

Bm,K8
† Bm8,K1K8 , ~B32!

where

Gm,m8[2eE d3rdZxm,0* ~r i ;Z,z!rxm8,0~r i ;Z,z!

~B33!

and theKz dependence in thexm,Kz
(r i ;Z,z) have been ne-

glected in the same way that one neglects the wave ve
dependence in theuk

c(r ) in standard envelope functio
theory. This result can also be extended to unbound excit
In this case, it is easily seen that then we obtain the sa
expression forPK

intra except that the intraband matrix eleme
is dependent onK and has a more complicated form tha
given by Eq.~B33!. Thus the general form for the intraban
polarization for both bound and unbound excitons is

PK
intra5

1

V (
m,m8

Gm,m8
K (

K8
Bm,K8

† Bm8,K1K8 . ~B34!

We finally note that if we are only considering optically e
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cited bound excitonic states, then all of the states being c
sidered will haves symmetry in the transverse directio
Thus, for such states, only thez component ofGm,m8 ~which
we denote byGm,m8 for simplicity! can be nonzero, and thi
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