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Noise of a single-electron transistor in the regime of large quantum fluctuations of island charge
out of equilibrium
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By using the drone-fermion representation and the Schwinger-Keldysh approach, we calculate the current
noise and the charge noise for a single-electron transistor in the nonequilibrium state in the presence of large
quantum fluctuation of island charge. Our result interpolates between those of the “orthodox” theory and the
“cotunneling theory.” We find the following effects which are not treated by previous theadiieét zero
temperaturd =0 and at finite applied bias voltageV|> Ty , whereT is the “Kondo temperature,” we find
that the Fano factor is suppressed more than the suppression caused by Coulomb correlation both in the
Coulomb blockade regime and in the sequential tunneling redimé&or T>|eV|/2> Ty, the current noise in
the presence of large charge fluctuation is modified and deviates from the prediction of the orthodox theory.
However, the Fano factor coincides with that of the orthodox theory and is proportional to the tempéiture.

For eV, T=<Ty, the charge noise is suppressed due to the renormalization of system parameters caused by
quantum fluctuation of charge. We interpret it in terms of the modification of the “unit” for island charge.
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I. INTRODUCTION level and smears the structuresle¥ characteristics8*

Though investigations have revealed much about the

In a small metallic island where the charging enelyy  quantum fluctuation, most of them have been limited to av-
exceeds the temperatufgwe use the unikg=1), the Cou- eraged quantities. In order to understand the nature of the
lomb interaction affects transport properties through the isquantum fluctuation, investigations of the higher-order cor-
land. The resulting phenomenon is called the Coulomielation function of fluctuation operators are required. A
blockade (CB) and such a system is named the single-good starting point may be the investigation of the second
electron transistofSET). The CB has attracted much atten- moment of fluctuation operators, i.e., the noié&he charge
tion in the last decade® and the nature of the transport noise and the current noise in the weak tunneling regime is
properties of the SET has been clarified. The SET is interes@/S0 important for practical applications, be%ause it deter-
ing because it is regarded as one of the most simple exMines the performance of SET electromeférs! ,
amples of a strongly correlated system which can be brought The current noise is defined by theAautocAorreIatAlon func-
into the nonequilibrium state by applied bias voltage. Earlytion of the current fluctuation operatai (t) =1(t) —(I(t))
investigations considered the case where the tunneling co®s
ductance is so small that the higher-order quantum fluctua- N .
tion of island charge is negligible. Recently, the quantum Su(t,t)=({al(t),61(t")}), D
fluctuation in the SET has attracted much attention as one %here < .. > means the statistical average. Until recenﬂy'

the basic problems in this field. The quantum fluctuation isnvestigations of the noise have been done using the frame-
quantitatively characterized by the dimensionless parallejyork of the “orthodox” theory'**>1"~14yhich takes account
conductance:ey=Ry /[(27)?Rr] where Ry=h/e? is the  of the lowest-order quantum fluctuation: namely, the se-
guantum resistance ar@; is the parallel tunneling resis- quential tunneling (ST) process. Recently, several
tance of the source and the drain junctions. There has beethord*?>?have discussed the higher-order quantum fluc-
much development in theoretical investigations in the wholeuation in the CB regime within the “cotunneling theor§?”
range of ay. Especially in theweak tunneling regime However, there is no approximation covering both ST and
(ag<1), the lifetime broadening of a charge-state level isCB regimes. The aim of the present work is to construct a
much smaller than the typical level spacing of charge statesheoretical framework which covers both of these regimes
and thus the effective two-state model, which is equivalent tdor arbitrary oy and clarify how the quantum fluctuation af-
the multichannel anisotropic Kondo model in the equilibriumfects the noise.

state} well describes the low-energy physics. With this The Keldysh formalisff=2° has been one of the most
model, it is predicted that the quantum fluctuation of charggowerful methods to study the nonequilibrium properties of
causes the renormalization of the conductance and the champesoscopic systems. However, to apply this method to the
ing energy below the “Kondo temperature”Ty SET in the two-state limit, one must overcome a technical
=Ece Y(22)/(24).4~° The renormalization of the conduc- difficulty: The spin-1/2 operator, which is introduced to re-
tance is confirmed experimentally as the IVldependence strict charge number states by the strong Coulomb interac-
of the conductance peak at low temperattiri.is also pre- tion, prevents one from utilizing Wick’s theorem. The most
dicted that in the nonequilibrium state, the dissipative chargsuccessful treatment to overcome this problem is given in
fluctuation causes the lifetime broadening of a charge-statRef. 6, in which a formulation of the perturbative expansion
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for the reduced density matrix in the real-time domain is — C+ +o0
developed and the inelastic resonant tunneling process is F—t
treated. The method of Ref. 6 enables one to classify various C-

tunneling processes using diagrammatic techniques and can COTO i

be also applied to other systems with the strong local corre-
lation, such as the quantum d8tin spite of these successes, FIG. 1. The closed-time path going frome to = (C.), going
it seems to be still difficult to apply this method for the o 10— o (C_), connecting the imaginary time paf,, and
calculation of higher-order correlation functions, since thisgjoging att=—c—i# 3.
method requires one to solve a special integro-differential
equation even for the calculation of the average in the pres-
ence of large quantum fluctuatiohs. W=—iAlInZ, z:f D[a*,alexp(—Slif).

In this paper, we investigate the current noise and the

cEarge noisef in th_ﬁbrggime of Iirge qhuantur:n _ﬂuctuaticl)gs ﬁbF in the closed-time-path representation is obtained by the
charge out of equilibrium. We adopt the Schwinger-Keldyshge ., gerivative of the generating functional with respect to
approach and the drone-fermion representation of the effe(‘j-(t) (teC,+C_):

tive spin-1/2 operatd 8 The Schwinger-Keldysh approach

enables us to calculate any order moment systematically by SW
the functional derivative technigie® satisfying the charge —G(1,2= _ 3)
conservatiorf® and it helps us in manipulating many compli- ’ 8J(1)* 83(2) -0

cated terms. The drone-fermion representation allows us to

utilize the fermionic Wick’s theorem and to take the effectsHereafter, we use arguments 1,2 instead,of, for short.

of the strong correlation into account. With the help of this  Though the closed-time-path representation makes the

technique, we can extensively take account of the higherformulation compact, in order to obtain the physical quanti-

order processes of tunneling. We will show that our approxities, we sometimes need the single-time representation in

mation reproduces the resonant tunneling approximitionwhich the time onC is projected onto the real axis. In this

(RTA) as for the average current and the average charge. representation the degrees of freedoms of fields are doubled
The outline of this paper is as follows. In Sec. Il, we which we denote as

briefly summarize the Keldysh formalism and introduce an

approximate generating functional. We also show that the

average and the noise expressions can be derived using the

functional derivation. In Sec. Ill, we actually calculate the

average current, the average charge, the current noise, aggt, Herel. (t) is defined orC.. andt is the real time. In the

the charge noise. In Sec. IV we show numerical results fogame way ag), the GF is transformed into>22 matrix in
the noise and give some discussions of the nonequilibriunke|dysh space:

fluctuation, the thermal fluctuation, and the renormalization

iy

J.(1)
( ) (4)

(t):<J_<t>

effect. Section V summarizes our results. G**(1,2 G (12
é(1,2)=( ., _ . (5
Il. KELDYSH FORMALISM AND GENERATING G712 G129
FUNCTIONAL Here, arguments; andt, are the real time and each compo-
A. Brief introduction of the Keldysh formalism nent is defined with the statistical average in the path integral

: . : o I representation (A)=[D[a*,a]Aexp(-Sih)/Z|;—., as
In this section, we give preliminary definitions of the 1(1,2)=(a;(1)a;(2)*)|,—o/(i#). Diagonal components
Schwinger-Keldysh approach and we summarize three usefild ++ "5\ G-~ are the causal and anticausal GF's
representations: thelosed-time-paththe single-time and respectively. Off-diagonal components are correlation func-
fche phy3|cal_r(rjeprers]er;tzliltlon_§ec. 2 of I?ef.fZ}S If:or S_'mp“(_:'h tions, which are written in the operator representa-
ity, we consider the following action of a free fermion wit 8o as G+ (L2)=(A(a@2)M(ih) and G*~(1.2)

linear source term to explain the basic formalism: . >
=—(a(2)"a(1))/(i%).% Here the statistical average is de-
fined as(A)=Tr e #"oA]/Z, where the Hamiltonian opera-
tor Hy is ea'a and the partition functiorZ, is given as
Tr[e AHo].
It is known that four components of E(p) are not inde-
pendent. This redundancy is removed by the Keldysh

rotation?*Z>After the rotation, we obtain the so-called physi-
cal representation

S=J di{a(t)* (io,—e)a(t) +a(t)I(t)* +c.c}, (2
c

where the closed-time path consists of the forward branch
C, , the backward branc@ _, and the imaginary-time path
C, as shown in Fig. #* a(t) is a Grassmann variable satis-
fying the antiperiodic boundary conditiom(—>eC,)
=—a(—x—ihBeC,). The complex variablel(t) is de-

fined only on the forward and backward branch@s =] 1/3.-3
+C_. The generating functional for the connected closed- *:( 1) Nl e , (6)
time-path Green functiofGF) is defined as Jo) 2\ 3. +d
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T ei K @ T ei K ® _ Figure 2 shows the equivalept circuit of a SET. A metallic
I L R I island gxchgnges electro.ns with the I(arﬁght). lead via a
,L ||| ||| IR tunnel junction characterized by the tunneling matrix ele-
C ment T (). The island is coupled to leads and a gate via
C. —1¥6 Cy capacitorsC, , Cg, andCg. We consider in the weak tun-
neling regimeay<1l and use the two-state model. In this

paper, we limit ourselves to the symmetric caSg=Cg and
T, =Tg. The total Hamiltonian consists of the unperturbed

L al part H, and the tunneling patti;. Omitting a trivial con-
stant, the unperturbed part is given as

<
[\]
&
<
[\

FIG. 2. The equivalent circuit of a SET. i
A= S S a2+ A o, t1 12
0 GA(]_,Z) 0 =R Tn rkArkn@rkn 0 2 y

GR(1,2 GX(1,2) ™

G(1,2=
where a,,, is the annihilation operator of an electron with
GFs denoted by superscripts R, andK are advanced, re- wave vectork in the left (right) lead [r=L (R)] or in the
tarded, and Keldysh components, respectively. In the practisland (=1). The subscripin numbers the transverse chan-
cal calculations, instead af; and J,, the center-of-mass nels including spin degree of freedom. The density of states

coordinate]. and the relative coordinatg, , is considered as constant in each regignis)=2,5(¢e
—&rw=p; (r=L,R,l). The second term is the charging en-
J(t)= J+(H+J-(Y =3,(1)/\2 ergy and the effective spin-1/2 operateracts on the lowest
¢ 2 ' two charge states. The energy difference between two charge
JA(t)=J+(t)—J,(t)=Jl(t)\/5, (8) states is given b\ ,=E-(1—-2Qg/€e) whereQg is the gate
. charge.
are used in most cases. _ The tunneling Hamiltonian
There are the following relations between components of
the GF:
H(t)= Te<¢® al ayno,+H.c. (13
G (1,2+G"(1,2=G "(1,2+G" (1,2 1) r:EL,R ' Hen“rn (43
k,k’,n
1 . R
=E<{a(1)T,a(2)}>=GK(1,2). describes the electron tunneling across the junctions and si-
multaneous change of the charge state of the islart)
(99 =eVt# is the phase difference between the left and right
R A . L leads and the parameters = — kg=1/2 characterize the
G (1,2-G%(1,2=G "(1,9-G" (1.2 voltage drop between the Igftight) lead and the island. The
tunneling Hamiltonian is adiabatically turned on in the re-
Lors a2)t c t t and off in the distant fut It is the widel
:Eqa(l),a(z) 1y=G%1,2. mote past and off in the distant future. It is the widely

adopted procedure, which ensures time translational invari-
(100  ance to describe a stationary state.
) . ) o In order to utilize Wick’s theorem for fermions, we em-
Here we introduce a notaticd®™~ whose physical meaning is ploy the mapping of the effective spin-1/2 operator onto two

the spectral density in the energy space. Equai®ns de- . - ~ ~
rived from the normalization of the step functipsee Eq. fermion operatorsc and d (Refs. 27, 28, and 38 o,

(2.67 in Ref. 25, =c'g, &ZZZETE:A—l, wherep=d"+d is a Majorana fer-
The normalization condition of the density matrix resultsmion operator $2=1). This representation is called the
in an important equatiod|;_y/Z,=1 (see Sec. 2.4 of Ref. drone-fermion representatiéh, because¢ is a “drone”
25) (Ref. 32 which is equivalent to the following equations: whose only job is to make spin-1/2 operators of different
5 spins commute, rather than anticommtite.
oW _ W —...=0 (11) Employing the Hamiltonian operator in the drone-fermion
SI(D) |, _, 83(1)8(2)], ., representation and following the standard manner to intro-
A A duce a path integraf, we obtain the generating functional in
the path integral representation:
B. Model Hamiltonian in the drone-fermion representation
and the generating functional in the closed-time-

S
path—path-integral representation sz D[a:‘kn,arkn,c*,c,d*,d]exp( —7 ] (14

In this section, we introduce our model Hamiltonian and
derive the generating functional for the SET, based on whichvhere all field variables are Grassmann variables satisfying
we construct the perturbation theory. the antiperiodic boundary condition. The action is given by
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=cht[c(t)*(ihat—h(t))c(mih d(t)*a,d(t) @ _th ® ih Q

+r%n arkn(t)*(ihgt_srk)arkn(t) (C) Y . ‘ ,dﬁ]

- i i - 0) (1)

+ TdeWa, (t)*an (t)o.(t)+c.c.l, (15 FIG. 3. The diagrammatic representatlon(a)‘w( , (b) W)
rZEL,R ' ()™ @ (D)o (1) (15 and (c) W3, Solid lines, dotted lines, and wavy lines represent
k.k’.n c-field, d-field, and particle-hole GF'’s in the closed-time-path rep-

where ¢,(t) = x,¢(t). In Eqg. (15 we introduced auxiliary resentation, respectively.

source fields(t) and ¢(t) in order to calculate the average matic representation of the zerothA(®), first- (W), and
and the noise by the functional derivation. It is noticed thatsecond- W) order contribution to the generating func-
the degrees of freedoms are doubled, as shown in(#q. tional W in Fig. 3. Here, solid lines, dotted lines, and wavy
After the derivation, these variables are puthagt)=A, lines represent-field, d-field, and particle-hole GF’s respec-
and ¢ . (t)=eVt# to be related with the parameters of the tively. Practical forms are given as follows:

actual system.

By introducing a linear source ternficd1J(1)¢(1), WO=—i# Tr[Ing; '], (21
where J is a Grassmann variable, all fields can be traced (1)
out® In the limit of large transverse-channel numb&ris WH=ih Trlge2cl, (22)
expressed &8
(Iﬁ)Zn S S n Wc field ™ Tr[(gc c)z] (23)
Z: — —
exp{ ; n [(gcéJ 5J) “ whereW{?),, is the term corresponding to the first diagram

in Fig. 3(c), which we call thec-field correction The other
four diagrams can be written in the same way. Here, the
self-energy of the-field 2,(1,2)=2,_| r%,(1,2) is defined

as

1
><exp( > ﬁf d1d2J(1)gy(1, 2)J(2))
J=0
Jrlin gC ]
x2e : (16) 31,2 = —ifia(1,29,2.1). (24)
where we omitted the partition function of noninteracting
electrons. The trace Tr and the products represent the |nt%o
gration alongC as follows:

In a previous papef we have shown that the first-order
ntribution causes a divergence at the degeneracy point
Ay,=0 for average charge. In order to regularize the diver-
gence, we proposed an approximate generating functional
Tr{g9.dgs]= fcdl d29.(1,23(2)g4(2,1). o_btainzd by summing up-field corrections §.2 )" to infi-

nite order:

The particle-hole GRe=X=,_| ray, in the closed-time-path W= —i# T{InG, ]
form is written as ¢

. “1
a(1,2= =N T?g,(1,29,(2,1) el el (17) =—ih Tlr[gc‘l]—Z1 ~T(gexe)" - (25

whereN, is the number of transverse channels. The GF for
a free electron in the lead =L,R) and the island r<l),
g:/(t,t") ==, gn(t,t"), is given as

F|gure 4a) shows the diagrammatic representauonVUf
The circle represents the self-energy of théeld and the
thick line represents the futtfield GF defined by the Dyson

Ok (t,t) = (ihd— eh) S(t,1), (1g  eduation
G ML) =g (L) = Zo(t,t"), (26)

Qi)

O=¢% O —==—+—=0=

FIG. 4. (a) An approximate generating functional including
also satisfy the antiperiodic boundary condition. infinite-orderc-field correction. The circle is the self-energy of the
Using Eq.(16), we construct a systematic perturbation field. (b) The Dyson equation for fult-field GF in the closed-time-
expansion in terms at. For example, we show the diagram- path representation.

which satisfies the antiperiodic boundary conditign,(t,
—0eC,)=—0gy(t,—iAB—>). The c-field and d-field

GF’s, defined by (a) _1hO —ih [Q @
g

St =(iha—h(1)8(t,t"), (19

NI

St =ihas(tt)/2, (20)
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whose diagrammatic representation is shown in Fig).4n by regardinge, and ¢g as formally independent variables.

Sec. |1l B we will show that reproduces results of the RTA ~ The generating functional, E¢L4), is invariant under the
for the normal metal island. In Sec. Ill C, we calculate thegauge transformation, i.e., the phase transformation ot the
charge noise and the current noise basedon field and the change of thefield scalar potential:

. . ¢r(t)4’@r(t)+5w(t),
C. Formally exact expressions for the average and noise (33)

and charge conservation
) 9 o h(t)—h(t) =% 8(a.(1)),
In this section, we summarize expressions for the average . i .
and the noise on the basis of functional derivative. Relationz‘:fvhere 6y is defined orC,, +C_ . The relation between the

between physical quantities in the generating functional repg_auge invariance and the charge conservation in the nonequi-

resentation and those in the operator representation are dellﬁ’—”um state has been analyzed in Ref. 29. For our system,

onstrated in Appendix A. We also show that the gauge inthe following expressions of the current continuity and the
variance of generating functional leads to the charg&
conservation law.

The exact average current expression is given by the func- a4Q()= 2, 1,1), (34
tional derivative of the exact generating functionsllwith r=LR

respect to the phase differente™®

harge conservation for correlation functions,

ddvSoo(tt)= 2 Spun(tt’), (39)

€ rr'=L,R

()= =5 | ety =evin.n (=2, " 27
h Sga(t) | ec® @efh;:g) 0 can be provedAppendix B.

The center-of-mass coordinate of the phase difference is de-
termined by the Josephson relatifrii® The relative coordi-
nates are put to zero because they are fictitious variables. In this section, we derive approximate current noise and
From now on, we suppress the equations in the subscrigharge noise expressions, which is the main purpose of this
after the vertical bar for short. The average charge is calcupaper. We summarize GF's in the physical representation in
lated by the functional derivation in terms of the scalar po-Sec. Ill A which are needed for practical calculations. In Sec.

IIl. APPROXIMATE EXPRESSIONS FOR NOISE

tential of thec field as Il B we calculate the average charge and the average current
and show that our approximation completely reproduces the
Q(t) :E _ oW results of the RTA. We also give some notes on the diagram-
. (28 X . ; o ;
e 2 JShy(t) matic rule suitable for the functional derivative technique. In

) ] ] ] Sec. Il C, we calculate the current noise and the charge
The current noise and the charge noise defined iN(Bd. nojse based on the diagrammatic rule. We will check that our
are given by the second derivative with respecbfoandhy  yesults satisfy the charge conservation law and the

(Ref. 39: fluctuation-dissipation theorem.
_ 2€? S2W (A—c)
1 5pA(1)Sea(t) 4

S (t,t) (29 A. Fourier transformation of free Green functions

We summarize the Fourier transformation of the retarded
0 and the Keldysh component of GF’'s. Hereatfter in this sub-
—iheW | (A—c) (30  section, we put the auxiliary source fields as shown in the

4 subscript of Eq(27). The solutions of the differential equa-

Shy(t)Shu(t’)
. . . _ tions(19) and(20) imposing antiperiodic boundary condition
where A—c) is obtained from the first term by replacing 5,5

the subscripta\ with c.

Soo(t,t")=2€?

It is convenient to rewrite Eq(27) in the form of the gg(s)zz/(g.,.i 7), gg(g)zoy (36)
linear combination of the tunneling current at the left junc-
tion 1, and that at the right junctionlg as I(t) gR(e)=1le+in—Ay),

=3, r&il((t). In the same way, Eq29) is written in terms

of the correlation function of, andi,. (r,r'=L,R), which we e

denote by Sy, as S (t,t")=2, | rirkp Sy (t,t'). gE(s)z—Ziwtan)‘(ﬁ> Se—Ayp),
Here,l, andS,,,,, are written as

(37

where is a positive infinitesimal number and tiddunction

|r(t):E — (31) in the energy space is defined as
i Sppa(1) ) 5
o(e)=nl[w(e"+ 7%)]. (38)
2 2
St t')zz_i oW _(A_’C) ( The advanced component is the complex conjugate of the
i Spa(t) St 4 retarded components}; ¢ (e) =95 ()*.
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The two components of the particle-hole GF are given bydistribution functionn™(e)=1/(é’*—1). The functionsf *
and n™ are given by ff(g)=f"(£)e®® and n'(¢)

a5(8)=—i77a9p(8—,u,r), =n"(&)€"®, respectively.

&7 My

arK(s) =-2i wa?p(s — ,u,r)COt?'< 5T

The reason why we adopt the generating functional ap-

proach is that once an approximate generating functional is
where u,= keV (Appendix. Q. o is the dimensionless obtained, one can calculate any order moment systematically
conductance for the tunnel junction r written in terms of theby the functional derivation. In the following sections we
tunnel resistanc®, asa; =R /[ (27)?R,]=NeT7pip;. The  perform practical calculations, employing introduced in
spectral density of the particle-hole propagator is given bySec. Il B. Detailed discussions of our approximation are re-
p(e)=sE2/(2+EZ) where the Lorentzian cutoff function tained in Appendix D.

defined by Eq(10) for the c-field self-energy, Eq(24), and  gq. (31) (Ref. 36:
6)

those for the particle-hole GF are related to each other:
Here, we used the fact that the self-energy, @4), includes
£ the phase factor through the particle-hole GF, @d). In the
1+ _C) language of Feynmann diagrams, E46) can be rewritten in

27T a compact form
>-@l o

Solid dots witht representbe,/ ¢, A(t). The circle with r is
the partial self-energy defined by E@4). Here we obtain a
diagrammatic rule similar to that of Refs. 40 and 41.:

) (39 B. Reformulation of the resonant tunneling approximation

Ef(s)=a?(s), Erc(s)=a:<(8). (40 lr(t)_g Sepa(t) B

The retarded component of the self-energy is given as

S¢; O¢;

-G
Sera) " O (D
(4

- eTr[ G

25(s>=a5p(s>{2 Rew(i 82;?) —y

Ec af (&)
_ ‘/’(m” ity (41) L()=—e

where ¢ is the digamma function. The fult-field GF is
obtained by solving the Dyson equation in the closed-time
path representation, ER6) (Ref. 36:

GR(e)=1Me+in—A.—3SR , (i) The diagrams corresponding to the functional deriva-
c(e)=UeFin=Ao=2c(e)] tive with respect top,,(t) is obtained by a series of the
following operations: to put a solid dot onto all possible
e " ) . ) .
GK(e)=GR Kig)—2i tanl-(—) GAe), positions of vertices in a _closed dlagram_, to assign r on a
c(®) C(S){EC(S) K 2T c(®) circle connected to the solid dot, to multigleand to assign
(42 a minus sign if a solid line comes into the solid dot.

where we used the definition of thé function, Eq.(38). Next we project the fictitious time o to the real axis.
Here we remark the following: Equatidd2) shows that in  As the tunneling Hamiltonian is zero @, 3 (t,t') is zero

the limit of »—0, the charge states are independent of theggr teC, ort'eC,. Hence, the diagrams in E¢47) are
initial equilibrium distribution, because the Keldysh compo- rewritten as

nent of thec-field GF represents the distribution of charge

states. This fact suggests that describes a physically rea-
sonable nonequilibrium stationary state, which should not
depend on any initial state.

We transform the above expressions into a single-tim
representation. Employing Eq®) and (10) we obtain

= e o 4 = e O

G2 7 —G7'3
CfsQDrA(t) ' r5¢rA(t)

Wwhere we performed the Keldysh rotatiasi.(s=0,1,2,3) is

the Pauli matrix in Keldysh spac&The trace is carried out

over Keldysh space and the product represents integration

along the real time as

Tr

: (48)

a; T (8)=—2imagp(s — pIn; ()= T af(e)f (&),

(43 o - _ o
T g4e94]= f_ d1d2 Tfg4(1,2¢(2)g4(2,1)].
S, (e)=Fa, “(e), (44) . . - _
The phase in the physical representatipnis written as
G27(e)= 7 |GR(e)|2a* " (&), (45 o) = @, (1) 7+ @, A (1) 772, Which leads to a useful rela-

tion for the functional derivative technique:
Heref, (¢)=f"(e—pu,) andn, (¢)=n"(e— u,) are written B
with the Fermi functionf ~(¢)=1/(¢’*+1) and the Bose S (t') 8, ()= 8(t—t")/2. (49)
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By using the property of the GF in the physical representa- (i’) The diagrams corresponding to the functional deriva-
tion G(t,t')'=—+G(t’,t)7 and that of a Pauli matrix tive with respect td(t) are obtained by inserting a solid dot
77 7= — 7, we can see that the second term of &) is  into all possible positions of the-field GF.

minus the complex conjugate of the first term. To generalize

this property, we obtain a helpful rule to reduce the number  Following rule(ii), the diagram for average charge can be
of diagrams: A diagram which is complex conjugate of ag|so calculated:
certain diagram is obtained by changing the direction of all

lines and putting a minus sign if the diagram includes odd

numbers of vertices without solid dots. Q) :} J' d__s-l-r fe (S)i
By performing the Fourier transformation, we rewrite Eq. e 2 2im ¢ 2
(47) as R
L (%2 GRe) (55)
de ~ 'TO., =5 = K m cl€).
2€Re®:2€RGJ TTI[Gc(S)TEI(S)Tl 2 T a"(e)
(50 The imaginary part oG?, which has a peak at~ A,
de 3%(£)GK(s) describes the excitation property of the charge state. When

—e| =22 _(CwK). (51) the broadening of the peak is sufficiently small and,eV

h 2 <E¢, G} is approximately given by

The second termG« K) is obtained from the first term by

swapping superscript§ andC. By generalizing Eq(50), we GR(e)~2l[e—2Ag+iz IMSR(zA)]. (56)
obtain the rule to calculate the diagram: ¢ ¢

(i) Put 22 matrix GF's in the physical representation to Herez is the renormalization factor
the corresponding lines and circles, and pf2 or 7 to a
vertex with or without a solid dot. Subs_equently, carry out 1/[1—38R92§(8)|5:m ]~ 111+ 2agn(Ec/ec)].
the trace over Keldysh space and the integration over the 0

frequencye/h. :
The low energy cutofiec is max(zAo|,2#T,|eV|/2) where

Employing Eqgs(9) and(10), Eq.(51) is transformed into  one of three parameters must be much larger than the other
the single-time representatione/f)fde3, ()G, " (¢) two.!! The imaginary part of self-energy lirﬁf represents the
—(++<—). By using Egs.(43), (44), and (45 and noting lifetime broadening effect. When the renormalization effect
[(t)=1.(t)=—1g(t), we obtain the final form of the current is negligiblez~1, it is written as Inﬁs(z Ag)~y=HT/2,
expression which has the same form as the Landauer fowhereI'=%,_ (', (+T, ;) and
mula,

A —
p(‘;—”r)n*mo—m), Ty =T P Gok,
e’R,

(57)

1
I(t)=@f de TR (e){f (e)—Tr(e)}, (52 L'y=

where TF is the effective transmission probability of lead

I h h the island: . . .
electrons thorough the island I', , (I', ) is equal to the tunneling rate int@ut of) the

TF(e)=—af(e)ak(s)|GR(e)|? (53  island through the junction r estimated by Fermi's golden
rule. It is noticed that the conditiomay<<1 is enough to

(&) aX(e) neglect the broadening of the peak. By using the approxima-
= _ieg(s)_ (54)  tion Eq.(56), Eq. (55 for equilibrium state reproduces the
aX(e) result of the RTAS Q/e~{1—ztanHzAy/(2T)]}/2.

According to Ref. 6, Eq(52) is consistent with the co-
unneling theory and orthodox theory for two-state lifitle
can also confirm that E55) is consistent with the orthodox
) By 43 %eory in the following way: In the limit ofag—0 with
charge is evaluated by substitutiMg into Eq. (28), keepingeV or T finite, the renormalization factor approaches
unity and the imaginary part of Eq56) reduces to thes
function (—1/7)8(e—Ay). Thus, Eq.(55) reproduces the
result of the orthodox theory

From the second form, we can see our result is equivalent t
that of the RTA®*?
In the same way as the average current, the avera

where the solid dot with corresponds t@h/sh,(t) whose

practical expression is equal to the right-hand side of Eq. lim Q(t)/e=T_IT, (58)
(49) in the physical representation. The diagrammatic rule of ag—0

functional derivation in terms of the scalar potential is given

as follows: wherel' . ,_=2,_| g’y /) ¢.
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C. The current noise and the charge noise based where we used the fact that at a stationary state, the time
on the reformulated resonant tunneling approximation translational invariance is satisfied and the correlation func-
Here, we calculate the current noise and the charge noigéon depends only on the difference bandt’. From the
based on the reformulated RTA. In the following discussionsdefinition Eq.(29), one obtain the current noise by applying

we limit ourselves to the zero-frequency component rule (i) twice. Reducing the number of diagrams and using
rule (i), which can be also applied to the calculation of the
S””,(O):f ats,, o (1,t"), (59 zero-frequency noise diagrafAppendix B, we obtain

S“;ﬁo): dr2Re +(® @), 'Or (A_m)
2 [ L8 (0 6610, + 5 5.0) P60 P S Gul)~ 5 50) PG (0 g 3 (6)Pelo)
—(P—7),

where we used the fact that the second term of (B6). is obtained from the first term by changing to 7* in the physical
representatioiiAppendix B. After some straightforward calculations, we obtain the following expression:

Si(0)=S,,1{0)=—5,(0)

K K K K 2
2 d{—weas){n(s)f;<s>+ft<s>fR<s>}—{weas) {fL<s>—fR<s>}Zl
K a’(e) a’(e)
(60)
2 - + + - - -
:R—Kf Qe[ TF(e){FL (e)F (o) + 11 () fm(e)}—TF(e)2{FL (o) — Fr(e)}?], (61)

where ris the other side of tfor example, when the index r is L the index of the other side R). The charge noise is
evaluated by adopting the definition E§O) and by applying rules () and(ii):

SQQ(O)—ezﬁZJ dt@ (AHC)— Zﬁzf —Tr[G (8)79GC(8)79] (P— )

R
e[ Fo 060 0= 3 SE[ delatio ke akiels; (o) o) 62
' =LR

where we used Eq$43) and (45).
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Equation(61) has the same form as the current noise ex- In the same way as the above discussionszégr<1 and
pression of a point contact without Coulomb interactlbn. z~1, we obtain the cotunneling thedfywith lifetime
This result is anticipated, because the tunneling current ibroadening from Eq(62):
expressed in the same form as the Landauer formula. How-
ever, there is an important difference as mentioned in Ref. &R oX(e)a®(e)fF () ()
11: The effective transmission probability includes the Cou- g, (0)~ > Kj de— e v
lomb correlation and the inelastic relaxation effect. LR 277 {(e—Ag)2+ 42

Here we note the following points. First, our approxima- (66)
tion satisfies the charge conservation law: As the approxi- o _
mate generating functionaV is invariant under the gauge In the limit of #;— 0, we can confirm that our result repro-
transformation, Eq(33), we can show the conservation law, duces the orthodox theofy:

Egs. (34) and (35), for the approximate expressions. Espe-

cially for the zero-frequency component, they reduce to lim [aOSQQ(O)]=a04e21“+F_/F3. (67)
equations for the current conservation lawy,, gl,=0 and ag—0

2 v—LrSir(0)=0. It is worth noticing that the gauge in-

variance is automatically satisfied whéhconsists of closed IV. RESULTS AND DISCUSSIONS

diagrams. Second, we can show that our result satisfies the

fluctuation-dissipation theorem: A{=0, the current noise In this section we present results obtained by the numeri-

expression is reduced to the Johnson-Nyquist formul&al calculation of Eqs(60) and (62),* based on which we

S (0)=4T§ whereG is the conductance expressed@s discuss the nonequilibrium fluctuation in Sec. IV A and that
_““mv OaI/(?’V—R’lfdsTF(s)/{4T coshisl(2T) 2 of thermal fluctuation in Sec. IV B. We also discuss the ef-
= . =Ry ]

) A S . f renormalization on the noi t low temperatur
We discuss the current noise expression in the reg|mgaCt of renormalization o € noise at low temperature

wherezay<1 and the renormalization effect is negligible, caused by quantum fluctuation in Sec. IV C.
z~1. Using Eqgs(53) and(56), the first term of Eq(60) is
approximately given by A. Noise in the nonequilibrium state

+ - In order to clarify the nature of nonequilibrium current

2elyr (V+y (], (63 fluctuations, we corféider the case of zeroqtemperature, where

where there is no thermal fluctuation. Furthermore, we limit our-
selves to the condition of high bias voltagEc>|eV|

Rk f p(g—#r)nr(s)p(g—lu,?)nri(g) >Ty, where the renormalization effect is negligible. Figure

: 5 , 5 shows the current noisghe top panel and the charge
le+iy=A| noise (the bottom panglas a function of the excitation en-
N _ gev ergy A, for small o [(a-1) and(b-1)] and those for large
Y (V) =y (y)e 7= (64 [(a-2 and (b-2)]. The plots are normalized by values of the

- . . — orthodox theory at\(=0. Solid lines, dashed lines, and dot-
For y=0, " (0) is the cotunneling current from lead r/r o |ines show the results of our approximatidgs. (60)
to lead fr, and Eg. (63) reproduces the cotunneling and(62)], the orthodox theoryEgs.(65) and(67)], and the
theory*#?%?in the two-state limit. Equatiot63), which we  cotunneling theonfEgs. (63) and (66) with y=0], respec-
call the cotunneling theory with lifetime broadenings tively.
equivalent to the previously proposed equation in Ref. 13 in Whena, is small, our results well reproduce the orthodox
the limit of T—0. The validity of this approximation is dis- theory[(a-1) and(b-1)]. For largea, [(a-2) and(b-2)] and in
cussed in the next section from the point of view of thethe CB regime[|Ao/(eV)|>0.5], they agree well with the
numerical results. cotunneling theory. Figure 6 shows the average curfant

By taking the limitp—0, with paying attention to the and the average chargb) estimated by our approximation
relation  lim,_o(27y){Im[1/(e — Ag+iy)]}°=8(s—Ao),  (solid lineg and the orthodox theorydashed lines In the
we obtain the result of the orthodox theory in the two-stateCB regime, we can see both the average value and the noise
limit: are enhanced by the quantum fluctuation. Aroae-0, the
average current and the current noise are strongly suppressed
due to the lifetime broadening effett.

Next, we discuss the validity of the cotunneling theory
with lifetime broadeningsee Eqs(63) and(66), dot-dashed
where | .=e(I'L \I'y g=I'} [I'g )/T". I_ is the average lines in Fig. 9. As for the charge noise in the limit af,
current of the orthodox theory. The second term is related te-0, it reproduces the result of the orthodox theory as well
the part of Eq(60) proportional to T)?, which represents as our approximatiofFig. 5b-1): the solid line and the dot-
the Coulomb correlation and reduces the current noise frordashed line almost overlap each ofhén the ST regime it
the Poissonian value. It is noticed that even at small tunneleverestimates the current noigéig. 5a-1)], because it does
ing conductance, the second term is important in the SThot take the Coulomb correlation effect into account as men-
regime. tioned before. We want to stress again that our result repro-

(="
4 eRLRR

oy . 212
lim [y S, (0)]=a, "2e I+—e—r , (65)

ag—0
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ao=10 . \
§0.75 0.75 N ourresult |
g our result E N oo orthodox
~ 0.5 - == orthodox 1
% ----- co-tunneling QI 051 T
v 0.25 com.— co-tunneling | _] =
: +broadening
025 I -
0 : -
! (3-2) T O‘, 1 R I
0 0.25 0.5 0.75 1
0,=0.1 .
§0.75 0 AgleV
' T T T T |
B 05 . 0.5 s
= (b)
70}
0.25 our result
----- orthodox
Opb,  pmmmemmpeeeeeg L L _
o) 0.25
1 N
0 S -
"t;) 0.75 1 | | | |
= 0 0.25 0.5 0.75 1
£ os Ag/eV
g
8 0.25 FIG. 6. The excitation energy dependence of the normalized
S average currenfa) and the average chargb) for a;=0.1 at 0 K
and eV/E-=0.4. The solid and dashed lines show the results of
0 )
1 ours and those of orthodox theory, respectively.
© 075 is suppressed when tunneling events are correlated. The or-
% thodox theory predicts sub-Poissonian behavior in the ST
f 05 regime because of the Coulomb correlation: Suppose one
‘g electron tunnels into the island through one junction; the next
@ 025 tunneling event must be the outgoing process of another
electron through the other junction. In the CB regime, the
0 = cotunneling theory predictS;; /(2el)=1. It means that co-
0 0.25 0.5 0.75 1 tunneling events, viz., the simultaneous tunneling events of
ApleV two electrons through the two junctions, occur randomly.

i . Figure 7 shows the excitation energy dependence of the

FIG. 5. The excitation energy d_ependence of the current Noise- - " factor obtained by our approximation. In the srag|l-
(:thfofgp[(zz_age);ﬁgol(bti% ?nf:ggg'ln[czi%hznzot(ﬁrg]pstn%I fzr ;10 d limit, our approximation reproduces the orthodox theory in
eV/IE:=0.4. Plots are normalized by the value predicted by the
orthodox theory at\,=0: el_,=€GyV/2 for the current noise 1
ande®/ (4l _ ., for the charge noise, whef&,=1/(R_+ Rg) is the
series junction conductance. The solid, dashed, dotted, and dot- 07s |
dashed lines show the results evaluated by our approximation, or-
thodox theory, cotunneling theory, and cotunneling theory with life-
time broadening, respectively. In pan@-1), the solid line and
dot-dashed lines almost overlap each other. The parameters satisfy??
eV>Ty : for example, T /Ec~103 for ag=0.1. 025

II/ 2el

0.5

duces the orthodox theory in the limit ef,— 0, which can- 0 i
not be achieved by the cotunneling theory with lifetime
: 0 0.25 0.5 0.75 1
broadening.
. . _ Ao/eV

The physical picture of the nonequilibrium current fluc-
tuation is understood more clearly with the help of the Fano FIG. 7. The excitation energy dependence of the Fano factor at
factor defined byS,, /(2el). The Fano factor is unity when eV/E.=0.4 for aq=10"° (dotted ling, 0.05(dashed ling and 0.1
the tunneling event of electrons is a Poissonian process angolid line).
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the ST regime and the cotunneling theory in the CB regime 2F T T J =
and smoothly interpolates the two theorigise dotted line (@)
actually almost coincides with the result of the orthodox
theory in the ST regime For largera, the Fano factor is §1-5
further suppressetthe dashed and solid linesEspecially, g
our result predicts a value smaller than 1/2 at the degenerac—
point. It is a distinctive result because the orthodox theorkq\;’
predicts the inequality, /(2el)=1/2 (p. 137 in Ref. 12 =
Next we consider the physical meaning of our result. In“? 05
the CB regime and near the threshold voltage, the origin o
the suppression of the Fano factor is considered to be th
enhancement of the effective transmission probabilify 0
because the increase in the current noise is much larger thi 1
that in the charge noigdessee Figs. &-2) and §b-2)]. As the
Fano factor of the shot noise is approximately given by 1 0.8
—TF,2 the enhancement of the transmission probability re-
sults in the suppression of the Fano factor. §0.6
Around the degeneracy point, the origin of the suppres, .
sion of Fano factor is different, because the normalized cur= g 4|
rent and the current noise are suppressed as shown in Fi
6(a) and Fig. %a-2. We consider that the Fano factor is 0.2
suppressed because of the dissipation, i.e., the lifetim
broadening effect: the RTA takes account of the dissipatiot
process which is the leak of an electron from the island while
another electron tunnels into the island and relaxes to th
local equilibrium state of the island. The suppression of the
Fano factor by the dissipation was previously predicted fol
the one-dimensionallD) electron channel coupled with a
boson batf{’4®

B. Effect of thermal fluctuation

Next we discuss the effect of the thermal fluctuation. Fig- 05 T
ure 8 shows the temperature dependence of the current noi
(@), the average current), and the Fano facto(c) at a s ' ' | i
threshold for variousyy. They are normalized by the value 0 o1 02 03 0.4
of the orthodox theory af=A,=0. T/Ec

As the temperature increases, the average current and the
current noise increase because of the thermal fluctuation. At FIG. 8. The temperature dependence of the normalized current
sufficiently high temperatureEc>T>|eV|/2, orthodox noise () and the normalized average curreib) at a threshold
theory predicts that the average current saturatesgi,and ~ €V/2=A4,=0.2E¢ for a;=10"° (dotted ling, 0.05 (dashed ling
the thermal fluctuation dominates the current noise, $g., and 0.1(solid ling). (c) The temperature dependence of the Fano
~4(G,/2)T, which is a similar form as the Johnson-Nyquist factor for variousx, at the threshold.
noise for the Ohmic resistarnte(the plot for ag=10""° al- ) )
most coincides with the orthodox thearnur result further ~ function of the temperature and the bias voltage, respec-
shows that the average current and the current noise are supely: The charge noise is suppressed for lasge which is
pressed as, increasegpanels(a) and (b)]. It is considered attrlbut_ed to the renormalization of th.e system parameters. In
to be attributed to the higher-order tunneling effect: The life-the regimeeV, T<Ty, where the lifetime broadening effect
time broadening caused by the thermal fluctuation is eniS negligible ¢ao<1), we can approximate E¢62) as
hanced for the large tunnel conductance. Pdgglis the

Fano factor versus temperature plot. The Fano factor is inde- 4(ze)T ,T_/T?, (68)
pendent ofag, which means that the correlation between ~ ~ .
tunneling events does not depend @ instead of Eq(67). HereI" andI'.. are the tunneling rate,

Eq. (57), written by using renormalized parameters such as
Iy \=zp(zAg— u)n (zAo— )/ (€%R,) where the renor-
malization factorzis 1[ 1+ 2«agIn(Ec/ec)]. The lower cutoff
Next we consider the renormalization effect at low biasenergyec is 27T for panel(a) and|eV|/2 for panel(b). It is
voltage and temperatureV,T<Ty. Figures %a) and 9b) natural to interpret Eq68) such that the charge of a carrier
show the charge noise normalizedéf\R;/Ec atA,=0 asa is modified asze by the renormalization effect. The interpre-

C. Renormalization effect
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20 1 T T | T T
Bl5F 0.75 | i
& G
) N
=~ = 051 L -
2 10k ) = ——————— eV/Ec=10"*
o |\~ A - eV/Ec =103
& 025+ eV/Ec =102 |
S5 NS 1 ] eV/Ec =0.4
0 kL 1 1 L 1
oL | | , . 0 0.5 1 1.5 2
0.4 A() leV
100 | FIG. 10. The excitation energy dependence of the Fano factor
(b) for ag=0.1 ateVIEc=10* (solid line), 10" 2 (dashed ling 102
(dot-dashed ling and 0.4(dotted ling.
2 75 .
* the dissipation as discussed in Sec. IV A: As the bias voltage
=~ increases, the dissipative charge fluctuation is enhanced and
L%-l) 50 n thus the Fano factor is suppressed.
o
o
2 25 - V. SUMMARY
- By using the drone-fermion representation and the
oL ! L L ] Schwinger-Keldysh approach, we have calculated the current
0 0.1 0.2 0.3 0.4 noise and the charge noise in the regime of large quantum
eV/Ec fluctuations of charge out of equilibrium. We have reformu-

) ) ) lated and extended the RTA in a charge conserving way. Our
FIG. 9. (a) The normalized charge noise as a function of tem-555r6ximation interpolates previous theories, the orthodox
perature ato=eV=0 for ay=0.1 (solid line), 0.05(dashed lin&  {hery and the cotunneling theory: Our result coincides with
and 10" (dotted ling. (b) The normalized charge noise as a func- yo othodox theory in the limit of,—0 and is consistent
;:?:Ct?;nbgzvo;tz#;:eea\?iaT—0. Inset: the average charge as & with the cotunneling theory in the CB regime. The approxi-
0 ' mation is verified from the fact that the result satisfies the
fluctuation-dissipation theorem. In previous papers, we also
tation is similar to that of the doubling of shot noise at thechecked numerically that the energy sensitivity does not ex-
normal-metal(N)—superconductofS) interface. Since at the ceed the quantum limf2-

NS interface the carrier is ae2charged patrticle, viz., a Coo- We showed that at zero temperature &hd>|eV|>Ty,
per pair, the shot noise is twice as large as that at the NNihe lifetime broadening caused by nonequilibrium dissipative
interface?® charge fluctuation suppresses the current noise in the ST re-

Though the normalized charge noise is suppressed witbime. It also suppresses the Fano factor more than the Cou-
increasingyg, one sees that the charge noise always divergemb correlation does. Especially the Fano factor is sup-
at A,=T=eV=0 for arbitrary ay in the weak tunneling pressed below the minimum value predicted by the orthodox
regime. Since the charge noise is related to the “charge susheory, 1/2, around,=0. The origin of the suppression is
ceptibility” for excitation energyA,, the divergence means attributed to the charge fluctuation which appears as the en-
that the number of charge changes by “1” at the degenerachancement of the transmission probability in the CB regime
point when we sweep the excitation energy. It is confirmedand dissipation in the ST regime.
by the fact that the slope of the excitation energy dependence At E.>T>|eV|/2>Ty, we showed that the average cur-
of the average charggnset of Fig. 9b)] diverges at the rent and the current noise deviate from the predictions of the
degeneracy point. orthodox theory with increasing,. However, the Fano fac-

Next we discuss the renormalization effect on the Fandor is independent of, and is proportional to the tempera-
factor. Figure 10 shows the excitation energy dependence afire. It means that the current noise is dominated by the
the Fano factor for various bias voltages. We can see that ahermal fluctuation and the correlation between the tunneling
small bias voltage where the charging energy renormalizaevents does not depends ap.
tion is pronouncedeV|<Tx~ 103, the valley structures of At small bias voltage and temperatued/, T<Ty, the
the curves are widened. The same behavior can be seen ¢harge noise is suppressed as compared with the prediction
the differential conductance shown in Refs. 3, 8, and 11. Wef the orthodox theory. We showed that it can be interpreted
also see that the Fano factor is suppressed with increasirgp the renormalization for the unit of island charge. Although
bias voltage at\g=0. This suppression is also attributed to the charge is renormalized, the charge noise diverges, at

035317-12



NOISE OF A SINGLE-ELECTRON TRANSISTORIN . .. PHYSICAL REVIEW B7, 035317 (2003

=T=eV=0 for arbitrary«, in the weak tunneling regime. It from Eq. (A2) as shown in our definition E430). Here we
means that the quantum fluctuation does not wash out thesed the normalization, Eq11), (Q,(t))|=0. As a result,
charge quantization. the first term in Eq.(A2) is replaced by[(Q.(t)Q_(t')

In this paper, we have limited ourselves to discussions of-Q _(t)Q, (t’))]/2, which does not include the uncertainty.
the second moment and the zero-frequency component, b&sing Eq.(9), we show that our definition is equal to the
cause we think them primitive. The investigation of the fre-standard charge noise expression
guency dependence of noise will be important to estimate the
performance of the high-speed SET electrometer —ihe?5’°W (A—c) . .
completely*® The investigation of the higher-order moment shatoh(th| 4 =({8Q(1),8Q(t")}).
and the full counting statistics>3will help us to understand A, ()
carriers of strongly correlated systems out of equilibrium. We should stress that our definition does not change the final

result because E¢A3) is 0 from the normalization.
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APPENDIX B: CHARGE CONSERVATION
APPENDIX A: RELATION BETWEEN THE GENERATING

FUNCTIONAL REPRESENTATION AND OPERATOR In this appendix, we demonstrate the charge conservation
REPRESENTATION law. As W is invariant under the transformation, E§3), we

. . ) obtain an identity
In this appendix, we show the relation between expres-

sions for the average and noise in the operator representation
and those in the generating functional representation. The —ed, oW/ Shy(1)=(elh) X, dWISe,(1).  (BD)
.. . . r=L,R
variation of the exact action, Eql5), accompanied by the
infinitesimal variation ofh is given as the “twisted” combi- We can derive the other equation, which is obtained from

nation (Sec. 9.3.2 in Ref. 250f Q andh, above equation by replacingy with c. However, the latter
Qult) equation is not important in the following discussions. By
__ c putting the auxiliary source fields as the values given in the
= +
oS dt e Sha()+(coA), (A1) subscripts of Eq(27), and employing Eq9427) and(28), we

obtain the current continuity equati@B4).
Next we demonstrate the charge conservation law for cor-
relation functions. By using the operai@ d,, 8/ Sh(t") or

where the center-of-mass coordinate of the charg@.ig)
=e[c (t)*c (t)+c_(t)*c_(t)]/2. Employing this source

term, we can show that Eq28) is equivalent to(Q(t))  —jes,_, 26/8¢,4(t') on Eq.(B1), we obtain the following
whereQ=e(o,+1)/2=ec'c: two equations:
oW ~ e (3 a2 82 i02 o2
—e&]—(t)|=(Qc(t)>|:<Q(t)>—§, —at,atﬂa?t, &,
. ohy(t")sha(t) r=LR Sha(t") Sepa(t)
where we used Ed9) to obtain the final form.
The second derivative ie252W/ 6h, (1) sha(t")| is cal- ; ie252W » e2 52W
culated as TN TN
YR Sepat)Sha(t) LR 1 Spa(t)) S (t)
{(Qc(1)Qe(t")) —(Qe()}{Qc(t')}- (A2) By comparing the left-hand side of the former equation and
Here the first term includes the correlation function of fourthe right-hand side of the latter equation, by setting the aux-
field variables on the same branch, iliary source fields as the values given in the subscripts of

(c* (t)c. ()% (t)c. (1)), which is not well defined at Eqg. (27), and by _using Eqs(29) and_ (30), we obtain the
—t’. Usually, an additional operation to determine the ordecharge conservation law for correlation functions, E3p).

of the field variables is required to remove the uncertainty.
Alternatively, we subtract a term APPENDIX C: LOOP DIAGRAMS: PARTICLE-HOLE

GREEN FUNCTION AND SELF-ENERGY

i 2 o2 ’
1 —ine’sw :<QA(t)QA(t )>‘ (A3) In this appendix, we calculate the particle-hole GF. We
4 she(t)shy(t") 4 | begin with the tunneling action for the large transverse chan-
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nel obtained from Eq(15) by tracing out the electron de- where we omitted the arguments and coefficients. To obtain
grees of freedom® S;=[cdld2o,(1)a(1,2)0_(2). thisform, we used the normalization, Ed1), or the relation
In the physical representation, it is rewritten as#@(t)#(—t)=0 [see Eqs(2.64 and(2.69 in Ref. 25. The
fd1 d2}+(1)T7'151r(1:2)715)'7(2)1 where the vector field .. following calculations are same as those in Ref. 36. Employ-

is defined in the same way as B6). Each component G ian the Fourier transfo}r(ms of the GF defined in Ef9),
. ; . 5
can be calculated by utilizing the functional derivation. Fordr (e)=—impi() andg, () 2imp(e)tantis/(2T)], we

. obtain Eq.(39).
example, the1,2) component is Another loop diagram, the self-energy, E@4), can be

5°S; calculated in the same way. Four components are given in
(T (1,27, = the same form as those of E2). By using Eqs(36) and
T80 1(1)* o _5(2) (39), we obtain
= _iﬁNCh
! 1 K !
* _ So. R de’ ia.(e") K c
2 T+ ¢ der Se)= | o= ———— 2(e)=ar(e).
XTTr 5o (1) e gr50_2(2)c Ol r 20 etin—g' r r
(CY

~ From these equations, Eq40) and(41) can be derived.
As the functional derivative is do(t")/0+q(2(t)

=Ws(t—t')/\2 in the physical representation, the trace
yields éxeV~ /AT g (1,2)7'g,(2,1)]/2. Here we put APPENDIX D: PERTURBATION THEORY
¢A=0 ande.(t)=eVt#%. The other components are evalu-

X . In thi i ri me results of finite-order
ated in the same way. Then the four components are given ?)Se n this appendix, we describe some results o te-orde

rturbation theory and explain why we introduced &)
0 gAgK_I_gKgR which takes account of all orders farfield corrections.
rYl rel ) , (C2 First, we calculate the first order contribution of the average

For charge by employingv™®, Eq. (28) and rules (i) andii):

grgf+a9ra’ 9r9 - ofo;

P _
7 8(e)T2 ()T ()

(1) :
Q e(t)=—ih®=—#f deTr|

d
=—if (85 (e)g ()31 (e)+ 8N (e)g ()3 (e) +215R(e) "3 K (e)),

where the GF denoted with superscriptis given asgf @)
—gR+g?, etc. In the equilibrium state, the second and third 1+ (1)=2¢Re

terms of the second line, are negligibly smallAy,/Ec) and

: econd fin i ) )
the first term 15 smplfied to —2eRe f TSTr[gzr(wrlgc(swzc(s)rlgc(s)
de R K c )
QW 1 A :efﬁ|gc(8)| 35(6)3E(e) —(C—K) + 8l
0
~—~ =g, {tani ——|Re=R(A )], (D1)
© 2 AO[ y(ZT> i = ()=, (m+a81?.

(D2)

where we utilized the relationf(z)g¢(e)=ds gc(e). In

the limit of zero temperature, EqD1) leads to the log The first and second terms of E@2), which are consistent

divergencd® as ~ — agIn(Ec/|Ag))sgn(A ). with the expression for cotunneling curréfglso diverge at
The above result suggests that tbdield correction is the degeneracy point. From the above discussions, we can

responsible for the divergence. It is further confirmed bydeduce that the most simple way to regulate the divergence is

calculating the second-order contribution of the average cuto sum up thec-field corrections ¢.2..)" up to infiniten as

rent generated from thefield correctionW(?),,. Employ-  shown in Eq(25). It should be noted that the correction term

ing rules(i) and (i), we obtain 811 =efdegS(e)2S(e){aS(e)2K(e) —gX(e)2S(e)}/ (4h)
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~0O(1/n) diverges in the limit ofp— 0. This divergence dis- S, S
appears when we consider E85) as discussed in Sec. lll B J df ZJ de Tr| = D Eré (t,)gc}
and Sec. Il C. Pra bra
e [P
APPENDIX E: RULE FOR CALCULATION OF ZERO - f 7 e)78e)). (&2

FREQUENCY NOISE DIAGRAMS . .
Thus we can see that ru{#) can be applied for the calcula-

In this appendix, we demonstrate that rdig can be also tion of the zero-frequency current noise. As for the second
applied to the calculation of zero-frequency noise. We alsaerm, the derivation
demonstrate the rule to calculate the second term of the noise _
expression, Eq(29) or Eq. (30). For example, we consider St p(t)=7T8(t—t") (E3)

. 1 X
e e N ecuooud e conider (e appears instead of E¢19). Thus we can derive the rule that
Lo 9 . .  9eneraliz€dha second term is obtained from the first term by replacing
From the definition Eq(32), the noise diagrams is obtained 0 wi < ~ 54
as with 7t as[de2 Re Tf(7/2)2 () (7/2)g.(¢)]/h.>*As a
result, Eq.(E1) is expressed as

S4r.(0)
As for the charge noise, we can repeat the same discussions

The integration in terms dfin the first term is calculated as as above.

(A—0)

S =7  (ED RefdsTr[aﬁir(s)aﬂac(s)]ar,r,/(2h)—(aﬂ—>a—1).
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