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Noise of a single-electron transistor in the regime of large quantum fluctuations of island charge
out of equilibrium

Yasuhiro Utsumi,* Hiroshi Imamura, Masahiko Hayashi, and Hiromichi Ebisawa
Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

~Received 14 August 2002; published 22 January 2003!

By using the drone-fermion representation and the Schwinger-Keldysh approach, we calculate the current
noise and the charge noise for a single-electron transistor in the nonequilibrium state in the presence of large
quantum fluctuation of island charge. Our result interpolates between those of the ‘‘orthodox’’ theory and the
‘‘cotunneling theory.’’ We find the following effects which are not treated by previous theories:~i! At zero
temperatureT50 and at finite applied bias voltageueVu@TK , whereTK is the ‘‘Kondo temperature,’’ we find
that the Fano factor is suppressed more than the suppression caused by Coulomb correlation both in the
Coulomb blockade regime and in the sequential tunneling regime.~ii ! For T@ueVu/2@TK , the current noise in
the presence of large charge fluctuation is modified and deviates from the prediction of the orthodox theory.
However, the Fano factor coincides with that of the orthodox theory and is proportional to the temperature.~iii !
For eV,T&TK , the charge noise is suppressed due to the renormalization of system parameters caused by
quantum fluctuation of charge. We interpret it in terms of the modification of the ‘‘unit’’ for island charge.

DOI: 10.1103/PhysRevB.67.035317 PACS number~s!: 73.23.Hk, 72.70.1m
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I. INTRODUCTION

In a small metallic island where the charging energyEC

exceeds the temperatureT ~we use the unitkB51), the Cou-
lomb interaction affects transport properties through the
land. The resulting phenomenon is called the Coulo
blockade ~CB! and such a system is named the sing
electron transistor~SET!. The CB has attracted much atte
tion in the last decade1–3 and the nature of the transpo
properties of the SET has been clarified. The SET is inter
ing because it is regarded as one of the most simple
amples of a strongly correlated system which can be brou
into the nonequilibrium state by applied bias voltage. Ea
investigations considered the case where the tunneling
ductance is so small that the higher-order quantum fluc
tion of island charge is negligible. Recently, the quant
fluctuation in the SET has attracted much attention as on
the basic problems in this field. The quantum fluctuation
quantitatively characterized by the dimensionless para
conductance:a05RK /@(2p)2RT# where RK5h/e2 is the
quantum resistance andRT is the parallel tunneling resis
tance of the source and the drain junctions. There has b
much development in theoretical investigations in the wh
range of a0. Especially in the weak tunneling regime
(a0,1), the lifetime broadening of a charge-state level
much smaller than the typical level spacing of charge sta
and thus the effective two-state model, which is equivalen
the multichannel anisotropic Kondo model in the equilibriu
state,4 well describes the low-energy physics. With th
model, it is predicted that the quantum fluctuation of cha
causes the renormalization of the conductance and the ch
ing energy below the ‘‘Kondo temperature’’TK
5ECe21/(2a0)/(2p).4–9 The renormalization of the conduc
tance is confirmed experimentally as the 1/lnT dependence
of the conductance peak at low temperature.10 It is also pre-
dicted that in the nonequilibrium state, the dissipative cha
fluctuation causes the lifetime broadening of a charge-s
0163-1829/2003/67~3!/035317~16!/$20.00 67 0353
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level and smears the structures ofI -V characteristics.3,8,11

Though investigations have revealed much about
quantum fluctuation, most of them have been limited to
eraged quantities. In order to understand the nature of
quantum fluctuation, investigations of the higher-order c
relation function of fluctuation operators are required.
good starting point may be the investigation of the seco
moment of fluctuation operators, i.e., the noise.12 The charge
noise and the current noise in the weak tunneling regim
also important for practical applications, because it de
mines the performance of SET electrometers.13–16

The current noise is defined by the autocorrelation fu
tion of the current fluctuation operatord Î (t)5 Î (t)2^ Î (t)&
as

SII ~ t,t8!5^$d Î ~ t !,d Î ~ t8!%&, ~1!

where ^•••& means the statistical average. Until recent
investigations of the noise have been done using the fra
work of the ‘‘orthodox’’ theory,13,15,17–19which takes accoun
of the lowest-order quantum fluctuation: namely, the
quential tunneling ~ST! process. Recently, severa
authors14,20,21have discussed the higher-order quantum fl
tuation in the CB regime within the ‘‘cotunneling theory.’’22

However, there is no approximation covering both ST a
CB regimes. The aim of the present work is to construc
theoretical framework which covers both of these regim
for arbitrarya0 and clarify how the quantum fluctuation a
fects the noise.

The Keldysh formalism23–25 has been one of the mos
powerful methods to study the nonequilibrium properties
mesoscopic systems. However, to apply this method to
SET in the two-state limit, one must overcome a techni
difficulty: The spin-1/2 operator, which is introduced to r
strict charge number states by the strong Coulomb inte
tion, prevents one from utilizing Wick’s theorem. The mo
successful treatment to overcome this problem is given
Ref. 6, in which a formulation of the perturbative expansi
©2003 The American Physical Society17-1
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for the reduced density matrix in the real-time domain
developed and the inelastic resonant tunneling proces
treated. The method of Ref. 6 enables one to classify var
tunneling processes using diagrammatic techniques and
be also applied to other systems with the strong local co
lation, such as the quantum dot.26 In spite of these successe
it seems to be still difficult to apply this method for th
calculation of higher-order correlation functions, since t
method requires one to solve a special integro-differen
equation even for the calculation of the average in the p
ence of large quantum fluctuations.6

In this paper, we investigate the current noise and
charge noise in the regime of large quantum fluctuations
charge out of equilibrium. We adopt the Schwinger-Keldy
approach and the drone-fermion representation of the ef
tive spin-1/2 operator.27,28 The Schwinger-Keldysh approac
enables us to calculate any order moment systematically
the functional derivative technique29,30 satisfying the charge
conservation,29 and it helps us in manipulating many comp
cated terms. The drone-fermion representation allows u
utilize the fermionic Wick’s theorem and to take the effec
of the strong correlation into account. With the help of th
technique, we can extensively take account of the high
order processes of tunneling. We will show that our appro
mation reproduces the resonant tunneling approximat6

~RTA! as for the average current and the average charge
The outline of this paper is as follows. In Sec. II, w

briefly summarize the Keldysh formalism and introduce
approximate generating functional. We also show that
average and the noise expressions can be derived usin
functional derivation. In Sec. III, we actually calculate th
average current, the average charge, the current noise
the charge noise. In Sec. IV we show numerical results
the noise and give some discussions of the nonequilibr
fluctuation, the thermal fluctuation, and the renormalizat
effect. Section V summarizes our results.

II. KELDYSH FORMALISM AND GENERATING
FUNCTIONAL

A. Brief introduction of the Keldysh formalism

In this section, we give preliminary definitions of th
Schwinger-Keldysh approach and we summarize three us
representations: theclosed-time-path, the single-time, and
thephysicalrepresentations~Sec. 2 of Ref. 25!. For simplic-
ity, we consider the following action of a free fermion with
linear source term to explain the basic formalism:

S5E
C
dt$a~ t !* ~ i\] t2«!a~ t !1a~ t !J~ t !* 1c.c.%, ~2!

where the closed-time pathC consists of the forward branc
C1 , the backward branchC2 , and the imaginary-time path
Ct as shown in Fig. 1.31 a(t) is a Grassmann variable sati
fying the antiperiodic boundary conditiona(2`PC1)
52a(2`2 i\bPCt). The complex variableJ(t) is de-
fined only on the forward and backward branchesC1

1C2 . The generating functional for the connected clos
time-path Green function~GF! is defined as
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W52 i\ ln Z, Z5E D@a* ,a#exp~2S/ i\!.

GF in the closed-time-path representation is obtained by
second derivative of the generating functional with respec
J(t) (tPC11C2):

2G~1,2!5
d2W

dJ~1!* dJ~2!
U

J50

. ~3!

Hereafter, we use arguments 1,2 instead oft1 ,t2 for short.
Though the closed-time-path representation makes

formulation compact, in order to obtain the physical quan
ties, we sometimes need the single-time representatio
which the time onC is projected onto the real axis. In thi
representation the degrees of freedoms of fields are dou
which we denote as

JŴ~ t !5S J1~ t !

J2~ t !
D , ~4!

etc. HereJ6(t) is defined onC6 andt is the real time. In the
same way asJ, the GF is transformed into 232 matrix in
Keldysh space:

Ĝ~1,2!5S G11~1,2! G12~1,2!

G21~1,2! G22~1,2!
D . ~5!

Here, argumentst1 andt2 are the real time and each comp
nent is defined with the statistical average in the path inte
representation ^A&5*D@a* ,a#A exp(2S/i\)/ZuJ50 as
Gi j (1,2)5^ai(1)aj (2)* &uJ50 /( i\). Diagonal components
G11 and G22 are the causal and anticausal GF
respectively. Off-diagonal components are correlation fu
tions, which are written in the operator represen
tion as G21(1,2)5^â(1)â(2)†&/( i\) and G12(1,2)
52^â(2)†â(1)&/( i\).25 Here the statistical average is d
fined aŝ Â&5Tr@e2bĤ0Â#/Z0 where the Hamiltonian opera
tor Ĥ0 is «â†â and the partition functionZ0 is given as
Tr@e2bĤ0#.

It is known that four components of Eq.~5! are not inde-
pendent. This redundancy is removed by the Keldy
rotation.24,25After the rotation, we obtain the so-called phys
cal representation

JW̃5S J1

J2
D 5

1

A2
S J12J2

J11J2
D , ~6!

FIG. 1. The closed-time path going from2` to ` (C1), going
back to 2` (C2), connecting the imaginary time pathCt , and
closing att52`2 i\b.
7-2
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G̃~1,2!5S 0 GA~1,2!

GR~1,2! GK~1,2!
D . ~7!

GFs denoted by superscriptsA, R, andK are advanced, re
tarded, and Keldysh components, respectively. In the pra
cal calculations, instead ofJ1 and J2, the center-of-mass
coordinateJc and the relative coordinateJD ,

H Jc~ t !5
J1~ t !1J2~ t !

2
5J2~ t !/A2,

JD~ t !5J1~ t !2J2~ t !5J1~ t !A2, ~8!

are used in most cases.
There are the following relations between components

the GF:

G22~1,2!1G11~1,2!5G21~1,2!1G12~1,2!

5
1

i\
^$â~1!†,â~2!%&5GK~1,2!,

~9!

GR~1,2!2GA~1,2!5G21~1,2!2G12~1,2!

5
1

i\
^@ â~1!,â~2!†#&5GC~1,2!.

~10!

Here we introduce a notationGC whose physical meaning i
the spectral density in the energy space. Equation~9! is de-
rived from the normalization of the step function@see Eq.
~2.67! in Ref. 25#.

The normalization condition of the density matrix resu
in an important equationZuJ50 /Z051 ~see Sec. 2.4 of Ref
25! ~Ref. 32! which is equivalent to the following equation

dW

dJc~1!
U

JD50

5
d2W

dJc~1!dJc~2!
U

JD50

5•••50. ~11!

B. Model Hamiltonian in the drone-fermion representation
and the generating functional in the closed-time-

path–path-integral representation

In this section, we introduce our model Hamiltonian a
derive the generating functional for the SET, based on wh
we construct the perturbation theory.

FIG. 2. The equivalent circuit of a SET.
03531
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Figure 2 shows the equivalent circuit of a SET. A metal
island exchanges electrons with the left~right! lead via a
tunnel junction characterized by the tunneling matrix e
ment TL(R) . The island is coupled to leads and a gate
capacitorsCL , CR, andCG. We consider in the weak tun
neling regimea0,1 and use the two-state model. In th
paper, we limit ourselves to the symmetric case:CL5CR and
TL5TR. The total Hamiltonian consists of the unperturb
part Ĥ0 and the tunneling partĤT . Omitting a trivial con-
stant, the unperturbed part is given as

Ĥ05 (
r5L,R,I

(
k,n

« rkârkn
† ârkn1D0

ŝz11

2
, ~12!

where ârkn is the annihilation operator of an electron wi
wave vectork in the left ~right! lead @r5L (R)# or in the
island (r5I). The subscriptn numbers the transverse cha
nels including spin degree of freedom. The density of sta
is considered as constant in each region:r r(«)5(kd(«
2« r k)5r r (r5L,R,I). The second term is the charging e
ergy and the effective spin-1/2 operatorŝ acts on the lowest
two charge states. The energy difference between two ch
states is given byD05EC(122QG/e) whereQG is the gate
charge.

The tunneling Hamiltonian

ĤT~ t !5 (
r5L,R
k,k8,n

Tre
ikrw(t) âIkn

† ârk8nŝ11H. c. ~13!

describes the electron tunneling across the junctions and
multaneous change of the charge state of the island.w(t)
5eVt/\ is the phase difference between the left and rig
leads and the parameterskL52kR51/2 characterize the
voltage drop between the left~right! lead and the island. The
tunneling Hamiltonian is adiabatically turned on in the r
mote past and off in the distant future. It is the wide
adopted procedure, which ensures time translational inv
ance to describe a stationary state.

In order to utilize Wick’s theorem for fermions, we em
ploy the mapping of the effective spin-1/2 operator onto t
fermion operatorsĉ and d̂ ~Refs. 27, 28, and 33!: ŝ1

5 ĉ†f̂, ŝz52ĉ†ĉ21, wheref̂5d̂†1d̂ is a Majorana fer-
mion operator (f̂251). This representation is called th
drone-fermion representation,28 becausef̂ is a ‘‘drone’’
whose only job is to make spin-1/2 operators of differe
spins commute, rather than anticommute.33

Employing the Hamiltonian operator in the drone-fermi
representation and following the standard manner to in
duce a path integral,34 we obtain the generating functional i
the path integral representation:

Z5E D@arkn* ,arkn ,c* ,c,d* ,d#expS 2
S

i\ D , ~14!

where all field variables are Grassmann variables satisfy
the antiperiodic boundary condition. The action is given b
7-3
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S5E
C
dtH c~ t !* ~ i\] t2h~ t !!c~ t !1 i\ d~ t !* ] td~ t !

1 (
r,k,n

arkn~ t !* ~ i\] t2« rk!arkn~ t !

1 (
r5L,R
k,k8,n

Tre
iwr(t)arkn~ t !* aIk8n~ t !s1~ t !1c. c.J , ~15!

where w r(t)5k rw(t). In Eq. ~15! we introduced auxiliary
source fieldsh(t) andw(t) in order to calculate the averag
and the noise by the functional derivation. It is noticed th
the degrees of freedoms are doubled, as shown in Eq.~4!.
After the derivation, these variables are put ash6(t)5D0
and w6(t)5eVt/\ to be related with the parameters of th
actual system.

By introducing a linear source term*Cd1 J(1)f(1),
where J is a Grassmann variable, all fields can be trac
out.35 In the limit of large transverse-channel number,Z is
expressed as36

Z5expH 2(
n

~ i\!2n

n
TrF S gc

d

dJ
a

d

dJD nG J
3expS 2

1

2i\EC
d1 d2J~1!gf~1,2!J~2! D U

J50

32eTr[ln gc
21] , ~16!

where we omitted the partition function of noninteracti
electrons. The trace Tr and the products represent the
gration alongC as follows:

Tr@gcJgf#5E
C
d1 d2gc~1,2!J~2!gf~2,1!.

The particle-hole GFa5( r5L,Ra r , in the closed-time-path
form is written as

a r~1,2!52 i\NchTr
2gr~1,2!gI~2,1!ei [wr(1)2wr(2)], ~17!

whereNch is the number of transverse channels. The GF
a free electron in the lead r (5L,R) and the island r (5I),
gr(t,t8)5(kgrk(t,t8), is given as

grkn
21~ t,t8!5~ i\] t2« rk!d~ t,t8!, ~18!

which satisfies the antiperiodic boundary conditiongrkn(t,
2`PC1)52grkn(t,2 i\b2`). The c-field and d-field
GF’s, defined by

gc
21~ t,t8!5~ i\] t2h~ t !!d~ t,t8!, ~19!

gf
21~ t,t8!5 i\] td~ t,t8!/2, ~20!

also satisfy the antiperiodic boundary condition.
Using Eq. ~16!, we construct a systematic perturbatio

expansion in terms ofa. For example, we show the diagram
03531
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matic representation of the zeroth- (W(0)), first- (W(1)), and
second- (W(2)) order contribution to the generating func
tional W in Fig. 3. Here, solid lines, dotted lines, and wav
lines representc-field, d-field, and particle-hole GF’s respec
tively. Practical forms are given as follows:

W(0)52 i\ Tr@ ln gc
21#, ~21!

W(1)5 i\ Tr@gcSc#, ~22!

Wc-field
(2) 5

i\

2
Tr@~gcSc!

2#, ~23!

whereWc-field
(2) is the term corresponding to the first diagra

in Fig. 3~c!, which we call thec-field correction. The other
four diagrams can be written in the same way. Here,
self-energy of thec-field Sc(1,2)5( r5L,RS r(1,2) is defined
as

S r~1,2!52 i\a r~1,2!gf~2,1!. ~24!

In a previous paper,36 we have shown that the first-orde
contribution causes a divergence at the degeneracy p
D050 for average charge. In order to regularize the div
gence, we proposed an approximate generating functio
obtained by summing upc-field corrections (gcSc)

n to infi-
nite order:

W̄52 i\ Tr@ ln Gc
21#

52 i\S Tr@gc
21#2 (

n51

`
1

n
Tr@~gcSc!

n# D . ~25!

Figure 4~a! shows the diagrammatic representation ofW̄.
The circle represents the self-energy of thec field and the
thick line represents the fullc-field GF defined by the Dyson
equation

Gc
21~ t,t8!5gc

21~ t,t8!2Sc~ t,t8!, ~26!

FIG. 3. The diagrammatic representation of~a! W(0), ~b! W(1),
and ~c! W(2). Solid lines, dotted lines, and wavy lines represe
c-field, d-field, and particle-hole GF’s in the closed-time-path re
resentation, respectively.

FIG. 4. ~a! An approximate generating functional includin
infinite-orderc-field correction. The circle is the self-energy of thec
field. ~b! The Dyson equation for fullc-field GF in the closed-time-
path representation.
7-4
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whose diagrammatic representation is shown in Fig. 4~b!. In
Sec. III B we will show thatW̄ reproduces results of the RT
for the normal metal island. In Sec. III C, we calculate t
charge noise and the current noise based onW̄.

C. Formally exact expressions for the average and noise
and charge conservation

In this section, we summarize expressions for the aver
and the noise on the basis of functional derivative. Relati
between physical quantities in the generating functional r
resentation and those in the operator representation are
onstrated in Appendix A. We also show that the gauge
variance of generating functional leads to the cha
conservation law.

The exact average current expression is given by the fu
tional derivative of the exact generating functionalW with
respect to the phase difference:29,30

I ~ t !5
e

\

dW

dwD~ t ! Uwc(t)5eVt/\,hc(t)5D0
wD5hD50

. ~27!

The center-of-mass coordinate of the phase difference is
termined by the Josephson relation.37,38 The relative coordi-
nates are put to zero because they are fictitious variab
From now on, we suppress the equations in the subsc
after the vertical bar for short. The average charge is ca
lated by the functional derivation in terms of the scalar p
tential of thec field as

Q~ t !

e
5

1

2
2

dW

dhD~ t ! U. ~28!

The current noise and the charge noise defined in Eq~1!
are given by the second derivative with respect towD andhD

~Ref. 39!:

SII ~ t,t8!5
2e2

i\

d2W

dwD~ t !dwD~ t8!
U2

~D→c!

4
, ~29!

SQQ~ t,t8!52e2
2 i\d2W

dhD~ t !dhD~ t8!
U2

~D→c!

4
, ~30!

where (D→c) is obtained from the first term by replacin
the subscriptsD with c.

It is convenient to rewrite Eq.~27! in the form of the
linear combination of the tunneling current at the left jun
tion I L and that at the right junctionI R as I (t)
5( r5L,Rk rI r(t). In the same way, Eq.~29! is written in terms
of the correlation function ofÎ r andÎ r8 (r,r85L,R), which we
denote by SI rI r8 , as SII (t,t8)5( r,r85L,Rk rk r8SI rI r8(t,t8).
Here,I r andSI rI r8 are written as

I r~ t !5
e

\

dW

dw rD~ t ! U, ~31!

SI rI r8~ t,t8!5
2e2

i\

d2W

dw rD~ t !dw r8D~ t8!
U2

~D→c!

4
, ~32!
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by regardingwL andwR as formally independent variables
The generating functional, Eq.~14!, is invariant under the

gauge transformation, i.e., the phase transformation of thc
field and the change of thec-field scalar potential:

H w r~ t !→w r~ t !1dc~ t !,

h~ t !→h~ t !2\d„] tc~ t !…,
~33!

wheredc is defined onC11C2 . The relation between the
gauge invariance and the charge conservation in the none
librium state has been analyzed in Ref. 29. For our syst
the following expressions of the current continuity and t
charge conservation for correlation functions,

] tQ~ t !5 (
r5L,R

I r~ t !, ~34!

] t] t8SQQ~ t,t8!5 (
r,r85L,R

SI rI r8~ t,t8!, ~35!

can be proved~Appendix B!.

III. APPROXIMATE EXPRESSIONS FOR NOISE

In this section, we derive approximate current noise a
charge noise expressions, which is the main purpose of
paper. We summarize GF’s in the physical representatio
Sec. III A which are needed for practical calculations. In S
III B we calculate the average charge and the average cur
and show that our approximation completely reproduces
results of the RTA. We also give some notes on the diagra
matic rule suitable for the functional derivative technique.
Sec. III C, we calculate the current noise and the cha
noise based on the diagrammatic rule. We will check that
results satisfy the charge conservation law and
fluctuation-dissipation theorem.

A. Fourier transformation of free Green functions

We summarize the Fourier transformation of the retard
and the Keldysh component of GF’s. Hereafter in this su
section, we put the auxiliary source fields as shown in
subscript of Eq.~27!. The solutions of the differential equa
tions~19! and~20! imposing antiperiodic boundary conditio
are35

gf
R~«!52/~«1 ih!, gf

K~«!50, ~36!

H gc
R~«!51/~«1 ih2D0!,

gc
K~«!522ip tanhS «

2TD d~«2D0!,
~37!

whereh is a positive infinitesimal number and thed function
in the energy space is defined as

d~«!5h/@p~«21h2!#. ~38!

The advanced component is the complex conjugate of
retarded component:gf(c)

A («)5gf(c)
R («)* .
7-5
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The two components of the particle-hole GF are given

H a r
R~«!52 ipa r

0r~«2m r!,

a r
K~«!522ipa r

0r~«2m r!cothS «2m r

2T D ,
~39!

where m r5k reV ~Appendix. C!. a r
0 is the dimensionless

conductance for the tunnel junction r written in terms of t
tunnel resistanceRr asa r

05RK /@(2p)2Rr#5NchTr
2r Ir r . The

spectral density of the particle-hole propagator is given
r(«)5«EC

2 /(«21EC
2 ) where the Lorentzian cutoff function

is introduced.6 The Keldysh component and the compone
defined by Eq.~10! for the c-field self-energy, Eq.~24!, and
those for the particle-hole GF are related to each other:

S r
K~«!5a r

C~«!, S r
C~«!5a r

K~«!. ~40!

The retarded component of the self-energy is given as

S r
R~«!5a0

r r~«!H 2 RecS i
«2m r

2pT D2cS 11
EC

2pTD
2cS EC

2pTD J 1
a r

K~«!

2
, ~41!

where c is the digamma function. The fullc-field GF is
obtained by solving the Dyson equation in the closed-tim
path representation, Eq.~26! ~Ref. 36!:

H Gc
R~«!51/@«1 ih2D02Sc

R~«!#,

Gc
K~«!5Gc

R~«!H Sc
K~«!22i h tanhS «

2TD J Gc
A~«!,

~42!

where we used the definition of thed function, Eq. ~38!.
Here we remark the following: Equation~42! shows that in
the limit of h→0, the charge states are independent of
initial equilibrium distribution, because the Keldysh comp
nent of thec-field GF represents the distribution of char
states. This fact suggests thatW̄ describes a physically rea
sonable nonequilibrium stationary state, which should
depend on any initial state.

We transform the above expressions into a single-t
representation. Employing Eqs.~9! and ~10! we obtain

a r
67~«!522ipa0

r r~«2m r!nr
7~«!57a r

K~«! f r
7~«!,

~43!

S r
67~«!57a r

67~«!, ~44!

Gc
67~«!57uGc

R~«!u2a67~«!. ~45!

Here f r
2(«)5 f 2(«2m r) andnr

2(«)5n2(«2m r) are written
with the Fermi functionf 2(«)51/(eb«11) and the Bose
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distribution functionn2(«)51/(eb«21). The functionsf 1

and n1 are given by f 1(«)5 f 2(«)eb« and n1(«)
5n2(«)eb«, respectively.

B. Reformulation of the resonant tunneling approximation

The reason why we adopt the generating functional
proach is that once an approximate generating functiona
obtained, one can calculate any order moment systematic
by the functional derivation. In the following sections w
perform practical calculations, employingW̄ introduced in
Sec. II B. Detailed discussions of our approximation are
tained in Appendix D.

The average current is calculated by substitutingW̄ into
Eq. ~31! ~Ref. 36!:

I r~ t !5
e

\

dW̄

dw rD~ t ! U52eTrFGc

dw r

dw r D~ t !
S r2GcS r

dw r

dw rD~ t !GU.
~46!

Here, we used the fact that the self-energy, Eq.~24!, includes
the phase factor through the particle-hole GF, Eq.~17!. In the
language of Feynmann diagrams, Eq.~46! can be rewritten in
a compact form

~47!

Solid dots witht representdw r /dw r D(t). The circle with r is
the partial self-energy defined by Eq.~24!. Here we obtain a
diagrammatic rule similar to that of Refs. 40 and 41:

~i! The diagrams corresponding to the functional deriv
tive with respect tow rD(t) is obtained by a series of th
following operations: to put a solid dot onto all possib
positions of vertices in a closed diagram, to assign r o
circle connected to the solid dot, to multiplei, and to assign
a minus sign if a solid line comes into the solid dot.

Next we project the fictitious time onC to the real axis.
As the tunneling Hamiltonian is zero onCt , S r(t,t8) is zero
for tPCt or t8PCt . Hence, the diagrams in Eq.~47! are
rewritten as

TrF G̃c

dw̃ r

dw r D~ t !
S̃ rt

12G̃t1S̃ r

dw̃ r

dw r D~ t !
GU, ~48!

where we performed the Keldysh rotation.ts (s50,1,2,3) is
the Pauli matrix in Keldysh space.24 The trace is carried ou
over Keldysh space and the product represents integra
along the real time as

Tr@ g̃fw̃g̃f#5E
2`

`

d1 d2 Tr@ g̃f~1,2!w̃~2!g̃f~2,1!#.

The phase in the physical representationw̃ r is written as
w̃ r(t)5w r c(t)t11w r D(t)t0/2, which leads to a useful rela
tion for the functional derivative technique:

dw̃ r~ t8!/dw r D~ t !5t0d~ t2t8!/2. ~49!
7-6
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NOISE OF A SINGLE-ELECTRON TRANSISTOR IN . . . PHYSICAL REVIEW B67, 035317 ~2003!
By using the property of the GF in the physical represen
tion G̃(t,t8)†52t3G̃(t8,t)t3 and that of a Pauli matrix
t3t1t352t1, we can see that the second term of Eq.~48! is
minus the complex conjugate of the first term. To genera
this property, we obtain a helpful rule to reduce the num
of diagrams: A diagram which is complex conjugate of
certain diagram is obtained by changing the direction of
lines and putting a minus sign if the diagram includes o
numbers of vertices without solid dots.

By performing the Fourier transformation, we rewrite E
~47! as

~50!

5eE d«

h

S r
C~«!Gc

K~«!

2
2~C↔K !. ~51!

The second term (C↔K) is obtained from the first term by
swapping superscriptsK andC. By generalizing Eq.~50!, we
obtain the rule to calculate the diagram:

~ii ! Put 232 matrix GF’s in the physical representation
the corresponding lines and circles, and putt0/2 or t1 to a
vertex with or without a solid dot. Subsequently, carry o
the trace over Keldysh space and the integration over
frequency«/h.

Employing Eqs.~9! and~10!, Eq. ~51! is transformed into
the single-time representation: (e/h)*d«S r

12(«)Gc
21(«)

2(1↔2). By using Eqs.~43!, ~44!, and ~45! and noting
I (t)5I L(t)52I R(t), we obtain the final form of the curren
expression which has the same form as the Landauer
mula,

I ~ t !5
1

eRK
E d«TF~«!$ f L

2~«!2 f R
2~«!%, ~52!

where TF is the effective transmission probability of lea
electrons thorough the island:

TF~«!52aL
K~«!aR

K~«!uGc
R~«!u2 ~53!

52
aL

K~«!aR
K~«!

aK~«!
Gc

C~«!. ~54!

From the second form, we can see our result is equivalen
that of the RTA.6,42

In the same way as the average current, the ave
charge is evaluated by substitutingW̄ into Eq. ~28!,43

where the solid dot witht corresponds todh/dhD(t) whose
practical expression is equal to the right-hand side of
~49! in the physical representation. The diagrammatic rule
functional derivation in terms of the scalar potential is giv
as follows:
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(i8) The diagrams corresponding to the functional deriv
tive with respect toh(t) are obtained by inserting a solid do
into all possible positions of thec-field GF.

Following rule~ii !, the diagram for average charge can
also calculated:

Q~ t !

e
5

1

2
1E d«

2ip
TrF G̃c~«!

t0

2 G
5

1

2
1E d«

p

aR~«!

aK~«!
Im Gc

R~«!. ~55!

The imaginary part ofGc
R , which has a peak at«;D0,

describes the excitation property of the charge state. W
the broadening of the peak is sufficiently small and«,T,eV
!EC , Gc

R is approximately given by

Gc
R~«!;z/@«2zD01 iz Im Sc

R~zD0!#. ~56!

Herez is the renormalization factor

1/@12]«ReSc
R~«!u«5zD0

#;1/@112a0ln~EC /eC!#.

The low energy cutoffeC is max(uzD0u,2pT,ueVu/2) where
one of three parameters must be much larger than the o
two.11 The imaginary part of self-energy ImSc

R represents the
lifetime broadening effect. When the renormalization effe
is negligiblez;1, it is written as ImSc

R(z D0);g5\G/2,
whereG5( r5L,R(G I r1G r I) and

G r I5
r~D02m r!

e2Rr

n2~D02m r!, G I r5G r Ie
2b (D02mr).

~57!

G r I (G I r) is equal to the tunneling rate into~out of! the
island through the junction r estimated by Fermi’s gold
rule. It is noticed that the conditionza0!1 is enough to
neglect the broadening of the peak. By using the approxim
tion Eq. ~56!, Eq. ~55! for equilibrium state reproduces th
result of the RTA,6 Q/e;$12z tanh@zD0 /(2T)#%/2.

According to Ref. 6, Eq.~52! is consistent with the co-
tunneling theory and orthodox theory for two-state limit.3 We
can also confirm that Eq.~55! is consistent with the orthodox
theory in the following way: In the limit ofa0→0 with
keepingeV or T finite, the renormalization factor approach
unity and the imaginary part of Eq.~56! reduces to thed
function (21/p)d(«2D0). Thus, Eq.~55! reproduces the
result of the orthodox theory

lim
a0→0

Q~ t !/e5G1 /G, ~58!

whereG1/25( r5L,RG r I / I r .
7-7
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C. The current noise and the charge noise based
on the reformulated resonant tunneling approximation

Here, we calculate the current noise and the charge n
based on the reformulated RTA. In the following discussio
we limit ourselves to the zero-frequency component

SI r I r8~0!5E dtSI r I r8~ t,t8!, ~59!
03531
se
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where we used the fact that at a stationary state, the t
translational invariance is satisfied and the correlation fu
tion depends only on the difference oft and t8. From the
definition Eq.~29!, one obtain the current noise by applyin
rule ~i! twice. Reducing the number of diagrams and us
rule ~ii !, which can be also applied to the calculation of t
zero-frequency noise diagram~Appendix E!, we obtain
where we used the fact that the second term of Eq.~29! is obtained from the first term by changingt0 to t1 in the physical
representation~Appendix E!. After some straightforward calculations, we obtain the following expression:

SII ~0!5SI r I r̄~0!52SI r I r~0!

5
2

RK
E d«F2

aL
K~«!aR

K~«!

aK~«!
Gc

C~«!$ f L
2~«! f R

1~«!1 f L
1~«! f R

2~«!%2H aL
K~«!aR

K~«!

aK~«!
Gc

C~«!J 2

$ f L
2~«!2 f R

2~«!%2G
~60!

5
2

RK
E d«@TF~«!$ f L

2~«! f R
1~«!1 f L

1~«! f R
2~«!%2TF~«!2$ f L

2~«!2 f R
2~«!%2#, ~61!

where r̄ is the other side of r~for example, when the index r is L the index of the other side r¯is R). The charge noise is
evaluated by adopting the definition Eq.~30! and by applying rules (i8) and ~ii !:

~62!

where we used Eqs.~43! and ~45!.
7-8
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NOISE OF A SINGLE-ELECTRON TRANSISTOR IN . . . PHYSICAL REVIEW B67, 035317 ~2003!
Equation~61! has the same form as the current noise
pression of a point contact without Coulomb interaction44

This result is anticipated, because the tunneling curren
expressed in the same form as the Landauer formula. H
ever, there is an important difference as mentioned in R
11: The effective transmission probability includes the Co
lomb correlation and the inelastic relaxation effect.

Here we note the following points. First, our approxim
tion satisfies the charge conservation law: As the appr
mate generating functionalW̄ is invariant under the gaug
transformation, Eq.~33!, we can show the conservation law
Eqs. ~34! and ~35!, for the approximate expressions. Esp
cially for the zero-frequency component, they reduce
equations for the current conservation law,( r5L,RI r50 and
( r,r85L,RSI r I r8(0)50. It is worth noticing that the gauge in
variance is automatically satisfied whenW̄ consists of closed
diagrams. Second, we can show that our result satisfies
fluctuation-dissipation theorem: AtV50, the current noise
expression is reduced to the Johnson-Nyquist form
SII (0)54TḠ, whereḠ is the conductance expressed asḠ
5 limV→0]I /]V5RK

21*d«TF(«)/$4T cosh@«/(2T)#2%.
We discuss the current noise expression in the reg

whereza0!1 and the renormalization effect is negligibl
z;1. Using Eqs.~53! and ~56!, the first term of Eq.~60! is
approximately given by

2e@g r
1~g!1g r

2~g!#, ~63!

where

g r
1~g!5

RK

4p2eRLRR
E d«

r~«2m r!nr
2~«!r~«2m r̄!n r̄

1
~«!

u«1 ig2D0u2
,

g r
2~g!5g r

1~g!e2beV. ~64!

For g50, g r
1/2(0) is the cotunneling current from lead r/¯

to lead r̄/r, and Eq. ~63! reproduces the cotunnelin
theory14,20,21in the two-state limit. Equation~63!, which we
call the cotunneling theory with lifetime broadening, is
equivalent to the previously proposed equation in Ref. 13
the limit of T→0. The validity of this approximation is dis
cussed in the next section from the point of view of t
numerical results.

By taking the limit a0→0, with paying attention to the
relation limg→0(2pg)$Im@1/(«2D01 ig)#%25d(«2D0),
we obtain the result of the orthodox theory in the two-st
limit:

lim
a0→0

@a0
21SII ~0!#5a0

212eS I 12
2I 2

2

eG D , ~65!

where I 65e(GL IG I R6G I LGR I)/G. I 2 is the average
current of the orthodox theory. The second term is relate
the part of Eq.~60! proportional to (TF)2, which represents
the Coulomb correlation and reduces the current noise f
the Poissonian value. It is noticed that even at small tun
ing conductance, the second term is important in the
regime.
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In the same way as the above discussions, forza0!1 and
z;1, we obtain the cotunneling theory14 with lifetime
broadening from Eq.~62!:

SQQ~0!; (
r,r85L,R

e4RK

2p2 E d«
a r

K~«!a r8
K
~«! f r

1~«! f r8
2

~«!

$~«2D0!21g2%2
.

~66!

In the limit of a0→0, we can confirm that our result repro
duces the orthodox theory:45

lim
a0→0

@a0SQQ~0!#5a04e2G1G2 /G3. ~67!

IV. RESULTS AND DISCUSSIONS

In this section we present results obtained by the num
cal calculation of Eqs.~60! and ~62!,46 based on which we
discuss the nonequilibrium fluctuation in Sec. IV A and th
of thermal fluctuation in Sec. IV B. We also discuss the
fect of renormalization on the noise at low temperatu
caused by quantum fluctuation in Sec. IV C.

A. Noise in the nonequilibrium state

In order to clarify the nature of nonequilibrium curre
fluctuations, we consider the case of zero temperature, w
there is no thermal fluctuation. Furthermore, we limit ou
selves to the condition of high bias voltage,EC@ueVu
@TK , where the renormalization effect is negligible. Figu
5 shows the current noise~the top panel! and the charge
noise~the bottom panel! as a function of the excitation en
ergyD0 for smalla0 @~a-1! and~b-1!# and those for largea0
@~a-2! and ~b-2!#. The plots are normalized by values of th
orthodox theory atD050. Solid lines, dashed lines, and do
ted lines show the results of our approximation@Eqs. ~60!
and ~62!#, the orthodox theory@Eqs.~65! and ~67!#, and the
cotunneling theory@Eqs. ~63! and ~66! with g50], respec-
tively.

Whena0 is small, our results well reproduce the orthod
theory@~a-1! and~b-1!#. For largea0 @~a-2! and~b-2!# and in
the CB regime@ uD0 /(eV)u@0.5#, they agree well with the
cotunneling theory. Figure 6 shows the average current~a!
and the average charge~b! estimated by our approximatio
~solid lines! and the orthodox theory~dashed lines!. In the
CB regime, we can see both the average value and the n
are enhanced by the quantum fluctuation. AroundD050, the
average current and the current noise are strongly suppre
due to the lifetime broadening effect.6

Next, we discuss the validity of the cotunneling theo
with lifetime broadening@see Eqs.~63! and~66!, dot-dashed
lines in Fig. 5#. As for the charge noise in the limit ofa0
→0, it reproduces the result of the orthodox theory as w
as our approximation@Fig. 5~b-1!: the solid line and the dot-
dashed line almost overlap each other#. In the ST regime it
overestimates the current noise@Fig. 5~a-1!#, because it does
not take the Coulomb correlation effect into account as m
tioned before. We want to stress again that our result rep
7-9
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UTSUMI et al. PHYSICAL REVIEW B 67, 035317 ~2003!
duces the orthodox theory in the limit ofa0→0, which can-
not be achieved by the cotunneling theory with lifetim
broadening.

The physical picture of the nonequilibrium current flu
tuation is understood more clearly with the help of the Fa
factor defined bySII /(2eI). The Fano factor is unity when
the tunneling event of electrons is a Poissonian process

FIG. 5. The excitation energy dependence of the current n
~the top panel! and the charge noise~the bottom panel! for a0

51024 @~a-1! and ~b-1!# and 0.1 @~a-2! and ~b-2!# at 0 K and
eV/EC50.4. Plots are normalized by the value predicted by
orthodox theory atD050: eI2max5eG0V/2 for the current noise
ande3/(4I 2max) for the charge noise, whereG051/(RL1RR) is the
series junction conductance. The solid, dashed, dotted, and
dashed lines show the results evaluated by our approximation
thodox theory, cotunneling theory, and cotunneling theory with li
time broadening, respectively. In panel~b-1!, the solid line and
dot-dashed lines almost overlap each other. The parameters s
eV@TK : for example,TK /EC;1023 for a050.1.
03531
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is suppressed when tunneling events are correlated. The
thodox theory predicts sub-Poissonian behavior in the
regime because of the Coulomb correlation: Suppose
electron tunnels into the island through one junction; the n
tunneling event must be the outgoing process of ano
electron through the other junction. In the CB regime, t
cotunneling theory predictsSII /(2eI)51. It means that co-
tunneling events, viz., the simultaneous tunneling events
two electrons through the two junctions, occur randomly.

Figure 7 shows the excitation energy dependence of
Fano factor obtained by our approximation. In the small-a0
limit, our approximation reproduces the orthodox theory

e

e

ot-
r-

-

isfy

FIG. 6. The excitation energy dependence of the normali
average current~a! and the average charge~b! for a050.1 at 0 K
and eV/EC50.4. The solid and dashed lines show the results
ours and those of orthodox theory, respectively.

FIG. 7. The excitation energy dependence of the Fano facto
eV/EC50.4 for a051025 ~dotted line!, 0.05~dashed line!, and 0.1
~solid line!.
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NOISE OF A SINGLE-ELECTRON TRANSISTOR IN . . . PHYSICAL REVIEW B67, 035317 ~2003!
the ST regime and the cotunneling theory in the CB regi
and smoothly interpolates the two theories~the dotted line
actually almost coincides with the result of the orthod
theory in the ST regime!. For largera0 the Fano factor is
further suppressed~the dashed and solid lines!. Especially,
our result predicts a value smaller than 1/2 at the degene
point. It is a distinctive result because the orthodox the
predicts the inequalitySII /(2eI)>1/2 ~p. 137 in Ref. 12!.

Next we consider the physical meaning of our result.
the CB regime and near the threshold voltage, the origin
the suppression of the Fano factor is considered to be
enhancement of the effective transmission probabilityTF,
because the increase in the current noise is much larger
that in the charge noise@see Figs. 5~a-2! and 5~b-2!#. As the
Fano factor of the shot noise is approximately given by
2TF,12 the enhancement of the transmission probability
sults in the suppression of the Fano factor.

Around the degeneracy point, the origin of the suppr
sion of Fano factor is different, because the normalized c
rent and the current noise are suppressed as shown in
6~a! and Fig. 5~a-2!. We consider that the Fano factor
suppressed because of the dissipation, i.e., the lifet
broadening effect: the RTA takes account of the dissipa
process which is the leak of an electron from the island wh
another electron tunnels into the island and relaxes to
local equilibrium state of the island. The suppression of
Fano factor by the dissipation was previously predicted
the one-dimensional~1D! electron channel coupled with
boson bath.47,48

B. Effect of thermal fluctuation

Next we discuss the effect of the thermal fluctuation. F
ure 8 shows the temperature dependence of the current n
~a!, the average current~b!, and the Fano factor~c! at a
threshold for variousa0. They are normalized by the valu
of the orthodox theory atT5D050.

As the temperature increases, the average current an
current noise increase because of the thermal fluctuation
sufficiently high temperatureEC@T@ueVu/2, orthodox
theory predicts that the average current saturates atI 2max and
the thermal fluctuation dominates the current noise, i.e.,SII
;4(G0/2)T, which is a similar form as the Johnson-Nyqu
noise for the Ohmic resistance37 ~the plot for a051025 al-
most coincides with the orthodox theory!. Our result further
shows that the average current and the current noise are
pressed asa0 increases@panels~a! and~b!#. It is considered
to be attributed to the higher-order tunneling effect: The li
time broadening caused by the thermal fluctuation is
hanced for the large tunnel conductance. Panel~c! is the
Fano factor versus temperature plot. The Fano factor is in
pendent ofa0, which means that the correlation betwe
tunneling events does not depend ona0.

C. Renormalization effect

Next we consider the renormalization effect at low b
voltage and temperature:eV,T&TK . Figures 9~a! and 9~b!
show the charge noise normalized bye4RT /EC at D050 as a
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function of the temperature and the bias voltage, resp
tively. The charge noise is suppressed for largea0, which is
attributed to the renormalization of the system parameters
the regimeeV,T!TK , where the lifetime broadening effec
is negligible (za0!1), we can approximate Eq.~62! as

4~ze!2G̃1G̃2 /G̃3, ~68!

instead of Eq.~67!. Here G̃ and G̃6 are the tunneling rate,
Eq. ~57!, written by using renormalized parameters such

G̃ r I5zr(zD02m r)n
2(zD02m r)/(e

2Rr) where the renor-
malization factorz is 1/@112a0ln(EC /eC)#. The lower cutoff
energyeC is 2pT for panel~a! andueVu/2 for panel~b!. It is
natural to interpret Eq.~68! such that the charge of a carrie
is modified aszeby the renormalization effect. The interpre

FIG. 8. The temperature dependence of the normalized cur
noise ~a! and the normalized average current~b! at a threshold
eV/25D050.2EC for a051025 ~dotted line!, 0.05 ~dashed line!,
and 0.1~solid line!. ~c! The temperature dependence of the Fa
factor for variousa0 at the threshold.
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UTSUMI et al. PHYSICAL REVIEW B 67, 035317 ~2003!
tation is similar to that of the doubling of shot noise at t
normal-metal~N!–superconductor~S! interface. Since at the
NS interface the carrier is a 2e-charged particle, viz., a Coo
per pair, the shot noise is twice as large as that at the
interface.49

Though the normalized charge noise is suppressed w
increasinga0, one sees that the charge noise always diver
at D05T5eV50 for arbitrary a0 in the weak tunneling
regime. Since the charge noise is related to the ‘‘charge
ceptibility’’ for excitation energyD0, the divergence mean
that the number of charge changes by ‘‘1’’ at the degener
point when we sweep the excitation energy. It is confirm
by the fact that the slope of the excitation energy depende
of the average charge@inset of Fig. 9~b!# diverges at the
degeneracy point.

Next we discuss the renormalization effect on the Fa
factor. Figure 10 shows the excitation energy dependenc
the Fano factor for various bias voltages. We can see tha
small bias voltage where the charging energy renormal
tion is pronouncedueVu&TK;1023, the valley structures of
the curves are widened. The same behavior can be see
the differential conductance shown in Refs. 3, 8, and 11.
also see that the Fano factor is suppressed with increa
bias voltage atD050. This suppression is also attributed

FIG. 9. ~a! The normalized charge noise as a function of te
perature atD05eV50 for a050.1 ~solid line!, 0.05~dashed line!,
and 1024 ~dotted line!. ~b! The normalized charge noise as a fun
tion of bias voltage atD05T50. Inset: the average charge as
function of D0 at T5eV50.
03531
N

th
es

s-

y
d
ce

o
of
at

a-

in
e
ng

the dissipation as discussed in Sec. IV A: As the bias volt
increases, the dissipative charge fluctuation is enhanced
thus the Fano factor is suppressed.

V. SUMMARY

By using the drone-fermion representation and
Schwinger-Keldysh approach, we have calculated the cur
noise and the charge noise in the regime of large quan
fluctuations of charge out of equilibrium. We have reform
lated and extended the RTA in a charge conserving way.
approximation interpolates previous theories, the orthod
theory and the cotunneling theory: Our result coincides w
the orthodox theory in the limit ofa0→0 and is consisten
with the cotunneling theory in the CB regime. The appro
mation is verified from the fact that the result satisfies
fluctuation-dissipation theorem. In previous papers, we a
checked numerically that the energy sensitivity does not
ceed the quantum limit.50,51

We showed that at zero temperature andEC@ueVu@TK ,
the lifetime broadening caused by nonequilibrium dissipat
charge fluctuation suppresses the current noise in the ST
gime. It also suppresses the Fano factor more than the C
lomb correlation does. Especially the Fano factor is s
pressed below the minimum value predicted by the ortho
theory, 1/2, aroundD050. The origin of the suppression i
attributed to the charge fluctuation which appears as the
hancement of the transmission probability in the CB regi
and dissipation in the ST regime.

At EC@T@ueVu/2@TK , we showed that the average cu
rent and the current noise deviate from the predictions of
orthodox theory with increasinga0. However, the Fano fac
tor is independent ofa0 and is proportional to the tempera
ture. It means that the current noise is dominated by
thermal fluctuation and the correlation between the tunne
events does not depends ona0.

At small bias voltage and temperatureeV,T&TK , the
charge noise is suppressed as compared with the predi
of the orthodox theory. We showed that it can be interpre
as the renormalization for the unit of island charge. Althou
the charge is renormalized, the charge noise diverges aD0

-

FIG. 10. The excitation energy dependence of the Fano fa
for a050.1 ateV/EC51024 ~solid line!, 1023 ~dashed line!, 1022

~dot-dashed line!, and 0.4~dotted line!.
7-12
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NOISE OF A SINGLE-ELECTRON TRANSISTOR IN . . . PHYSICAL REVIEW B67, 035317 ~2003!
5T5eV50 for arbitrarya0 in the weak tunneling regime. I
means that the quantum fluctuation does not wash out
charge quantization.

In this paper, we have limited ourselves to discussions
the second moment and the zero-frequency component
cause we think them primitive. The investigation of the fr
quency dependence of noise will be important to estimate
performance of the high-speed SET electrome
completely.15 The investigation of the higher-order mome
and the full counting statistics52,53 will help us to understand
carriers of strongly correlated systems out of equilibrium
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APPENDIX A: RELATION BETWEEN THE GENERATING
FUNCTIONAL REPRESENTATION AND OPERATOR

REPRESENTATION

In this appendix, we show the relation between expr
sions for the average and noise in the operator represent
and those in the generating functional representation.
variation of the exact action, Eq.~15!, accompanied by the
infinitesimal variation ofh is given as the ‘‘twisted’’ combi-
nation ~Sec. 9.3.2 in Ref. 25! of Q andh,

dS52E dt
Qc~ t !

e
dhD~ t !1~c↔D!, ~A1!

where the center-of-mass coordinate of the charge isQc(t)
5e@c1(t)* c1(t)1c2(t)* c2(t)#/2. Employing this source
term, we can show that Eq.~28! is equivalent to^Q̂(t)&
whereQ̂5e(ŝz11)/25eĉ†ĉ:

2e
dW

dhD~ t !
u5^Qc~ t !&u5^Q̂~ t !&2

e

2
,

where we used Eq.~9! to obtain the final form.
The second derivative2 i\e2d2W/dhD(t)dhD(t8)u is cal-

culated as

$^Qc~ t !Qc~ t8!&2^Qc~ t !&^Qc~ t8!&%u. ~A2!

Here the first term includes the correlation function of fo
field variables on the same branc
^c6* (t)c6(t)c6* (t8)c6(t8)&, which is not well defined att
5t8. Usually, an additional operation to determine the or
of the field variables is required to remove the uncertain
Alternatively, we subtract a term

1

4

2 i\e2d2W

dhc~ t !dhc~ t8!
U5^QD~ t !QD~ t8!&

4 U ~A3!
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from Eq. ~A2! as shown in our definition Eq.~30!. Here we
used the normalization, Eq.~11!, ^QD(t)&u50. As a result,
the first term in Eq.~A2! is replaced by@^Q1(t)Q2(t8)
1Q2(t)Q1(t8)&#/2, which does not include the uncertaint
Using Eq. ~9!, we show that our definition is equal to th
standard charge noise expression

2 i\e2d2W

dhD~ t !dhD~ t8!
U2

~D→c!

4
5^$dQ̂~ t !,dQ̂~ t8!%&.

We should stress that our definition does not change the
result because Eq.~A3! is 0 from the normalization.

The exact current expression is obtained in the same w
The source term corresponding to Eq.~A1! is given bydS
5(\/e)*dt( r5L,RI r c(t)dw r D(t)1(c↔D), which leads to
the relations

I r~ t !5^ Î r~ t !&, SI r I r8~ t,t8!5^$d Î r~ t !,d Î r8~ t8!%&,

where the current operator at junction r is defined asÎ r(t)
5( ie/\)(knTre

iwr(t)âIkn
† ârknŝ11H. c.

APPENDIX B: CHARGE CONSERVATION

In this appendix, we demonstrate the charge conserva
law. AsW is invariant under the transformation, Eq.~33!, we
obtain an identity

2e] tdW/dhD~ t !5~e/\! (
r5L,R

dW/dw rD~ t !. ~B1!

We can derive the other equation, which is obtained fr
above equation by replacingD with c. However, the latter
equation is not important in the following discussions. B
putting the auxiliary source fields as the values given in
subscripts of Eq.~27!, and employing Eqs.~27! and~28!, we
obtain the current continuity equation~34!.

Next we demonstrate the charge conservation law for c
relation functions. By using the operatorie\ ] t8d/dhD(t8) or
2 ie( r85L,Rd/dw rD(t8) on Eq.~B1!, we obtain the following
two equations:

2] t8] t

i\e2d2W

dhD~ t8!dhD~ t !
5] t8 (

r5L,R

ie2d2W

dhD~ t8!dw rD~ t !
,

] t (
r85L,R

ie2d2W

dw r8D~ t8!dhD~ t !
5 (

r,r85L,R

e2

i\

d2W

dw r8D~ t8!dw rD~ t !
.

By comparing the left-hand side of the former equation a
the right-hand side of the latter equation, by setting the a
iliary source fields as the values given in the subscripts
Eq. ~27!, and by using Eqs.~29! and ~30!, we obtain the
charge conservation law for correlation functions, Eq.~35!.

APPENDIX C: LOOP DIAGRAMS: PARTICLE-HOLE
GREEN FUNCTION AND SELF-ENERGY

In this appendix, we calculate the particle-hole GF. W
begin with the tunneling action for the large transverse ch
7-13
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nel obtained from Eq.~15! by tracing out the electron de
grees of freedom:36 ST5*Cd1 d2s1(1)a(1,2)s2(2).
In the physical representation, it is rewritten

*d1 d2sW̃ 1(1)†t1ã r(1,2)t1sW̃ 2(2), where the vector fieldsW̃ 6

is defined in the same way as Eq.~6!. Each component ofã r
can be calculated by utilizing the functional derivation. F
example, the~1,2! component is

„t1ã r~1,2!t1
…1,25

d2ST

ds11~1!* ds22~2!

52 i\Nch

3Tr
2TrF ds1*

ds11~1!*
eiwrgr

ds2

ds22~2!
eiwrgIG .

~C1!

As the functional derivative is ds̃6(t8)/ds61(2)(t)
5t0(1)d(t2t8)/A2 in the physical representation, the tra
yields eikreV(t22t1)/\Tr@t0g̃r(1,2)t1g̃I(2,1)#/2. Here we put
wD50 andwc(t)5eVt/\. The other components are eval
ated in the same way. Then the four components are give

S 0 gr
AgI

K1gr
KgI

R

gr
RgI

K1gr
KgI

A gr
KgI

K2gr
CgI

CD , ~C2!
ird

b
cu

03531
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where we omitted the arguments and coefficients. To ob
this form, we used the normalization, Eq.~11!, or the relation
u(t)u(2t)50 @see Eqs.~2.64! and ~2.65! in Ref. 25#. The
following calculations are same as those in Ref. 36. Empl
ing the Fourier transforms of the GF defined in Eq.~18!,
gr

R(«)52 ipr r(«) andgr
K(«)522ipr r(«)tanh@«/(2T)#, we

obtain Eq.~39!.
Another loop diagram, the self-energy, Eq.~24!, can be

calculated in the same way. Four components are give
the same form as those of Eq.~C2!. By using Eqs.~36! and
~39!, we obtain

S r
R~«!5E d«8

2p

ia r
K~«8!

«1 ih2«8
, S r

K~«!5a r
C~«!.

From these equations, Eqs.~40! and ~41! can be derived.

APPENDIX D: PERTURBATION THEORY

In this appendix, we describe some results of finite-or
perturbation theory and explain why we introduced Eq.~25!
which takes account of all orders forc-field corrections.
First, we calculate the first order contribution of the avera
charge by employingW(1), Eq. ~28! and rules (i8) and ~ii !:
t

can
e is

m

where the GF denoted with superscriptP is given asgc
P

5gc
R1gc

A , etc. In the equilibrium state, the second and th
terms of the second line, are negligibly smallO(D0 /EC) and
the first term is simplified to

Q(1)

e
;

1

2
]D0H tanhS D0

2TDReSc
R~D0!J , ~D1!

where we utilized the relationgc
K(«)gc

P(«)5]D0
gc

K(«). In
the limit of zero temperature, Eq.~D1! leads to the log
divergence3,4 as;2a0ln(EC /uD0u)sgn(D0).

The above result suggests that thec-field correction is
responsible for the divergence. It is further confirmed
calculating the second-order contribution of the average
rent generated from thec-field correctionWc-field

(2) . Employ-
ing rules~i! and ~ii !, we obtain
y
r-

~D2!

The first and second terms of Eq.~D2!, which are consisten
with the expression for cotunneling current,22 also diverge at
the degeneracy point. From the above discussions, we
deduce that the most simple way to regulate the divergenc
to sum up thec-field corrections (gcSc)

n up to infiniten as
shown in Eq.~25!. It should be noted that the correction ter
dI r

(2)5 e*d«gc
C(«)S r

C(«)$gc
C(«)S r

K(«) 2gc
K(«)Sc

C(«)%/~4h!
7-14
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;O~1/h! diverges in the limit ofh→0. This divergence dis-
appears when we consider Eq.~25! as discussed in Sec. III B
and Sec. III C.

APPENDIX E: RULE FOR CALCULATION OF ZERO
FREQUENCY NOISE DIAGRAMS

In this appendix, we demonstrate that rule~ii ! can be also
applied to the calculation of zero-frequency noise. We a
demonstrate the rule to calculate the second term of the n
expression, Eq.~29! or Eq. ~30!. For example, we conside
the current noise related toW(1). Though we consider the
simple case, the following discussions can be generali
From the definition Eq.~32!, the noise diagrams is obtaine
as

~E1!

The integration in terms oft in the first term is calculated a

*Present address: Max-Planck-Institut fu¨r Mikrostrukturphysik
Weinberg 2, D-06120 Halle, Germany.
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