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We present a theoretical formulation of the coherent ultrafast nonlinear optical response of a strongly
correlated system and discuss an example where the Coulomb correlations dominate. We separate out the
correlated contributions to the third-order nonlinear polarization, and identify non-Markovian dephasing effects
coming from the noninstantaneous interactions and propagation in time of the collective excitations of the
many-body system. We discuss the signatures, in the time and frequency dependence of the four-wave-mixing
(FWM) spectrum, of the inter-Landau level magnetoplasmon excitations of the two-dimensional electron gas in
a perpendicular magnetic field. We predict a resonant enhancement of the lowest LanddlEewivm
signal, a strong non-Markovian dephasing of the next LL magnetoexcKpng symmetric FWM temporal
profile, and strong oscillations as a function of time delay, of quantum kinetic origin. We show that the
correlation effects can be controlled experimentally by tuning the central frequency of the optical excitation
between the two lowest LL's.
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[. INTRODUCTION the interactions, of the one-particle density matrix that de-
scribes the optical polarization measured in the experiment
The properties of systems far from equilibrium and, into many-particle correlation functiorie.g. the higher density
particular, the role of many-body and collective effects onmatrice$.>*® The latter are factorized within the time-
the femtosecond and the nanometer scale present relativetiependent HF approximationThe correlation-induced fluc-
unexplored frontiers of condensed-matter physiésSuch tuations, described by the deviations from the factorized
problems are particularly challenging in semiconductorsform, generate a new FWM signal, which can display a dis-
where the time intervals of interest are often shorter than théinct time and frequency dependence as compared to the
interaction times and oscillation periods of the elementarynean-field signal. Such correlation effects are most pro-
excitations-?%’ Examples of well-established pictures for nounced during time scales shorter than the characteristic
the interaction processes that need to be revised in this réimes associated with the interaction procegses.
gime include the semiclassical Boltzmann picture of point- To describe the above nonequilibrium many-body effects,
like particles experiencing instantaneous collisions and thene must use a controlled truncation of the infinite hierarchy
thermal bath pictures of relaxation and dephagifigEven  of coupled density matrix or Green’s function equations. In
the notion of weakly interacting “quasiparticles,” a corner- undoped semiconductors, this hierarchy truncates if one
stone of condensed-matter physics, must be revisited wheadopts an expansion in terms of the optical fiélfis™* This
describing the ultrafast nonlinear optical respohse. is the case sincé) in the ground state, the conduction band
Wave-mixing experiments are ideally suited for exploringis empty and the valence band is full, afiml the Coulomb-
guantum coherence and collective and correlation effects imduced coupling of the conduction and valence bands via,
semiconductor nanostructurks. Time-dependent interac- e.g., Auger-like processes is negligible: in the absence of
tions and correlations dominate the four-wave-mixingoptical fields, the numbers of conduction-band electrons and
(FWM) signal during negative time delays, where the Paulivalence-band holes are independently conserved. In undoped
blocking effects vanish? The treatment of such interactions semiconductors, the lowest electronic excitations of the
within ~ the  time-dependent  Hartree-Fock (HF)  ground-state electrons are the high-energy interbesd
approximation predicts anasymmetrictemporal profile of pairs, which can adjust almost instantaneously to the dynam-
the FWM signal:~3 The negative time delay signal generatedics of the photoexcited carrietdThe photoexcite@-h pairs
by mean-field exciton-exciton interactions decays twice ashen behave as quasiparticles with mutual interactions, while
fast as the positive time delay signal. The observation ofhe ground state can be considered as rigid. In this case, the
strong deviations from this asymmetric HF temporal profilemany-body nature of the system only affects the different
in undoped semiconductors was attributed to exciton-excitoparameters associated with the band structure and the dielec-
correlations:? tric screening* and the only Coulomb correlations that re-
The importance of many-body effects in determining thequire consideration are dynamically generated by the optical
time and frequency profile of the ultrafast nonlinear opticalexcitation® The almost unexplored dynamics of strongly cor-
spectra may be traced microscopically to the coupling, viaelated systems, whose ground-state electrons interact un-
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adiabatically with the photoexcited-h pairs, raises very in the ultrafast nonlinear optical dynamics were
fundamental questions. reported?®>1The presence of low-energy excitations and the
A widely used theoretical approach for treating the abovestrongly correlated ground state raise formidable theoretical
many-body effects in undoped semiconductors is thelifficulties for describing the dephasing dynamics of the
“dynamics-controlled truncation scheme/DCTS).81%1115  2DEG.
In this theory, the response of the semiconductor is expanded We are interested in developing a theoretical framework
in terms of the number of createdh pairs. Importantly, the for describing the ultrafast dephasing and the nonlinear op-
Coulomb interactions that contribute to a specified order irtical response of strongly correlated systems. Examples of
the applied field only occur between sueth pairs. This is  systems of interest include modulation-doped semiconductor
the case since there is the correspondence between the nu@wW's, where different strongly correlated ground-states are
ber of e-h pairs and the sequence of photon absorption andealized in the QHE regime, and the ferromagnetic semicon-
emission, and there are no carriers in the ground state tductors doped with magnetic impurities. In the first part of
interact with the photoexcited carriers. The latter condition isthe paperSecs. [I-\j we describe the third-order nonlinear
not met, however, in doped quantum wells, where a correeptical response of a many-electron two-band system with-
lated two-dimensional electron gé8DEG) is present in the out assuming a HF or other specific ground state. In the
ground state, and the DCTS fails thété new method that second partSecs. VI and V1) we study the role of the inter—
extends the DCTS principles to systems with a strongly cortandau-Level(inter-LL) magnetoplasmor{MP) collective
related ground state is required. In a series of works wexcitations in the transient FWM spectrum of the cold
applied a theory based on a canonical transformation andDEG. Here we concentrate on filling factors closeito
time-dependent coherent states to study the case where thel, where the spirj- ground-state electrons lead to ferro-
interactions between the photoexciedh pairs and the elec- magnetic propertie$QHE ferromagnet and the excitation
tron Fermi segFS) excitations dominate the coherent non- spectrum is governed by strong Coulomb correlatitsng*
linear optical response®*’ We consider photoexcitation witkr, circularly polarized
In FS systems, the direct exciton-exciton interactionslight, in which case only spin-electrons are excited and the
which dominate the nonlinear response in undoped semicomMP collective excitations play the most important réfl@©ur
ductors, are screened, and the nonlinear response is detegsults explain the most salient qualitative features of the
mined by the FS excitations. For resonant photoexcitationtransient FWM spectrum observed in recent experiménts.
the optical dynamics is dominated by inelastic electron- Our theory applies to a two-band system described by a
electron e-€) scattering processé$1°At low temperatures, Hamiltonian that independently conserves the number of
the dephasing times close to the Fermi edge increase bya@nduction-band electrons and valence-band holes, e.g., the
few picoseconds, in agreement with Fermi liquid the§ry. GaAs/AIGaAs QW’s> We describe the coupling to the opti-
For below-resonanceexcitation, however, the dissipation cal field within the dipole approximation, and neglect any
processes are suppressed and coherent effects dominatesthnulated emission. We consider zero temperature, which is
novel dynamics of the Fermi edge singularity is thenadequate for describing correlations that require thermal en-
observed®?° due to many-body correlations of the photoex- ergies smaller than the excitation and interaction energies of
cited holes with the FS excitatiofs/%° the system in order to be observed. The third-order polariza-
In the absence of long-lived excitations, a many-particletion calculated here is expected to describe the nonlinear
system, such as a FS, interacts with the photoexaitéd optical signal when the photoexcited carrier density is
pairs almost instantaneously, i.e., during time scales shorteamaller than the density of the ground-state electrons, in
than the pulse duration. The system then behaves to firsthich case the cold 2DEG correlations prevail.
approximation as a thermal bath, and its interactions with the The outline of the paper is as follows. In Sec. Il we set up
photoexcited carriers can be treated within the dephasing artie general problem and discuss the nature of the states that
relaxation time approximations. This is not the case, how<ontribute to the optical spectra. In Sec. lll we study the time
ever, if the duration of the interactions is comparable to orevolution of the system, and introduce a decomposition of
longer than the measurement tintédn the latter case, the the photoexcited many-body states, which allows us to clas-
semiclassical instantaneous collision picture breaks dowrsify the different interaction contributions. In Sec. IV we use
and quantum-mechanical interference effects lead to nonexhe above decomposition to derive the equation of motion for
ponential decay and non-Markovian memory effé®&?!  the third-order nonlinear polarization, E@7). The decom-
To study dephasing in the above quantum kinetic regime, onpositions introduced in Sec. Ill allow us to distinguish the
must account for the time evolution of tlseupledphotoex-  coherent and excitonic effects from the incoherent effects,
cited carrier—FS systef’ and separate out the factorizable from the correlated nonlin-
The change in the energy spectrum caused by a perpeear polarization contributions even in the case of a strongly
dicular magnetic field restricts the phase space available farorrelated ground-state. In Sec. V we discuss an example of
e-e scattering in doped quantum well®W'’s).?2 For strong  a basis of strongly correlated states that can be used to obtain
magnetic fields, the Coulomb correlations are enhanced dusquations of motion for the correlation functions that de-
to the suppression of the kinetic enefdyin the quantum scribe the many-body effects. In Sec. VI we derive a gener-
Hall effect (QHE) regime®®?* long-lived collective excita- alized average polarization mo&é?3¢-*that we use to iden-
tions dominate the 2DEG spectrifii2® Recently, the first tify the signatures of the collective 2DEG excitations in the
experimental studies of the role of such collective excitationgime-dependent FWM spectra. The ground-state correlations
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determine the interaction parameters in the equations of mawhereN;=N(1—»;), with N=L2?/271? being the LL degen-
tion. We derive in the Appendixes a number of relationseracy,| the magnetic length, the system size, and

among such interaction parameters that are imposed by the

electron-hole symmetry of the ideal 2DEG. In Sec. VIl we 1 at

present numerical results that describe the correlation- YiTN Ek (Ofey iexil0) ®)
induced ultrafast dynamics predicted by the above model.

We identify a number of interesting features in the time-gives the filling of LLi in the absence of optical excitation.
dependent FWM spectrum, which arise from the propagatiofNote that the exciton stat¢X;) are strongly correlated: they
in time of the inter-LL MP’s and their noninstantaneous in-are created by the operat&ﬁ acting on the ground eigen-
teractions with the photoexcited excitons. We end with thestate of the many-body Hamiltonidn, which describes the
conclusions. correlated electron gas at rest. From E4). we obtain the

commutation relation
II. PROBLEM SETUP

We are interested in developing a comprehensive ap-
proach to the problem of the nonlinear optical response in
the case of photoexcitation from the valence to the conduc-
tion band. Within the dipole approximation, the coupling to Where the operator
the optical field can be described by the HamiltoRigh

=1) ANFEK (T ihowi+el e — N, (7)

Hiol ) =H = n&HX" = n&* (HX. o A _ |
, , . with (0JAN;|0)=0, describes the number of photoexcited
In the above equatiorti is the “bare” many-body Hamil- .o iarsin LL.

tonian that describes the band-structure effects and the inter- 4,4 optical spectra are determined by the polarization of
actions, &£(t) is the applied optical fieldX is the optical  the photoexcited system,

transition operator, ang is the interband transition matrix

element. In the case of a semiconductor QW containing a

o o AN;
[Xi Xj1=6ij| 1= (6)

2DEG in a magnetic field, the Hamiltoniat has the form P(t):'“<‘/’|x|'/’>:'“2i WNiPi(), ®
H :% [Eg+QE(i +1/2)]él,iék,i whereP; are the average values of the exciton operators,
Pi(t) = (¥ Xi|¥). 9

+ % Qi+ 1R R+ Veet Vint Ven, (2 The statd /(t)) evolves from the state of the system prior to
' the optical excitation according to the Sctirmger equation

whereEg is the band gap, andee,Ven, andVyy, are, respec-  for the HamiltoniarH,(t). For zero temperature, this initial
tively, thee-e, e-h, andh-h interactions(see Appendix A state is the lowest many-body eigenstateand describes all
The magnetic field splits the conduction and valence bandgorrelations in the absence of optical fields.

into discrete electrore) and hole(h) LL's, e-LLi andh-LLi, As in the theoretical approaches of Refs. 11 and 12, there
wherei includes both the LL index and the spiseﬂ’i isthe is a one-to-one correspondence between the photon
creation operator of the liLconduction-band electron, with absorption/emission and the-h pair creation/destruction.

cyclotron energy}¢, andh; ; is the creation operator of the Since an electron gas may be present in the ground-state, we
LLi valence-band hole. with cyclotron ener§)f (see Ap- classify the photoexcited states in terms of the number of

26 . » G valence-band holes, i.e., the number of missing valence-band
pendix A).“® The optical transition operatot’ is expanded

: , ) . ~ electrons as compared to the ground-stle We thus de-
in terms of interbanck-h pair creation operators; that we compose the optically excited stdig) as

refer to as the excitonX) operators from now on:
[y = o)+ 1) +[42), (10

t— &t
X _E \/N—ixi : ) where |¢,) is the collective nh photoexcited state. The

i
_ o _above holes interact strongly with the 2DEfNote that the
In the case of the 2DEG in a magnetic field, it is convenienlyiaies withn=3 do not contribute to the third-order nonlin-

to introduce the LL magnetoexciton statefX;)=X'|0),  ear polarizatiof.

where|0) is the ground eigenstate of the many-body Hamil-  Substituting Eq(10) into the Schrdinger equation for the
tonianH, with full valence band and the 2DEG at rest. The HamiltonianH,(t), we obtain up to third order in the op-
eigenvalue equatioi|0)=0 defines the ground-state en- tical field that

ergy as the reference point. In the ideal system,

1 {910y —Hl o) = = & X ), (1D

N,

)A(ITZ Ek él,iﬁtk,i y (4)

i) —H|yn) = — nEXT| o) — nE Xy, (12
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|V/z> (a) Wz) = K (b)
o[k
K, kK, |k K, K, K
o 1 T ) 0 0
time: time=

FIG. 1. Photoexcitation of the intermedid® 0—h, |#,), and(b) 2—h, |i,), states via the nonlinear optical processes that contribute
to the FWM spectrum. To third order in the optical fields, the coherent emissionkgfpaoton in the FWM directiork =2k, —k; is
determined by the excitation of twexh pairs by the optical field,, and the deexcitation of oreeh pair by the optical fieldk;. Although
in a coherent FWM experiment we must begin and end the nonlinear excitation process with the system in its ground state, the intermediate
0—h state does not need to be the ground-sdje but can contain electron-gas excitations. The above optical transitions are assisted by
Coulomb interactions, which lead to the correlations discussed in Sec. lll.

i _ - o oxt main contribution to the optical spectra comes from the reso-

a2} =] v2) uEX 1), 3 nant LLO—LL1 MP’s, whose energy is close to the
with initial condition |¢,(—%))= &, ¢/0), where the Hamil- LLO—LL1 energy?>?®
tonianH includes the degrees of freedom which lead to the It is useful to make the junction with two domains well
dephasing. The physics of the above equations is clearly distudied in the recent literature: photoexcited undoped QW,
played:|¢o) is coupled td ;) by the destruction of one-h  and 2DEG in the QHE regime. One can distinguish between
pair, [¢,) is coupled to|#,) by the destruction of one-h  the excitations of two subsystem@ the QW interband ex-
pair and to|¢,) by the creation of one-h pair, and|¢,) is  citations (with the 2DEG at rest which consist of &-h,
coupled to|;) by the creation of one-h pair. Figure 1 2e-h, ... pairs created in the different QW LL's, ari)
shows the optical transitions that determine the FWM signajne opEG excitationgwith unexcited QW and full valence
up to third order in the optical field. It is worth noting that, 54 j e the 1-MP, 2-MP, ... states, etc. The ensemble of
by retaining in the expansion, E(L0), states W'.th higheh states that determine the third-order nonlinear optical spectra
num_bers, one can extend E@$1)—(13) to treat higher order can then be thought as consisting/6&-h pairs,|<2, andn
nonlinear processes. ?DEG excitations. For photoexcitation of the LLO and LL1

Even if we restrict ourselves to the electronic degrees of ~ . ) ;
freedom, the Hilbert space of states that determine the uf_axcnon transitions, the inter-LL MP provides a resonant cou-
' ling of the two LL's, since its energy is comparable to the

trafast nonlinear response of a doped QW is complicateo‘.’ _— i
Strictly speaking, it contains all the states that can be genelL0 — LL1 excitation energy. In contrast, the Liexciton
ated through the coupling @th pairs photoexcited in any of States withi=3, the states witm=2 MP’s, and the con-
the QW subbands with all the excitations of the 2DEG: plas{inuum of incoherent 2DEG pair excitations analogous to the
mons, magnons, incoherent pairS, etc. For the purpose emes in an Ordinary Fermi I|qlﬁa contribute to the Optical
developing an intuitive picture of the important physical pro-Spectra via nonresonant processes.
cesses, it is useful to first discuss qualitatively the ensemble One can draw an analogy between k&P effects of
of states that are most relevant to the problem at hand. interest here and th¥-phonon interaction effects studied in
For the experimental conditions considered in the secondndoped semiconducto?s®!?13*However, there are some
part of the paper, the most important 2DEG excitations arémportant differences. In the undoped system, the electronic
the collective inter-LL MP modes that arise from the coher-operators commute with the collective excitatigvhonor)
ent promotion of a LLO electron to a higher 222 Such MP  operators, and the ground-state correlations can be neglected.
eigenstates are well approximated by the form One can then expand the stat@ in terms of a basis con-
sisting of products of phonon wave functions tineek pair
two-particle wave functions. In contrast, a MP is an elec-
tronic excitation'see Eq(14)], and its creation operator may
not commute with other electronic operators. Pauli exchange
where |0) is the strongly correlated ground state and theeffects must then be considered, while, unlike for phonons,
amplitudesp;; (q) are related to the LI’ — LLj contribu- MP’s do not strictly obey Bose-Einstein statistics. Impor-
tion to the density operator. Note that, similar to the excitontantly, one must treat the strong correlations of the ground-
stateg X;), the above MP states are strongly correlated. Fostate electrons. Issues such as the above complicate the use
the magnetic fields of interest, in the ground st@g only  of a simple basis to calculate the nonlinear optical response
e-LLO is partially filled with the 2DEG at rest, while all the of the 2DEG. In Sec. V we discuss an example of a strongly
h-LL states are emptifull valence bangl Since we focus on correlated basis set that can be used to address the above
photoexcitation of the LLO and LL1 optical transitions, the issues. An important advantage of this particular basis is that

M= 2 pj (D€ j81y7[0) (14
1]
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it facilitates the development of a simple model that de-sented below also holds in the case where strongly correlated
scribes the most salient dynamical features of the ultrafastarriers are present in the ground state, as in the 2DEG case,

nonlinear optical spectra. where the assumptions of the DCTS break down. The de-
compositions of the statégy"), [#5"), and|,) also allow
Ill. TIME-DEPENDENT INTERACTION EFFECTS us to separate out, in the equations of mofiggs.(11), (12),

and (13)], the source terms proportional to the optical field
from the source terms proportional to the polarizatiﬁ‘irs
hﬁ/hich lead to different time dependences. The photoexcited

states o), |¢1), and|y,) describe correlated contributions,

In this section we consider the time evolution of the
coupled photoexcited carrier—2DEG system that leads to t
dephasing of the-h polarization. We are mainly interested
in dephasing due to electronic degrees of freedom, and th K P2/ :
the distinction between the photoexcited carriers and thgvhose phyS|ca_I origin will b.e dlscusseq below.

“bath” excitations is less clear as compared, e.g., to the case We now derive the equations of motion of the above pho-

of a phonon bath. We address this issue by separating out tljigexmed states, V_Vh'Ch we W.'” usein the_followmg section

excitonic contribution directly excited by the optical field 1o derive the nonlinear polanzatlon .equ.at|on of.mot|0|_'1 and

(2DEG at rest from the contribution of the excited 2DEG separa;e out the f_actonzable contnbutlons._ It is eas_lest to

configurations(denoted by 2DEG from now on that lead start with .the 1h _tlmg-evolved state. EquatiofL5) spl::cs

to the dephasing. For this we decompose thehlphotoex- this state into e>$|ton|¢2DEG at rest and{l_—h/ZDEG 1

cited state as follows: parts,P;(t) and| ), respectively. The state);) originates

from theX-2DEG scattering during the time evolution of the
L — photoexcitedX. To describe such interactions, we consider
|l//1>:2i PEXi)+[¢), (19 the action of the Hamiltoniakl on the exciton statefX;).
. By subtracting all the exciton contributions, the steitgX;)
where| ) is the{1—h/2DEG*} contribution defined by the can be expressed in the form

condition(X;|1)=0, and the exciton amplitude

. HIXiy = QilX) = 2 Vil Xi)+Y), 19
PH=(Xily1)=(0[Xi|y) (16) i
reduces to the linear polarization to first order in the opticawhere
field. To describe the two-photon nonlinear optical processes

in Fig. 1, we must consider, in addition to tixe2DEG in-

teractions, the X-X and X¢,) interactions during the opti- is theX; energy,

cal transitions. For this we first separate out the total inter-

action contribution to the 2 h and 0- h intermediate states, Viri=—(Xi/[H[Xi) =V} (21)
|4,) and| i), respectively, and then identify the particular
contributions due to the interactions among the above 1-
excitations that lead to the correlation effects:

describes the Coulomb-induced coupling of the diffed¢st
and|Y;)=Y/|0), where the operator

|l//2>=%2 PEPLIXiXin) + 5", Yi:[xi'H]_QiXi+i§i Vi X, 22
i

describes the interactions betwe¢nand the rest of the car-

riers present in the system.

As one can see by using the above equations, the state
L |Y;) is orthogonal to all exciton stat¢X;), (Y;|X;)=0, and
where the StatdeXiXir)=XiTX;r,|O> describes two noninter- s therefore thd1—h/2DEG*} state into whichX; can scat-
acting X’s, and ter by interacting with the 2DEG. For the experimental con-

, ditions of particular interest here, the most important contri-
[0)= (0| )| 0)+| "), bution to|Y;), Eq. (A17), comes from X-MP states. To see
this, let us consider the possible final scattering states of the
int Led 1=\ | LL1 excitonX;. Its LL1 electron can scatter to LLO by emit-
[46")= _Ei PXi[g) + [ o), (18) ting a LLO — LL1 MP, a process shown in Fig. 2. Since the
MP energy is close to theLLO — e-LL1 energy spacing,
where we have separated out the ground-state contributiafie above scattering process is almost resonant. It therefore
from the 2DEG" contributions by requiring that0|yg" provides an efficient decay channel of the LL1 exciton to a
= (0| 1) =0. {1-MP+1-LLO-e+1-LL1-h} four-particle excitation of the

The above decompositions are analogous to the cumulanggound-state0). All other allowed scattering processes are
introduced within the DCTS for the case of undopednonresonant. Th&; hole can scatter to LLO by emitting a
semiconductor&! Such cumulants were obtained by sub-MP, which leads to &1-MP+1-LLO-e+1-LL1-h} four-
tracting the factorized contributions from the many-bodyparticle excitation. The latter state, however, has energy that
correlation functions. Note, however, that the method preis significantly higher, by an amount of the order of)¢

|¢i2m>22i PEXT ) + 1), (17)
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0 gn)=Hln)=2 [PHY)-PIX]. (29
Xy %)
A A ~ -
The operatoP-Y] —PHX! also appears in the equation of
LL1 motion of the 2 state. Its first term describes the scattering
—Q—I —‘—&A‘J of X; with the 2DEG, while its second term compensates for
L the dephasing oP| and ensures the orthogonalit;|+)
] b —
LLO PA7 7 =0.
72222222 We can perform a similar analysis of the time-evolved 2
Z Z —h state by separating out in E{.7) the contribution of the
noninteracting two-exciton statX; X;,).*23’ This contribu-
B — tion describes the time evolution of the tws photoexcited
- by the optical field in the absence of interactions. However,
the two X’s interact with each other as well as with the

2DEG, as described by the equation

FIG. 2. Photoexcitation of the exciton stat¥;), and then of
the X-MP statgY;) via resonanX-2DEG scattering.
H|Xixi’>:(Qi+Qi’)|XiXi’>__2’ Vi [XiXj)
+0¢, from that of the initialX; state. Note that, as shown in .
Appendix A, in the electron-hole symmetric limit tixeelec-
tron or hole must change LL during the scattering process. In
the case oK, the LLO electron can scatter to LL1 by emit-
ting a MP, so thatX,— {1-MP+1-LLO-e+1-LL1-h}, or
the LL1 hole can scatter to LLO, in which cas¥, . )
—{1-MP+1-LLO-e+1-LL1-h}. |Y) is thus a linear com- obtelln?? by using Eq.(22) to calculate the state
bination of the same final states B;). However, in this [H.X[X{,]/0). The first term in Eq(26) is the energy of the
case the energy of all final states is significantly higher thariwo noninteracting’s, while the next two terms come from
that of the initial statéX,). Therefore, the decay of the LLO the Coulomb-induced LL coupling. Similar §X;X;.), the
exciton is suppressed as compared to that of the ldrl  state|X;Y;,)=X/¥/,|0) describes a noninteracting pair%f

highen exciton. Note that the distinction between resonantyngy;, excitations. Finally, as for the undoped case, the last
and nonresonant interaction processes is most pronounceshm in Eq.(26),

when the inter-LL excitation energy, of the order of the cy-
clotron energy exceeds the characteristic 2DEG Coulomb
correlation energy-e?/I. Expansions in terms of the ratio of
the above two energies are known to capture most of the

_]2#' Vji|xjxi'>+|XiYi'>+|Xi/Yi>+|Bii’>1

(26)

Bi)=[¥ K 0)=[[HX1X1[0), @7

2DEG correlation effect&>?534

comes from theX-X interactions:?3’ Equation(B1) demon-

We now describe the time evolution, to first order in thestrates that the stalB;;,) is a linear combination of twe-h

optical field, of the 1h photoexcited statéy;). The equa-
tion of motion for the linear polarizatioR}" can be derived
by projecting the exciton statX;| to the truncated Eq12)
and applying Eq(19):

i0PF=Q;PF— > Vi PL+PF— N2 (23)

i7#i

The correlation function
PF=(Yi| ) =(Yi|4), (24

discussed in Sec. V, describes the dephasingbfand
screening effects.

Substituting the decompositidiEg. (15)] into the Schre
dinger equatiofEq. (12)] and using Eqs(23) and(19), we
obtain the equation of motion of tHd —h/2DEG*} contri-
bution | ¢4):

pairs with different center-of-mass momenta, but with the
2DEG in its ground-state, and thus describes biexciton
bound,X,, and scatteringX X, states similar to the undoped
system:?3’

The X-X andX-2DEG interactions contribute to the time
evolution of the photoexcited B-state in Eq.(17) through
|5y, We further decompose the latter state iri& the

contribution of the noninteracting pair N,—-Wl) 1h excita-

tions, and(b) the contribution|¢,) due to the interactions
between all the different pairs of H-excitations, i.e., the
X-X interactions(as in the undoped systerand theX inter-
actions with the{1—h/2DEG*} states(such as the four-
particleY excitations discussed abgve

To obtain the equation of motion of the correlatech2-

contribution|,), we note that the time-evolved stdt,)
contributes to the third-order nonlinear response at second
order in the applied field. By taking the time derivative of
Eqg. (17) and using Eqs(13), (22), (23), (25), and(26), we
obtain that
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1 . IV. NONLINEAR POLARIZATION EQUATION
19 42) = Hl o) = 5 2 PIPL By ) OF MOTION
i’

In this section we derive the equation of motion of the
+2 [P:_YiT_BbA(iT:”wD- (28) third-order nonlinear polarlz_atloﬁ’i(t)_ that_determlnes the
i FWM and pump-probe nonlinear optical signal, and separate
out the factorizable from the correlated contributions. When

. . , ) ) we discuss the physical meaning of the different terms, we
Recalling thatB;;/), Eq.(27), is the interacting two-exciton focus on the FWM.

state, we see that the first term on the right-hand &iue of
the above equation describes teX interaction effects
similar to the undoped cadé*-3840The second term de-
scribes the scattering oX; with the carriers in the{l

By taking the time derivative of Eq9) and using the
definition of the operatol;, Eq.(22), we obtain that

—h/2DEG*} state| ;). i9P;(t)— Q;P;(t)+ >, Vi Pi(t)
Finally, we turn to the 6-h state. In Eq(18) we split this i
state into the contribution of the ground sté®, with am-
plitude (0| /)= (0| o), and the{0—h/2DEG*} contribution =—uEt) >, NYAGIX Xy + (Y] ).
|45y, The latter 2DEG* contribution is generated by the i’
two-photon processes of excitation and deexcitation of the (30

system accompanied by the scattering of 2DEG excitations, ) . .
and is further decomposed into two parts_ The first part’The first term on the rhs of the above equat|0n describes the
—EiP:-* Xin), describes the de-excitatidafter timet), of Pauli blocking effects that only lead to positive time delay

f h h B — . FWM signal and are determined by the density of theé LL
X; from the {1—h/2DEG*} state|y) without scattering  pnotoexcited carriersrecall Eqs.(6) and (7). The second

with the |¢,) carriers. The latter scattering, as well as theterm describes the optical signal generated by the interac-
time evolution of the 2DEG excitations created via SeCOﬂdtionS between the recombining excitdm |eading to the co-
order processes analogous to the ones that lead to the inelaferent emission and the photoexcited and 2DEG carriers.
tic Raman scattering sign&l,are described by the second This interaction contribution dominates the FWM signal for
part, | o). negative time delaysThe above two source terms can be
The 0—h state|#,) contributes to the third-order nonlin- obtained by considering their equations of motion, which
ear response to second order in the optical field. By substieads to an infinite hierarchy of equations of motion. Alter-
tuting Eq. (18) into Eq. (11) and using Eqs(22)—(25), we  natively, one can first separate out the 2DE@&nd the X-X

obtain the equation of motion and X-|¢;) interaction contributions by using the decompo-
sitions of the photoexcited state, Eq45), (17), and (18),
and by retaining contributions up to third order in the optical

10 o) —H|dg)= > PE*PLK|Y, )+ S [PH*Y, field. Using the property0|X; Y;=(0|Y;X;,+(0|B;. [Eq.
tlvo) Vo) T i) i b (27)], the expansion Eq(10), and some algebra, we then
obtain that

—PPXillgn) — 2 PPPLXIX0)
’ <¢|\?i|lﬂ>:2, PiLr*<Bii'|lﬂ2>+Z PL(Mii | o)*
- € X NVPL(I% X1 80)]0). | |

} LpLl,/ 7 ¢ty &t
29 + ZiZj/ P Pj,<l//1|[[Yi 'xi’]rxj’]|0>

The first term in Eq(29) describes the photoexcitation of the +2 PL(llY X))+ P, (39
2DEG via the second-order process where the exciton v

photoexcited with amplitudePiL,, scatters with the 2DEG \yhere we introduced the state

into the stateY;.), and then the excitoK; is deexcited with

amplitude PiL. The above process leaves the system in a |M~,>=\?-|X-,> (32)
2DEG* state. It is analogous to the photoexcitation of co- " ner

herent phonons in undoped semiconductors, and dominategoting that (0|M;;.)=0, we see that the above state de-
the inelastic Raman-scattering spectra of the 2D0EGhe  scribes an excited 2DEG configuration with full valence
second term on the rhs of EQ9) describes the scattering of hand. The first term in Eq(31) describes theX-X interac-

X; with the carriers in ) during its deexcitation. The rest tions. Its equation of motion can be obtained by projecting
of the terms describe the possibility to create 2DEG excitathe state(B;;.| to Eqg. (13). In many cases, it is useful to
tions by photoexciting an exciton whose hole then recomdecompose the above contribution into HF and correlated
bines with a 2DEG electron. X-X interaction contributions by using E¢L7):
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Lt g | o] 2 o] |e | | FIG. 3. Dominant resonant process determin-
l 7 ing the MP correlation contribution to the FWM
LLo p] 4 7 | signal. The first three panels show the Stokes-

Raman scattering that creates the MP, while the
other three panels show the reverse process that
returns the system to the ground state.
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1 Ll first term on the third line of Eq(31), we note that the HF

<Bii'|¢2>:§ > (Biir|X;X;/)P] Py X-X interaction can be thought of as arising from the scat-
'] tering of the polarization with the coherent denétysimi-

larly, this term describes the scattering of the polarization

+§j: PH(Bii/ X[ [g1) + By . (33 with the incoherent density of photoexcited carriers in the
{1—-h/2DEG*} state|y,).
The first term describes the HR-X interactions, similar Finally, the last term on the rhs of E(B1) is the corre-

from the undoped casé.The second term comes from the lated contribution
exchange process where the first optical transition creates the

_ D _ L
state|;) and the second transition excites Xpe-h pair Pi_<¢0|0><Yi|‘ﬂ1>+; Pj *(Yin|1p2>
while returning the conduction electrons to their ground
state. The above process results in ®vb pairs that scatter + (ol Vil ) + (| i ). (36)

each other while the 2DEG is at rest. Subsequently, one of i ) )

the above pairs,, is deexcited by the optical field, while the | N€ first two terms of Eq(36) describe the dephasing of the
remaining pairj, recombines and leads to the coherent emisX @nd 2X amplitudes that determine the third-order nonlin-
sion. The last term in Eq33) describes biexciton ank-X ear pollarlzat|on, 'whlle the Iast_twg terms desc_nbe the
scattering correlations. Similar to the undoped daSésuch ~ dephasing of the incoherent contribution to the nonlinear po-
effects are characterized by the amplitude of the correlatel@rization. Note that, by linearizing the above equation, we

2—h photoexcited state, recover the correlation functioﬁiL [Eq. (24)] that describes
the dephasing of the linear polarizatié’rﬁ.
By (t)=(B; 'Wz)- (34) Using the above results we obtain the following equation

of motion for the third-order nonlinear polarization:

The effects due to the propagation in time of the intermediate
2DEG excitations, photoexcited via the two-photon processs,p,— P, + >, VP, — P,
in Fig. 1(a), are described by the amplitude i1

Mii (1) =(Mi:| o). (35) = €2 NPl (8= (%, XL Dl )

Such time propagation leads to non-Markovian effects. In the 1
case of particular interest here, the corresponding resonant + > 2 (Bi,—IXi,Xj,)PiL, PjL, P]-L*+E B”,PiL,*
contribution to the FWM signal is due to the nonlinear opti- i’ i’
cal process shown in Fig. 3. Théphotoexcited by the first . 1 L . o
optical transition decays int¥ excitation. Thee-h pair in + 2 PLME 5 > P P (OILX; . [Xi, Y11 )™
this X-MP state then recombines, leading to coherent emis- i’ iy’
sion, and leaves the system in a MP state. This MP propa- . _
gates in time and then scatters with the second photoexcited  + >, PL(y|[ ¥, X 1| p1) + >, PiL,P]-L* (Bij|X} 1)
X into an X state subsequently annihilated by the optical i’ ji!
field. It is interesting to note the similarity of this process and (37
the familiar one of coherent anti-Stokes Raman scattéing
that, however, involves phonons.

The second line in Eq31) describes a shakeup of the

2DEG during the exciton recombination that gives the coher di . i X and 2DEG first f
ent emission. In particular, the photoexcitation of two exci-'€'mediate interacting<-X an states (first four

tons,X;, andX;,, is followed by the recombination of one of terms on the rhs and(ii) an .incoheren_t part, determined by
them assisted by the shakeup of a 2DEG excitation. Théhe{1—h/2DEG*} photoexcited statgy,) (last three terms
above process leaves the system ifila- h/2DEG*} state, on the rhgand the correlated nonlinear contributiBp. It is
which is then annihilated by the optical field. To interpret theworth noting in the above equation that the terms propor-

In the above equation we have separated out the source terms
into (i) a coherent part, determined by Pauli blocking effects,
HF X-X interactions, and the propagation in time of the in-
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tional to the polarizationP}, describe a time-dependent mately describe continuum resonances in large systems, e.g.,

photoinduced renormalization of th¢ energy and dephas- the Fano resonances in the absorption spectrum of semicon-
ing (i’ =i), and of the coupling/;;. of the X; andX;, states ductor superlattice¥’ Each new basis state is obtained by

(i"#i). If the {1—h/2DEG*} and|B;;,) excitations decay acting with the Hamiltoniaii on the previous state, and then
rapidly, while the 2DEG excitations are long lived, then theOrthogonalizing the result with respect to all existing basis
non-Markovian LL coupling and dephasing effects are domi_state53. This procedure is similar to Eq419) that introduced
nated by the correlation functiah;;(t). the stateqY;), and led us to the parametes and V;;,

As demonstrated by the above equation, the Coulomb colEgs. (20) and (21). A new basis statéZ;)=Z2]|0) is now
relations lead to new contributions to the nonlinear polarizaconstructed from the relation
tion, determined by many-particle correlation functions. In

the following section, we turn to the problem of solving for =
the correlation functions on the rhs of E&7), and address H|Y‘>_Q‘|Y‘>+; Wiri[Xir) +123), (38)
the issue of dephasing in a strongly correlated electronic sys-
tem. where
— (YilH]Y})
V. DEPHASING AND CORRELATION PROCESSES Qi:W (39
I I

The equations of motion for the correlation functions that. . o
enter in Eq.(37) may be obtained after introducing a basis is the average energy of the four-particle excitafigy,
suitable for describing thet, 2h, and (h states. In strongly W= (X, [H]Y;) (40)
correlated systems, an expansion in terms of the pair excita- . ! !
tions of a noninteracting many electron may not be convegives the probability amplitude that; scatters intoX;, , and
nient. In general, we must introduce a basis of strongly corwe introduced the operator
related states that already incorporate the ground-state
correlations. The choice of such a basis depends on the R - — . -
ground-state and on the most important excitations for the Zi=[Y; ’H]_QiYi_Z Wiir X . (41
experimental parameters of interdstg., the filling factor, :
the central excitation frequency, the polarization of the opti-Using Eqs.(38)—(40), as well as the orthogonalityleYi>
cal field, etg. =0, one can see that the sta#&) is orthogonal to all the

Our goal in the rest of this paper is to identify the domi- stateqX;), j=0,1, ..., and tdY;). Therefore, it is a linear
nant features in the FWM spectrum at the magnetoexcitogombination of all the 2DEG* states into whidly;) can
energies that come from the interactions and time propagacatter. Additional basis states can be constructed by apply-
tion of the MP collective modes. Analogous questions re-ing the above orthogonaﬁzation procedure to the gﬂi&>
garding the role oK-X interactions in undoped semiconduc- \We note here that the stat¢X;), |Yi), |Z;), ... do not
tors were first addressed by using average polarizatiogorrespond to an expansion interms of excitations of a non-
models’*® As we show in the following section, a general- interacting many-electron state, since they are obtained by
ized average polarization model can be extracted from thg o action of the operatoi!, YT, 27, ... on the ground
theory developed in the previous sections after introducing %igenstatetO) of the many-k;o’dyll—]anlﬂ’ltoniahi.

basis of Lanczos strongly correlated state§his model ex- : S IV
plains the main qualitative features observed in recent FWI\QJbt?i/nLﬁ'g%fgéﬁ%;?gnthe orthogonalityXj[Yi) =0, we

experiments?
We start by considering a basis for thehlstate|). Wi = (YY) =W, . (42)
Noting the analogy withX-phonon interactions in the un- :
doped system discussed in the Introduction, we would like tiNote that(Y;,|Y;)#0, and we may also have thaY;,|Z;)
consider a basis that consists of products-tf pair and MP 0 fori’#i. If this is the case we need to orthogonalize the
wave functions. In the undoped system, such states have thedependent statg¥; ), and then subtract a linear combina-
form él_qﬁlamo% where ag creates the phonon state, tion of the latter from|Z;) in Eq. (38), so th_at all thez andY
élfqﬁl creates the two-particle-h pair wave function, and states bgcqmg orthogonal. However, in the electron-hole
10) is annihilated by all thé andh operator€>21n our symmetric limit of the 2DEG systenfy;) is the same state

h th d st i ¢ | for all i when only LLO and LL1 contributésee Appendix
case, however, the ground st4@ may contain a strongly PA)’ and thus the latter procedure is not needed.

correlated electron gas, while, unlike for phonons, the M Equations of motion for all correlation functions deter-

creation operators are made of electrons. Thus we must use, d by th — be obtained aft ding i
a basis of strongly correlated states, which is made out dgitined by the statgy,) can be obtained after expanding in a

electrons. basis set of 1—h/2DEG*} states. Let us consider, for ex-

A basis set useful for calculating the Green’s functions forample, P}(t) [Eq. (24)], which describes the dephasing of
tight binding and Hubbard Hamiltonians is the Lanczosthe linear polarizatiorPiL(t). If we choose the Lanczos basis
basis®® Such correlated states can be used to obtain exactiscussed above, we obtafafter multiplying Eq.(25) by
solutions in the case of small systefigut also to approxi- (Y;| and using Eqs(38)—(40)] the equation of motion
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is created by theX-X interactions. In the case of undoped

o BL_ 0 pL L L
1P =Q;P; +; Wi Py + 27, (43) g;lv magnetoexcitons3;;, (t) corresponds td-(t) of Ref.
where we introduced the correlation functic = (Z;| /) One should note here the similarity of E@7) and the
whose equation of motion can be obtained in a similar wayaverage polarization model that has been successful in de-
as that ofP!. scribing theX-X correlations and biexciton effects in un-

H 5,37 H ;

It is important to note that the dephasing of the opticaldoPed semiconductofs:™*" This model includes thex-X
polarization obtained as above is non-Markovian. Indeed, afS€lf-energy effects due to the higher Lanczos states
ter solving Eqs(23) and (43) by Fourier transform, we ob- |B;ji/), ... via a phenomenological dephasing rate. The va-
tain that lidity of such a model in the case of undoped QW magne-
toexcitons was analyzed in Ref. 37.

Similar to B;;,, the correlation functionM;;, describes
the time evolution of the “intermediate” photoexcited
2DEG"* state|M;;). Using the Lanczos method we obtain

ZHw) that
12, Zi\®
=—uélw)N;"+ —, (44)
(l)_Qi
where theX energyQ;(w) and the coupling between the HIMi )= Q8 M)+ M), Q
statesV;;:(w) include frequency-dependent self-energy cor-
rections due to th&X-2DEG scattering,

[0—Qi(@)]PH(@)+ X Vi (0)P5(w)

i’ #i

m _ (Mii [H[M;i )

" (Mii/[Mi)
(48)

. - whereQi"i", is the average MP energy, and the stadk; /),
Qi(0)=Q;+ 5 Viir(@)= Vi + o (49 (M, ,|M;)=0, is a linear combination of all the states into
@R @ ! which |M;;,) can scatter. We then obtain, after projecting
Additional self-energy corrections arise froft, discussed (M| on Eq.(29), the equation of motion
in the following section. The frequency dependence of the
aboveX energies and coupling constants is a mr:mifestatiorﬂ(9 Mir—0OM M= M.,
of the non-Markovian behavior of the system. This arises = LA "
because part of the optical excitation is temporarily stored in " L .
the shake-up excitations described Byy. :E (M [ XY} Py Pi’+; PJL*[<M“'|YJ|‘/’1>
Using the recursive method we can also construct a basis I

for the 2-h and Oh states, which we can then use to calcu-

— - A IXGAPE =S PYRY (ML X
late the correlation functions determined by the staies ]E <M“’|XI|XJ'>P1’} ; Py (Mii [ Xl )
and| ). We start with the 2h state|B;;,) that determines
the X-X correlation functions;;, , and introduce the Lanczos

1/2pL YRVl

state|B;; ) as follows: +M8k§ N3Py (i[85 =% X5 DIO), — (49)
H|Bii,>=9ﬁ,|8”,>+|§”,>, Qﬁ/:<Bii’|H|Bii’>’ where M;;» = (M| o) descrﬁbes the dephasing_Miilr . In

(Bii/|Bii+) the case of the 2DEG, the single-mode approximafisng-

(46)  gests that the latter dephasing can be treated to first approxi-

mation by introducing a phenomenological dephasing rate.
el a The remaining step is the calculation of the correlated
Bii+). The stateB;;.), (B;i/|Bji)=0, is a linear combina-  ¢contribution P;, Eq. (36). The equation of motion for the
tion of all the 2X states into whichB;;) can scatter. By first two terms of Eq(36) can be easily obtained from Egs.
projecting the statéB;;/| to Eq.(28).and using Eq(46), we (12) and (13) after using Eq(38) and the property
then obtain from Eq(34) the equation of motion

B - . .
where();;, is the average energy of the interacting<2state

i’

. =
i98— Q% Bi == > (BB, )PP <YiXJ|H—(Qi+Qj)<YiXi|__,2 Vi (YiX;|
2 7] Wy i #]

J

+§j: PjL<Bii'|\A(,T|E1> +; Wi (Xi X |+ (Y3l Y +(Zi X, (50)

— ST | S obtained by calculating the commutafdf;, X; ,H] using Egs.
- EJ: Pi(Bii/|X[[#1) + Biir, (47 (22) and(38). The equations of motion for the last two terms
. o in Eq. (36) can be obtained from Eq&29), (25), and(28) by
whereB;; (t)=(Bii| ,). The above equation describes the using Eq.(41) and the basis of choice. We thus obtain the
time evolution of the “intermediate” 2X state|B;;+), which  equation of motion
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whereY is determined by Eq(A17). The above symmetry
relation can be used to reduce the number of independent
variables. For example, from EQq39), (42), and (36) we

obtainQ;=Q, W;o=Wo;,

(1= v)W;;=—V(1—vp)(1—v1) W= W=(Y]|Y), s

9P~ QiPi— Z=2 Wi P+ Qy,  (50)
i!

where the correlated contribution

4)
Zi=(o|ON(Zi| 1) + >, PH*(Zi|Xi| s _
=l 01Zilga)+ 21 P14 V1= 01P1()=— V1= vgPo() =WPR(t), (55
+ (ol Zil 1) + (1| Zi | ) (520 Wherei=0,1. It is then convenient to make the trans-
formation
has the same structure Bs(with the differencef;—Z;) and Pi—Piv1-y;, (56)
describes the dephasing Bf. The factorizable contribution and redefine for simplicity
Qy. describes photoinduced nonlinear corrections to the
' . _y . . =V — . — Dy — —_ — .
dephasing and energy Bf, and to the scattering amplitudes Vi = Vi V(=) (1= vi0), W= WL = vp) (1= w) (57)

W;;» . The equation of motion fog;, which to first order in

the optical field coincides wittE", has a form analogous to USing the above relations we obtain from EQ3) the fol-
that of P. lowing equations of motion for the linear polarizations:
i-

One should note here that the correlation functiyrcan i0,Pg=(Qo—iTo)P§
be decomposed further in the case of systems wher¥-ie L =
interaction contribution to the operatd can be separated ~[nE+Vor(1=vy)Pr+W(1—vy)PT],
out. This is possible, for example, in undoped (58)
semiconductor& where the operatol; can be decom- _— _ .
posed into a part that is independent of the phonon variables, 19:P1=(Q1—iI'1)P3
which describes th&-X Coulomb interactions, and a part L =
that describes the phonon creation/annihilation processes. ~ L&)+ V1= o) Pg—W(1—1o)PT].
The formerX-X contribution comes from the last term in Eq. (59

(36); and corresponds to the correlation functionf Refs. 8 The above equations have the form of two coupled two-level
and 11, which mainly contributes to the six-wave-mixing systems, corresponding to the LLO and LL1 magnetoexci-
spectrd® The above distinction between the interaction pro-tons This form is due to the zero-dimensional confinement
cesses is possible in systems where the creation operators;afj,ced by the QW potential and the magnetic field, which
the ground-state excitations of intergshonons, MP's, mag-  |eads to the novel 2DEG properti&s2* The Coulomb inter-
nons, . .. ) commute with th_e electronic operators that de-5ctions renormalize the Rabi energy? by a mean<{local-)
scribe the photoexcited carriers. field correction proportional to the polarizati¢analogous to
the undoped systeffi) and by a 2DEG shake-up correction

H L
VI. GENERALIZED AVERAGE POLARIZATION MODEL proportional toP". o
As demonstrated by Eq$58) and (59), the polarization

In this section we present an example of how the theoretdephasing is determined, in addition to the phonon-induced
ical framework developed so far can be used to describe th@ephasing rateE; , by the correlation functiof®. For weak

nonlinear optical dynamics of the 2DEG in a high magnetlcri’ PL dominates. In the absence of magnetic i, de-

field. We _con5|der the case 'where only th(_a first two LL's ArCscribes the shakeup of FS pair excitations, and leads to a
photoexcited, so we retain in our calculations only the LLO

and LL1 magnetoexcitons. We focus on filling factors Closenon-Markowan dephasing due 1o the nonperturbaties

to »=1, where the ground-state 2DEG populates spiri-0 mteragtpnsf’. _ For the_ experlmental condltlon§ of interest
state$233 and on photoexcitation witkr . circularly polar- here., P~ originates primarily from theX scattering to Fhe
ized light, which excites spin-electrons® The above con- continuum ofX-MP states composed of atand a MP with

ditions apply to the experiment of Ref. 30, which we wish to ©PPOSite momenta. An analogy can be drawn between the
interpret. above X-MP states and the con'ur;uum of-X scattering
The electron-hole symmetry of the ideal 2D system, anaStates in undoped semlconduct_b?é”. _
lyzed in Appendix A, relates the correlation functions and W& now tum to the dephasing of th&MP correlation
interaction parameters with different LL indices that enter infunction P". This X-MP dephasing originates from the
the equations of motion. For example, in Appendix A we Coulomb-induced coupling of the Lanczos states
derive the symmetry property IY),1Z),|Z"), . ... Wenote thatZ" and higher correlation
functions do not couple t®", but only to the amplitudes
. o corresponding to the previous and the next Lanczos states.
V1I=vY1=—+1-1voYy=Y, (53 For example, the equation of motion f&r* reads
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[0 2= 072"+ WPt +(Z' [ g), (60 7=y Waym=,(Q) (66)
where we defined are estimated here by fitting to the experimental linear ab-
sorption spectruri® The above approximation works best
—  (Z|H[Z) (2|1z) (Z|H]Y) for sufficiently largey. Due to the contribution to th¥ state
=5 Wzy= = (61) - , : —
(2|1Z) (YY) W of finite momentum MP's an@-h pairs, we expect thaf)

The amplitudes of the higher Lanczos states satisfy similar 1 Where @, [Eq. (20] is the energy of the zero-

equations of motion. After taking the Fourier transform angmomentum LL1 magnetoexcitdh.

using the above symmetry properties and some algebra, Wﬁ We now turn to the nonlinear polarization, _determined by
the equation of motion, Eq37). First we consider th&-X

obtain that
interaction contribution, described by the second line on the
o Pli(w)— P(L)(w) rhs of Eq.(37). For_ strong damping of_the)Q stateg B;; ),
P (w)= — , (620 the non-Markovian X-X  scattering effects are
0= Q+iyy—Wzy2z(w) suppresset?3” and we only retain the HIX-X interaction

contribution[second term on the rhs of E37)]. The X-X
potentials(B;;/|X;X;.), with different LL indicesi andi’,

are related to each other in the electron-hole symmetric limit
due to the property

whereyy is the dephasing rate. The dephasing?bfis thus
described by the self-ener@®y,,

1
Sp(w)= ——=— : (63) Yz Ta—
Z( (U_QZ+|’yZ_Wzrzzzr(w) (1_Vi)|Bii>:_ (1_VO)(1_V1)|810>’ (67)
wheres . is given by Eq.(63) with Z' —Z". wherei =0,1, which follows from Eq(B1). Using the above

The above equation can be used to obtain a continuetglation and Eq.(56), we express the HFIX-X interaction
fraction expansion for the self-energy. In the case of arfontribution in the form
N-electron system, such an expansion terminates Alfftier

erations. To obtain true dephasing for finke we must in- JA= ) (= v )(Bi|X: X pLpL (pL* _ pL*
troduce the damping rates of the Lanczos states, due to the ?’ (L= w) (A= vy )(BalXiX; )PPy (P )
neglected degrees of freedom of te-« system. The con- (68

vergence of the above self-energy expansion becomes mor S R vy N . i
rapid with increasing damping rat&sin the QHE literature, Wherei' #i and the potentialB;[X;X;) is evaluated in Ap

. . . pendix B.
numerical calculations of thél-electron spectral functions . , .
S o The time dependence of the incoherent source terms in
have been extrapolated to the—oe limit. . ; .
X ; . the last two lines of Eq.37) is determined by thel
Equation(63) can be solved analytically when the disper- . — ) )
sion in the energies and matrix elements of the higher Lanc= /2DEG*} statel ;). The corresponding correlation func-
z0s states is small as compared to the frequencies of intere&ons dephase rapidly in the case of strokgMP damping;
so that the self-energy is approximately the same for all théinlike, e.g., the correlation f_UnCt'OM, that describes the
higher Lanczos statés This may be the case, for example, if ime propagation of the long-lived MP's. The same holds for
the momenta close to the magnetoroton minimep,1/1,  the FWM contributions due to the photoinduced renormal-
dominate®! In the case of QW magnetoexcitons in undopedizations of theX-MP correlation function®, Z, ..., which
semiconductors, the validity of such an approximation forare described by the source ter@s, Q, ... in Eq.(51).
the X-X self-energy was discussed in Ref. 37. The latter lead to an incoherent FWM contribution at the
A microscopic determination oE,(w) is beyond the X-MP energies, which is broadened by the bare dephasing of
scope of this paper. Here we describe ¥P scatteringin P, Here we neglect such incoherent contributions to the
a way similar to the average polarization model descriptiorFWM spectrum. Similarly we approximate the photoexcited
of the X-X scattering In particular, we assume that; isa  carrier density that determines the Pauli blocking contribu-
sufficiently smooth function of frequency in the range of tion [first term on the rhs of Eq37)] by the coherent exciton
interest, in which case its frequency dependence can be ngensity,P-P"*, and neglect the incoherent density contribu-
g_Itected_ to flrdst apé)roxmjatlog. I? the case _cl)f 2D magnetot_exﬁon determined by ).
Citons In undopeda semiconauctors, a simi arsgz;\pproxma 10N The correlation functionM;;, describes the time evolu-
was shown to apply for stron¥-X interactions:” We thus tjon of the long-lived MP intermediate states. or photo-

obtain the equation excitation, the exciton operators create spiptectrons, and
thus the operator¥;X| do not excite the spin-2DEG. We

FaPL_ () —i~) Pl L_pL
19P"=(Q=iy)P"+P1—Ps, ®4  therefore have that
where the values of the renormaliz¥dstate energy R
(2DEG*|Xi|X;)~0 (69)
0= %JrWZYReZZ(ﬁ) (65  for any excited 2DEG state. Equatidf9) is exact forv
=1. Using Eq.(53) and Appendix C, we then derive the
and dephasing rate symmetry reIationﬂ?{'FQM , Myog= Moy,
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(1= ) (A= v)(M;|Xj|Y)) o T T T 1
=—(1—v)(X— ) (L= v (M| XY )

=~ (1= w) V(1= ) (1= ) (M5 X[ Y)) =Wy,

(70)

(1= ) M;i= = (1= vo) (1= v) Moy=WyM, (71)

for anyi andj#j’. Neglecting the incoheren_t—MP contri-
bution to the rhs of Eq(49), determined by #,), as com-

|
pared to the first term, determined by the exciton polariza- s |
tions, we obtain the equation of motion | . )
% 30 -20 10 0 10 20

Energ-y (meV)

101 | .

Absorption (arb. units)

ioM=(QM =iy ) M—PLPE* + PgP5* + PIPL*

- P(L)P&* , (72 FIG. 4. Linear absorption spectru(full line). The dashed line
shows the spectrum fd®-=0, in which case the dephasing is de-

where the weak MP damping, which to first apprOXimationtermined by the electron-phonon scattering. The interaction ener-

R H 25,46
can be described by the dephasing rale enhances the gies yW=2.2 meV andVy=0.5 meV, the dephasing rateg

non-Markovian dephasing effects. ~3 meV, and theX andY energies were chosen to reproduce the

We note here that, in the absence of disorder, only th@near absorption LL peak ratio, energy spacing, and line shape
zero-momentum MP state contributes to the nonlinear opticadpserved in the experiment of Ref. 30 Be=8 T ando* circular

signal. As already seen in the inelastic Raman-scatteringolarization. In this case,=0.075 andv,=0 (Ref. 30.
spectra, the disorder leads to the photoexcitation of a state
M) with strong contribution from the finite momentum S(t)=e‘k2‘r5p(t)+e”‘1"6’p(t+At), where £,(t) is the

) 1,46
gP;Sclt(;]see;oe';geem;gerletorg;clrrl]eegifﬁ)‘fé d "\I'/Ih: Setgteggy an&aussian envelope of the pulses emitted by the laser. We
m ! verag 9y up ’ en solve the above equations as a function of tinaed

. ;
exceeds the cyclotron energfd; that gives the zero- o gelay At between the two pulses, keeping only the

momentum MP energy. ¢ leading t l ignal in thi,2-k, directi
Using the above results, and redefining for simplicity erms feading 7o a honinear signal in i,z X, direction,

Wiy— Wy (1— vo)(1— v;), we obtain from Eqgs(37) and and perform a Fourier transform of the nonlinear polarization
(51) the following closed system of equations for the nonlin-© 9€t

ear polarizations: P(w,At)=(1— vg)Po(@,At)+ (1= vy)Py(w,At).
19{Po=(Qo—iTg)Po—Voy(1—v1)P1+2u&(t)Ps* Pg (79

The FWM signal measured in the experiments is propor-

LplL Lx Lx
+2Voy(1-v1)PiP5(Pg™ —P1™) tional to |P(At,w)|? and is calculated in the next section.

+ Wy (1= v) M* (P5—PH) —W(1- )P, (73
VIl. NUMERICAL RESULTS

10P1=(Q1—iT1)P;—Vio(1— 1) Pg+2u&(t)PT* Py In this section we present the results of our numerical
LmL, L% L calculations, which are based on the model of Sec. VI. We
~2Vid 1= v0)PiPo(Po™ —P17) " start with the linear absorption  spectruma(w)
oL oL — «Im[P'(w)/&(w)]. By fitting to the linear absorption mea-
~Wn(1=wo) M* (Pg—P1) + W(1-0)P, surements of Ref. 30, we can fix the interaction parameters
- _ Vo1 andW, the energie€); and(}, and the dephasing rates
igP=(Q—iy)P+P1—Pq. (79 T, andy, to within =50%. Varying the parameters within

this fitting range yields no significant change in the time and
frequency dependence of the FWM or linear absorption spec-
trum. Figure 4(full line) displays the twoX peaks obtained

The second lines in Eqg73) and (74) describe the Pauli
blocking PSF effects and HR-X interactions similar to the
undoped systerff while the third lines describe the correla- in this way. Their broadening is determined lfg) the

tion effects due to the time propagation of the intermedvate X-phonon scattering, described by dephasing ritgs T,

and MP states. The latter correlations lead to a time:

dependent coupling of the LLO and LL1 levels, as well as tOS|m|Iar o the undoped system, a(t the X-2DEG scatter-

non-Markovian dephasing. ing, described by the correlation functi@'. The important
The set of four equations, Eq&3), (74), (75), and(72),  role of theX—X-MP scattering is clear by comparing with
together with the linear polarization equations of motion,the dashed line curve of Fig. 4, obtained wRh=0. Al-
Egs.(58), (59), and(64), constitute our model. To obtain the though theX-2DEG scattering governs the line shape of the
FWM spectrum, we assume a laser excitation of the formlL1 peak, it plays a very small role at the LLO frequency. To
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Time delay (fs)

FIG. 6. MP correlatioridashed ling PSF(dotted ling, andX-X
FIG. 5. Time delay and frequency dependence of the FWMinteraction(dashed-dotted linecontributions to the full FWM sig-
spectrum for excitation frequendég) at the LL1 peak(b) shifted by ~ nal (full line), calculated at the LLO peak frequency for photoexci-

4 meV, (c) shifted by 7 meV, andd) shifted by 9 meV. The optical tation as in in Fig. ).

pulse and linear absorption spectra are displayed in the back panel.
The pulse duration was 150 f6),,=17.5 meV, Wy =2 meV, Fig. 7. The origin of the strong MP correlation contribution
and yy=0.2 meV. to the LLO FWM signal can be seen by comparing the latter

for different values of the MP enerdy,, , while keeping the
interpret this behavior, we note that the main contribution tg€St of the parameters constant. As demonstrated in Fig. 8,
Pt comes from{1-MP+1-LLO-e+1-LL1-h} four-particle tdhe LLO ?gnal, dom|r1fa|t:gd %y Fhe MP-rred|ar:ed Llac%upllng
excitations[see Eq(A17) and discussion in Sec. }Il Even ue to the process of Fig. 3, resonantly enhanceas{ly

— , L L approaches th¥,— X; excitation energy {18 meV herg
thoughP™ couples equally to bo”[( amplitudesP; andPy, One should note here that thé-X interactions also
it dominates the dephasing ¢; since the above four- couple the two LL's. However, the corresponding LLO signal
particle excitations have energy comparable to that0fin  js weaker due to the absence of a resonance, similar to the
contrast, X, has significantly smaller energy, and thus thepp correlation signal for nonresonafly, , and cannot fully
broadening of the LLO peak is mainly determined by theaccount for the strong LLO signal observed in the experiment
X-phonon interactions. Note that the asymmetric line shapgf Ref. 30. To see this, note that, in the undoped system,
of the LL1 resonance is due to theMP states and cannot where only thex-X interactions contribute, the FWM signal
be obtained within the dephasing time approximation. at the LLO energy is negligibl&’. More importantly, in the

We now study the signatures of tke2DEG correlations  experiment of Ref. 30, the LLO peak in the doped system
in the time and frequency dependence of the transient FWNyas suppressed as compared to the LL1 peak as the density
spectrum. As we discuss below, the correlation effects can bgf photoexcited carriers approached that of the 2DEG. In this
controlled experimentally by varying the central frequency
of the optical pulse from LL1 toward LLO. This allows usto 70
control theX amplitudesP, and P,, whose coherent super-
position and interactions determine the FWM spectrum. Fig- 60 1
ure 5 shows the effects of such tuning. - P 1

Figure Sa) shows the FWM spectra when the optical _ 30
pulse is centered at the LL1 peak, and the LLO peak is barelyg
excited by the tail of the pulse. For such excitation condi- 7 40
tions, we have thaPg<P}, and the photoexcited density of &
LL1 carriers far exceeds that of LLO carriers. As a result, the§ 0
PSF andX-X interaction contributions at the LLO energy are ™
suppressed as compared to LL1. Despite this, however, thi
LLO and LL1 FWM peaks in Fig. & have comparable
heights. To elucidate the physical origin of the nonresonant |
LLO FWM signal, we show in Fig. 6 the contributions of 0 ! , J
PSF,X-X interactions, and MP correlations as a function of -1000 0 1000
. Time delay (fs)
time delay.

As clearly seen in the above figure, for optical excitation F|G. 7. PSF(dotted ling contribution to the FWM signatfull
at the LL1 peak, the LLO FWM signal is dominated by the line) at the LL1 peak frequency for photoexcitation as in Fita)5
MP correlation contribution. At the same time, the LL1 sig- The X-X interaction (dashed-dotted lineand MP correlation
nal is dominated by the PSF contribution. This is shown in(dashed ling contributions are negligible here.
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50 ' - nated by the PSF contribution, and is thus suppressed for
negative time delays, while the LLO signal is dominated by
the MP correlations, and is enhanced for negative time de-
lays, similar to the experiment of Ref. 30. The origin of this
time dependence can be seen from the equation of motion of
the MP correlation FWM source term in E(f.3). After re-
taining only resonant terms, one can see that the rise of this
signal is governed by the time dependence of the product
P.P§, while the decay is determined by the time depen-
dence ofP}, M, and by quantum interference effects. As
discussed above, due to tke2 DEG scatteringP& dephases
much more strongly thaﬁ’h. Thus the time dependence of
- PLP§ is similar to that ofP}, which results in an almost
-1000 Time a 1000 symmetric FWM temporal profile at the LLO frequency. Fur-
ime delay(fs) . .

thermore, the quantum interference and beating effects en-

FIG. 8. FWM signal at the LLO peak frequency for different hance the decay of this signal for positive time delays.

[ o
(=3 (=3
I I

FWM (arb. units)
)
S
T

values of the average MP energyy, =14 meV (dotted ling, 17 The relative magntitude of the MP correlation versus the
meV (full line), 18 meV(dashed ling and 20 meVdashed-dotted PSFX-X mean-field FWM signal can be controlled experi-
line). Photoexcitation conditions as in Figah mentally by changing the central frequency of the optical

pulse. Figure &) shows the time-dependent FWM spectrum

case the MP correlations of the cold 2DEG diminish, and thdor excitation conditions such thiPg| ~|Pj|. The LLO sig-
doped and undoped QW FWM signals start to look sinfflar. nal now dominates, and retains a temporal profile similar to

We now turn to the temporal profile of the FWM signal. Fig. 5@). Note that, due to the increased pulse overlap with
Figure 9, which plots the normalized time-dependent LLOLLO, the PSF source terms in E¢g.3) and (74) now have
and LL1 signals, demonstrates the difference in the dynamicsomparable magnitude, while th-X interaction and MP
between the PSF and MP correlation effects that dominateorrelation source terms are also enhanced. However, the
the LL1 and LLO signals, respectively. As already knownstrong dephasing d?; discussed above suppresses the LL1
from undoped semiconductors, the Pauli blocking effectd=WM signal. This effect is magnified in the nonlinear spectra
cannot lead to a FWM signal for negative time delays. Theas compared to the linear absorption. Importantly, due to the
X-X interactions lead to such a FWM signal, with rise time resonant enhancement of Fig. 8, the magnitude of the MP
determined by the dephasing of the interactigl state  correlation FWM contribution is enhanced more strongly by
|B).? Within the time-dependent HF approximatiothe lat-  the increased pulse overlap LLO with as compared to the
ter rise time is~(2,+2I';) ! in the case of interest mean-field FWM signal. Finally, weak oscillations as a func-
here®® For I'y~T';, this rise time is about one-half of the tion of time delay, with a period equal to the spacing of the
X-X FWM decay time,~(2I';) !, or the PSF FWM decay two LL peaks, start to appear.
time, ~(2I'p) ! at the LLO energy. Figure 9, however, As can be seen in Figs(§ and 8d), the oscillations of
shows an almost symmetric temporal profile of the LLOthe LLO FWM signal, as function of time delay, become

FWM signal, unlike for the LL1 signal. The latter is domi- more pronounced as the optical excitation frequency is
shifted from LL1 towards LLO. It is important to note that

the LL1 signal is almost completely suppressed, especially
for the excitation frequency of Fig.(8), and therefore there
are no significant oscillations in theal time t i.e., the time
related to the frequency via Fourier transform. Thus the
oscillations observed in Fig.(8), as well as in the experi-
mental data of Ref. 30, have a strong quantum Kkinetic
contribution®”?' The physical origin of such an effect can be
seen by plotting in Fig. 10 the PSF and MP correlation con-
tributions to the LLO signal as a function of time delay for
photoexcitation as in Fig.(8). PSF leads to negligible oscil-
lations, while the MP correlation leads to strong oscillations.
To see the origin of the latter, we also plot in Fig. 10 the MP
correlation signal obtained after neglecting the LLO coherent
density source ternP5P5* in the equation of motion, Eq.
(72), of M(t); the oscillations diminish in the latter case. To
interpret all these, we note that for the excitation conditions
FIG. 9. Temporal profile of the FWM spectrum at the LLO peak Of Fig. 5(d), we havePg> P}, and the density of LLO car-
frequency(full line) and the LL1 peak frequendgashed ling The  riers far exceeds that of LL1 carriers. In fact, here the PSF
two signals have been normalized for clarity. contribution exceeds the MP correlation contribution. Most

1

o o o
=N [=} o0
T [ T

FWM (arb. units)

o
N
I

0
Time delay(fs)
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1

Markovian dephasing. We showed that such effects dominate
the time delay and frequency dependence of the transient
FWM spectrum. FWM spectroscopy using femtosecond op-

08 tical pulses provides both the time and the frequency resolu-
- tion necessary to access this new regime of 2DEG physics.
§ 0.6 Our theory allowed us to study in a systematic way the ex-
s perimental signatures of the 2DEG quantum dynamics. We
2 predicted, in particular, a resonant enhancement of the lowest
§ 0.4 LL FWM signal, a strong dephasing of the next LL magne-
a9}

toexciton, a symmetric FWM temporal profile, and strong
oscillations a as function of time delay with a strong quan-
tum Kkinetic contribution. Such predicitions agree with recent
experimental dat&

The above correlation-induced dynamics can be con-
trolled by tuning the central frequency of the optical excita-
tion between the two lowest LL's, which changes the coher-

FIG. 10. PSHdashed-dotted lineand MP correlatiorffull line) ent admixture of the two MP-dressed magnetoexcitons, or
contributions to the FWM signal at the LLO frequency, normalizedvia coherent control experiments using phase-locked optical
to unity for clarity, for photoexcitation as in Fig(d. We also plot  pulses® Such experiments, as well as circularly polarized
the MP correlation signaldotted ling without the LLO coherent  optical pulses, access the very early dynamics of the strongly
density source term of1(t) in Eq. (72). Note the almost complete correlated 2DEG, during time scales shorter than the dura-
absence of oscillations in the latter and in the PSF contribution. tion of the interactions. Such temporal and spectral resolu-

tions open up alternative ways to observe fractional QHE
importantly, the LLO coherent density source term/ef is  noninstantaneous correlations, as well as magnon, exciton-
now larger than the source terﬁtpg* that gives the reso- magnetoroton, charged exciton, and skyrmion effects.
nant MP contribution. Even thougPgP5* gives a nonreso-
nant contribution toM(t), asP§ exceedsP! this contribu- ACKNOWLEDGMENTS
tion becomes comparable in magnitude to the resonant
contribution due tPLP5* . The beating between the above _ We thank T. V. Shahbazyan and C. Stéufor valuable
two resonant and nonresonant processes gives rise to tgScussions. This work was supported by the US Department
strong oscillations. By shifting the excitation frequency fur- Of Energy under Contracts No. DE-AC03-76SF00QB@r-
ther towards LLO, eventually the PSF contribution domi-Keley) and DE-FG02-01ER45916.E.P), and by DARPA/
nates, and the FWM dephasing is determined by thePINS(L.E.P).
electron-phonon and intra-LL dephasing proce$Ses.
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APPENDIX A

Vill. CONCLUSIONS In this appendix we derive some useful expressions for

In summary, we presented a theory that provides a unifiethe operator¥;, Eq.(22), in the case of the ideal 2D system
description of the ultrafast nonlinear optical response of alisplaying electron-hole symmetry. To describe the
large class of semiconductor systems with a strongly corremagnetic-field effects, we choose to work in the Landau
lated many-electron ground-state. Our main result, (B@), gaugeA=(0,Bx,0). The eigenstates of the kinetic energy
gives the equation of motion for the third-order nonlinearoperator are then characterized by theomponent of the
polarization measured in transient wave mixing and pumpmomentumk, and the LL indexn. The electron eigenstate
probe experiments, and allows us to study the role of they ), and hole eigenstatey(,), in this gauge are given
correlations and the interplay between coherent and incohepy?®-37
ent effects. Our expansion in terms of the optical field is

valid for sufficiently short pulses and/or weak excitation con- elky o
ditions, where the correlations are most pronounced. Our Po(r) = —=W (X—X), (1) =" (1), (A1)
theoretical framework allows us to describe the role of the JL

long-lived collective excitations of a strongly correlated cold )

electron gas, which is present prior to the optical excitationWhere a=(k,n,o), —a=(-k,n,s), and the spins wave
Our theory was applied to the case of the 2DEG in afunction is kept implicit. In the above equatiol,, is the

strong magnetic field. Our numerical solution for photoexci-€igenfunction of the 1D harmonic oscillator with frequency

tation close to the LL1 energy with* —o* circularly po- ~ €qual to the cyclotron frequency,=kI* is thex coordinate

larized light suggests alternative experimental signatures d¥f the cyclotron orbit centet,= (.c/eB)*? is the magnetic

collective and correlation effects. In this case the relevantength(Larmor radiug, andL is the system siz&:%

2DEG collective excitations are the long-lived inter-LL mag- The operatorY; is determined by the commutator

netoplasmons, which dress the photoexcited magnetoexdiX;,Hin:], where the Hamiltoniai;,;=Veet Vihnt Vep, de-

tons and lead to polaroniclike effects and strong non-scribes the Coulomb interactions:
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1 o o vij :vji 'veh o
Hmt:zf drdr’u(r=r)[ g (1 g(r) = (1) (n)] st T aate i Tt T 0 s
ee hh ee
Ualaz a3a4ivfa4 03 ala2 va3a4,fa27a1'

X[Tr)yp(r) =g, (A2)

where ¢'(r) is the electron creation operataf; (r) is the The commutatoffh_ &, H, ] can be calculated from Eq.

hole creation operator, andr) is the Coulomb potential. By A3). Using Eq.(AL1) and some algebra, we obtain
expanding the above creation operators in the Landau basigs, ' ' '

we transform the HamiltoniahEg. (A2)] into the familiar

(A1)

form [h—aeaiHint]: - E Uaaz ala aleaz
ajap
Hye o 18! Bk, e ara
int— o a1a§3a4 [Ualaz agay-az-ag + E [Ua ay.aa’ ealea2
hh AT AT eh [
J’_ A~ A A A
Vayag,agaylag alhazh% Vajay,azay “3eale h —hiazh,al)h,aear—(aHa’)].
he AT AT R A
_valaz,a3a4ea3halha2ea4]v (A3) (AlZ)

After summing overk, and recalling definitior{4) of the X
operators and the definition &f,,, the left-hand side of the
above equation becomes the commutatdﬁ[xm,,Hmt].
Using the properties

where, in the ideal 2D system, the Coulomb interaction ma*
trix elementsy ) (with i,j=e,h) are given by

ij da_ i j
Vhiog aaes™ | st aF e Dby, (). (A0
Ek) Fre, (D Fie k(=) = S i, (A13)
wherevq=27-re2/q is the Coulomb potential, and

and

F oy, (d)= f dryy (r)e el "o, (1),
f qu(Q)¢nn2(Q) (bnln(_q): 5nl,n2j qu(Q)|¢nn1(q)|21

o (A14)
“1“2(q) f dr (e Wa(1). (A5) we obtain after using Eq4) and some algebra
Following Ref. 26, we obtain

[S(noaHint]: _E V?m/(,(l_ Vn’u)f(n’a
n/

F& (D = @nn,(D T, (A 6, o,y (A6)
where el e, —h" h_,
/Nna' alzaz( a2 a2 1)
; 2
fgo(@) =gtz (oo (A7) .
X E [valaz knk’n’h kn<rek’n o (an )]
and form=n, we have kk'n’
JJmen 22 (A15)
n' (—aytigy) _al 4 22
Pmn(Q) = m| 2 Lo " = e %4 where
(A8) . 1 dq
m—n : . . Vnn’(r: J’ qu|¢nn (q)|

whereL " " is the generalized Laguerre polynomial,(q) V=) (1= ) ) (27)
for m<n can be obtained by using the property (Al6)

(=0 (—q) (A9) We now restrict to the first two LL's, which dominate the

Pmnl @)= @nm( —A)- optical spectra for the excitation conditions of interest. Re-
Using Eq.(Al) we obtain from Eq(A5), calling Eq.(22) we see that the operatd, is determined by
the last term of Eq(A15). The only nonzero contribution to
(q)=F® (q). (A10)  this term comes from’#n, and therefore’ =1 if n=0, or
0‘1”‘2 Ta.T

n'=0 if n=1. As a result, the rhs of EgA15) changes sign

The following symmetry relations can be shown by using thebeétweenn=0 andn=1, and we obtain Eq(53). The ex-
above relations: plicit expression for the operatdf,=1—v,,Y1, can then

035316-17



KARATHANOS, PERAKIS, FROMER, AND CHEMLA

be obtained straightforwardly by subtracting tkeontribu-
tions defined in Eq(22) from the operator

1

/\«t ~ /\T ~
— 2 (e N A e
\/Npp’k

k'mm’ o’

ee

X (vpmp’m"klk’oh*klu'ekloo'

ee ~ ~
_Upmp’m’,kok'lhkaaek’la)- (A17)

The subtracte contributions describe corrections to tKe

energies and Coulomb-induced LL coupling due to the

2DEG. As discussed in Sec. VI, for photoexcitation with
circularly polarized light, we have that= | . For filling fac-

tors close tov=1, the spin} states are empty. We can then
decompose EqAL17) into theo’ = | term that describes the

PHYSICAL REVIEW B67, 035316 (2003

We have (X;Xj|X1Xg)=(XiXi|X; X;:)=0 due to the or-
thogonality of the valence hole states, whilé;|X;|X;X,)
=0 due to Eq(69). Using the above, Eq22) for the com-
mutator[H,X1], Eq. (19) for the statesH|X,) and (X;|H,
and Eq.(B2), we obtain after some algebra that

(Bii| X1Xo) = 2V;i (X1 Xo| X1 X0) — Vor{ X Xi| X X0)

X-X interactions, and the’ =1 term that mainly describes ©btained from Eq(6), we finally obtain

X-MP interactions.

APPENDIX B

In this appendix we evaluate the HRK-X potentials
(Biil X;X;.) in the ideal 2D system. We considet. photo-
excitation and filling factors close to=1 so that Eq(69)
applies. Recalling definitiof27), we obtain from Eq(A17)

after using the propertyX; ,X;]1=0 that

<Blo",na'|

! s

[vS¢ h e
no'VNlo
~ ~ ee ~ ~
X h—kla”ek’Oo" _Upn’p/n,klk’oh—pn’aep’mr

A ~ ee A~ -~
X h,klo.rekrog.r _vpnp’n’,kok’lh*pnaep’n’v

~ ~ ee
XN ko €k 10" TV g prn koK' 1

><h—pn'(rep'nah—kOo'ek’10’]- (Bl)

= V1 X X[ X1 Xy). (B4)
Using the relationgXyX;|X;Xy)=1 and
1
I
N|<B”|X1XO>=2V“/, i"#i. (86)

The above relation recovers the results of Ref. 43.

APPENDIX C

In this appendix we derive some useful relations for the

overlap(2DEG*|M;;), where|2DEG") is any 2DEG ex-
cited state, for filling factors close te=1 and foro, po-
larized light. Using Eqs(32) and (53), we obtain

N3 M) =Ng“YoX{]0) = = Ny"*¥1X{|0) = = Ni*My).

(Cy
From Eg.(32) we obtain after using Eq22),
My =Xi[ Yir) = (H+ Q= Qi) X[ %)
+J§ v”-5<j|xi,>—j§¢}i Vi XilXp).  (C2)

The only nonzero contribution to the above equationThe state5(i|Yi,> describes a 2DEG excitation, created via

comes fromn’#n. Noting the LL indices, we see that, for

the conditions considered here, we have

Substituting the definition ofr; [Eq. (22)], into Eq. (27),
restricting to the first two LL's, and denoting+i, we ob-
tain that

(Bii] X1 Xo) = (XiXi HX][ Xo) = (Xi| HXi| X1 Xo)
— Q(XiX{| X1 Xg) + Vi (X1 X0 X1 Xo)

—(YilXi|X1Xo)- (B3)

the process shown in the first three panels of Fig. 3. Using

Eg. (69) and the property2DEG*|H|0)=0, we obtain

(2DEG*|Mj;/)=(2DEG* | X;|Y;/). (C3
Using Eq.(53, we then obtain
NG % 2DEG¥|M ;) =Ng% 2DEG*|X{| Yo)
= —N7A2DEG[X|| Y1)
=—N}42DEG"|M;,). (C4)
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