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Ultrafast nonlinear optical response of strongly correlated systems:
Dynamics in the quantum Hall effect regime
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We present a theoretical formulation of the coherent ultrafast nonlinear optical response of a strongly
correlated system and discuss an example where the Coulomb correlations dominate. We separate out the
correlated contributions to the third-order nonlinear polarization, and identify non-Markovian dephasing effects
coming from the noninstantaneous interactions and propagation in time of the collective excitations of the
many-body system. We discuss the signatures, in the time and frequency dependence of the four-wave-mixing
~FWM! spectrum, of the inter-Landau level magnetoplasmon excitations of the two-dimensional electron gas in
a perpendicular magnetic field. We predict a resonant enhancement of the lowest Landau-level~LL ! FWM
signal, a strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric FWM temporal
profile, and strong oscillations as a function of time delay, of quantum kinetic origin. We show that the
correlation effects can be controlled experimentally by tuning the central frequency of the optical excitation
between the two lowest LL’s.
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I. INTRODUCTION

The properties of systems far from equilibrium and,
particular, the role of many-body and collective effects
the femtosecond and the nanometer scale present relat
unexplored frontiers of condensed-matter physics.1–5 Such
problems are particularly challenging in semiconducto
where the time intervals of interest are often shorter than
interaction times and oscillation periods of the element
excitations.1,2,6,7 Examples of well-established pictures f
the interaction processes that need to be revised in this
gime include the semiclassical Boltzmann picture of poi
like particles experiencing instantaneous collisions and
thermal bath pictures of relaxation and dephasing.2,6,7 Even
the notion of weakly interacting ‘‘quasiparticles,’’ a corne
stone of condensed-matter physics, must be revisited w
describing the ultrafast nonlinear optical response.1

Wave-mixing experiments are ideally suited for explori
quantum coherence and collective and correlation effect
semiconductor nanostructures.1–3 Time-dependent interac
tions and correlations dominate the four-wave-mixi
~FWM! signal during negative time delays, where the Pa
blocking effects vanish.1,2 The treatment of such interaction
within the time-dependent Hartree-Fock ~HF!
approximation5 predicts anasymmetrictemporal profile of
the FWM signal.1–3 The negative time delay signal generat
by mean-field exciton-exciton interactions decays twice
fast as the positive time delay signal. The observation
strong deviations from this asymmetric HF temporal pro
in undoped semiconductors was attributed to exciton-exc
correlations.1,2

The importance of many-body effects in determining t
time and frequency profile of the ultrafast nonlinear opti
spectra may be traced microscopically to the coupling,
0163-1829/2003/67~3!/035316~19!/$20.00 67 0353
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the interactions, of the one-particle density matrix that d
scribes the optical polarization measured in the experim
to many-particle correlation functions~e.g. the higher density
matrices!.2,4,8 The latter are factorized within the time
dependent HF approximation.5 The correlation-induced fluc
tuations, described by the deviations from the factoriz
form, generate a new FWM signal, which can display a d
tinct time and frequency dependence as compared to
mean-field signal. Such correlation effects are most p
nounced during time scales shorter than the character
times associated with the interaction processes.2,9

To describe the above nonequilibrium many-body effec
one must use a controlled truncation of the infinite hierarc
of coupled density matrix or Green’s function equations.
undoped semiconductors, this hierarchy truncates if
adopts an expansion in terms of the optical fields.4,8–12This
is the case since~a! in the ground state, the conduction ban
is empty and the valence band is full, and~b! the Coulomb-
induced coupling of the conduction and valence bands
e.g., Auger-like processes is negligible: in the absence
optical fields, the numbers of conduction-band electrons
valence-band holes are independently conserved. In undo
semiconductors, the lowest electronic excitations of
ground-state electrons are the high-energy interbande-h
pairs, which can adjust almost instantaneously to the dyn
ics of the photoexcited carriers.13 The photoexcitede-h pairs
then behave as quasiparticles with mutual interactions, w
the ground state can be considered as rigid. In this case
many-body nature of the system only affects the differ
parameters associated with the band structure and the di
tric screening,14 and the only Coulomb correlations that r
quire consideration are dynamically generated by the opt
excitation.8 The almost unexplored dynamics of strongly co
related systems, whose ground-state electrons interact
©2003 The American Physical Society16-1
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adiabatically with the photoexcitede-h pairs, raises very
fundamental questions.

A widely used theoretical approach for treating the abo
many-body effects in undoped semiconductors is
‘‘dynamics-controlled truncation scheme’’~DCTS!.8,10,11,15

In this theory, the response of the semiconductor is expan
in terms of the number of createde-h pairs. Importantly, the
Coulomb interactions that contribute to a specified orde
the applied field only occur between suche-h pairs. This is
the case since there is the correspondence between the
ber of e-h pairs and the sequence of photon absorption
emission, and there are no carriers in the ground stat
interact with the photoexcited carriers. The latter condition
not met, however, in doped quantum wells, where a co
lated two-dimensional electron gas~2DEG! is present in the
ground state, and the DCTS fails there.11 A new method that
extends the DCTS principles to systems with a strongly c
related ground state is required. In a series of works
applied a theory based on a canonical transformation
time-dependent coherent states to study the case wher
interactions between the photoexcitede-h pairs and the elec
tron Fermi sea~FS! excitations dominate the coherent no
linear optical response.9,16,17

In FS systems, the direct exciton-exciton interactio
which dominate the nonlinear response in undoped semi
ductors, are screened, and the nonlinear response is d
mined by the FS excitations. For resonant photoexcitat
the optical dynamics is dominated by inelastic electro
electron (e-e) scattering processes.18,19At low temperatures,
the dephasing times close to the Fermi edge increase
few picoseconds, in agreement with Fermi liquid theory18

For below-resonanceexcitation, however, the dissipatio
processes are suppressed and coherent effects domina
novel dynamics of the Fermi edge singularity is th
observed,16,20due to many-body correlations of the photoe
cited holes with the FS excitations.9,17,20

In the absence of long-lived excitations, a many-parti
system, such as a FS, interacts with the photoexcitede-h
pairs almost instantaneously, i.e., during time scales sho
than the pulse duration. The system then behaves to
approximation as a thermal bath, and its interactions with
photoexcited carriers can be treated within the dephasing
relaxation time approximations. This is not the case, ho
ever, if the duration of the interactions is comparable to
longer than the measurement times.17 In the latter case, the
semiclassical instantaneous collision picture breaks do
and quantum-mechanical interference effects lead to no
ponential decay and non-Markovian memory effects.2,6,7,21

To study dephasing in the above quantum kinetic regime,
must account for the time evolution of thecoupledphotoex-
cited carrier–FS system.9,17

The change in the energy spectrum caused by a per
dicular magnetic field restricts the phase space available
e-e scattering in doped quantum wells~QW’s!.22 For strong
magnetic fields, the Coulomb correlations are enhanced
to the suppression of the kinetic energy.23 In the quantum
Hall effect ~QHE! regime,23,24 long-lived collective excita-
tions dominate the 2DEG spectrum.25–28 Recently, the first
experimental studies of the role of such collective excitatio
03531
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in the ultrafast nonlinear optical dynamics we
reported.29–31The presence of low-energy excitations and t
strongly correlated ground state raise formidable theoret
difficulties for describing the dephasing dynamics of t
2DEG.

We are interested in developing a theoretical framew
for describing the ultrafast dephasing and the nonlinear
tical response of strongly correlated systems. Examples
systems of interest include modulation-doped semicondu
QW’s, where different strongly correlated ground-states
realized in the QHE regime, and the ferromagnetic semic
ductors doped with magnetic impurities. In the first part
the paper~Secs. II–V! we describe the third-order nonlinea
optical response of a many-electron two-band system w
out assuming a HF or other specific ground state. In
second part~Secs. VI and VII! we study the role of the inter–
Landau-Level~inter-LL! magnetoplasmon~MP! collective
excitations in the transient FWM spectrum of the co
2DEG. Here we concentrate on filling factors close ton
51, where the spin-↑ ground-state electrons lead to ferr
magnetic properties~QHE ferromagnet!, and the excitation
spectrum is governed by strong Coulomb correlations.32–34

We consider photoexcitation withs1 circularly polarized
light, in which case only spin-↓ electrons are excited and th
MP collective excitations play the most important role.30 Our
results explain the most salient qualitative features of
transient FWM spectrum observed in recent experiments30

Our theory applies to a two-band system described b
Hamiltonian that independently conserves the number
conduction-band electrons and valence-band holes, e.g.
GaAs/AlGaAs QW’s.5 We describe the coupling to the opt
cal field within the dipole approximation, and neglect a
stimulated emission. We consider zero temperature, whic
adequate for describing correlations that require thermal
ergies smaller than the excitation and interaction energie
the system in order to be observed. The third-order polar
tion calculated here is expected to describe the nonlin
optical signal when the photoexcited carrier density
smaller than the density of the ground-state electrons
which case the cold 2DEG correlations prevail.

The outline of the paper is as follows. In Sec. II we set
the general problem and discuss the nature of the states
contribute to the optical spectra. In Sec. III we study the ti
evolution of the system, and introduce a decomposition
the photoexcited many-body states, which allows us to c
sify the different interaction contributions. In Sec. IV we u
the above decomposition to derive the equation of motion
the third-order nonlinear polarization, Eq.~37!. The decom-
positions introduced in Sec. III allow us to distinguish th
coherent and excitonic effects from the incoherent effe
and separate out the factorizable from the correlated non
ear polarization contributions even in the case of a stron
correlated ground-state. In Sec. V we discuss an exampl
a basis of strongly correlated states that can be used to o
equations of motion for the correlation functions that d
scribe the many-body effects. In Sec. VI we derive a gen
alized average polarization model2,15,36,37that we use to iden-
tify the signatures of the collective 2DEG excitations in t
time-dependent FWM spectra. The ground-state correlat
6-2
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ULTRAFAST NONLINEAR OPTICAL RESPONSE OF . . . PHYSICAL REVIEW B 67, 035316 ~2003!
determine the interaction parameters in the equations of
tion. We derive in the Appendixes a number of relatio
among such interaction parameters that are imposed by
electron-hole symmetry of the ideal 2DEG. In Sec. VII w
present numerical results that describe the correlat
induced ultrafast dynamics predicted by the above mo
We identify a number of interesting features in the tim
dependent FWM spectrum, which arise from the propaga
in time of the inter-LL MP’s and their noninstantaneous
teractions with the photoexcited excitons. We end with
conclusions.

II. PROBLEM SETUP

We are interested in developing a comprehensive
proach to the problem of the nonlinear optical response
the case of photoexcitation from the valence to the cond
tion band. Within the dipole approximation, the coupling
the optical field can be described by the Hamiltonian5 (\
51)

H tot~ t !5H2mE~ t !X̂†2mE* ~ t !X̂. ~1!

In the above equation,H is the ‘‘bare’’ many-body Hamil-
tonian that describes the band-structure effects and the i
actions,E(t) is the applied optical field,X̂ is the optical
transition operator, andm is the interband transition matri
element. In the case of a semiconductor QW containin
2DEG in a magnetic field, the HamiltonianH has the form5

H5(
i ,k

@Eg1Vc
c~ i 11/2!#êk,i

† êk,i

1(
i ,k

Vc
v~ i 11/2!ĥ2k,i

† ĥ2k,i1Vee1Vhh1Veh , ~2!

whereEg is the band gap, andVee,Veh , andVhh are, respec-
tively, the e-e, e-h, andh-h interactions~see Appendix A!.
The magnetic field splits the conduction and valence ba
into discrete electron~e! and hole~h! LL’s, e-LL i andh-LL i,
where i includes both the LL index and the spin.êk,i

† is the
creation operator of the LLi conduction-band electron, with
cyclotron energyVc

c , andĥk,i
† is the creation operator of th

LL i valence-band hole, with cyclotron energyVc
v ~see Ap-

pendix A!.26 The optical transition operatorX̂† is expanded
in terms of interbande-h pair creation operatorsX̂i

† that we
refer to as the exciton (X) operators from now on:

X̂†5(
i

ANiX̂i
† . ~3!

In the case of the 2DEG in a magnetic field, it is conveni
to introduce the LLi magnetoexciton statesuXi&5X̂i

†u0&,
whereu0& is the ground eigenstate of the many-body Ham
tonianH, with full valence band and the 2DEG at rest. T
eigenvalue equationHu0&50 defines the ground-state e
ergy as the reference point. In the ideal system,

X̂i
†5

1

ANi
(

k
êk,i

† ĥ2k,i
† , ~4!
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whereNi5N(12n i), with N5L2/2p l 2 being the LL degen-
eracy,l the magnetic length,L the system size, and

n i5
1

N (
k

^0uêk,i
† êk,i u0& ~5!

gives the filling of LLi in the absence of optical excitation
Note that the exciton statesuXi& are strongly correlated: the
are created by the operatorX̂i

† acting on the ground eigen
state of the many-body HamiltonianH, which describes the
correlated electron gas at rest. From Eq.~4! we obtain the
commutation relation

@X̂i ,X̂j
†#5d i j S 12

DN̂i

Ni
D , ~6!

where the operator

DN̂i5(
k

~ ĥ2k,i
† ĥ2k,i1êk,i

† êk,i !2Nn i , ~7!

with ^0uDN̂i u0&50, describes the number of photoexcite
carriers in LLi.

The optical spectra are determined by the polarization
the photoexcited system,

P~ t !5m^cuX̂uc&5m(
i

ANi Pi~ t !, ~8!

wherePi are the average values of the exciton operators

Pi~ t !5^cuX̂i uc&. ~9!

The stateuc(t)& evolves from the state of the system prior
the optical excitation according to the Schro¨dinger equation
for the HamiltonianHtot(t). For zero temperature, this initia
state is the lowest many-body eigenstateu0& and describes al
correlations in the absence of optical fields.

As in the theoretical approaches of Refs. 11 and 12, th
is a one-to-one correspondence between the pho
absorption/emission and thee-h pair creation/destruction
Since an electron gas may be present in the ground-state
classify the photoexcited states in terms of the number
valence-band holes, i.e., the number of missing valence-b
electrons as compared to the ground-stateu0&. We thus de-
compose the optically excited stateuc& as

uc&5uc0&1uc1&1uc2&, ~10!

where ucn& is the collective n-h photoexcited state. The
above holes interact strongly with the 2DEG.34 Note that the
states withn>3 do not contribute to the third-order nonlin
ear polarization.4

Substituting Eq.~10! into the Schro¨dinger equation for the
HamiltonianHtot(t), we obtain up to third order in the op
tical field that

i ] tuc0&2Huc0&52mE* X̂uc1&, ~11!

i ] tuc1&2Huc1&52mEX̂†uc0&2mE* X̂uc2&, ~12!
6-3
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FIG. 1. Photoexcitation of the intermediate~a! 02h, uc0&, and~b! 22h, uc2&, states via the nonlinear optical processes that contrib
to the FWM spectrum. To third order in the optical fields, the coherent emission of aks photon in the FWM directionks52k22k1 is
determined by the excitation of twoe-h pairs by the optical fieldk2, and the deexcitation of onee-h pair by the optical fieldk1. Although
in a coherent FWM experiment we must begin and end the nonlinear excitation process with the system in its ground state, the int
02h state does not need to be the ground-stateu0&, but can contain electron-gas excitations. The above optical transitions are assis
Coulomb interactions, which lead to the correlations discussed in Sec. III.
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i ] tuc2&2Huc2&52mEX̂†uc1&, ~13!

with initial condition ucn(2`)&5dn,0u0&, where the Hamil-
tonianH includes the degrees of freedom which lead to
dephasing. The physics of the above equations is clearly
played:uc0& is coupled touc1& by the destruction of onee-h
pair, uc1& is coupled touc2& by the destruction of onee-h
pair and touc0& by the creation of onee-h pair, anduc2& is
coupled touc1& by the creation of onee-h pair. Figure 1
shows the optical transitions that determine the FWM sig
up to third order in the optical field. It is worth noting tha
by retaining in the expansion, Eq.~10!, states with higherh
numbers, one can extend Eqs.~11!–~13! to treat higher order
nonlinear processes.

Even if we restrict ourselves to the electronic degrees
freedom, the Hilbert space of states that determine the
trafast nonlinear response of a doped QW is complica
Strictly speaking, it contains all the states that can be ge
ated through the coupling ofe-h pairs photoexcited in any o
the QW subbands with all the excitations of the 2DEG: pl
mons, magnons, incoherent pairs, etc. For the purpos
developing an intuitive picture of the important physical pr
cesses, it is useful to first discuss qualitatively the ensem
of states that are most relevant to the problem at hand.

For the experimental conditions considered in the sec
part of the paper, the most important 2DEG excitations
the collective inter-LL MP modes that arise from the coh
ent promotion of a LL0 electron to a higher LL.25,26Such MP
eigenstates are well approximated by the form23

uMq&5(
k j j 8

r j j 8~q!êk1qy , j
† êk, j 8u0&, ~14!

where u0& is the strongly correlated ground state and
amplitudesr j j 8(q) are related to the LLj 8 → LL j contribu-
tion to the density operator. Note that, similar to the exci
statesuXi&, the above MP states are strongly correlated.
the magnetic fields of interest, in the ground stateu0&, only
e-LL0 is partially filled with the 2DEG at rest, while all the
h-LL states are empty~full valence band!. Since we focus on
photoexcitation of the LL0 and LL1 optical transitions, th
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main contribution to the optical spectra comes from the re
nant LL0→LL1 MP’s, whose energy is close to th
LL0→LL1 energy.25,26

It is useful to make the junction with two domains we
studied in the recent literature: photoexcited undoped Q
and 2DEG in the QHE regime. One can distinguish betwe
the excitations of two subsystems:~i! the QW interband ex-
citations ~with the 2DEG at rest!, which consist of 1e-h,
2e-h, . . . pairs created in the different QW LL’s, and~ii !
the 2DEG excitations~with unexcited QW and full valence
band!, i.e., the 1-MP, 2-MP, . . . states, etc. The ensemble
states that determine the third-order nonlinear optical spe
can then be thought as consisting ofl e-h pairs,l<2, andn
2DEG excitations. For photoexcitation of the LL0 and LL
exciton transitions, the inter-LL MP provides a resonant co
pling of the two LL’s, since its energy is comparable to t
LL0 → LL1 excitation energy. In contrast, the LLi exciton
states withi>3, the states withn>2 MP’s, and the con-
tinuum of incoherent 2DEG pair excitations analogous to
ones in an ordinary Fermi liquid23 contribute to the optical
spectra via nonresonant processes.

One can draw an analogy between theX-MP effects of
interest here and theX-phonon interaction effects studied i
undoped semiconductors.6–8,11,21,39However, there are som
important differences. In the undoped system, the electro
operators commute with the collective excitation~phonon!
operators, and the ground-state correlations can be negle
One can then expand the stateuc& in terms of a basis con
sisting of products of phonon wave functions timese-h pair
two-particle wave functions. In contrast, a MP is an ele
tronic excitation@see Eq.~14!#, and its creation operator ma
not commute with other electronic operators. Pauli excha
effects must then be considered, while, unlike for phono
MP’s do not strictly obey Bose-Einstein statistics. Impo
tantly, one must treat the strong correlations of the grou
state electrons. Issues such as the above complicate th
of a simple basis to calculate the nonlinear optical respo
of the 2DEG. In Sec. V we discuss an example of a stron
correlated basis set that can be used to address the a
issues. An important advantage of this particular basis is
6-4
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it facilitates the development of a simple model that d
scribes the most salient dynamical features of the ultra
nonlinear optical spectra.

III. TIME-DEPENDENT INTERACTION EFFECTS

In this section we consider the time evolution of t
coupled photoexcited carrier–2DEG system that leads to
dephasing of thee-h polarization. We are mainly intereste
in dephasing due to electronic degrees of freedom, and
the distinction between the photoexcited carriers and
‘‘bath’’ excitations is less clear as compared, e.g., to the c
of a phonon bath. We address this issue by separating ou
excitonic contribution directly excited by the optical fie
~2DEG at rest! from the contribution of the excited 2DEG
configurations~denoted by 2DEG* from now on! that lead
to the dephasing. For this we decompose the 12h photoex-
cited state as follows:

uc1&5(
i

Pi
LuXi&1uc̄1&, ~15!

whereuc̄1& is the$12h/2DEG*% contribution defined by the
condition ^Xi uc̄1&50, and the exciton amplitude

Pi
L5^Xi uc1&5^0uX̂i uc& ~16!

reduces to the linear polarization to first order in the opti
field. To describe the two-photon nonlinear optical proces
in Fig. 1, we must consider, in addition to theX-2DEG in-
teractions, the X-X and X-uc̄1& interactions during the opti
cal transitions. For this we first separate out the total in
action contribution to the 22h and 02h intermediate states
uc2& and uc0&, respectively, and then identify the particul
contributions due to the interactions among the aboveh
excitations that lead to the correlation effects:

uc2&5
1

2 (
i i 8

Pi
LPi 8

L uXiXi 8&1uc2
int&,

uc2
int&5(

i
Pi

LX̂i
†uc̄1&1uc̄2&, ~17!

where the stateuXiXi 8&5X̂i
†X̂i 8

† u0& describes two noninter
actingX’s, and

uc0&5^0uc&u0&1uc0
int&,

uc0
int&52(

i
Pi

L* X̂i uc̄1&1uc̄0&, ~18!

where we have separated out the ground-state contribu
from the 2DEG* contributions by requiring that̂0uc0

int&
5^0uc̄0&50.

The above decompositions are analogous to the cumu
introduced within the DCTS for the case of undop
semiconductors.8,11 Such cumulants were obtained by su
tracting the factorized contributions from the many-bo
correlation functions. Note, however, that the method p
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sented below also holds in the case where strongly correl
carriers are present in the ground state, as in the 2DEG c
where the assumptions of the DCTS break down. The
compositions of the statesuc0

int&, uc2
int&, anduc1& also allow

us to separate out, in the equations of motion@Eqs.~11!, ~12!,
and ~13!#, the source terms proportional to the optical fie
from the source terms proportional to the polarizationsPi

L ,
which lead to different time dependences. The photoexc
statesuc̄0&, uc̄1&, anduc̄2& describe correlated contributions
whose physical origin will be discussed below.

We now derive the equations of motion of the above ph
toexcited states, which we will use in the following sectio
to derive the nonlinear polarization equation of motion a
separate out the factorizable contributions. It is easies
start with the 1-h time-evolved state. Equation~15! splits
this state into excitonic~2DEG at rest! and $12h/2DEG*%
parts,Pi

L(t) anduc̄1&, respectively. The stateuc̄1& originates
from theX-2DEG scattering during the time evolution of th
photoexcitedX. To describe such interactions, we consid
the action of the HamiltonianH on the exciton statesuXi&.
By subtracting all the exciton contributions, the stateHuXi&
can be expressed in the form

HuXi&5V i uXi&2 (
i 8Þ i

Vi 8 i uXi 8&1uYi&, ~19!

where

V i5^Xi uHuXi& ~20!

is theXi energy,

Vi 8 i52^Xi 8uHuXi&5Vii* ~21!

describes the Coulomb-induced coupling of the differentX’s,
and uYi&5Ŷi

†u0&, where the operator

Ŷi5@X̂i ,H#2V i X̂i1 (
i 8Þ i

Vii 8X̂i ~22!

describes the interactions betweenXi and the rest of the car
riers present in the system.

As one can see by using the above equations, the s
uYi& is orthogonal to all exciton statesuXj&, ^Yi uXj&50, and
is therefore the$12h/2DEG*% state into whichXi can scat-
ter by interacting with the 2DEG. For the experimental co
ditions of particular interest here, the most important con
bution to uYi&, Eq. ~A17!, comes from X-MP states. To se
this, let us consider the possible final scattering states of
LL1 excitonX1. Its LL1 electron can scatter to LL0 by emit
ting a LL0 → LL1 MP, a process shown in Fig. 2. Since th
MP energy is close to thee-LL0 → e-LL1 energy spacing,
the above scattering process is almost resonant. It there
provides an efficient decay channel of the LL1 exciton to
$1-MP11-LL0-e11-LL1-h% four-particle excitation of the
ground-stateu0&. All other allowed scattering processes a
nonresonant. TheX1 hole can scatter to LL0 by emitting
MP, which leads to a$1-MP11-LL0-e11-LL1-h% four-
particle excitation. The latter state, however, has energy
is significantly higher, by an amount of the order of;Vc

c

6-5
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1Vc
v , from that of the initialX1 state. Note that, as shown i

Appendix A, in the electron-hole symmetric limit theX elec-
tron or hole must change LL during the scattering process
the case ofX0, the LL0 electron can scatter to LL1 by emi
ting a MP, so thatX0→ $1-MP11-LL0-e11-LL1-h%, or
the LL1 hole can scatter to LL0, in which caseX0
→$1-MP11-LL0-e11-LL1-h%. uY0& is thus a linear com-
bination of the same final states asuY1&. However, in this
case the energy of all final states is significantly higher th
that of the initial stateuX0&. Therefore, the decay of the LL
exciton is suppressed as compared to that of the LL1~or
higher! exciton. Note that the distinction between reson
and nonresonant interaction processes is most pronou
when the inter-LL excitation energy, of the order of the c
clotron energy exceeds the characteristic 2DEG Coulo
correlation energy;e2/ l . Expansions in terms of the ratio o
the above two energies are known to capture most of
2DEG correlation effects.23,25,34

We now describe the time evolution, to first order in t
optical field, of the 1-h photoexcited stateuc1&. The equa-
tion of motion for the linear polarizationPi

L can be derived
by projecting the exciton statêXi u to the truncated Eq.~12!
and applying Eq.~19!:

i ] tPi
L5V i Pi

L2 (
i 8Þ i

Vii 8Pi 8
L

1 P̄i
L2mE~ t !Ni

1/2. ~23!

The correlation function

P̄i
L5^Yi uc1&5^Yi uc̄1&, ~24!

discussed in Sec. V, describes the dephasing ofPi
L and

screening effects.
Substituting the decomposition@Eq. ~15!# into the Schro¨-

dinger equation@Eq. ~12!# and using Eqs.~23! and ~19!, we
obtain the equation of motion of the$12h/2DEG*% contri-
bution uc̄1&:

FIG. 2. Photoexcitation of the exciton state,uX1&, and then of
the X-MP stateuY1& via resonantX-2DEG scattering.
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i ] tuc̄1&2Huc̄1&5(
i

@Pi
LuYi&2 P̄i

LuXi ]. ~25!

The operatorPi
LŶi

†2 P̄i
LX̂i

† also appears in the equation o
motion of the 2h state. Its first term describes the scatteri
of Xi with the 2DEG, while its second term compensates
the dephasing ofPi

L and ensures the orthogonality^Xi uc̄1&
50.

We can perform a similar analysis of the time-evolved
2h state by separating out in Eq.~17! the contribution of the
noninteracting two-exciton statesuXiXi 8&.

12,37This contribu-
tion describes the time evolution of the twoX’s photoexcited
by the optical field in the absence of interactions. Howev
the two X’s interact with each other as well as with th
2DEG, as described by the equation

HuXiXi 8&5~V i1V i 8!uXiXi 8&2 (
j Þ i 8

Vji 8uXiXj&

2(
j Þ i

Vji uXjXi 8&1uXiYi 8&1uXi 8Yi&1uBii 8&,

~26!

obtained by using Eq. ~22! to calculate the state

@H,X̂i
†X̂i 8

†
#u0&. The first term in Eq.~26! is the energy of the

two noninteractingX’s, while the next two terms come from
the Coulomb-induced LL coupling. Similar touXiXi 8&, the
stateuXiYi 8&5X̂i

†Ŷi 8
† u0& describes a noninteracting pair ofXi

andYi 8 excitations. Finally, as for the undoped case, the l
term in Eq.~26!,

uBii 8&5@Ŷi
† ,X̂i 8

†
#u0&5@@H,X̂i

†#,X̂i 8
†

#u0&, ~27!

comes from theX-X interactions.12,37 Equation~B1! demon-
strates that the stateuBii 8& is a linear combination of twoe-h
pairs with different center-of-mass momenta, but with t
2DEG in its ground-state, and thus describes biexci
bound,X2, and scattering,XX, states similar to the undope
system.12,37

The X-X andX-2DEG interactions contribute to the tim
evolution of the photoexcited 2-h state in Eq.~17! through
uc2

int&. We further decompose the latter state into~a! the

contribution of the noninteracting pair ofXj -uc̄1& 1h excita-
tions, and~b! the contributionuc̄2& due to the interactions
between all the different pairs of 1-h excitations, i.e., the
X-X interactions~as in the undoped system! and theX inter-
actions with the$12h/2DEG*% states~such as the four-
particleY excitations discussed above!.

To obtain the equation of motion of the correlated 2h

contribution uc̄2&, we note that the time-evolved stateuc2&
contributes to the third-order nonlinear response at sec
order in the applied field. By taking the time derivative
Eq. ~17! and using Eqs.~13!, ~22!, ~23!, ~25!, and ~26!, we
obtain that
6-6
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i ] tuc̄2&2Huc̄2&5
1

2 (
i i 8

Pi
LPi 8

L uBii 8&

1(
i

@Pi
LŶi

†2 P̄i
LX̂i

†#uc̄1&. ~28!

Recalling thatuBii 8&, Eq. ~27!, is the interacting two-exciton
state, we see that the first term on the right-hand side~rhs! of
the above equation describes theX-X interaction effects
similar to the undoped case.12,36–38,40The second term de
scribes the scattering ofXi with the carriers in the$1
2h/2DEG*% stateuc̄1&.

Finally, we turn to the 02h state. In Eq.~18! we split this
state into the contribution of the ground stateu0&, with am-
plitude ^0uc&5^0uc0&, and the$02h/2DEG*% contribution
uc0

int&. The latter 2DEG* contribution is generated by th
two-photon processes of excitation and deexcitation of
system accompanied by the scattering of 2DEG excitatio
and is further decomposed into two parts. The first p
2( i Pi

L* X̂i uc̄1&, describes the de-excitation~after timet), of

Xi from the $12h/2DEG*% state uc̄1& without scattering
with the uc̄1& carriers. The latter scattering, as well as t
time evolution of the 2DEG excitations created via seco
order processes analogous to the ones that lead to the in
tic Raman scattering signal,41 are described by the secon
part, uc̄0&.

The 02h stateuc0& contributes to the third-order nonlin
ear response to second order in the optical field. By sub
tuting Eq. ~18! into Eq. ~11! and using Eqs.~22!–~25!, we
obtain the equation of motion

i ] tuc̄0&2Huc̄0&5(
i i 8

Pi
L* Pi 8

L X̂i uYi 8&1(
i

@Pi
L* Ŷi

2 P̄i
L* X̂i #uc̄1&2(

i i 8
Pi

L* P̄i 8
L X̂i uXi 8&

2mE* (
i i 8

Ni
1/2Pi 8

L
~@X̂i ,X̂i 8

†
#2d i i 8!u0&.

~29!

The first term in Eq.~29! describes the photoexcitation of th
2DEG via the second-order process where the excitonXi 8 ,
photoexcited with amplitudePi 8

L , scatters with the 2DEG
into the stateuYi 8&, and then the excitonXi is deexcited with
amplitude Pi

L . The above process leaves the system i
2DEG* state. It is analogous to the photoexcitation of c
herent phonons in undoped semiconductors, and domin
the inelastic Raman-scattering spectra of the 2DEG.41 The
second term on the rhs of Eq.~29! describes the scattering o
Xi with the carriers inuc̄1& during its deexcitation. The res
of the terms describe the possibility to create 2DEG exc
tions by photoexciting an exciton whose hole then reco
bines with a 2DEG electron.
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IV. NONLINEAR POLARIZATION EQUATION
OF MOTION

In this section we derive the equation of motion of t
third-order nonlinear polarizationPi(t) that determines the
FWM and pump-probe nonlinear optical signal, and sepa
out the factorizable from the correlated contributions. Wh
we discuss the physical meaning of the different terms,
focus on the FWM.

By taking the time derivative of Eq.~9! and using the
definition of the operatorŶi , Eq. ~22!, we obtain that

i ] tPi~ t !2V i Pi~ t !1 (
i 8Þ i

Vii 8Pi 8~ t !

52mE~ t !(
i 8

Ni 8
1/2^cu@X̂i ,X̂i 8

†
#uc&1^cuŶi uc&.

~30!

The first term on the rhs of the above equation describes
Pauli blocking effects that only lead to positive time del
FWM signal and are determined by the density of the Li
photoexcited carriers@recall Eqs.~6! and ~7!#. The second
term describes the optical signal generated by the inte
tions between the recombining excitonXi leading to the co-
herent emission and the photoexcited and 2DEG carri
This interaction contribution dominates the FWM signal f
negative time delays.1 The above two source terms can b
obtained by considering their equations of motion, whi
leads to an infinite hierarchy of equations of motion. Alte
natively, one can first separate out the 2DEG* and the X-X
andX-uc̄1& interaction contributions by using the decomp
sitions of the photoexcited state, Eqs.~15!, ~17!, and ~18!,
and by retaining contributions up to third order in the optic
field. Using the propertŷ 0uX̂i 8Ŷi5^0uŶi X̂i 81^0uBii 8 @Eq.
~27!#, the expansion Eq.~10!, and some algebra, we the
obtain that

^cuŶi uc&5(
i 8

Pi 8
L* ^Bii 8uc2&1(

i 8
Pi 8

L ^Mii 8uc̄0&*

1
1

2 (
i 8 j 8

Pi 8
L Pj 8

L ^c̄1u†@Ŷi ,X̂i 8
†

#,X̂j 8
†
‡u0&

1(
i 8

Pi 8
L ^c̄1u@Ŷi ,X̂i 8

†
#uc̄1&1 P̄i , ~31!

where we introduced the state

uMii 8&5Ŷi uXi 8&. ~32!

Noting that ^0uMii 8&50, we see that the above state d
scribes an excited 2DEG configuration with full valen
band. The first term in Eq.~31! describes theX-X interac-
tions. Its equation of motion can be obtained by project
the state^Bii 8u to Eq. ~13!. In many cases, it is useful to
decompose the above contribution into HF and correla
X-X interaction contributions by using Eq.~17!:
6-7
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FIG. 3. Dominant resonant process determ
ing the MP correlation contribution to the FWM
signal. The first three panels show the Stoke
Raman scattering that creates the MP, while t
other three panels show the reverse process
returns the system to the ground state.
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^Bii 8uc2&5
1

2 (
j 8 j

^Bii 8uXjXj 8&Pj
LPj 8

L

1(
j

Pj
L^Bii 8uXj

†uc̄1&1Bi i 8 . ~33!

The first term describes the HFX-X interactions, similar
from the undoped case.12 The second term comes from th
exchange process where the first optical transition create

stateuc̄1& and the second transition excites anXj e-h pair
while returning the conduction electrons to their grou
state. The above process results in twoe-h pairs that scatter
each other while the 2DEG is at rest. Subsequently, on
the above pairs,i 8, is deexcited by the optical field, while th
remaining pair,i, recombines and leads to the coherent em
sion. The last term in Eq.~33! describes biexciton andX-X
scattering correlations. Similar to the undoped case,12,37such
effects are characterized by the amplitude of the correla
22h photoexcited state,

Bi i 8~ t !5^Bii 8uc̄2&. ~34!

The effects due to the propagation in time of the intermed
2DEG excitations, photoexcited via the two-photon proc
in Fig. 1~a!, are described by the amplitude

Mi i 8~ t !5^Mii 8uc̄0&. ~35!

Such time propagation leads to non-Markovian effects. In
case of particular interest here, the corresponding reso
contribution to the FWM signal is due to the nonlinear op
cal process shown in Fig. 3. TheX photoexcited by the firs
optical transition decays intoY excitation. Thee-h pair in
this X-MP state then recombines, leading to coherent em
sion, and leaves the system in a MP state. This MP pro
gates in time and then scatters with the second photoexc
X into an X state subsequently annihilated by the opti
field. It is interesting to note the similarity of this process a
the familiar one of coherent anti-Stokes Raman scatterin42

that, however, involves phonons.
The second line in Eq.~31! describes a shakeup of th

2DEG during the exciton recombination that gives the coh
ent emission. In particular, the photoexcitation of two ex
tons,Xi 8 andXj 8 , is followed by the recombination of one o
them assisted by the shakeup of a 2DEG excitation.
above process leaves the system in a$12h/2DEG*% state,
which is then annihilated by the optical field. To interpret t
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first term on the third line of Eq.~31!, we note that the HF
X-X interaction can be thought of as arising from the sc
tering of the polarization with the coherent density.43 Simi-
larly, this term describes the scattering of the polarizat
with the incoherent density of photoexcited carriers in t

$12h/2DEG*% stateuc̄1&.
Finally, the last term on the rhs of Eq.~31! is the corre-

lated contribution

P̄i5^c0u0&^Yi uc1&1(
j

Pj
L* ^YiXj uc2&

1^c̄0uŶi uc̄1&1^c̄1uŶi uc̄2&. ~36!

The first two terms of Eq.~36! describe the dephasing of th
X and 2-X amplitudes that determine the third-order nonli
ear polarization, while the last two terms describe t
dephasing of the incoherent contribution to the nonlinear
larization. Note that, by linearizing the above equation,
recover the correlation functionP̄i

L @Eq. ~24!# that describes
the dephasing of the linear polarizationPi

L .
Using the above results we obtain the following equat

of motion for the third-order nonlinear polarization:

i ] tPi2V i Pi1 (
i 8Þ i

Vii 8Pi 82 P̄i

5mE(
i 8

Ni 8
1/2^c1u~d i i 82@X̂i ,X̂i 8

†
# !uc1&

1
1

2 (
j j 8 i 8

^Bi j uXi 8Xj 8&Pi 8
L Pj 8

L Pj
L* 1(

i 8
Bi i 8Pi 8

L*

1(
i 8

Pi 8
L Mi i 8

* 1
1

2 (
i 8 j 8

Pi 8
L Pj 8

L ^0u@X̂j 8 ,@X̂i 8 ,Ŷi
†##uc̄1&*

1(
i 8

Pi 8
L ^c̄1u@Ŷi ,X̂i 8

†
#uc̄1&1(

j i 8
Pi 8

L Pj
L* ^Bi j uXi 8

† uc̄1&.

~37!

In the above equation we have separated out the source t
into ~i! a coherent part, determined by Pauli blocking effec
HF X-X interactions, and the propagation in time of the i
termediate interactingX-X and 2DEG* states ~first four
terms on the rhs!, and~ii ! an incoherent part, determined b
the $12h/2DEG*% photoexcited stateuc̄1& ~last three terms
on the rhs! and the correlated nonlinear contributionP̄i . It is
worth noting in the above equation that the terms prop
6-8
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tional to the polarizationPi 8
L describe a time-dependen

photoinduced renormalization of theXi energy and dephas
ing (i 85 i ), and of the couplingVii 8 of theXi andXi 8 states
( i 8Þ i ). If the $12h/2DEG*% and uBii 8& excitations decay
rapidly, while the 2DEG excitations are long lived, then t
non-Markovian LL coupling and dephasing effects are do
nated by the correlation functionMi i 8(t).

As demonstrated by the above equation, the Coulomb
relations lead to new contributions to the nonlinear polari
tion, determined by many-particle correlation functions.
the following section, we turn to the problem of solving f
the correlation functions on the rhs of Eq.~37!, and address
the issue of dephasing in a strongly correlated electronic
tem.

V. DEPHASING AND CORRELATION PROCESSES

The equations of motion for the correlation functions th
enter in Eq.~37! may be obtained after introducing a bas
suitable for describing the 1h, 2h, and 0h states. In strongly
correlated systems, an expansion in terms of the pair ex
tions of a noninteracting many electron may not be con
nient. In general, we must introduce a basis of strongly c
related states that already incorporate the ground-s
correlations. The choice of such a basis depends on
ground-state and on the most important excitations for
experimental parameters of interest~e.g., the filling factor,
the central excitation frequency, the polarization of the op
cal field, etc!.

Our goal in the rest of this paper is to identify the dom
nant features in the FWM spectrum at the magnetoexc
energies that come from the interactions and time propa
tion of the MP collective modes. Analogous questions
garding the role ofX-X interactions in undoped semicondu
tors were first addressed by using average polariza
models.2,15 As we show in the following section, a genera
ized average polarization model can be extracted from
theory developed in the previous sections after introducin
basis of Lanczos strongly correlated states.35 This model ex-
plains the main qualitative features observed in recent FW
experiments.30

We start by considering a basis for the 1-h state uc̄1&.
Noting the analogy withX-phonon interactions in the un
doped system discussed in the Introduction, we would like
consider a basis that consists of products ofe-h pair and MP
wave functions. In the undoped system, such states have
form êk2q

† ĥk
†aq

†u0&, where aq
† creates the phonon stat

êk2q
† ĥk

† creates the two-particlee-h pair wave function, and

u0& is annihilated by all theê and ĥ operators.8,11,39 In our
case, however, the ground stateu0& may contain a strongly
correlated electron gas, while, unlike for phonons, the
creation operators are made of electrons. Thus we must
a basis of strongly correlated states, which is made ou
electrons.

A basis set useful for calculating the Green’s functions
tight binding and Hubbard Hamiltonians is the Lancz
basis.35 Such correlated states can be used to obtain e
solutions in the case of small systems,23 but also to approxi-
03531
i-

r-
-

s-

t

a-
-

r-
te

he
e

i-

n
a-
-

n

e
a

o

the

P
se

of

r

ct

mately describe continuum resonances in large systems,
the Fano resonances in the absorption spectrum of semi
ductor superlattices.44 Each new basis state is obtained
acting with the HamiltonianH on the previous state, and the
orthogonalizing the result with respect to all existing ba
states.35 This procedure is similar to Eq.~19! that introduced
the statesuYi&, and led us to the parametersV i and Vii 8 ,
Eqs. ~20! and ~21!. A new basis stateuZi&5Ẑi

†u0& is now
constructed from the relation

HuYi&5V̄ i uYi&1(
i 8

Wi 8 i uXi 8&1uZi&, ~38!

where

V̄ i5
^Yi uHuYi&

^Yi uYi&
~39!

is the average energy of the four-particle excitationuYi&,

Wi 8 i5^Xi 8uHuYi& ~40!

gives the probability amplitude thatYi scatters intoXi 8 , and
we introduced the operator

Ẑi5@Ŷi ,H#2V̄ i Ŷi2(
i 8

Wii 8X̂i 8 . ~41!

Using Eqs.~38!–~40!, as well as the orthogonalitŷXj uYi&
50, one can see that the stateuZi& is orthogonal to all the
statesuXj&, j 50,1, . . . , and touYi&. Therefore, it is a linear
combination of all the 2DEG* states into whichuYi& can
scatter. Additional basis states can be constructed by ap
ing the above orthogonalization procedure to the stateHuZi&.
We note here that the statesuXj&, uYi&, uZi&, . . . do not
correspond to an expansion in terms of excitations of a n
interacting many-electron state, since they are obtained
the action of the operatorsX̂j

† , Ŷi
† , Ẑi

† , . . . on the ground
eigenstateu0& of the many-body HamiltonianH.

By using Eq.~19! and the orthogonalitŷXj uYi&50, we
obtain the useful relation

Wi 8 i5^Yi 8uYi&5Wii 8
* . ~42!

Note that^Yi 8uYi&Þ0, and we may also have that^Yi 8uZi&
Þ0 for i 8Þ i . If this is the case we need to orthogonalize t
independent statesuYi 8&, and then subtract a linear combin
tion of the latter fromuZi& in Eq. ~38!, so that all theZ andY
states become orthogonal. However, in the electron-h
symmetric limit of the 2DEG system,uYi& is the same state
for all i when only LL0 and LL1 contribute~see Appendix
A!, and thus the latter procedure is not needed.

Equations of motion for all correlation functions dete
mined by the stateuc̄1& can be obtained after expanding in
basis set of$12h/2DEG*% states. Let us consider, for ex
ample, P̄i

L(t) @Eq. ~24!#, which describes the dephasing
the linear polarizationPi

L(t). If we choose the Lanczos bas
discussed above, we obtain@after multiplying Eq.~25! by
^Yi u and using Eqs.~38!–~40!# the equation of motion
6-9
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i ] t P̄i
L5V̄ i P̄i

L1(
i 8

Wii 8Pi 8
L

1Z i
L , ~43!

where we introduced the correlation functionZ i
L5^Zi uc̄1&

whose equation of motion can be obtained in a similar w
as that ofP̄i

L .
It is important to note that the dephasing of the opti

polarization obtained as above is non-Markovian. Indeed,
ter solving Eqs.~23! and ~43! by Fourier transform, we ob
tain that

@v2V i~v!#Pi
L~v!1 (

i 8Þ i

Vii 8~v!Pi 8
L

~v!

52mE~v!Ni
1/21

Z i
L~v!

v2V̄ i

, ~44!

where theX energyV i(v) and the coupling between theX
statesVii 8(v) include frequency-dependent self-energy c
rections due to theX-2DEG scattering,

V i~v!5V i1
Wii

v2V̄ i

, Vii 8~v!5Vii 81
Wii 8

v2V̄ i

. ~45!

Additional self-energy corrections arise fromZ L, discussed
in the following section. The frequency dependence of
aboveX energies and coupling constants is a manifesta
of the non-Markovian behavior of the system. This aris
because part of the optical excitation is temporarily stored
the shake-up excitations described byP̄i

L .
Using the recursive method we can also construct a b

for the 2-h and 0-h states, which we can then use to calc
late the correlation functions determined by the statesuc̄2&
and uc̄0&. We start with the 2-h stateuBii 8& that determines
theX-X correlation functionBi i 8 , and introduce the Lanczo
stateuB̄ii 8& as follows:

HuBii 8&5V i i 8
B uBi i 8&1uB̄ii 8&, V i i 8

B
5

^Bii 8uHuBii 8&

^Bii 8uBii 8&
,

~46!

whereV i i 8
B is the average energy of the interacting 2-X state

uBii 8&. The stateuB̄ii 8&, ^B̄ii 8uBii 8&50, is a linear combina-
tion of all the 2-X states into whichuBii 8& can scatter. By
projecting the statêBii 8u to Eq. ~28! and using Eq.~46!, we
then obtain from Eq.~34! the equation of motion

i ] tBi i 82V i i 8
B Bi i 85

1

2 (
j 8 j

^Bii 8uBj j 8&Pj 8
L Pj

L

1(
j

Pj
L^Bii 8uŶj

†uc̄1&

2(
j

P̄ j
L^Bii 8uX̂j

†uc̄1&1B̄i i 8 , ~47!

whereB̄i i 8(t)5^B̄ii 8uc̄2&. The above equation describes t
time evolution of the ‘‘intermediate’’ 2-X stateuBii 8&, which
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is created by theX-X interactions. In the case of undope
QW magnetoexcitons,Bi i 8(t) corresponds toF(t) of Ref.
37.

One should note here the similarity of Eq.~47! and the
average polarization model that has been successful in
scribing theX-X correlations and biexciton effects in un
doped semiconductors.2,15,37 This model includes theX-X
self-energy effects due to the higher Lanczos sta
uB̄ii 8&, . . . via a phenomenological dephasing rate. The
lidity of such a model in the case of undoped QW magn
toexcitons was analyzed in Ref. 37.

Similar to Bi i 8 , the correlation functionMi i 8 describes
the time evolution of the ‘‘intermediate’’ photoexcite
2DEG* stateuMii 8&. Using the Lanczos method we obta
that

HuMii 8&5V i i 8
M uMii 8&1uM̄ ii 8&, V i i 8

M
5

^Mii 8uHuMii 8&

^Mii 8uMii 8&
,

~48!

whereV i i 8
M is the average MP energy, and the stateuM̄ ii 8&,

^M̄ ii 8uMii 8&50, is a linear combination of all the states in
which uMii 8& can scatter. We then obtain, after projecti
^Mii 8u on Eq.~29!, the equation of motion

i ] tMi i 82V i i 8
M Mi i 82M̄i i 8

5(
j j 8

^Mii 8uX̂j uYj 8&Pj
L* Pj 8

L
1(

j
Pj

L* F ^Mii 8uŶj uc̄1&

2(
j 8

^Mii 8uX̂j uXj 8&P̄j 8
L G2(

j
P̄ j

L* ^Mii 8uX̂j uc̄1&

1mE* (
j 8 j

Nj
1/2Pj 8

L ^Mii 8u~d j j 82@X̂j ,X̂j 8
†

# !u0&, ~49!

whereM̄i i 85^M̄ ii 8uc̄0& describes the dephasing ofMi i 8 . In
the case of the 2DEG, the single-mode approximation23 sug-
gests that the latter dephasing can be treated to first app
mation by introducing a phenomenological dephasing rat

The remaining step is the calculation of the correla
contribution P̄i , Eq. ~36!. The equation of motion for the
first two terms of Eq.~36! can be easily obtained from Eqs
~12! and ~13! after using Eq.~38! and the property

^YiXj uH5~V̄ i1V j !^YiXj u2 (
j 8Þ j

Vj j 8^YiXj 8u

1(
i 8

Wii 8^Xi 8Xj u1^Yi uŶj1^Zi uX̂j , ~50!

obtained by calculating the commutator@Ŷi X̂j ,H# using Eqs.
~22! and~38!. The equations of motion for the last two term
in Eq. ~36! can be obtained from Eqs.~29!, ~25!, and~28! by
using Eq.~41! and the basis of choice. We thus obtain t
equation of motion
6-10
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i ] t P̄i2V̄ i P̄i2Zi5(
i 8

Wii 8Pi 81QYi
, ~51!

where the correlated contribution

Zi5^c0u0&^Zi uc1&1(
j

Pj
L* ^Zi uX̂j uc2&

1^c̄0uẐi uc̄1&1^c̄1uẐi uc̄2& ~52!

has the same structure asP̄i ~with the differenceŶi→Ẑi) and
describes the dephasing ofP̄i . The factorizable contribution
QYi

describes photoinduced nonlinear corrections to

dephasing and energy ofP̄i , and to the scattering amplitude
Wii 8 . The equation of motion forZi , which to first order in
the optical field coincides withZ i

L , has a form analogous t

that of P̄i .
One should note here that the correlation functionP̄i can

be decomposed further in the case of systems where theX-X
interaction contribution to the operatorŶi can be separate
out. This is possible, for example, in undope
semiconductors,8,11 where the operatorŶi can be decom-
posed into a part that is independent of the phonon variab
which describes theX-X Coulomb interactions, and a pa
that describes the phonon creation/annihilation proces
The formerX-X contribution comes from the last term in E
~36!; and corresponds to the correlation functionZ̄ of Refs. 8
and 11, which mainly contributes to the six-wave-mixin
spectra.45 The above distinction between the interaction p
cesses is possible in systems where the creation operato
the ground-state excitations of interest~phonons, MP’s, mag-
nons, . . . ) commute with the electronic operators that d
scribe the photoexcited carriers.

VI. GENERALIZED AVERAGE POLARIZATION MODEL

In this section we present an example of how the theo
ical framework developed so far can be used to describe
nonlinear optical dynamics of the 2DEG in a high magne
field. We consider the case where only the first two LL’s a
photoexcited, so we retain in our calculations only the L
and LL1 magnetoexcitons. We focus on filling factors clo
to n51, where the ground-state 2DEG populates spin-↑ LL0
states,32,33 and on photoexcitation withs1 circularly polar-
ized light, which excites spin-↓ electrons.30 The above con-
ditions apply to the experiment of Ref. 30, which we wish
interpret.

The electron-hole symmetry of the ideal 2D system, a
lyzed in Appendix A, relates the correlation functions a
interaction parameters with different LL indices that enter
the equations of motion. For example, in Appendix A w
derive the symmetry property

A12n1Ŷ152A12n0Ŷ05Ŷ, ~53!
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whereŶ is determined by Eq.~A17!. The above symmetry
relation can be used to reduce the number of indepen
variables. For example, from Eqs.~39!, ~42!, and ~36! we
obtainV̄ i5V̄, W105W01,

~12n i !Wii 52A~12n0!~12n1!W015W5^YuY&,
~54!

A12n1P̄1~ t !52A12n0P̄0~ t !5WP̄~ t !, ~55!

where i 50,1. It is then convenient to make the tran
formation

Pi→PiA12n i , ~56!

and redefine for simplicity

Vii 8→Vii 8A~12n i !~12n i 8!,W→W~12n0!~12n1!.
~57!

Using the above relations we obtain from Eq.~23! the fol-
lowing equations of motion for the linear polarizations:

i ] tP0
L5~V02 iG0!P0

L

2@mE~ t !1V01~12n1!P1
L1W~12n1!P̄L#,

~58!

i ] tP1
L5~V12 iG1!P1

L

2@mE~ t !1V10~12n0!P0
L2W~12n0!P̄L#.

~59!

The above equations have the form of two coupled two-le
systems, corresponding to the LL0 and LL1 magnetoex
tons. This form is due to the zero-dimensional confinem
induced by the QW potential and the magnetic field, wh
leads to the novel 2DEG properties.23,24 The Coulomb inter-
actions renormalize the Rabi energymE by a mean-~local-!
field correction proportional to the polarization~analogous to
the undoped system,43! and by a 2DEG shake-up correctio
proportional toP̄L.

As demonstrated by Eqs.~58! and ~59!, the polarization
dephasing is determined, in addition to the phonon-indu
dephasing ratesG i , by the correlation functionP̄L. For weak
G i , P̄L dominates. In the absence of magnetic field,P̄L de-
scribes the shakeup of FS pair excitations, and leads
non-Markovian dephasing due to the nonperturbativeh-FS
interactions.9,17 For the experimental conditions of intere
here, P̄L originates primarily from theX scattering to the
continuum ofX-MP states composed of anX and a MP with
opposite momenta. An analogy can be drawn between
above X-MP states and the continuum ofX-X scattering
states in undoped semiconductors.1,2,37

We now turn to the dephasing of theX-MP correlation
function P̄L. This X-MP dephasing originates from th
Coulomb-induced coupling of the Lanczos stat
uY&,uZ&,uZ8&, . . . . We note thatZ L and higher correlation
functions do not couple toPL, but only to the amplitudes
corresponding to the previous and the next Lanczos sta
For example, the equation of motion forZ L reads
6-11



ila
nd
,

ue
a

t

s

r-
n
re
th
if

ed
fo

io

of
n

ex
io

ab-
st

-

by

the

mit

s in

-

for
al-

he
g of
the
ed
u-

u-

-

e

KARATHANOS, PERAKIS, FROMER, AND CHEMLA PHYSICAL REVIEW B67, 035316 ~2003!
i ] tZ L5V̄ZZ L1WZYP̄L1^Z8uc̄1&, ~60!

where we defined

V̄Z5
^ZuHuZ&

^ZuZ&
, WZY5

^ZuZ&

^YuY&
5

^ZuHuY&
W

. ~61!

The amplitudes of the higher Lanczos states satisfy sim
equations of motion. After taking the Fourier transform a
using the above symmetry properties and some algebra
obtain that

P̄L~v!5
P1

L~v!2P0
L~v!

v2V̄1 igY2WZYSZ~v!
, ~62!

wheregY is the dephasing rate. The dephasing ofP̄L is thus
described by the self-energySZ ,

SZ~v!5
1

v2V̄Z1 igZ2WZ8ZSZ8~v!
, ~63!

whereSZ8 is given by Eq.~63! with Z8→Z9.
The above equation can be used to obtain a contin

fraction expansion for the self-energy. In the case of
N-electron system, such an expansion terminates afterN it-
erations. To obtain true dephasing for finiteN, we must in-
troduce the damping rates of the Lanczos states, due to
neglected degrees of freedom of theN→` system. The con-
vergence of the above self-energy expansion becomes m
rapid with increasing damping rates.44 In the QHE literature,
numerical calculations of theN-electron spectral function
have been extrapolated to theN→` limit.23

Equation~63! can be solved analytically when the dispe
sion in the energies and matrix elements of the higher La
zos states is small as compared to the frequencies of inte
so that the self-energy is approximately the same for all
higher Lanczos states.35 This may be the case, for example,
the momenta close to the magnetoroton minimum,q;1/l ,
dominate.41 In the case of QW magnetoexcitons in undop
semiconductors, the validity of such an approximation
the X-X self-energy was discussed in Ref. 37.

A microscopic determination ofSZ(v) is beyond the
scope of this paper. Here we describe theX-MP scattering in
a way similar to the average polarization model descript
of the X-X scattering.2 In particular, we assume thatSZ is a
sufficiently smooth function of frequency in the range
interest, in which case its frequency dependence can be
glected to first approximation. In the case of 2D magneto
citons in undoped semiconductors, a similar approximat
was shown to apply for strongX-X interactions.37 We thus
obtain the equation

i ] t P̄
L5~V̄2 ig!P̄L1P1

L2P0
L , ~64!

where the values of the renormalizedY state energy

V̄5
^YuHuY&

^YuY&
1WZYReSZ~V̄ ! ~65!

and dephasing rate
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g5gY2WZYIm SZ~V̄ ! ~66!

are estimated here by fitting to the experimental linear
sorption spectrum.30 The above approximation works be
for sufficiently largeg. Due to the contribution to theY state
of finite momentum MP’s ande-h pairs, we expect thatV̄
.V1, where V1 @Eq. ~20!# is the energy of the zero
momentum LL1 magnetoexciton.41

We now turn to the nonlinear polarization, determined
the equation of motion, Eq.~37!. First we consider theX-X
interaction contribution, described by the second line on
rhs of Eq.~37!. For strong damping of the 2X statesuBii 8&,
the non-Markovian X-X scattering effects are
suppressed,12,37 and we only retain the HFX-X interaction
contribution@second term on the rhs of Eq.~37!#. The X-X
potentials^Bii 8uXjXj 8&, with different LL indicesi and i 8,
are related to each other in the electron-hole symmetric li
due to the property

~12n i !uBii &52A~12n0!~12n1!uB10&, ~67!

wherei 50,1, which follows from Eq.~B1!. Using the above
relation and Eq.~56!, we express the HFX-X interaction
contribution in the form

(
j j 8

A~12n j !~12n j 8!^Bii uXjXj 8&Pj
LPj 8

L
~Pi

L* 2Pi 8
L* !,

~68!

wherei 8Þ i and the potential̂Bii uXjXj 8& is evaluated in Ap-
pendix B.

The time dependence of the incoherent source term
the last two lines of Eq.~37! is determined by the$1
2h/2DEG*% stateuc̄1&. The corresponding correlation func
tions dephase rapidly in the case of strongX-MP damping;
unlike, e.g., the correlation functionM that describes the
time propagation of the long-lived MP’s. The same holds
the FWM contributions due to the photoinduced renorm
izations of theX-MP correlation functionsP̄, Z, . . . , which
are described by the source termsQY , QZ , . . . in Eq.~51!.
The latter lead to an incoherent FWM contribution at t
X-MP energies, which is broadened by the bare dephasin
P̄. Here we neglect such incoherent contributions to
FWM spectrum. Similarly we approximate the photoexcit
carrier density that determines the Pauli blocking contrib
tion @first term on the rhs of Eq.~37!# by the coherent exciton
density,PLPL* , and neglect the incoherent density contrib
tion determined byuc̄1&.

The correlation functionMi i 8 describes the time evolu
tion of the long-lived MP intermediate states. Fors1 photo-
excitation, the exciton operators create spin-↓ electrons, and
thus the operatorsX̂i X̂j

† do not excite the spin-↑ 2DEG. We
therefore have that

^2DEG* uX̂i uXj&;0 ~69!

for any excited 2DEG state. Equation~69! is exact forn
51. Using Eq.~53! and Appendix C, we then derive th
symmetry relationsV i i 8

M
5VM , M105M01,
6-12
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~12n i !~12n j !^Mii uX̂j uYj&

52~12n i !A~12n j !~12n j 8!^Mii uX̂j uYj 8&

52~12n i !A~12n j !~12n j 8!^Mii uX̂j 8uYj&5WM ,

~70!

~12n i !Mi i 52A~12n0!~12n1!M015WMM, ~71!

for any i and j Þ j 8. Neglecting the incoherentX-MP contri-
bution to the rhs of Eq.~49!, determined byuc̄1&, as com-
pared to the first term, determined by the exciton polari
tions, we obtain the equation of motion

i ] tM5~VM2 igM !M2P1
LP0

L* 1P0
LP0

L* 1P1
LP1

L*

2P0
LP1

L* , ~72!

where the weak MP damping, which to first approximati
can be described by the dephasing rategM ,25,46enhances the
non-Markovian dephasing effects.

We note here that, in the absence of disorder, only
zero-momentum MP state contributes to the nonlinear opt
signal. As already seen in the inelastic Raman-scatte
spectra, the disorder leads to the photoexcitation of a s
uM & with strong contribution from the finite momentum
MP’s close to the magnetoroton energy.25,41,46 The energy
VM is the average energy of the coupled MP states,
exceeds the cyclotron energyVc

c that gives the zero-
momentum MP energy.

Using the above results, and redefining for simplic
WM→WM(12n0)(12n1), we obtain from Eqs.~37! and
~51! the following closed system of equations for the nonl
ear polarizations:

i ] tP05~V02 iG0!P02V01~12n1!P1
L12mE~ t !P0

L* P0
L

12V01~12n1!P1
LP0

L~P0
L* 2P1

L* !

1WM~12n1!M* ~P0
L2P1

L!2W~12n1!P̄, ~73!

i ] tP15~V12 iG1!P12V10~12n0!P0
L12mE~ t !P1

L* P1
L

22V10~12n0!P1
LP0

L~P0
L* 2P1

L* ! ~74!

2WM~12n0!M* ~P0
L2P1

L!1W~12n0!P̄,

i ] t P̄5~V̄2 ig!P̄1P12P0 . ~75!

The second lines in Eqs.~73! and ~74! describe the Paul
blocking PSF effects and HFX-X interactions similar to the
undoped system,43 while the third lines describe the correla
tion effects due to the time propagation of the intermediatY
and MP states. The latter correlations lead to a tim
dependent coupling of the LL0 and LL1 levels, as well as
non-Markovian dephasing.

The set of four equations, Eqs.~73!, ~74!, ~75!, and~72!,
together with the linear polarization equations of motio
Eqs.~58!, ~59!, and~64!, constitute our model. To obtain th
FWM spectrum, we assume a laser excitation of the fo
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E(t)5eikW2•rWEp(t)1eikW1•rWEp(t1Dt), where Ep(t) is the
Gaussian envelope of the pulses emitted by the laser.
then solve the above equations as a function of timet and
time delay Dt between the two pulses, keeping only th
terms leading to a nonlinear signal in the 2kW22kW1 direction,
and perform a Fourier transform of the nonlinear polarizat
to get

P~v,Dt !5~12n0!P0~v,Dt !1~12n1!P1~v,Dt !.
~76!

The FWM signal measured in the experiments is prop
tional to uP(Dt,v)u2 and is calculated in the next section.

VII. NUMERICAL RESULTS

In this section we present the results of our numeri
calculations, which are based on the model of Sec. VI.
start with the linear absorption spectrum,a(v)
}Im@PL(v)/E(v)#. By fitting to the linear absorption mea
surements of Ref. 30, we can fix the interaction parame
V01 andW, the energiesV i and V̄, and the dephasing rate
G i and g, to within 650%. Varying the parameters withi
this fitting range yields no significant change in the time a
frequency dependence of the FWM or linear absorption sp
trum. Figure 4~full line! displays the twoX peaks obtained
in this way. Their broadening is determined by~a! the
X-phonon scattering, described by dephasing ratesG0;G1
similar to the undoped system, and~b! the X-2DEG scatter-
ing, described by the correlation functionP̄L. The important
role of theX→X-MP scattering is clear by comparing wit
the dashed line curve of Fig. 4, obtained withP̄L50. Al-
though theX-2DEG scattering governs the line shape of t
LL1 peak, it plays a very small role at the LL0 frequency. T

FIG. 4. Linear absorption spectrum~full line!. The dashed line

shows the spectrum forP̄L50, in which case the dephasing is d
termined by the electron-phonon scattering. The interaction e
gies AW52.2 meV and V0150.5 meV, the dephasing ratesg
;3 meV, and theX andY energies were chosen to reproduce t
linear absorption LL peak ratio, energy spacing, and line sh
observed in the experiment of Ref. 30 forB58 T ands1 circular
polarization. In this casen050.075 andn150 ~Ref. 30!.
6-13
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interpret this behavior, we note that the main contribution
P̄L comes from$1-MP11-LL0-e11-LL1-h% four-particle
excitations@see Eq.~A17! and discussion in Sec. III!#. Even
thoughP̄L couples equally to bothX amplitudesP0

L andP1
L ,

it dominates the dephasing ofP1
L since the above four

particle excitations have energy comparable to that ofX1. In
contrast,X0 has significantly smaller energy, and thus t
broadening of the LL0 peak is mainly determined by t
X-phonon interactions. Note that the asymmetric line sh
of the LL1 resonance is due to theX-MP states and canno
be obtained within the dephasing time approximation.

We now study the signatures of theX-2DEG correlations
in the time and frequency dependence of the transient FW
spectrum. As we discuss below, the correlation effects ca
controlled experimentally by varying the central frequen
of the optical pulse from LL1 toward LL0. This allows us t
control theX amplitudesP0 and P1, whose coherent supe
position and interactions determine the FWM spectrum. F
ure 5 shows the effects of such tuning.

Figure 5~a! shows the FWM spectra when the optic
pulse is centered at the LL1 peak, and the LL0 peak is ba
excited by the tail of the pulse. For such excitation con
tions, we have thatP0

L!P1
L , and the photoexcited density o

LL1 carriers far exceeds that of LL0 carriers. As a result,
PSF andX-X interaction contributions at the LL0 energy a
suppressed as compared to LL1. Despite this, however,
LL0 and LL1 FWM peaks in Fig. 5~a! have comparable
heights. To elucidate the physical origin of the nonreson
LL0 FWM signal, we show in Fig. 6 the contributions o
PSF,X-X interactions, and MP correlations as a function
time delay.

As clearly seen in the above figure, for optical excitati
at the LL1 peak, the LL0 FWM signal is dominated by th
MP correlation contribution. At the same time, the LL1 si
nal is dominated by the PSF contribution. This is shown

FIG. 5. Time delay and frequency dependence of the FW
spectrum for excitation frequency~a! at the LL1 peak,~b! shifted by
4 meV, ~c! shifted by 7 meV, and~d! shifted by 9 meV. The optica
pulse and linear absorption spectra are displayed in the back p
The pulse duration was 150 fs,VM517.5 meV, AWM52 meV,
andgM50.2 meV.
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Fig. 7. The origin of the strong MP correlation contributio
to the LL0 FWM signal can be seen by comparing the lat
for different values of the MP energyVM , while keeping the
rest of the parameters constant. As demonstrated in Fig
the LL0 signal, dominated by the MP-mediated LL couplin
due to the process of Fig. 3, isresonantly enhancedasVM
approaches theX0→X1 excitation energy (;18 meV here!.

One should note here that theX-X interactions also
couple the two LL’s. However, the corresponding LL0 sign
is weaker due to the absence of a resonance, similar to
MP correlation signal for nonresonantVM , and cannot fully
account for the strong LL0 signal observed in the experim
of Ref. 30. To see this, note that, in the undoped syst
where only theX-X interactions contribute, the FWM signa
at the LL0 energy is negligible.30 More importantly, in the
experiment of Ref. 30, the LL0 peak in the doped syst
was suppressed as compared to the LL1 peak as the de
of photoexcited carriers approached that of the 2DEG. In

el.

FIG. 6. MP correlation~dashed line!, PSF~dotted line!, andX-X
interaction~dashed-dotted line! contributions to the full FWM sig-
nal ~full line!, calculated at the LL0 peak frequency for photoex
tation as in in Fig. 5~a!.

FIG. 7. PSF~dotted line! contribution to the FWM signal~full
line! at the LL1 peak frequency for photoexcitation as in Fig. 5~a!.
The X-X interaction ~dashed-dotted line! and MP correlation
~dashed line! contributions are negligible here.
6-14
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ULTRAFAST NONLINEAR OPTICAL RESPONSE OF . . . PHYSICAL REVIEW B 67, 035316 ~2003!
case the MP correlations of the cold 2DEG diminish, and
doped and undoped QW FWM signals start to look simila30

We now turn to the temporal profile of the FWM signa
Figure 9, which plots the normalized time-dependent L
and LL1 signals, demonstrates the difference in the dynam
between the PSF and MP correlation effects that domin
the LL1 and LL0 signals, respectively. As already know
from undoped semiconductors, the Pauli blocking effe
cannot lead to a FWM signal for negative time delays. T
X-X interactions lead to such a FWM signal, with rise tim
determined by the dephasing of the interactingX-X state
uB&.2 Within the time-dependent HF approximation,5 the lat-
ter rise time is;(2G012G1)21 in the case of interes
here.43 For G0;G1, this rise time is about one-half of th
X-X FWM decay time,;(2G1)21, or the PSF FWM decay
time, ;(2G0)21 at the LL0 energy. Figure 9, howeve
shows an almost symmetric temporal profile of the L
FWM signal, unlike for the LL1 signal. The latter is dom

FIG. 8. FWM signal at the LL0 peak frequency for differe
values of the average MP energy:VM514 meV ~dotted line!, 17
meV ~full line!, 18 meV~dashed line!, and 20 meV~dashed-dotted
line!. Photoexcitation conditions as in Fig. 5~a!.

FIG. 9. Temporal profile of the FWM spectrum at the LL0 pe
frequency~full line! and the LL1 peak frequency~dashed line!. The
two signals have been normalized for clarity.
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nated by the PSF contribution, and is thus suppressed
negative time delays, while the LL0 signal is dominated
the MP correlations, and is enhanced for negative time
lays, similar to the experiment of Ref. 30. The origin of th
time dependence can be seen from the equation of motio
the MP correlation FWM source term in Eq.~73!. After re-
taining only resonant terms, one can see that the rise of
signal is governed by the time dependence of the prod
P1

LP0
L , while the decay is determined by the time depe

dence ofP1
L , M, and by quantum interference effects. A

discussed above, due to theX-2DEG scattering,P1
L dephases

much more strongly thanP0
L . Thus the time dependence o

P1
LP0

L is similar to that ofP1
L , which results in an almos

symmetric FWM temporal profile at the LL0 frequency. Fu
thermore, the quantum interference and beating effects
hance the decay of this signal for positive time delays.

The relative magntitude of the MP correlation versus
PSF/X-X mean-field FWM signal can be controlled expe
mentally by changing the central frequency of the opti
pulse. Figure 5~b! shows the time-dependent FWM spectru
for excitation conditions such thatuP0

Lu;uP1
Lu. The LL0 sig-

nal now dominates, and retains a temporal profile similar
Fig. 5~a!. Note that, due to the increased pulse overlap w
LL0, the PSF source terms in Eqs.~73! and ~74! now have
comparable magnitude, while theX-X interaction and MP
correlation source terms are also enhanced. However,
strong dephasing ofP1 discussed above suppresses the L
FWM signal. This effect is magnified in the nonlinear spec
as compared to the linear absorption. Importantly, due to
resonant enhancement of Fig. 8, the magnitude of the
correlation FWM contribution is enhanced more strongly
the increased pulse overlap LL0 with as compared to
mean-field FWM signal. Finally, weak oscillations as a fun
tion of time delay, with a period equal to the spacing of t
two LL peaks, start to appear.

As can be seen in Figs. 5~c! and 5~d!, the oscillations of
the LL0 FWM signal, as function of time delay, becom
more pronounced as the optical excitation frequency
shifted from LL1 towards LL0. It is important to note tha
the LL1 signal is almost completely suppressed, especi
for the excitation frequency of Fig. 5~d!, and therefore there
are no significant oscillations in thereal time t, i.e., the time
related to the frequencyv via Fourier transform. Thus the
oscillations observed in Fig. 5~d!, as well as in the experi-
mental data of Ref. 30, have a strong quantum kine
contribution.6,7,21The physical origin of such an effect can b
seen by plotting in Fig. 10 the PSF and MP correlation co
tributions to the LL0 signal as a function of time delay f
photoexcitation as in Fig. 5~d!. PSF leads to negligible oscil
lations, while the MP correlation leads to strong oscillatio
To see the origin of the latter, we also plot in Fig. 10 the M
correlation signal obtained after neglecting the LL0 coher
density source termP0

LP0
L* in the equation of motion, Eq

~72!, of M(t); the oscillations diminish in the latter case. T
interpret all these, we note that for the excitation conditio
of Fig. 5~d!, we haveP0

L@P1
L , and the density of LL0 car-

riers far exceeds that of LL1 carriers. In fact, here the P
contribution exceeds the MP correlation contribution. Mo
6-15
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importantly, the LL0 coherent density source term ofM is
now larger than the source termP1

LP0
L* that gives the reso

nant MP contribution. Even thoughP0
LP0

L* gives a nonreso-
nant contribution toM(t), asP0

L exceedsP1
L this contribu-

tion becomes comparable in magnitude to the reson
contribution due toP1

LP0
L* . The beating between the abov

two resonant and nonresonant processes gives rise to
strong oscillations. By shifting the excitation frequency fu
ther towards LL0, eventually the PSF contribution dom
nates, and the FWM dephasing is determined by
electron-phonon and intra-LL dephasing processes.29

VIII. CONCLUSIONS

In summary, we presented a theory that provides a uni
description of the ultrafast nonlinear optical response o
large class of semiconductor systems with a strongly co
lated many-electron ground-state. Our main result, Eq.~37!,
gives the equation of motion for the third-order nonline
polarization measured in transient wave mixing and pum
probe experiments, and allows us to study the role of
correlations and the interplay between coherent and inco
ent effects. Our expansion in terms of the optical field
valid for sufficiently short pulses and/or weak excitation co
ditions, where the correlations are most pronounced.
theoretical framework allows us to describe the role of
long-lived collective excitations of a strongly correlated co
electron gas, which is present prior to the optical excitati

Our theory was applied to the case of the 2DEG in
strong magnetic field. Our numerical solution for photoex
tation close to the LL1 energy withs12s1 circularly po-
larized light suggests alternative experimental signature
collective and correlation effects. In this case the relev
2DEG collective excitations are the long-lived inter-LL ma
netoplasmons, which dress the photoexcited magnetoe
tons and lead to polaroniclike effects and strong n

FIG. 10. PSF~dashed-dotted line! and MP correlation~full line!
contributions to the FWM signal at the LL0 frequency, normaliz
to unity for clarity, for photoexcitation as in Fig. 5~d!. We also plot
the MP correlation signal~dotted line! without the LL0 coherent
density source term ofM(t) in Eq. ~72!. Note the almost complete
absence of oscillations in the latter and in the PSF contribution
03531
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Markovian dephasing. We showed that such effects domin
the time delay and frequency dependence of the trans
FWM spectrum. FWM spectroscopy using femtosecond
tical pulses provides both the time and the frequency res
tion necessary to access this new regime of 2DEG phys
Our theory allowed us to study in a systematic way the
perimental signatures of the 2DEG quantum dynamics.
predicted, in particular, a resonant enhancement of the low
LL FWM signal, a strong dephasing of the next LL magn
toexciton, a symmetric FWM temporal profile, and stro
oscillations a as function of time delay with a strong qua
tum kinetic contribution. Such predicitions agree with rece
experimental data.30

The above correlation-induced dynamics can be c
trolled by tuning the central frequency of the optical exci
tion between the two lowest LL’s, which changes the coh
ent admixture of the two MP-dressed magnetoexcitons
via coherent control experiments using phase-locked opt
pulses.6 Such experiments, as well ass2 circularly polarized
optical pulses, access the very early dynamics of the stron
correlated 2DEG, during time scales shorter than the du
tion of the interactions. Such temporal and spectral reso
tions open up alternative ways to observe fractional Q
noninstantaneous correlations, as well as magnon, exc
magnetoroton, charged exciton, and skyrmion effects.
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APPENDIX A

In this appendix we derive some useful expressions
the operatorsŶi , Eq. ~22!, in the case of the ideal 2D system
displaying electron-hole symmetry. To describe t
magnetic-field effects, we choose to work in the Land
gaugeA5(0,Bx,0). The eigenstates of the kinetic energ
operator are then characterized by they component of the
momentum,k, and the LL indexn. The electron eigenstat
(ca), and hole eigenstate (c̄a), in this gauge are given
by26,37

ca~r !5
eiky

AL
Cn~x2xk!,c̄a~r !5c2a* ~r !, ~A1!

wherea5(k,n,s), 2a5(2k,n,s), and the spin-s wave
function is kept implicit. In the above equation,Cn is the
eigenfunction of the 1D harmonic oscillator with frequen
equal to the cyclotron frequency,xk5kl2 is thex coordinate
of the cyclotron orbit center,l 5(\c/eB)1/2 is the magnetic
length ~Larmor radius!, andL is the system size.26,37

The operator Ŷi is determined by the commutato
@Xi ,Hint#, where the HamiltonianHint5Vee1Vhh1Veh de-
scribes the Coulomb interactions:
6-16
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Hint5
1

2E drdr 8v~r2r 8!@c†~r !c~r !2c̄†~r !c̄~r !#

3@c†~r 8!c~r 8!2c̄†~r 8!c̄~r 8!#, ~A2!

wherec†(r ) is the electron creation operator,c̄†(r ) is the
hole creation operator, andv(r ) is the Coulomb potential. By
expanding the above creation operators in the Landau b
we transform the Hamiltonian@Eq. ~A2!# into the familiar
form

Hint5
1

2 (
a1a2a3a4

@va1a2 ,a3a4

ee êa3

† êa1

† êa2
êa4

1va1a2 ,a3a4

hh ĥa3

† ĥa1

† ĥa2
ĥa4

2va1a2 ,a3a4

eh ĥa3

† êa1

† êa2
ĥa4

2va1a2 ,a3a4

he êa3

† ĥa1

† ĥa2
êa4

#, ~A3!

where, in the ideal 2D system, the Coulomb interaction m
trix elementsva1a2 ,a3a4

i j ~with i , j 5e,h) are given by

va1a2 ,a3a4

i j 5E dq

~2p!2
vqFa1a2

i ~q!Fa3a4

j ~2q!, ~A4!

wherevq52pe2/q is the Coulomb potential, and

Fa1a2

e ~q!5E drca1
* ~r !eiq•rca2

~r !,

Fa1a2

h ~q!5E dr c̄a1
* ~r !eiq•rc̄a2

~r !. ~A5!

Following Ref. 26, we obtain

Fa1a2

e ~q!5wn1n2
~q! f k1k2

~q!ds1 ,s2
, ~A6!

where

f k1k2
~q!5eiqx(k11k2) l 2/2dk1 ,k21qy

; ~A7!

and form>n, we have

wmn~q!5
n!

m! F ~2qy1 iqx!l

A2
Gm2n

Ln
m2nS q2l 2

2 De2q2l 2/4,

~A8!

whereLn
m2n is the generalized Laguerre polynomial.wmn(q)

for m,n can be obtained by using the property

wmn~q!5wnm* ~2q!. ~A9!

Using Eq.~A1! we obtain from Eq.~A5!,

Fa1a2

h ~q!5F2a2 ,2a1

e ~q!. ~A10!

The following symmetry relations can be shown by using
above relations:
03531
is,

-

e

va1a2 ,a3a4

i j 5va3a4 ,a1a2

j i ,va1a2 ,2a42a3

eh

5va1a2 ,a3a4

ee ,v2a42a3 ,a1a2

hh 5va3a4 ,2a22a1

ee .

~A11!

The commutator@ ĥ2aêa ,Hint# can be calculated from Eq
~A3!. Using Eq.~A11! and some algebra, we obtain

@ ĥ2aêa ,Hint#52 (
a1a2

vaa2 ,a1a
ee ĥ2a1

êa2

1 (
a1a2a8

@va1a2 ,aa8
ee

~ êa1

† êa2

2ĥ2a2

† ĥ2a1
!ĥ2aêa82~a↔a8!#.

~A12!

After summing overk, and recalling definition~4! of the X
operators and the definition ofNns , the left-hand side of the
above equation becomes the commutatorNns

1/2@X̂ns ,Hint#.
Using the properties

(
k

f kk2
~q! f k1k~2q!5dk1k2

~A13!

and

E dqv~q!fnn2
~q!fn1n~2q!5dn1 ,n2

E dqv~q!ufnn1
~q!u2,

~A14!

we obtain after using Eq.~4! and some algebra

@X̂ns ,Hint#52(
n8

Vnn8s
0

~12nn8s!X̂n8s

1
1

ANns
(

a1a2

~ êa1

† êa2
2ĥ2a2

† ĥ2a1
!

3 (
kk8n8

@va1a2 ,knk8n8
ee ĥ2knsêk8n8s2~n↔n8!#

~A15!

where

Vnn8s
0

5
1

A~12nns!~12nn8s!
E dq

~2p!2
vqufnn8~q!u2.

~A16!

We now restrict to the first two LL’s, which dominate th
optical spectra for the excitation conditions of interest. R
calling Eq.~22! we see that the operatorŶn is determined by
the last term of Eq.~A15!. The only nonzero contribution to
this term comes fromn8Þn, and thereforen851 if n50, or
n850 if n51. As a result, the rhs of Eq.~A15! changes sign
betweenn50 andn51, and we obtain Eq.~53!. The ex-
plicit expression for the operatorŶs5A12n1sŶ1s can then
6-17
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be obtained straightforwardly by subtracting theX contribu-
tions defined in Eq.~22! from the operator

1

AN
(

pp8kk8mm8s8
~ êpms8

† êp8m8s82ĥ2p8m8s8
† ĥ2pms8!

3~vpmp8m8,k1k80
ee ĥ2k1sêk80s

2vpmp8m8,k0k81
ee ĥ2k0sêk81s!. ~A17!

The subtractedX contributions describe corrections to theX
energies and Coulomb-induced LL coupling due to
2DEG. As discussed in Sec. VI, for photoexcitation withs1

circularly polarized light, we have thats5↓. For filling fac-
tors close ton51, the spin-↓ states are empty. We can the
decompose Eq.~A17! into thes85↓ term that describes th
X-X interactions, and thes85↑ term that mainly describe
X-MP interactions.

APPENDIX B

In this appendix we evaluate the HFX-X potentials
^Bii uXjXj 8& in the ideal 2D system. We considers1 photo-
excitation and filling factors close ton51 so that Eq.~69!
applies. Recalling definition~27!, we obtain from Eq.~A17!

after using the property@X̂i ,X̂j #50 that

^B1s8,nsu

5
1

ANnsN1s8
(

pp8kk8n8
@vpnp8n8,k1k80

ee ĥ2pnsêp8n8s

3ĥ2k1s8êk80s82vpn8p8n,k1k80
ee ĥ2pn8sêp8ns

3ĥ2k1s8êk80s82vpnp8n8,k0k81
ee ĥ2pnsêp8n8s

3ĥ2k0s8êk81s81vpn8p8n,k0k81
ee

3ĥ2pn8sêp8nsĥ2k0s8êk81s8#. ~B1!

The only nonzero contribution to the above equat
comes fromn8Þn. Noting the LL indices, we see that, fo
the conditions considered here, we have

^Bii uXjXj&50. ~B2!

Substituting the definition ofŶ1 @Eq. ~22!#, into Eq. ~27!,
restricting to the first two LL’s, and denotingi 8Þ i , we ob-
tain that

^Bii uX1X0&5^XiXi uHX̂1
†uX0&2^Xi uHX̂i uX1X0&

2V i^XiXi uX1X0&1Vii 8^X1X0uX1X0&

2^Yi uXi uX1X0&. ~B3!
03531
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We have ^XiXi uX1X0&5^XiXi uXi 8Xi 8&50 due to the or-
thogonality of the valence hole states, while^Yi uX̂i uX1X0&
50 due to Eq.~69!. Using the above, Eq.~22! for the com-
mutator @H,X̂1

†#, Eq. ~19! for the statesHuX0& and ^Xi uH,
and Eq.~B2!, we obtain after some algebra that

^Bii uX1X0&52Vii 8^X1X0uX1X0&2V01̂ XiXi uX0X0&

2V10̂ XiXi uX1X1&. ~B4!

Using the relationŝX0X1uX1X0&51 and

^XiXi uXiXi&52S 12
1

Ni
D , ~B5!

obtained from Eq.~6!, we finally obtain

Ni^Bii uX1X0&52Vii 8 , i 8Þ i . ~B6!

The above relation recovers the results of Ref. 43.

APPENDIX C

In this appendix we derive some useful relations for t
overlap ^2DEG* uMii 8&, where u2DEG* & is any 2DEG ex-
cited state, for filling factors close ton51 and fors1 po-
larized light. Using Eqs.~32! and ~53!, we obtain

N0
1/2uM0i&5N0

1/2Ŷ0X̂i
†u0&52N1

1/2Ŷ1X̂i
†u0&52N1

1/2uM1i&.
~C1!

From Eq.~32! we obtain after using Eq.~22!,

uMii 8&5X̂i uYi 8&2~H1V i2V i 8!X̂i uXi 8&

1(
j Þ i

Vi j X̂ j uXi 8&2(
j Þ i

Vji 8X̂i uXj&. ~C2!

The stateX̂i uYi 8& describes a 2DEG excitation, created v
the process shown in the first three panels of Fig. 3. Us
Eq. ~69! and the propertŷ2DEG* uHu0&50, we obtain

^2DEG* uMii 8&5^2DEG* uX̂i uYi 8&. ~C3!

Using Eq.~53,! we then obtain

N0
1/2^2DEG* uMi0&5N0

1/2^2DEG* uX̂i uY0&

52N1
1/2^2DEG* uX̂i uY1&

52N1
1/2^2DEG* uMi1&. ~C4!
6-18
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