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Fano resonances of a curved waveguide with an embedded quantum dot
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A theoretical study of a waveguide with a uniformly curved section and an embedded quantum dot is
presented within the envelope function approximation. For the quantum dot being extremely localized in the
direction of the electron propagation, exact form of the scattering matrix of the system is derived, and a
conductance of the waveguide is calculated. It is shown that if, for the straight wire with dot, in the funda-
mental mode conductance is a monotonically increasing function of the Fermi energy, then, after bending the
waveguide, one has Fano resonances on the conductance-Fermi energy dependence. The resonances appear as
a result of mixing by the bend of the longitudinal and transverse electron motion in the straight parts of the
waveguide and concomitant intersubband interaction. For the small bend angle~large bend radius! the width of
the resonance grows narrower with decreasing the angle~increasing the radius!, until in the limit of the zero
angle ~infinite radius! one recovers true bound state in the continuum and the corresponding monotonic
conductance of the straight channel. A dependence of the resonance width on the parameters of the bend and
the dot is investigated; in particular, it is shown that, as a result of coherent resonant phenomena in the
superposition of the bend and the dot, true bound states in the continuum can be formed also for the nonzero
bend angle and the finite bend radius. Miscellaneous cases of bending the waveguide which, if uncurved,
already exhibits the Fano resonance, are also investigated; for example, it is shown that in this situation, as a
result of the bend, resonances can collapse too, again producing true bound states in the continuum. The case
of inversion of the Fano resonances, i.e., a change of their minimum and maximum mutual location, is also
analyzed. Mathematical and physical interpretation of the obtained results is given, and characteristic features
of the critical parameters at which the Fano resonances collapse, are discussed. It is demonstrated that currents
flowing in the waveguide, near the Fano resonances drastically change their behavior from laminar to vortical
structure, and an evolution of the vortices is described. Parallels are drawn to the other types of the guiding
structures, such as electromagnetic waveguides and acoustic ducts.

DOI: 10.1103/PhysRevB.67.035310 PACS number~s!: 73.63.Nm, 03.65.Ge, 84.40.Az, 43.20.1g
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I. INTRODUCTION

Fano resonance1 is a general property of the physical sy
tems where a degeneracy of continuum states and a dis
level raised into this continuum is present.2 Interaction of
such quasibound state with background leads to the cha
teristic asymmetric resonances whose line shape is desc
by the formula

f ~«!5
~«1q!2

«211
. ~1!

Here«5(E2ER)/(G/2) is the dimensionless energy in uni
of the resonance widthG, q is the asymmetry parameter, an
ER is the resonance energy of the Fano transition. Fano fu
tion, Eq. ~1!, has a minimum of zero at energyEmin5ER
2Gq/2 and reaches maximum atEmax5ER1G/(2q). If we
confine our consideration to the real values, then a posi
~negative! q means that the minimum is achieved at t
smaller ~larger! energies than the corresponding maximu
Thus, asymmetry of the resonance is proportional to
asymmetry parameterq which, in turn, is defined by the
asymmetry of the physical system itself. Fano resonan
were first described in the study of the inelastic scatter
spectrum of noble gases more than forty years ago1 ~though
0163-1829/2003/67~3!/035310~13!/$20.00 67 0353
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much earlier mentionings about such line shape have b
made in Refs. 3–5!, and they continue to attract a caref
attention of the researchers from different branches
physics.6–9

One class of the systems where the Fano resonance
under scrutiny from transport and optical point of view, a
low-dimensional semiconductor nanostructures10–12 and,
among them, quantum quasi-one-dimensional~Q1D!
waveguides.13–21Interest in the nanometer quantum chann
has been further stimulated by the experimental discover
the conductance quantization of these man-m
structures.22,23 It was shown that a quantum dot embedd
into such electron waveguide acts as an attractive scat
and, as such, creates a quasibound state in the contin
Mathematically this level is described by the superposit
of the set of the evanescent modes localized near the dot
one or several external plane-wave components whose
plitudes determine the escape rate, or lifetime, of the st
This quasibound state is split off from the higher-lying su
band and can capture the electron. As a result, its interac
with its degenerate continuum counterpart even in the n
interacting electron model strongly affects transport prop
ties of the waveguide creating characteristic Fano line sh
on the conductance dependence on the Fermi energy. Fo
fundamental mode, such a Fano line develops when
quantum dot is asymmetric with respect to the middle pla
©2003 The American Physical Society10-1
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O. OLENDSKI AND L. MIKHAILOVSKA PHYSICAL REVIEW B 67, 035310 ~2003!
of the waveguide and, accordingly, it causes an intersubb
mixing. In the opposite case of a symmetric scatterer th
are no Fano resonances on conductance-Fermi energy d
dence since higher-lying subbands are not involved into
transport.

On the other hand, continuous spatial reduction in
design of electronic and optical circuits inevitably introduc
channels with bends connecting many separate devices
single chip. Therefore, a correct description of t
waveguides with bends becomes crucial in further deve
ment of nanotechnologies. Recently this problem was
dressed widely@see reviews~Refs. 24 and 25!#. In particular,
it was predicted that a bend in the otherwise uniform wa
guide produces bound states spatially localized in the b
region with energies below subband thresholds.26–32 Com-
pared to the straight waveguide, electrons with mome
smaller than the momentum of the higher-lying subband
dwell in the extra space of the bend. The quasibound le
split off from the subbands other than the fundamen
threshold, interfere destructively with their degenerate c
tinuum counterpart leading to the steep dips in
conductance.28,31,33–35However, at some critical paramete
of the bend these dips disappear substituted by the reso
tunneling through the bend, and a quasibound state turns
the true bound level degenerate with the continuum.35 Bent
electromagnetic waveguides were also extensively stu
~see Refs. 36–38 and literature therein!. Similar efforts have
been undertaken for the investigation of sound propaga
in rigid bends in acoustic ducts39–43as well. Summary of this
research up to the early 1990’s is given in Ref. 44. Ma
ematically, all these systems are described by the same
of second-order differential equation for scalar fields in t
dimensions, namely, by the Helmholtz equation. The o
mathematical difference between them is in the type
boundary conditions: Dirichlet, one for the electronic a
transverse-electric radio waves, and Neumann condition
the transverse-magnetic and sound waves. To emphasiz
general physical significance of study of the be
waveguides, we mention that this model is used also in
investigation of quark confinement45 in the elementary par
ticle physics and chemical rearrangement processes an
action rates in quantum chemistry.46,47

So far, influences of the bend and the quantum dot on
Q1D quantum channels were considered separately, wit
their interaction. In the present paper, we investigate th
retically combined influence of these two nonuniformities
the conductance of the waveguide. Within an effective m
approximation and noninteracting electron model we der
an exact expression of the scattering matrix of the cur
waveguide with quantum dot embedded into the bend.
potential of the dot is extremely localized in the propagat
direction and has finite dimensions in the transverse di
tion. Ballistic transport of the electrons is assumed throu
out the paper. We show that if, for the straight wavegu
with dot, conductance is a monotonic function of the Fer
energy, then for the bent structure asymmetric Fano
shape appears as a result of mixing by the bend of the tr
verse and longitudinal motion. For the small bend an
~large bend radius! the resonance width is getting smaller f
03531
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the decreasing angle~increasing radius! until for the straight
waveguide, we recover true bound state in the continu
True bound states can also be obtained for the nonz
angles and finite bend radii, when the coherent resonant
nomena in the bend with embedded dot cancel out a po
bility of the particle escape from the bend to infinity. If, o
the other hand, for the straight waveguide with dot a Fa
resonance already exists, applying the bend changes its
acteristics leading again to the true bound states in the c
tinuum with the corresponding substitution of the asymm
ric Fano line shape by the monotonic curve. Interesting c
of the inversion of the location of the conductance peak a
zero is also discussed. Currents flowing in the waveguide
calculated; in particular, it is shown that a laminar flow f
away from the Fano resonance turns into the vortex struc
for the energies close toER . A comparison with a straigh
waveguide with impurity is performed, and a strong simila
ity between these two cases is pointed out. It is shown
obtained results can be applied to the similar guiding str
tures in other branches of physics, such as, electrodyna
and acoustics.

The paper is organized as follows. In Sec. II our mode
presented and a necessary formulation is briefly given. S
tion III is devoted to the presentation of the calculated res
and their detailed physical interpretation for various para
eters of the bend and the dot. Summary of the result
provided in Sec. IV.

II. MODEL AND FORMULATION

The subject of our interest is an infinitely long Q1D wav
guide of widthd with a uniformly curved section of inne
radiusr0 and anglef0 ~Fig. 1!. In addition, a quantum do
with the potential

Vqd~r !5
\2

m* d2
Vd~f2fqd!u~r2r02S!u~L1S1r02r!

~2!

is embedded into the bend. The pole of the coordinate sys
(r,f) coincides with the center of the bend, and the po
axis is a vertical junction between straight and bent parts
the waveguide.m* in Eq. ~2! is the effective electron mass
d(x) is ad function, andu(x) is a step function. Form of the
potentialVqd(r,f) shows that we assume the quantum d
being extremely localized in the propagation direction a
having the lengthL in the transverse direction with its lowe
edge shifted from the waveguide boundary by the distancS.
Also, the quantum dot is shifted from the vertical junction
azimuthal direction by the anglefqd . Strength of the quan-
tum dot potential is determined by the dimensionless par
eter V. Its negative values correspond to the attractive
tential ~quantum dot!, and the positive ones to the repulsiv
impurity ~quantum antidot!.

Within an effective-mass approximation the tim
independent Schro¨dinger equation for noninteracting elec
trons describes the particle wavefunctionC(r ),
0-2
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2
\2

2m*
¹W 2C~r !1V~r !C~r !5EC~r ! ~3!

with the potentialV(r ) containing contributions from the
waveguideVwq and the dotVqd ,

V~r !5Vwg~r !1Vqd~r !. ~4!

For the hard-wall boundary conditions we accept in this
per, Vwg(r ) is zero inside the waveguide and infinity othe
wise.

Transport properties of the waveguide are determined
the scattering matrixS(E). For finding it, we proceed in the
same way as in the case of a dot-free curved waveguid35

namely, in each of the region we expand solution of Eq.~3!
in a set of known analytical functions and match them at
boundaries. In particular, inside the bend we have the follo
ing solutions:

C~r,f!5 (
n51

`

Rn~r!@Dn
(1)sin~nnf!

1Fn
(1)cos~nnf!#, 0<f<fqd , ~5!

C~r,f!5 (
n51

`

Rn~r!$Dn
(2)sin@nn~f2fqd!#

1Fn
(2)cos@nn~f2fqd!#%, fqd<f<f0 ,

~6!

with Rn(r) being a radial part of the wave function:

FIG. 1. Schematic picture of the bent quantum waveguide
constant widthd with short-range impurity of the lengthL inside
the bend. Bend inner radius and angle arer0 andf0, respectively.
Impurity is shifted from the upper junction in azimuthal directio
by the anglefqd and from the lower wall by the distanceS. Impu-
rity strength is\2/(m* d2)V. Local rectangular coordinate system
(x,y) and (x8,y8) for the straight arms are also shown.
03531
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Rn~r!5YnnF S 2m* E

\2 D 1/2

r0GJnnF S 2m* E

\2 D 1/2

rG
2JnnF S 2m* E

\2 D 1/2

r0GYnnF S 2m* E

\2 D 1/2

rG . ~7!

Here Jn(x) and Yn(x) are Bessel functions of the first an
second kind, respectively.48 Detailed analysis of the func
tions ~7! and the coefficientsnn is given in Ref. 35. Coeffi-
cients Dn

( i ) and Fn
( i ) , i 51,2, n51,2, etc. are to be found

from matching wave functions in the different region
Matching wave function for the azimuthald potential, Eq.
~2!, is done similar to the one-dimensional rectangular cas49

or to the potential having a peculiarity in the radi
direction:50

C~r,fqd20!5C~r,fqd10!, ~8a!

1

r

]

]f
C~r,f!U

f5fqd10

2
1

r

]

]f
C~r,f!U

f5fqd20

5
2

d
Vu~r2r02S!u~L1S1r02r!C~r,fqd!. ~8b!

Quite naturally, Eq.~8a! shows that the wave function re
mains continuous at thed peculiarity, and Eq.~8b! manifests
that a jump of its azimuthal derivative (1/r)]C/]f is pro-
portional to the strength of the potential discontinuityV.

From the obtained system of equations it is possible
derive an expression linking amplitudes of transmitted a
incoming modes, i.e., to define a scattering matrixS(E)
which is a function of the electron energyE. It also depends
on the parametersr0 , f0 , fqd , V, L, S. We do not write its
explicit form here, mentioning only that in the limiting case
1! V50, fqd50 or 2! L50 it turns, as would expected
into the expression for the dot-free curved waveguide.35 Its
knowledge allows one to calculate the two-probe total c
ductanceG,51

G~E!5
2e2

h (
nn8

kn8
kn

Snn8
* Snn8 , ~9!

wherekn is the electron wave vector of the channeln and the
scattering matrix elementSnn8 defines the probability of the
electron scattering from channeln to n8. The sum in Eq.~9!
runs over all open channels, andE is a Fermi energy, i.e., an
energy of the highest occupied level. For the single pro
gating mode this equation reduces to

G~E!5
2e2

h
uS11u2. ~10!

The following section is devoted to the analysis of Eq.~10!
for various parameters of the dot and the bend.

III. RESULTS AND DISCUSSION

We will consider below transport properties in the fund
mental mode only:p2\2/(2m* d2)<E<4p2\2/(2m* d2),

f

0-3
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FIG. 2. ConductanceG as a function of the
Fermi energyE for r050.01, L51, V524,
fqd5f0/2 and several values off0: the dotted
line is for f050 ~straight waveguide!, the solid
line is for f055°, the dashed line is forf0

590°, and the dash-dotted line is forf0

5180°.
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thus excluding an interference between different propaga
modes. From the two-band approximation it is known tha
this case for the straight waveguide a Fano line develops
the conductance-Fermi energy dependence when the i
subband matrix element is not zero.17,19,21 It can be shown
that for any longitudinally symmetric potentialVqd(r ) from
Eq. ~4! the conductanceG @in units of (2e2/h)# is expressed
as18

G5
1

11q2

~E2ER1qG!2

~E2ER!21G2
. ~11!

In terms of Eq. ~1! we can say that in our case«5(E
2ER)/G. Equation~11! shows that the conductance not on
reaches minimum of zero atEmin5ER2Gq, but also the
maximum value that is achieved atEmax5ER1G/q, is an
exact unity. So, for ourd potential the scattering matrix ele
mentS11 defining the conductance, near the Fano transit
of the straight waveguide takes the form19,20

S11~E!5
1

~11q2!1/2

E2Emin

E2Emax1G/q1 iG
, ~12!

where Emin is the energy of the minimum conductance
zero,Emax is the energy where the maximum transmission
unity is achieved, ER5(Emax1Emin)/21(q21/q)G/2,
Emax2Emin5(q11/q)G. The resonance widthG is propor-
tional to the square of the nondiagonal element of the in
subband transition matrix, and the asymmetry parametq
depends only on the background~nonresonant! transmission.
In the opposite case of the absence of intersubband inte
tion the conductance is a monotonically increasing funct
of the Fermi energy,16,17,21and a bound state is raised into th
continuum.15–17It is a true bound state with infinite lifetime
since due to the different transverse parity it does not inte
with its degenerate continuum counterpart.16,17 For our
model potential which for the straight channel takes the fo
03531
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Vqd~r !5
\2

m* d
Vd~x!u~y2S!u~L1S2y!, ~13!

intersubband scattering is zero when the potential is symm
ric with respect to the middle plane of the waveguide:S
5(12L)/2. Since for the straight channel situations wi
symmetrically and asymmetrically embedded dot dif
qualitatively, below for the bent waveguide we consid
them separately. We will measure all distances in units of
waveguide width d, all energies—in units of
p2\2/(2m* d2), conductance—in units of (2e2/h), and
time—in units of 2m* d2/(p2\). Also, we do not consider
the physically irrelevant angles larger than 180°.

A. Transversely symmetric quantum dot: SÄ„1ÀL …Õ2

For the bent waveguide, apart from the transverse s
metry of the embedded quantum dot, another symme
comes into the play; namely, for the clean waveguide
system is symmetric with respect to reflection about the l
f5f0/2. Therefore, cases offqd5f0/2 and fqdÞf0/2
also will be considered separately.

Let us start from the situation withfqd5f0/2. As it was
just mentioned, for the straight waveguide we have a t
bound state which does not interact with the continuu
since they are effectively decoupled by the parity conser
tion. The wave function of this level localized near the d
contains in the straight arms only fading exponents, with
plane-wave component. Imposing a bend, one mixes lo
tudinal and transverse motions in the straight arms and,
cordingly, adds freely propagating trigonometric constitue
to the wave function. As a result, intersubband interact
ceases to be zero, and Fano resonances appear in the
mission spectrum. Figure 2 shows the conductanceG as a
function of the Fermi energyE for V524, r050.01, and
several values off0. The dot is tightly embedded into th
waveguide with its length being equal to the wavegu
0-4



-

FANO RESONANCES OF A CURVED WAVEGUIDE WITH . . . PHYSICAL REVIEW B67, 035310 ~2003!
FIG. 3. The same as in Fig. 2 forL50.5 and
S50.25 with all other mentioned in Fig. 2 param
eters being unchanged.
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width, L51. We see that a monotonic curve for the straig
waveguide transforms into the asymmetric Fano resona
as soon as the bend is introduced. The closerf0 to zero, the
sharper the resonance is. Quantitatively, it can be descr
by the value ofG which is a monotonically increasing func
tion of the bend anglef0. This means that the square of th
intersubband matrix element increases with the bend a
growing. The same behavior of the conductance was th
retically observed for the small magnetic field imposed o
the quantum channel with the embedded dot.16 In both cases
an imposed perturbation—either bend or magnetic field
destroys the transverse symmetry of the system, thus
pling the bound state with the continuum, transforming
former into the quasibound level, and leading to the char
teristic Fano resonances with their widths—at least, for
small and moderate disturbances—proportional to
strength of the perturbation. For all values of the bend an
and radius, maximum conductance is equal to unity, and
minimum transmission is exactly zero.

In understanding properties of the bent waveguides w
impurities, it is convenient to use approximation that ma
processes in the impurity-free bend onto the motion in
straight waveguide with the potential which creates the w
function28

Cn~r,x!5
1

Ar
sin@np~r2r0!#Fn~x! ~14!

with the longitudinal variablex5(r011/2)f ~see also Ref.
30!. Function Fn(x) describes the motion in a one
dimensional square-well potential of depth (2p)22(r0
11/2)22 and width (r011/2)f0:

]2Fn

]x2
1Fp2~E2n2!1

1

4~r011/2!2GFn50,

0<x<~r011/2!f0 . ~15!
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The approximation, Eqs.~14! and ~15!, is getting better for
the larger bend radiusr0. If we treat the square root ofr in
Eq. ~14! as constant, as it was done in Ref. 28, then differ
channels decouple, and we have one or several true bo
states in the continuum, as it was discussed in Ref. 16. H
ever, if we lift the demand of constant square root, as
actually should be, intersubband matrix elements of the
of the functions~14! are not zeros, and various channe
interact with each other. Accordingly, after inserting into t
bend ad potential with a true bound state, one can exp
this state transforming into the quasibound level accom
nied by the Fano structure in the transmission. In ot
words, effective potential of the bend causes intersubb
interaction leading to the asymmetric Fano resonances.

To shed more light on this phenomenon, we show in F
3 the conductance forL50.5 ~and, accordingly,S50.25)
with all other parameters being the same as in Fig. 2. Si
now L,1, the quantum dot binds the electron weaker co
pared to the previous case. As a result, upon bending
waveguide one can expect formation of the Fano resona
closer to the first excited subband threshold. This is exa
that is seen in Fig. 3, where the Fano resonances are sh
upwards on the energy axis compared to Fig. 2. Anot
feature of Fig. 3 is the fact that the resonance widthG is not
a monotonically increasing function of the bend angle.
Fig. 4 we plot the value ofD5Emax2Emin as a function of
f0 for several values of the quantum dot lengthsL. As we
noted above, a value ofD is proportional to the resonanc
width, G5qD/(11q2). Thus, the negative values ofD cor-
respond to the negative asymmetry parameterq in Eq. ~1!.
We observe that for the small and moderate values ofL ~for
example,L50.2 in Fig. 4! the magnitude ofD increases,
reaches maximum, then decreases, reaches zero, for
angle interval becomes negative, achieves negative m
mum, after which it crosses zero for the second time, a
later it grows again. Since modulus of the negative values
D and the angle interval they occupy, are quite small, th
0-5
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FIG. 4. Value ofD5Emax2Emin as a func-
tion of the bend anglef0 for r050.01, fqd

5f0/2 and several values of the lengthL: the
solid line is for L51 (S50), the dotted line is
for L50.8 (S50.1), the dashed curve is forL
50.5 (S50.25), and the dash-dotted curve is f
L50.2 (S50.4).
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are not resolved in Fig. 4. Also, since this feature is char
teristic for the asymmetrically embedded dot as well,
defer its detailed discussion to Sec. III B, concentrating h
instead on the case of the resonance width being abse
zero value ofG means that at these critical parameters of
system we have again a true bound state—a state with
nite lifetime. As a result of the resonant interference in
bend with embedded scatterer, a plane-wave componen
the quasibound state vanishes, transforming it into the
bound state in the continuum. Similar to the case of
straight channel or the defect-free bent waveguide, this
bound state does not interact with the continuum, since t
are again effectively decoupled. True bound states dege
ate with the continuum, appear as very special solution
the Schro¨dinger equation. They were discussed for the fi
time soon after the formulation of the quantum mechanic52

and were later extensively studied in various physi
systems.16,20,21,24,35,53,54The conductance at the critical pa
rameters is, as in the case off050, a monotonic function of
the Fermi energy. We can also qualitatively explain the e
lier approach byG to zero on thef0 axis for the smaller dot
lengthsL. Namely, for the smallerL, as we mentioned, the
bound state energyEbs is closer to the upper threshold o
E54. Accordingly, the longitudinal de Broglie waveleng
lbs52/(Ebs

1/221) of the bound state is smaller. On the oth
hand, for the fixedV a resonant condition of the bound sta
is determined, in the first approximation, by the length of
arc (r011/2)f0. Therefore, for the smaller dot lengthsL a
first resonant condition when only one half of the wavelen
lbs is accommodated by the bend with dot, is achieved
the smaller angles. As is seen from Fig. 4, forL>0.5 ~and
V524) this resonant condition is achieved beyond
range of 0<f0<180°; however, for the other parameters
the bend and the dot one can observe several bound sta
f0<180°. This explanation is similar to the description
the different number of the bound states for different radii
the clean bend.35
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Figure 5 shows the conductanceG for several bend radii
r0 with quantum dot tightly embedded into the wavegui
and the right bend anglef0590°. It shows many similarities
with Fig. 2. In particular, we see that a Fano line shape t
is sharp for the large bend radius, acquires bigger widthG
with decreasingr0. The larger bend radius, similar to th
smaller bend angle, presents a lesser perturbation to the
tron motion in the straight waveguide; accordingly, it caus
a smaller intersubband interaction with its amplitude be
proportional to the width of the asymmetric resonance. A
in the limit of r0→`, as it was forf050, asymmetric Fano
line shape becomes the monotonic curve of the stra
waveguide with the corresponding true bound state in
continuum. For the small radius there is a considerable in
subband interaction, and so, the Fano resonances g
broader. For the very small radii the further decrease ofr0
cannot change noticeably the line shape; for example, th
is only a slight difference between the curves forr050.01
and r050.001. Qualitatively, it again can be understo
from Eqs. ~14! and ~15!, where for the very smallr0 its
variation has a marginal effect on their solutions. Thus,
see that, contrary to the case of the small magnetic fi
applied to the straight waveguide16 when only one
parameter—magnetic-field intensity—controls the sharpn
of the resonances, one has both the bend radius and the
angle for varying the line shape of the Fano profiles in
curved waveguide.

The coupling of the longitudinal and transverse moti
near the Fano transition in the bend with impurity can
vividly demonstrated when one considers the currents flo
ing in the waveguide. It follows from the familiar quantum
mechanical expression for the current55 density jW that it is
proportional to Im(C¹W C* ). As a representative example
we take a configuration withr050.01, f055°, andL51
~solid curve in Fig. 2!. In Fig. 6 current-density patterns ar
shown for several Fermi energies. If the energy is far aw
0-6
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FANO RESONANCES OF A CURVED WAVEGUIDE WITH . . . PHYSICAL REVIEW B67, 035310 ~2003!
FIG. 5. ConductanceG as a function of the
Fermi energyE for L51, V524, f0590°,
fqd5f0/2 and several values ofr0: the solid
line is for r051, the dotted line is forr050.1,
the dashed line is forr050.01, and the dash
dotted line is forr050.001. The resonance ge
broader as the bend radiusr0 decreases.
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from the resonance, the flow of the electrons is perfec
laminar. WhenE approachesEmin , a vortex starts to build up
in the bend region. One of the initial stages of the format
of such a vortex is shown in Fig. 6~a! which corresponds to
the first maximum in Fig. 2 withG50.427. It is seen that fa
away from the bend the current has a longitudinal compon
only; however, in the bend region and its immediate nei
borhood a transverse part which was negligible in
straight arms, is clearly visible. For the energy in Fig. 6~a! a
formation of the vortex is not complete, but the current de
sity quickly acquires a circular form with further decrease
G, and afterE;2.33 we have a closed vortex. Similar vo
tices of the currents were found before in the strai
nonuniform16,56,57 and bent clean waveguides.58 For the

FIG. 6. Spatial distribution of the current densityjW for r0

50.01, f055°, L51 and several values of the Fermi energy:~a!
E52.29, ~b! E52.37335,~c! E52.375, and~d! E52.41. Larger
arrows denote higher currents. For each of the figures its own a
trary units of the current density are used.
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quantum channel we consider in this paper, a remarka
feature of such a vortical flow is an abrupt change of
direction of its rotation after passing the minimum of th
Fano resonance. For example, Fig. 6~b! shows the currents
for the energy immediately left from the Fano minimum wi
G53.16731027 and a clockwise rotation. At the minimum
the direction of the rotation abruptly changes to the coun
clockwise one and retains it for the higher energies, as
seen in Fig. 6~c!, which corresponds to the conductanceG
50.633 and energy between the Fano extrema. An analog
abrupt reversal of the current after passing a minimum of
conductance takes place for the bent defect-free quan
channel.58 The vortex structure starts to resolve for the Fer
energies to the right of the Fano maximum; for example, F
6~d! shows this process forG50.505. Thus, similar to the
clean bent waveguide,58 minute changes in the Fermi energ
may produce drastic changes in the flow of the electro
Amplitude of the currents in the vortex is a few orders
magnitude larger than the flow far away from the bend. F
the zero transmission we can interpret the vortex structur
a situation when the electron entering the waveguide fr
the left, reaches the bend, starts to move along a circ
orbit, and after timet;1/G is reflected back. As a result, th
current is totally subdued. In the same way, when the c
ductance has a maximum, the electron circularly rotates
the bend, and after completing a number of loops determi
by E, r0 , f0 , V, it leaves the curved section and propaga
further into the second straight arm, thus producing a co
plete transmission. Of course, such a semiclassical des
tion has a very limited scope, since the quantum effects
scribed here do not have a classical analog.

Let us turn now to the case offqdÞf0/2. Imposing a
bend with fqd5f0/2 destroys the transverse symmetry
the waveguide; however, some kind of symmetry which
can call a longitudinal one, still persists; namely, wavegu
remains unchanged after reflection with respect to the pl
i-
0-7
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FIG. 7. ConductanceG versus the Fermi en-
ergy E for L51, V524, r050.01, f05180°
and several values offqd : the solid line is for
fqd50°, the dotted line is forfqd530°, the
dashed line is forfqd545°, and the dash-dotted
line is for fqd560°. For each of the curve mini
mum conductance is zero.
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f5f0/2. By shifting the dot from the middle line of th
bend, this longitudinal symmetry is broken. Recalling t
approximation of Eqs.~14! and~15!, we can say that the do
and the bend in this case present an effective potential th
not symmetric in the direction of the wave propagation in
continuously straight channel. A case of similar asymme
dot embedded into the straight waveguide was studied v
recently.21 Our results shown in Fig. 7 for the bent wav
guide, in a sense, are similar to those in Ref. 21 for
straight channel. We see in this figure a series of Fano r
nances with their minimum transmission still being zero, i
we observe again a complete interference blockade of
electron transport. However, maximum conductance of
system is smaller than unity and varies withfqd . Such de-
crease may be explained by the partial destruction of
coherence in the asymmetric potential.

B. Transversely asymmetric quantum dot:SÅ„1ÀL …Õ2

Contrary to the caseS5(12L)/2, now for the straight
waveguide we have the Fano resonance on the conducta
energy dependence. ForS,(12L)/2 @S.(12L)/2# the dot
is shifted downward@upward# from the middle plane of the
waveguide, and conductance is the same for the two shifS
and 12L2S. Applying the bend to the structure modifie
Fano line shape, but minimum and maximum transmiss
magnitudes preserve, for the case offqd5f0 /2, their val-
ues of zero and unity, respectively. The above mentio
degeneracy of the conductance now is lifted, the up-turn
down-turn bends are not equivalent, as they were in S
III A. Similar nonequivalence takes place for the defect-fr
bent waveguide in the uniform magnetic field34 where, from
the symmetry properties, the change of the bend from
direction to the other has the same effect as an inversio
the magnetic field. In the same way, in our case a bend in
direction with the shiftS is nothing else as a bend in th
opposite direction with the shift 12L2S.
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Figure 8 shows the value ofD as a function of the bend
angle f0 for the up- and down-turn bends and radiir0

50.01 and 0.1 withS50.1, L50.5, V524, and fqd

5f0 /2. For the straight waveguide at these parameters
have a Fano resonance withD50.207. It is seen that if the
bend is in~opposite to! the direction of the dot shift, then th
resonance width decreases~increases! for the small and mod-
erate anglesf0. This can be accounted for as follows. Th
magnitude of the resonance width is a quantitative exp
sion of the broadening of the discrete state due to its c
pling to the continuum which, in turn, is determined by t
asymmetry of the system. For our model an asymmetry
the waveguide is determined by the distribution of the pot
tial with respect to the most symmetric point of the wav
guide; i.e., for the straight waveguide—by the location of t
dot with respect to the potential-free part and with respec
the pointx50, y51/2. We can say that for a nonzeroG a
center-of-the-mass of the distribution of the potential
shifted from the middle of the waveguide. When the wav
guide is bent, one needs to find a distribution of the poten
with respect to the pointr5r011/2, f5f0/2. The down-
turn bend lowers locations of the potential-free straight ar
relatively to this point, as it can be seen from Fig. 1. Acco
ingly, if the dot in the straight waveguide was shifted dow
ward, the bend moves it upward with respect to the potent
free regions; center-of-the-mass of the distribution of
potential comes closer to the center of the waveguide; t
effective potential becomes more symmetric, thus lower
G. Of course, such a simplified qualitative reasoning can
describe the whole spectrum of the phenomena in the
tem, when a direct numerical evaluation is needed.

Now, we turn to the above mentioned inversion of t
Fano resonances. As a representative example, we tak
case ofr050.01 and down-turn bend. Figure 9 shows a p
of the solid line of Fig. 8 in the range where it is close to t
critical parameters. We observe that decreasingD turns to
0-8
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FANO RESONANCES OF A CURVED WAVEGUIDE WITH . . . PHYSICAL REVIEW B67, 035310 ~2003!
FIG. 8. DifferenceD as a function of the bend
angle f0 for L50.5, S50.1, V524, fqd

5f0/2 and several values of the bend radiusr0

and different directions of the bend: the solid lin
is for r050.01 and down-turn bend, the dotte
line is for r050.01 and up-turn bend, the dashe
line is for r050.1 and down-turn bend, and th
dash-dotted line is forr050.1 and up-turn bend
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zero atf0555.040 458°~thus, we have here a true boun
state in the continuum which was discussed earlier!, becomes
negative, atf0.55.12° reaches minimum ofD.21.67
31027, after which it crosses zero again atf0
555.195 065°—producing the second bound state in
continuum, and grows positive. Negative value ofD means
that the maximum of the Fano resonance on
conductance-Fermi energy dependence is achieved ea
than the corresponding minimum. This is shown in Fig.
where the conductance for the opposite signs ofD is shown
as a function of the Fermi energy. It is seen that for posit
D a minimum of the conductance is achieved on the ene
axis before the corresponding maximum, while for the ne
tive D a situation is reversed, minimum conductance of z
follows after the maximum of unity. As we have stated b
03531
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fore, such a situation corresponds to the negative asymm
parameterq in Eq. ~1!. Similar collapse and inversion of th
Fano resonance in the straight waveguide was calculated
lier while changing the impurity parameters.20,21 In particu-
lar, in Ref. 21 a collapse of the Fano resonances and a
responding formation of the even~odd! bound state in the
continuum with the variation of the longitudinal dimensio
of the finite-range dot was explained as a result of the in
section of the symmetric~antisymmetric! levels of two quan-
tum wells with depthsV22 and E22E11V11, whereVii ( i
51,2) are diagonal matrix elements of the impurity pote
tial, andE1 , E2 are the thresholds for the fundamental a
the first excited subband, respectively. Accordingly, range
the longitudinal lengths of the dot between alternating ev
and following after it odd bound state corresponds to
f

nce
FIG. 9. Enlarged view of the solid curve o
Fig. 8 near the critical values of the anglef0.
Dashed line denotes zero value of the resona
width.
0-9
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O. OLENDSKI AND L. MIKHAILOVSKA PHYSICAL REVIEW B 67, 035310 ~2003!
inversed Fano resonances, as the interaction betw
the subbands changes its sign. In the same way, for
structure we study, Fig. 9 shows a symmetric bound s
at f0555.040 458°, and antisymmetric bound level
f0555.195 065°. As we see, for the chosen parameters t
two states are located very close to each other on thef0 axis
and are almost degenerate in energy. Similar situation o
most degenerate even and odd states is well known for
one-dimensional case, for example, for the interaction of
d-potential with rectangular49,59 or parabolic59,60 well. Using
this similarity, we see that the dot influence is much larg
and the bend mainly plays a role of the Fabry-Pe
resonator61 with junctions of the bend with the straight arm
corresponding to the mirrors of the electronic resona
Analogous approach to the degeneracy between symm
and antisymmetric bound states in the continuum was ca
lated for two parallel short-range potentials in the strai
quantum channel on the increase of the distance betw
these impurities19 and for the scissor-shaped waveguide w
the angle between the arms going to zero.54 Varying param-
eters of the bend and embedded dot changes distance
tween the even and odd states and minimum value ofD. For
example, for the smaller bend radius the separation betw
symmetric and antisymmetric bound states increases with
absolute value of the minimumuDminu increasing as well. In

FIG. 10. ConductanceG as a function of the Fermi energy fo
r050.01 with all other parameters from Fig. 8 for two angles:~a!
f0555.02° ~positiveD) and~b! f0555.12° ~negativeD). Due to
the sharpness of the resonances different ranges of energies
used for the cases~a! and ~b!.
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turn, growing radiusr0 which in the model of Eqs.~14! and
~15! corresponds to the shallower and wider well, leads
the shrinkage of the range of the angles where the inve
Fano resonances can be observed, and for the large en
r0 bound states disappear. Figure 8 shows that, dependin
the bend radius, such alternating sequences of the even
odd bound states may be repeated a few times for 0°<f0
<180°. Also, we remind again that such inversion tak
place for both transversely symmetric as well as asymme
dot. Therefore, all discussion of this paragraph is direc
applicable to the corresponding part of Sec. III A.

A substantial increase of the negative values ofD and the
range of the angles where the inversion of the Fano re
nances takes place, is achieved for the anglesfqdÞf0/2. In
Fig. 11 the conductanceG is shown forf05180° and sev-
eral values offqd . It is seen that depending on the quantu
dot angle, the conductance exhibits either positive or ne
tive D on its Fano line shape. However, contrary to the c
fqd5f0/2, the remarkable feature here is the absence of
bound states for the azimuthally asymmetric dot. Acco
ingly, formation of the curve with the negative differenceD
is also different. Namely, as it is seen from Fig. 11, forfqd
5f0/2 we have a Fano resonance with positiveEmax
2Emin and minimum conductance of zero and maximum
unity, as we discussed before. Shifting the dot from the pl
fqd5f0/2 has two consequences: first, the pole of the re
nance becomes smaller than unity and broadens, and, se
the maximum which precedes the Fano minimum on the
ergy axis, narrows and increases, simultaneously moving
wards the minimum. We note that, similar to Sec. III A
minimum conductance is always zero, and its maximum
lower than unity forfqdÞf0/2. On further dot movemen
away from the plane of the symmetry both maxima get
equal magnitude at somefqd ~for example, for the param
eters in Fig. 11 it takes place atfqd.74°) still separated by
the zero minimum, which means that we do not have a t
bound state here. For the smallerfqd the pole of the Fano
resonance should be associated with the left peak, sinc
exceeds the magnitude of the right broad maximum. T
means that the location of the extrema of the resonanc
switched from ‘‘zero-pole’’ to ‘‘pole-zero’’ location. Thus
for this configuration of the system the differenceEmax
2Emin abruptly changes it sign without continuous passa
through zero, as it was the case forfqd5f0/2. The fact that
a longitudinally asymmetric structure cannot bind the el
tron and have a true bound state in the fundamental pro
gating mode, is in agreement with Ref. 21, where a sim
conclusion was derived for the straight waveguide w
asymmetric dot. On further decrease of the anglefqd it is
possible to have a reverse jump from the negative to posi
D. For example, in Fig. 11 forfqd50 the zero of the reso
nance again is achieved at the smaller energies than the
responding maximum. Switch from ‘‘maximum-minimum
to ‘‘minimum-maximum’’ configuration takes place atfqd
.23°.

IV. CONCLUDING REMARKS

We have discovered a rich structure of Fano resonance
the theoretical description of the transport properties of

ere
0-10
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FIG. 11. ConductanceG as a function of the
Fermi energy forL50.5, S50.1, V524, r0

50.01, f05180° and several values offqd : the
solid line is for fqd50, the dotted line is for
fqd530°, the dashed line is forfqd560°, and
the dash-dotted line is forfqd590°. Similar to
Fig. 7, for all curves minimum conductance is a
exact zero. The differenceD is positive forfqd

50° and 90°, and negative for other two curve
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bent Q1D waveguides with embedded quantum dot. Man
lation of these resonances by the variation of the bend
dot parameters leads to a number of interesting effects w
may be used in the design of nanodevices. Among th
features we mention the collapse of the Fano resonances
the formation of true bound states in the continuum, and
inversion of the mutual location of the extrema of the re
nance.

We considered the impurity extremely localized in t
propagation direction. Generalization to the finite-range s
terer without any difficulties may be performed directly
the same way as it is done for the straight waveguide,14,20,21

when multiple Fano resonances might appear and inte
with each other.

We disregarded any atomic structure of the crystal of
waveguide. Its inclusion can modify results presented h
However, the above described phenomena should sur
qualitatively in more sophisticated calculations taking in
account the form of the Bloch wave functions. Also, th
should serve as a basis for the treatment of the elect
electron interaction in this system when some kind
Hartree-Fock or Thomas-Fermi potential should be imp
mented. It is believed that for low currents in quantu
waveguides Coulomb scattering does not change sig
cantly the calculations of the independent electron theor56

Experimentally, Fano resonances were observed in a n
ber of nanostructures, such as semiconductor superlattic10

or single-electron transistor.62 Clean double-bend quantum
wires were also fabricated, and their transport proper
were studied experimentally.63 However, interpretation of the
results of these experiments is controversial with differ
explanation of observed peaks in the conductance.63,64 On
the one hand, improving spatial homogeneity of the curv
quantum wires may help to avoid this ambiguity. On t
03531
u-
d

ch
se
ith
e
-

t-

ct

e
e.
ve

n-
f
-

fi-

m-
s

s

t

d

other hand, deliberate introduction into the bend of the loc
ized impurity should be detectable, as we have shown in
paper, as an appearance of the new dips and peaks in
conductance. Another method of observing phenomena
dicted here, is the use of the electric field of the transver
electric mode of the radio waveguide. One-to-one corresp
dence between electron motion in the quantum Q1D w
and electromagnetic wave propagation down the meta
waveguide is well known and was used for the experimen
detection of the bound states in clean single30 and double65

bends.
Finally, we mention that the results presented in this pa

are straightforwardly applied to the analysis not only of t
electromagnetic,36–38 but of the acoustic43,44,66,67 waves
propagation as well. First experiments on the sound pass
through the defect-free bent acoustic ducts are dated a
back as mid 1970’s.40,42 Different type of the boundary con
ditions for the acoustic waves may lead to the shift of t
wavenumbersnn , as it was shown in Ref. 36 for the elec
tromagnetic waves. However, general features outlin
above should not be altered. In fact, experiments have
vealed that an insertion into the bend of the longitudinal rig
hard-wall vane or attenuator with impenetrable bounda
significantly alters transmission properties of the curv
acoustic ducts producing new resonances with both
Breit-Wigner form or with the line shape closely reminesce
that of the Fano profile.41,42 Very recently it was proved
theoretically32 that a bent planar wire with Dirichlet an
Neumann boundary conditions on the opposite sides of
waveguide possesses, under some requirements, a b
state. Accordingly, we believe that a bent acoustic duct w
an appropriate soft impurity should exhibit Fano resonan
too, say, on the dependence of the total transmitted so
intensity versus frequency, and their evolution should follo
the one described in Sec. III.
0-11
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Éksp. Teor. Fiz.121, 1157~2002! @JETP94, 992 ~2002!#.

22B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Willia
son, L.P. Kouwenhoven, D. van der Marel, and C.T. Fox
Phys. Rev. Lett.60, 848 ~1988!.

23D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahme
J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, a
G.A.C. Jones, J. Phys. C21, L209 ~1988!.

24P. Duclos and P. Exner, Rev. Math. Phys.7, 73 ~1995!.
25J. T. Londergan, J. P. Carini, and D. P. Murdock,Binding and

Scattering in Two-Dimensional Systems: Applications to Qu
tum Wires, Waveguides, and Photonic Crystals~Springer-Verlag,
Berlin, 1999!.

26R.L. Schult, D.G. Ravenhall, and H.W. Wyld, Phys. Rev. B39,
5476 ~1989!.

27P. Exner, Phys. Lett. A141, 213 ~1989!; P. Exner and P. S˘eba, J.
Math. Phys.30, 2574~1989!; P. Exner, P. S˘eba, and P. S˘ tovic̆ek,
Chech. J. Phys. B39, 1181 ~1989!; Phys. Lett. A150, 179
~1990!; M.S. Ashbough and P. Exner,ibid. 150, 183 ~1990!; P.
Exner, J. Phys. A28, 5323 ~1995!; P. Duclos, P. Exner, and D
Krejc̆ir̆ ı́k, Ukr. Fiz. Zh. 45, 595 ~2000! @Ukr. Phys. J.45, 595
~2000!#; Commun. Math. Phys.223, 13 ~2001!; P. Exner and T.
Ichinose, J. Phys. A34, 1439~2001!; P. Exner and D. Krejc˘ir̆ ı́k,
ibid. 34, 5969~2001!.

28D.W.L. Sprung, H. Wu, and J. Martorell, J. Appl. Phys.71, 515
~1992!.

29J. Goldstone and R.L. Jaffe, Phys. Rev. B45, 14 100~1992!.
30J.P. Carini, J.T. Londergan, K. Mullen, and D.P. Murdock, Ph

Rev. B46, 15 538~1992!; 48, 4503~1993!.
03531
.

-
,

,
d

-

.

31K. Lin and R.L. Jaffe, Phys. Rev. B54, 5750~1996!.
32J. Dittrich and J. Kr˘ı́z̆, J. Phys. A35, L269 ~2002!.
33F. Sols and M. Macucci, Phys. Rev. B41, 11 887~1990!.
34K. Vacek, H. Kasai, and A. Okiji, J. Phys. Soc. Jpn.61, 27 ~1992!;

K. Vacek, A. Okiji, and H. Kasai, Phys. Rev. B47, 3695~1993!.
35O. Olendski and L. Mikhailovska, Phys. Rev. B66, 035331

~2002!.
36J.A. Cochran and R.G. Pecina, Radio Sci.1, 679 ~1966!.
37L. Lewin, D. C. Chang, and E. F. Kuester,Electromagnetic Waves

and Curved Structures~Peter Peregrinus, Stevenage, UK, 197!.
38B. Z. Katsenelenbaum, L. Mercader del Rı´o, M. Pereyaslavets

M. Sorolla Ayza, and M. Thumm,Theory of Nonuniform
Waveguides~IEE, London, UK, 1998!.

39F.E. Grigor’yan, Akust. Zh.14, 376 ~1968! @Sov. Phys. Acoust.
14, 315 ~1969!#; W. Rostafinski, J. Acoust. Soc. Am.52, 1411
~1972!; 56, 11 ~1974!; 56, 1005~1974!; 60, 23 ~1976!.

40A. Cummings, J. Sound Vib.35, 451~1974!; W.C. Osborne,ibid.
45, 39 ~1976!.

41C.R. Fuller and D.A. Bies, J. Acoust. Soc. Am.63, 681~1978!; J.
Sound Vib.56, 45 ~1978!.

42A. Cabelli, J. Sound Vib.68, 369 ~1980!.
43S. Félix and V. Pagneux, J. Acoust. Soc. Am.110, 1329~2001!.
44W. Rostafinski,Monograph on Propagation of Sound Waves

Curved Ducts~NASA Scientific and Technical Information Di
vision, Washigton, D.C., 1991!.

45F. Lenz, J.T. Londergan, E.J. Moniz, R. Rosenfelder, M. Stin
and K. Yazaki, Ann. Phys.~N.Y.! 170, 65 ~1986!.

46H. Eyring, J. E. Walter, and G. E. Kimball,Quantum Chemistry
~Wiley, New York, 1944!, Chap. 16.

47K.T. Tang, B. Kleinman, and M. Karplus, J. Chem. Phys.50, 1119
~1969!.

48Handbook of Mathematical Functions, edited by M. Abramowitz
and I. A. Stegun~Dover, New York, 1964!.
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