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Fano resonances of a curved waveguide with an embedded quantum dot
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A theoretical study of a waveguide with a uniformly curved section and an embedded quantum dot is
presented within the envelope function approximation. For the quantum dot being extremely localized in the
direction of the electron propagation, exact form of the scattering matrix of the system is derived, and a
conductance of the waveguide is calculated. It is shown that if, for the straight wire with dot, in the funda-
mental mode conductance is a monotonically increasing function of the Fermi energy, then, after bending the
waveguide, one has Fano resonances on the conductance-Fermi energy dependence. The resonances appear as
a result of mixing by the bend of the longitudinal and transverse electron motion in the straight parts of the
waveguide and concomitant intersubband interaction. For the small bend(lngéebend radiyghe width of
the resonance grows narrower with decreasing the aimgtesasing the radigsuntil in the limit of the zero
angle (infinite radiug one recovers true bound state in the continuum and the corresponding monotonic
conductance of the straight channel. A dependence of the resonance width on the parameters of the bend and
the dot is investigated; in particular, it is shown that, as a result of coherent resonant phenomena in the
superposition of the bend and the dot, true bound states in the continuum can be formed also for the nonzero
bend angle and the finite bend radius. Miscellaneous cases of bending the waveguide which, if uncurved,
already exhibits the Fano resonance, are also investigated; for example, it is shown that in this situation, as a
result of the bend, resonances can collapse too, again producing true bound states in the continuum. The case
of inversion of the Fano resonances, i.e., a change of their minimum and maximum mutual location, is also
analyzed. Mathematical and physical interpretation of the obtained results is given, and characteristic features
of the critical parameters at which the Fano resonances collapse, are discussed. It is demonstrated that currents
flowing in the waveguide, near the Fano resonances drastically change their behavior from laminar to vortical
structure, and an evolution of the vortices is described. Parallels are drawn to the other types of the guiding
structures, such as electromagnetic waveguides and acoustic ducts.
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[. INTRODUCTION much earlier mentionings about such line shape have been
made in Refs. 3-5 and they continue to attract a careful
Fano resonances a general property of the physical sys- attention of the researchers from different branches of
tems where a degeneracy of continuum states and a discrepbysics®”
level raised into this continuum is preséninteraction of One class of the systems where the Fano resonances are
such quasibound state with background leads to the charablder scrutiny from transport and optical point of view, are

teristic asymmetric resonances whose line shape is describ&V-dimensional - semiconductor nanos_truct&?é? and,
by the formula among them, quantum quasi-one-dimension&D1D)

waveguides®?!Interest in the nanometer quantum channels

(e+Q)2 has been further stimulated by the experimental discovery of
fle)=———. (1) the conductance quantization of these man-made
e’+1 structure$?2® It was shown that a quantum dot embedded

) . . ) _into such electron waveguide acts as an attractive scatterer
Heree =(E—Eg)/(I'/2) is the dimensionless energy in units ang, as such, creates a quasibound state in the continuum.
of the resonance widthi, g is the asymmetry parameter, and \athematically this level is described by the superposition
Er is the resonance energy of the Fano transition. Fano funef the set of the evanescent modes localized near the dot, and
tion, Eqg. (1), has a minimum of zero at enerd,i,=Er one or several external plane-wave components whose am-
—1'g/2 and reaches maximum Bt,,,=Er+1/(2q). If we  plitudes determine the escape rate, or lifetime, of the state.
confine our consideration to the real values, then a positiv&his quasibound state is split off from the higher-lying sub-
(negativeé g means that the minimum is achieved at theband and can capture the electron. As a result, its interaction
smaller (largep energies than the corresponding maximum.with its degenerate continuum counterpart even in the non-
Thus, asymmetry of the resonance is proportional to thénteracting electron model strongly affects transport proper-
asymmetry parametey which, in turn, is defined by the ties of the waveguide creating characteristic Fano line shape
asymmetry of the physical system itself. Fano resonancesn the conductance dependence on the Fermi energy. For the
were first described in the study of the inelastic scatteringundamental mode, such a Fano line develops when the
spectrum of noble gases more than forty years' @mugh  quantum dot is asymmetric with respect to the middle plane
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of the waveguide and, accordingly, it causes an intersubbaritie decreasing angl@ncreasing radiusuntil for the straight
mixing. In the opposite case of a symmetric scatterer theravaveguide, we recover true bound state in the continuum.
are no Fano resonances on conductance-Fermi energy depdiitie bound states can also be obtained for the nonzero
dence since higher-lying subbands are not involved into th@ngles and finite bend radii, when the coherent resonant phe-
transport. nomena in the bend with embedded dot cancel out a possi-
On the other hand, continuous spatial reduction in thedility of the particle escape from the bend to infinity. If, on
design of electronic and optical circuits inevitably introducesthe other hand, for the straight waveguide with dot a Fano

channels with bends connecting many separate devices on@Sonance already exists, applying the bend changes its char-
single chip. Therefore, a correct description of theacteristics leading again to the true bound states in the con-

waveguides with bends becomes crucial in further developtinuum with the corresponding substitution of the asymmet-

ment of nanotechnologies. Recently this problem was ad'C Fan_o Iine_shape by the r_nonotonic curve. Interesting case
dressed widelysee reviewgRefs. 24 and 28. In particular of the inversion of the location of the conductance peak and

it was predicted that a bend in the otherwise uniform waveZ€r0 is also discussed. Currents flowing in the waveguide are

guide produces bound states spatially localized in the perfdlculated; in particular, it is shown that a laminar flow far
region with energies below subband threshdfd€2 Com-  away from the Fano resonance tums into the vortex structure
pared to the straight waveguide, electrons with momentd0r the energies close . A comparison with a straight
smaller than the momentum of the higher-lying subband cat{/@veguide with impurity is performed, and a strong similar-
dwell in the extra space of the bend. The quasibound levely Petween these two cases is pointed out. It is shown that

split off from the subbands other than the fundamentapbtai”_ed results can be applied_ to the similar guiding struc-
threshold, interfere destructively with their degenerate con{Ures in other branches of physics, such as, electrodynamics

tinuum counterpart leading to the steep dips in the2Nd acoustics. , .
conductancé®®133-35However, at some critical parameters The paper is organized as follows. In Sec. Il our model is

of the bend these dips disappear substituted by the resondpfsented and a necessary formulation is briefly given. Sec-
tunneling through the bend, and a quasibound state turns intipn i is devot_ed to the_presentatlon o_f the calcu_lated results
the true bound level degenerate with the contindaBent and their detailed physical interpretation for various param-
electromagnetic waveguides were also extensively studie@€rs of the bend and the dot. Summary of the results is
(see Refs. 3638 and literature theje®imilar efforts have Provided in Sec. IV.

been undertaken for the investigation of sound propagation
in rigid bends in acoustic ducts **as well. Summary of this
research up to the early 1990's is given in Ref. 44. Math-
ematically, all these systems are described by the same type The subject of our interest is an infinitely long Q1D wave-
of second-order differential equation for scalar fields in twoguide of widthd with a uniformly curved section of inner
dimensions, namely, by the Helmholtz equation. The onlyradiusp, and angleg, (Fig. 1). In addition, a quantum dot
mathematical difference between them is in the type ofyith the potential

boundary conditions: Dirichlet, one for the electronic and

transverse-electric radio waves, and Neumann condition, for

Il. MODEL AND FORMULATION

the transverse-magnetic and sound waves. To emphasize the 72
general physical significance of study of the bent Vqd(r)= - d295(¢>— $qd) 0(p—po—S) 6(L+S+po—p)
waveguides, we mention that this model is used also in the @

investigation of quark confineméntin the elementary par-
ticle physics and chemical rearrangement processes and re-
action rates in quantum chemisff/#’ is embedded into the bend. The pole of the coordinate system
So far, influences of the bend and the quantum dot on thép,¢) coincides with the center of the bend, and the polar
Q1D quantum channels were considered separately, witho@is is a vertical junction between straight and bent parts of
their interaction. In the present paper, we investigate theothe waveguidem* in Eq. (2) is the effective electron mass,
retically combined influence of these two nonuniformities ond(x) is a é function, andd(x) is a step function. Form of the
the conductance of the waveguide. Within an effective maspotentialVy4(p,¢) shows that we assume the quantum dot
approximation and noninteracting electron model we derivédeing extremely localized in the propagation direction and
an exact expression of the scattering matrix of the curvedhaving the lengthL in the transverse direction with its lower
waveguide with quantum dot embedded into the bend. Thedge shifted from the waveguide boundary by the dist&hce
potential of the dot is extremely localized in the propagationAlso, the quantum dot is shifted from the vertical junction in
direction and has finite dimensions in the transverse direcazimuthal direction by the angké,4. Strength of the quan-
tion. Ballistic transport of the electrons is assumed throughtum dot potential is determined by the dimensionless param-
out the paper. We show that if, for the straight waveguideeter (). Its negative values correspond to the attractive po-
with dot, conductance is a monotonic function of the Fermitential (quantum daot and the positive ones to the repulsive
energy, then for the bent structure asymmetric Fano linémpurity (quantum antidot
shape appears as a result of mixing by the bend of the trans- Within an effective-mass approximation the time-
verse and longitudinal motion. For the small bend angléndependent Schdinger equation for noninteracting elec-
(large bend radiysthe resonance width is getting smaller for trons describes the particle wavefunctiérr),
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FIG. 1. Schematic picture of the bent quantum waveguide of

constant widthd with short-range impurity of the length inside
the bend. Bend inner radius and angle pgeand ¢, respectively.
Impurity is shifted from the upper junction in azimuthal direction
by the angleg,q and from the lower wall by the distan& Impu-
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HereJ,(x) andY,(x) are Bessel functions of the first and
second kind, respectivef§. Detailed analysis of the func-
tions (7) and the coefficients, is given in Ref. 35. Coeffi-
cientsD®) andF{", i=1,2, n=1,2, etc. are to be found
from matching wave functions in the different regions.
Matching wave function for the azimutha potential, Eq.
(2), is done similar to the one-dimensional rectangular £ase
or to the potential having a peculiarity in the radial
direction®°

V(p,dga—0)=V(p,dqat0), (8a)
—i‘l’( ®) —Ei‘l’( )
pag =" p=dqqr0 P IP a $=dqq~0

2
=g 0(p=po=9)0(L+S+po=p)V(p,¢qa)- (8D

Quite naturally, Eq(8a shows that the wave function re-

rity strength is#?/(m* d*)€. Local rectangular coordinate systems mains continuous at thé peculiarity, and Eq(8b) manifests

(x,y) and ’,y') for the straight arms are also shown.

h?
— ——V2¥(r)+V(r)¥(r)=E¥(r) ©)
2m*
with the potentialV(r) containing contributions from the
waveguideV,,q and the dotVq,

V(r)=Vyg(r)+Vqa(r). (4)

that a jump of its azimuthal derivative @/oW/d¢ is pro-
portional to the strength of the potential discontinuily

From the obtained system of equations it is possible to
derive an expression linking amplitudes of transmitted and
incoming modes, i.e., to define a scattering matgE)
which is a function of the electron ener§y It also depends
on the parametersy, ¢g, bqq, 2, L, S We do not write its
explicit form here, mentioning only that in the limiting cases
1) Q=0, ¢qq=0 or 2 L=0 it turns, as would expected,

For the hard-wall boundary conditions we accept in this painto the expression for the dot-free curved waveguftis

per, Vy4(r) is zero inside the waveguide and infinity other-

wise.

Transport properties of the waveguide are determined by

the scattering matris(E). For finding it, we proceed in the

same way as in the case of a dot-free curved wavegtide;

namely, in each of the region we expand solution of ).

in a set of known analytical functions and match them at th
boundaries. In particular, inside the bend we have the follow

ing solutions:

\P(p,¢>>=n§1 Ra(p)[D{Msin(va¢)

+FHeogvp)], 0<p<dqq, (5)
wp,cb):n; Ra(p){D@sin vy(p— dqa)]
+FPcofvy(p— g}, baa=d= o,
(6)

with R,(p) being a radial part of the wave function:

knowledge allows one to calculate the two-probe total con-
ductanceG,**

2e? Ky
GE)=T 2 | S
n

nn’
nn’

Snn’ ’ (9)

eyvherekn is the electron wave vector of the channeind the

scattering matrix elemer8,,,, defines the probability of the
electron scattering from channeko n’. The sum in Eq(9)
runs over all open channels, aids a Fermi energy, i.e., an
energy of the highest occupied level. For the single propa-

gating mode this equation reduces to

2

2e
G(E)= T|511|2- (10

The following section is devoted to the analysis of E)
for various parameters of the dot and the bend.
ll. RESULTS AND DISCUSSION

We will consider below transport properties in the funda-
mental mode only:7%42/(2m* d?) <E<4x?%%/(2m*d?),
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thus excluding an interference between different propagating 52
modes. From the two-band approximation it is known that in Vqa(r) = Tdﬂé(x) 0(y—S)0(L+S—vy), (13
m

this case for the straight waveguide a Fano line develops on
the conductance-Fermi energy dependence when the int
subband matrix element is not zéfe:®>? It can be shown
that for any longitudinally symmetric potentig,y(r) from
Eqé(4) the conductanc6 [in units of (2e%/h)] is expressed
a

8htersubband scattering is zero when the potential is symmet-
ric with respect to the middle plane of the waveguide:
=(1-L)/2. Since for the straight channel situations with
symmetrically and asymmetrically embedded dot differ
qualitatively, below for the bent waveguide we consider
them separately. We will measure all distances in units of the
(11) waveguide width d, all energies—in units of
w?h?/(2m*d?), conductance—in units of /h), and
time—in units of an*d?/(7?#4). Also, we do not consider
the physically irrelevant angles larger than 180°.

1 (E—Egtql)?
1+0? (E-ER)?+T?

In terms of Eq.(1) we can say that in our case=(E
—Eg)/T". Equation(11) shows that the conductance not only
reaches minimum of zero &,,,=Eg—1'q, but also the

maximum value that is achieved Bt,.=Eg+T/q, is an A. Transversely symmetric quantum dot: S=(1—L)/2

exact unity. So, for oub potential the scattering matrix ele- For the bent waveguide, apart from the transverse sym-
mentS,; defining the conductance, near the Fano transitiormetry of the embedded quantum dot, another symmetry
of the straight waveguide takes the fdfif° comes into the play; namely, for the clean waveguide the
system is symmetric with respect to reflection about the line
_ E—Enin b= ¢ol2. Therefore, cases obqq= ho/2 and pqyq# ¢o/2
Su(B)= (1+q2) Y2 E=Emayt T/q+iT”’ (120 aiso will be considered separately.

Let us start from the situation witth,y= ¢o/2. As it was
where E,,,i,, is the energy of the minimum conductance of just mentioned, for the straight waveguide we have a true
zero,E .« is the energy where the maximum transmission ofbound state which does not interact with the continuum,
unity is achieved, Egx=(Enaxt Emin)/2+(q—1/q)T'/2, since they are effectively decoupled by the parity conserva-
Emax— Emin=(q+1/q)I". The resonance width is propor- tion. The wave function of this level localized near the dot
tional to the square of the nondiagonal element of the intereontains in the straight arms only fading exponents, without
subband transition matrix, and the asymmetry paramgter plane-wave component. Imposing a bend, one mixes longi-
depends only on the backgroufrbnresonanttransmission. tudinal and transverse motions in the straight arms and, ac-
In the opposite case of the absence of intersubband interacerdingly, adds freely propagating trigonometric constituent
tion the conductance is a monotonically increasing functiorto the wave function. As a result, intersubband interaction
of the Fermi energy®*"*'and a bound state is raised into the ceases to be zero, and Fano resonances appear in the trans-
continuum®>~71t is a true bound state with infinite lifetime, mission spectrum. Figure 2 shows the conductaBcas a
since due to the different transverse parity it does not interadunction of the Fermi energi for Q= —4, py=0.01, and
with its degenerate continuum counterpdrt’ For our  several values ofb,. The dot is tightly embedded into the
model potential which for the straight channel takes the fornwaveguide with its length being equal to the waveguide
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width, L=1. We see that a monotonic curve for the straightThe approximation, Eqg14) and (15), is getting better for
waveguide transforms into the asymmetric Fano resonanage larger bend radius,. If we treat the square root @f in
as soon as the bend is introduced. The cl@sgto zero, the  Eq.(14) as constant, as it was done in Ref. 28, then different
sharper the resonance is. Quantitatively, it can be describathannels decouple, and we have one or several true bound
by the value ofl” which is a monotonically increasing func- states in the continuum, as it was discussed in Ref. 16. How-
tion of the bend angle,. This means that the square of the ever, if we lift the demand of constant square root, as it
intersubband matrix element increases with the bend anglactually should be, intersubband matrix elements of the set
growing. The same behavior of the conductance was themf the functions(14) are not zeros, and various channels
retically observed for the small magnetic field imposed ontdnteract with each other. Accordingly, after inserting into the
the quantum channel with the embedded'ddh both cases bend as potential with a true bound state, one can expect
an imposed perturbation—either bend or magnetic field—this state transforming into the quasibound level accompa-
destroys the transverse symmetry of the system, thus comied by the Fano structure in the transmission. In other
pling the bound state with the continuum, transforming thewords, effective potential of the bend causes intersubband
former into the quasibound level, and leading to the characinteraction leading to the asymmetric Fano resonances.
teristic Fano resonances with their widths—at least, for the To shed more light on this phenomenon, we show in Fig.
small and moderate disturbances—proportional to the3 the conductance fok =0.5 (and, accordinglyS=0.25)
strength of the perturbation. For all values of the bend anglevith all other parameters being the same as in Fig. 2. Since
and radius, maximum conductance is equal to unity, and thaow L<1, the quantum dot binds the electron weaker com-
minimum transmission is exactly zero. pared to the previous case. As a result, upon bending the
In understanding properties of the bent waveguides witlwaveguide one can expect formation of the Fano resonances
impurities, it is convenient to use approximation that mapscloser to the first excited subband threshold. This is exactly
processes in the impurity-free bend onto the motion in thehat is seen in Fig. 3, where the Fano resonances are shifted
straight waveguide with the potential which creates the waveipwards on the energy axis compared to Fig. 2. Another
functiorf® feature of Fig. 3 is the fact that the resonance widtls not
a monotonically increasing function of the bend angle. In
1 Fig. 4 we plot the value oA =E,,,— Enin, @s a function of
Ynlp.x)= \/—;SIr[nW(p—po)](I)n(X) (14 ¢, for several values of the quantum dot lengthsAs we
noted above, a value & is proportional to the resonance
with the longitudinal variablex=(po+1/2)¢ (see also Ref. jdth, I'=qA/(1+g?). Thus, the negative values af cor-
30). Function ®,(x) describes the motion in a one- respond to the negative asymmetry parametér Eq. (1).
dimensional square-well potential of depth ®2 %*(po  We observe that for the small and moderate valugs @br

+1/2)"% and width (o + 1/2)¢by: example,L=0.2 in Fig. 4 the magnitude ofA increases,
2 . reaches maximum, then decreases, reaches zero, for some
J n, 2(E—n?)+ ®,=0, angle interval _bec_omes negative, achieves negative mini-
Ix? 4(po+1/2)? mum, after which it crosses zero for the second time, and
later it grows again. Since modulus of the negative values of
0=Xx<(pg+1/2) ¢y. (15 A and the angle interval they occupy, are quite small, they
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are not resolved in Fig. 4. Also, since this feature is charac- Figure 5 shows the conductan€efor several bend radii
teristic for the asymmetrically embedded dot as well, wep, with quantum dot tightly embedded into the waveguide
defer its detailed discussion to Sec. Ill B, concentrating hereind the right bend anglké,=90°. It shows many similarities
instead on the case of the resonance width being absent. ith Fig. 2. In particular, we see that a Fano line shape that
zero value ofl” means that at these critical parameters of thgs sharp for the large bend radius, acquires bigger width
system we have again a true bound state—a state with infigith decreasingo,. The larger bend radius, similar to the
nite I|fe§|me. As a result of the resonant interference in thegmalier bend angle, presents a lesser perturbation to the elec-
bend with embedded scatterer, a plane-wave component g, motion in the straight waveguide; accordingly, it causes
& smaller intersubband interaction with its amplitude being

bound state in the continuum. Similar to the case of th roportional to the width of the asymmetric resonance. And

straight channel or the defect-free bent waveguide, this trum the limit of pg— 0, as it was fordy=0, asymmetric Fano
bound state does not interact with the continuum, since the Po—", 0= Y, asy :
are again effectively decoupled. True bound states degene ne sha}pe b_ecomes the monqtomc curve of the st.ralght
ate with the continuum, appear as very special solutions O\fvavggwde with the corresppndmg m.Je bounq state n the
the Schiadinger equation. They were discussed for the ﬁrstcontmuum.. For thg small radius there is a considerable inter-
time soon after the formulation of the quantum mechaffics, Subband interaction, and so, the Fano resonances grow
and were later extensively studied in various physicaProader. For the very small radii the further decreasgqf
systemd8202124355354rhe conductance at the critical pa- €@nnot change noticeably the line shape; for example, there
rameters is, as in the caseg§=0, a monotonic function of 1S only a slight difference between the curves for=0.01

the Fermi energy. We can also qualitatively explain the ear&nd po=0.001. Qualitatively, it again can be understood
lier approach byl™ to zero on thap, axis for the smaller dot from Egs. (14) and (15), where for the very smalp, its
lengthsL. Namely, for the smallet, as we mentioned, the Vvariation has a marginal effect on their solutions. Thus, we
bound state energi,s is closer to the upper threshold of Se€ that, contrary to the case of the small magnetic field
E—4. Accordingly, the longitudinal de Broglie wavelength aPplied to the straight waveguitfe when only one
Nps= 2/(E§’52—1) of the bound state is smaller. On the otherParameter—magnetic-field mtensﬂy—controls_ the sharpness
hand, for the fixed) a resonant condition of the bound state of the resonances, one has both the bend radius "%”d the bend
is determined, in the first approximation, by the length of theangle for varying the line shape of the Fano profiles in the
arc (po+1/2)¢py. Therefore, for the smaller dot lengthsa curved Wavegwde. - .

first resonant condition when only one half of the wavelength 1€ coupling of the longitudinal and transverse motion

Ape is accommodated by the bend with dot, is achieved fonear the Fano transition in the bend with impurity can be
thes smaller angles. As is seen from Fig. 4 ’[0?0 5 (and vividly demonstrated when one considers the currents flow-

Q=—4) this resonant condition is achieved beyond theing in the waveguide. It follows from the familiar quantum

range of G< o =180°; however, for the other parameters of Mechanical expression for the curréntlensity  that it is

the bend and the dot one can observe several bound statespaoportional to Im@VW¥*). As a representative example,
¢o=<180°. This explanation is similar to the description of we take a configuration witlpg=0.01, ¢o=5°, andL=1

the different number of the bound states for different radii for(solid curve in Fig. 2 In Fig. 6 current-density patterns are
the clean bend® shown for several Fermi energies. If the energy is far away
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from the resonance, the flow of the electrons is perfectlyjquantum channel we consider in this paper, a remarkable
laminar. WherE approacheg,,;,, a vortex starts to build up feature of such a vortical flow is an abrupt change of the
in the bend region. One of the initial stages of the formationdirection of its rotation after passing the minimum of the
of such a vortex is shown in Fig(& which corresponds to Fano resonance. For example, Figb)éshows the currents
the first maximum in Fig. 2 witls =0.427. Itis seen that far  for the energy immediately left from the Fano minimum with
away from the bend the current has a longitudinal component =3.167x 10~ and a clockwise rotation. At the minimum
only; however, in the bend region and its immediate neighthe direction of the rotation abruptly changes to the counter-
borhood a transverse part which was negligible in thegiockwise one and retains it for the higher energies, as it is
straight arms, is clearly visible. For the energy in FiR&  ¢oap in Fig. &), which corresponds to the conductar@e
formation of the vortex is not complete, but the current den-_ 5 24 o4 energy between the Fano extrema. An analogous
sity quickly acquires a circular form with further d_ec_rease Ofabrupt reversal of the current after passing a minimum of the
(.3' and aftere~2.33 we have a closed vortex. Similar VO conductance takes place for the bent defect-free quantum
tices of the currents were found before in the straight h B8 Th tex struct tarts t ve for the Eermi
nonuniform®857 and bent clean waveguid®s.For the ° annel- The vortex structure starts to resolve for the Fermi
energies to the right of the Fano maximum; for example, Fig.
6(d) shows this process fd&=0.505. Thus, similar to the
clean bent waveguid® minute changes in the Fermi energy
may produce drastic changes in the flow of the electrons.
Amplitude of the currents in the vortex is a few orders of
magnitude larger than the flow far away from the bend. For
the zero transmission we can interpret the vortex structure as
a situation when the electron entering the waveguide from
the left, reaches the bend, starts to move along a circular
orbit, and after timer~ 1/T" is reflected back. As a result, the
current is totally subdued. In the same way, when the con-
ductance has a maximum, the electron circularly rotates in
the bend, and after completing a number of loops determined
by E, po, &9, 2, it leaves the curved section and propagates
further into the second straight arm, thus producing a com-
plete transmission. Of course, such a semiclassical descrip-
tion has a very limited scope, since the quantum effects de-
scribed here do not have a classical analog.
FIG. 6. Spatial distribution of the current densifyfor p, Let us turn now to the case @bqq7 Po/2. IMmposing a
=0.01, ¢p=5°, L=1 and several values of the Fermi ener(g: ~ bend with ¢q4= ¢o/2 destroys the transverse symmetry of
E=2.29, () E=2.37335,(c) E=2.375, and(d) E=2.41. Larger the waveguide; however, some kind of symmetry which we

arrows denote higher currents. For each of the figures its own arbigan call a longitudinal one, still persists; namely, waveguide
remains unchanged after reflection with respect to the plane

trary units of the current density are used.
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FIG. 7. Conductanc& versus the Fermi en-
ergy E for L=1, Q=—-4, py=0.01, ¢o=180°
and several values apyq: the solid line is for
¢qa=0°, the dotted line is forgyy=30°, the
dashed line is fokp,q=45°, and the dash-dotted
line is for ¢44=60°. For each of the curve mini-
mum conductance is zero.

¢= ¢ol2. By shifting the dot from the middle line of the
bend, this longitudinal symmetry is broken. Recalling theangle ¢, for the up- and down-turn bends and ragij
approximation of Eqs(14) and(15), we can say that the dot =0.01 and 0.1 withS=0.1, L=0.5, Q=—-4, and ¢qq

and the bend in this case present an effective potential that is ¢o/2. For the straight waveguide at these parameters we
not symmetric in the direction of the wave propagation in thenaye a Fano resonance with=0.207. It is seen that if the
continuously straight channel. A case of similar asymmetrigyend is in(opposite to the direction of the dot shift, then the
dot embedded into the straight waveguide was studied verygsonance width decreas@screasesfor the small and mod-

Figure 8 shows the value &f as a function of the bend

recently’? Our results shown in Fig. 7 for the bent wave-
guide, in a sense, are similar to those in Ref. 21 for th
straight cr_lanne!. W? seen this flgurg a sgrles_of Fano '€S%ion of the broadening of the discrete state due to its cou-
nances with their minimum transmission still being zero, i.e.,

we observe again a complete interference blockade of thBIIng to the continuum which, in tum, is determined by the

electron transport. However, maximum conductance of thghsymmetry .3f t.he ds%/stem. E%r ct);'r g!o:j%l ?n as¥/$metr¥ of
system is smaller than unity and varies wiljy. Such de- | 'c Waveguide is determinec by the distribution of fhe poten-

crease may be explained by the partial destruction of thd@l With respect to the most symmetric point of the wave-
coherence in the asymmetric potential. guide; i.e., for the straight waveguide—by the location of the

dot with respect to the potential-free part and with respect to
the pointx=0, y=1/2. We can say that for a nonzefoa

erate anglespy. This can be accounted for as follows. The
agnitude of the resonance width is a quantitative expres-

B. Transversely asymmetric quantum dot:S# (1—L)/2

Contrary to the cas&=(1-L)/2, now for the straight

center-of-the-mass of the distribution of the potential is
shifted from the middle of the waveguide. When the wave-

waveguide we have the Fano resonance on the conductanagaiide is bent, one needs to find a distribution of the potential

energy dependence. F8K(1—-L)/2[S>(1-L)/2] the dot

with respect to the poinp=pg+1/2, ¢= ¢o/2. The down-

is shifted downwardupward from the middle plane of the turn bend lowers locations of the potential-free straight arms
waveguide, and conductance is the same for the two sBifts, relatively to this point, as it can be seen from Fig. 1. Accord-
and 1-L—S. Applying the bend to the structure modifies ingly, if the dot in the straight waveguide was shifted down-
Fano line shape, but minimum and maximum transmissiomward, the bend moves it upward with respect to the potential-
magnitudes preserve, for the casedgfy= ¢o/2, their val-  free regions; center-of-the-mass of the distribution of the
ues of zero and unity, respectively. The above mentionegotential comes closer to the center of the waveguide; total
degeneracy of the conductance now is lifted, the up-turn andffective potential becomes more symmetric, thus lowering
down-turn bends are not equivalent, as they were in Sed.. Of course, such a simplified qualitative reasoning cannot
[l A. Similar nonequivalence takes place for the defect-freedescribe the whole spectrum of the phenomena in the sys-
bent waveguide in the uniform magnetic fiélavhere, from  tem, when a direct numerical evaluation is needed.

the symmetry properties, the change of the bend from one Now, we turn to the above mentioned inversion of the
direction to the other has the same effect as an inversion dfano resonances. As a representative example, we take the
the magnetic field. In the same way, in our case a bend in onease ofpy=0.01 and down-turn bend. Figure 9 shows a part
direction with the shiftS is nothing else as a bend in the of the solid line of Fig. 8 in the range where it is close to the
opposite direction with the shift2L—S. critical parameters. We observe that decreagingurns to
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04l K '\,\ ] FIG. 8. DifferenceA as a function of the bend
7 \ angle ¢, for L=0.5, S=0.1, Q=—4, ¢
/ N = ¢o/2 and several values of the bend radigs
sl £ RN 1 and different directions of the bend: the solid line
’ ,;-’ N\ is for pp=0.01 and down-turn bend, the dotted
£ N line is for po=0.01 and up-turn bend, the dashed
02’ '\,\ ] line is for pp=0.1 and down-turn bend, and the
| N dash-dotted line is fopy=0.1 and up-turn bend.
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zero at¢y=55.040458°(thus, we have here a true bound fore, such a situation corresponds to the negative asymmetry
state in the continuum which was discussed earliercomes parameter in Eq. (1). Similar collapse and inversion of the
negative, at¢y=>55.12° reaches minimum oA=-1.67 Fano resonance in the straight waveguide was calculated ear-
X107, after which it crosses zero again ad, lier while changing the impurity parameteéf®! In particu-
=55.195 065°—producing the second bound state in théar, in Ref. 21 a collapse of the Fano resonances and a cor-
continuum, and grows positive. Negative valuedineans responding formation of the eveiedd bound state in the
that the maximum of the Fano resonance on thecontinuum with the variation of the longitudinal dimension
conductance-Fermi energy dependence is achieved earlief the finite-range dot was explained as a result of the inter-
than the corresponding minimum. This is shown in Fig. 10section of the symmetri@ntisymmetri¢ levels of two quan-
where the conductance for the opposite signa aé shown  tum wells with depths/,, andE,— E;+ V44, whereV;; (i

as a function of the Fermi energy. It is seen that for positive=1,2) are diagonal matrix elements of the impurity poten-
A a minimum of the conductance is achieved on the energyial, andE;, E, are the thresholds for the fundamental and
axis before the corresponding maximum, while for the negathe first excited subband, respectively. Accordingly, range of
tive A a situation is reversed, minimum conductance of zerahe longitudinal lengths of the dot between alternating even
follows after the maximum of unity. As we have stated be-and following after it odd bound state corresponds to the

FIG. 9. Enlarged view of the solid curve of
Fig. 8 near the critical values of the angig.
Dashed line denotes zero value of the resonance
width.

-2
55.02 55.04 55.06 55.08 56.1 55.12 55.18 55.2 55.22

%

55.14 55.16
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1 turn, growing radiugg which in the model of Eq914) and
L (15 corresponds to the shallower and wider well, leads to
0.8 the shrinkage of the range of the angles where the inversed
Fano resonances can be observed, and for the large enough
po bound states disappear. Figure 8 shows that, depending on
the bend radius, such alternating sequences of the even and
odd bound states may be repeated a few times fee @5
=<180°. Also, we remind again that such inversion takes
place for both transversely symmetric as well as asymmetric
02 dot. Therefore, all discussion of this paragraph is directly
(@) applicable to the corresponding part of Sec. Il A.

A substantial increase of the negative valuedadnd the
8.349713 3.349714 3.349715 range of the angles where the inversion of the Fano reso-

0.6

04

© nances takes place, is achieved for the anglgs” ¢o/2. In
Fig. 11 the conductanc® is shown for¢y=180° and sev-
1 eral values olpqq. It is seen that depending on the quantum
‘/\ dot angle, the conductance exhibits either positive or nega-
0.8 tive A on its Fano line shape. However, contrary to the case
bqa= Po/2, the remarkable feature here is the absence of the
06 bound states for the azimuthally asymmetric dot. Accord-
ingly, formation of the curve with the negative differente
0.4 is also different. Namely, as it is seen from Fig. 11, #yq

=¢o/2 we have a Fano resonance with positiig,,,
— Emin @and minimum conductance of zero and maximum of

02 unity, as we discussed before. Shifting the dot from the plane
0 (b) ¢qa= $o/2 has two consequences: first, the pole of the reso-
3.349441 3.349442 3.349443 3.349444 nance becomes smaller than unity and broadens, and, second,

E the maximum which precedes the Fano minimum on the en-

FIG. 10. Conductanc& as a function of the Fermi energy for €rgy axis, narrows and increases, S|mu_lta_neously moving to-
po="0.01 with all other parameters from Fig. 8 for two anglés: wards the minimum. We note that, similar to Sec. Il A,

o=55.02° (positiveA) and (b) ¢o=55.12° (negativeA). Due to ~ MiNIMuUM ConQUCtance is always zero, and its maximum is

the sharpness of the resonances different ranges of energies wéRVer than unity for¢gqq# ¢o/2. On further dot movement

used for the case®) and (b). away from the plane of the symmetry both maxima get the
equal magnitude at somg,q (for example, for the param-

inversed Fano resonances, as the interaction betwe ers in Fig_. .11 it takes_ place %dzmo) still separated by
the subbands changes its sign. In the same way, for th e zero minimum, which means that we do not have a true

structure we study, Fig. 9 shows a symmetric bound statgound state here. For the Smalmd 'the pole of the Faﬂo .
at $,=55.040458°, and antisymmetric bound level atf€sonance should be associated with the left peak, since it

o=55.195065°. As we see, for the chosen parameters the§&XC6€ds the magnitude of the right broad maximum. This

two states are located very close to each other omsthexis means that the location of the extrema of the resonance is

and are almost degenerate in energy. Similar situation of afﬁvr'tfrt}gdcggg] urZ;irgr;pglfe trf: Spc;!{z—;e;zelc:jcizggggh Thus,
most degenerate even and odd states is well known for the 9 the Sys . ESnax
Emin abruptly changes it sign without continuous passage

one-dimensional case, for example, for the interaction of th?_hrough zero, as it was the case fyy= do/2. The fact that
3 d— 0 .

S-potential with rectangul&?°° or paraboli¢>®°well. Using onaitudinall i struct t bind the el
this similarity, we see that the dot influence is much Iargera ongitudinally asymmetric structure cannot bin e elec-

and the bend mainly plays a role of the Fabry-Perottron and have a true bound state in the fundamental propa-

resonatdt® with junctions of the bend with the straight arms gating mode, is in agreement with Ref. 21, where a similar

corresponding to the mirrors of the electronic resonator.concIUSIon was derived for the straight waveguide with

Analogous approach to the degeneracy between symmetri’csymmetric dot. On further decrease of the angjg it is

and antisymmetric bound states in the continuum was calcd2OSSibIe to have areverse jump from the negative to positive
lated for two parallel short-range potentials in the straighlA' For exa_mple, |n_F|g. 11 fohqq=0 the zero_of the reso-
guantum channel on the increase of the distance betwedlfiNCc€ again I1s a_ch|eved at the small::‘r energies thqn the"cor-
these impuritie¥ and for the scissor-shaped waveguide Withres‘!)o.nc.ilng maximum. ”SW|tch ffo”.‘ maximum-minimum

the angle between the arms going to Z¥W¥arying param- to n;ummum-maxmum configuration takes place aqq

eters of the bend and embedded dot changes distance be23"-
tween the even and odd states and minimum valuk.dfor

example, for the smaller bend radius the separation between
symmetric and antisymmetric bound states increases with the We have discovered a rich structure of Fano resonances in
absolute value of the minimuia ;| increasing as well. In  the theoretical description of the transport properties of the

IV. CONCLUDING REMARKS
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FIG. 11. Conductanc& as a function of the
Fermi energy forL=0.5, S=0.1, Q=-4, pg
=0.01, ¢9=180° and several values df,q: the
solid line is for ¢44=0, the dotted line is for
¢qa=30°, the dashed line is fop,4=60°, and
the dash-dotted line is fog,q=90°. Similar to
Fig. 7, for all curves minimum conductance is an
exact zero. The differenca is positive for ¢qq
=0° and 90°, and negative for other two curves.

bent Q1D waveguides with embedded quantum dot. Manipuether hand, deliberate introduction into the bend of the local-
lation of these resonances by the variation of the bend ani¢ed impurity should be detectable, as we have shown in this
dot parameters leads to a number of interesting effects whichaper, as an appearance of the new dips and peaks in the
may be used in the design of nanodevices. Among theseonductance. Another method of observing phenomena pre-
features we mention the collapse of the Fano resonances wighcted here, is the use of the electric field of the transverse-
the formation of true bound states in the continuum, and thé&lectric mode of the radio waveguide. One-to-one correspon-

inversion of the mutual location of the extrema of the reso-dence between electron motion in the quantum Q1D wire
nance. and electromagnetic wave propagation down the metallic

We considered the impurity extremely localized in the Waveguide is well known and was used for the experimental

propagation direction. Generalization to the finite-range Sca,%etectlon of the bound states in clean sifjend doubl€

: el : . bends.

:ﬁ(ree;;/vnl]tgc\)l:j;yagz i?'g'cduoltr'](zsfor??zeb;rggé?w:vigé%gl}{ n Finall_y, we mention that_ the results presgnted in this paper
when multiple Fano resonances miaht appear and i,nteraﬂlre stralghtforyva[dly applied to the analysis not only of the

; P gnt app Blectromagneti®® 3¢ put of the acoust®*4%557 waves
with eaqh other. . ropagation as well. First experiments on the sound passage

We disregarded any atomic structure of the crystal of thgy gk the defect-free bent acoustic ducts are dated as far
waveguide. Its inclusion can modify results presented hefeoack as mid 1970442 Different type of the boundary con-
However, the above described phenomena should survivgitions for the acoustic waves may lead to the shift of the
qualitatively in more sophisticated calculations taking intowavenumbersz/n, as it was shown in Ref. 36 for the elec-
account the form of the Bloch wave functions. Also, theytromagnetic waves. However, general features outlined
should serve as a basis for the treatment of the electrorabove should not be altered. In fact, experiments have re-
electron interaction in this system when some kind ofvealed that an insertion into the bend of the longitudinal rigid
Hartree-Fock or Thomas-Fermi potential should be imple-hard-wall vane or attenuator with impenetrable boundaries
mented. It is believed that for low currents in quantumsignificantly alters transmission properties of the curved
waveguides Coulomb scattering does not change signifiacoustic ducts producing new resonances with both the
cantly the calculations of the independent electron th&bry. Breit-Wigner form or with the line shape closely reminescent

Experimentally, Fano resonances were observed in a nunthat of the Fano profilé:*? Very recently it was proved
ber of nanostructures, such as semiconductor superlafticesheoretically? that a bent planar wire with Dirichlet and
or single-electron transistf%. Clean double-bend quantum Neumann boundary conditions on the opposite sides of the
wires were also fabricated, and their transport propertiesvaveguide possesses, under some requirements, a bound
were studied experimentaffj.However, interpretation of the state. Accordingly, we believe that a bent acoustic duct with
results of these experiments is controversial with differentan appropriate soft impurity should exhibit Fano resonances
explanation of observed peaks in the conductdf€&On  too, say, on the dependence of the total transmitted sound
the one hand, improving spatial homogeneity of the curvedntensity versus frequency, and their evolution should follow
guantum wires may help to avoid this ambiguity. On thethe one described in Sec. Ill.
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