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Full-frequency voltage noise spectral density of a single-electron transistor
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We calculate the full-frequency spectral density of voltage fluctuations in a single-electron transistor~SET!,
used as an electrometer biased above the Coulomb threshold so that the current through the SET is carried by
sequential tunneling events. We consider both a normal-state SET and a superconducting SET. The whole
spectrum, from low-frequency telegraph noise to quantum noise at frequencies comparable to the SET charging
energy (EC /\) to high-frequency Nyquist noise, is described. We take the energy exchange between the SET
and the measured system into account using a real-time diagrammatic Keldysh technique. The voltage fluc-
tuations determine the backaction of the SET on the measured system, and we specifically discuss the case of
superconducting charge qubit read-out and measuring the so-called Coulomb staircase of a single Cooper-pair
box.
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I. INTRODUCTION

Solid-state realizations of qubits are of real interest due
the possibility of using lithographic techniques to integra
the large number of qubits, needed for a fully functional Q
The single-electron transistor~SET! has been suggested as
read-out device for different solid-state charge qubits.1–5

Aassimeet al.1 have shown that the radio-frequency SE
~Ref. 6! ~rf SET! may be used for single shot read-out of t
single cooper-pair Box~SCB! qubit.7,8 This is possible if the
measurement timetms needed to resolve the two states of t
qubit is much shorter than the timetmix on which the qubit
approaches its new steady-state determined by the b
action due to voltage fluctuations on the SET. In a previo
short paper9 we provided further support for this result b
calculating the full frequency voltage noise spectral den
of the SET, including the effect of energy exchange betw
the qubit and the SET.

In this paper we give a full account of the calculation
well as a thorough discussion of the effect of back action
measuring the so-called Coulomb staircase of an SCB qu
We also include a section about the back action from a
perconducting SET.

Since the qubit is carefully shielded from all unwant
interactions with its environment it is reasonable to assu
that the back action from the SET charge measurement is
dominating noise source, even though the two systems
only weakly coupled. This further motivates choosing me
surements on a charge qubit to discuss the spectral prope
of SET back action, compare, e.g., Ref. 10. In nonqubit s
tems, e.g., a normal-state single-electron box, other sou
of dissipation dominate over the back action from the cha
measurement. Furthermore we do not discuss the depha
of the qubit induced by the presence of the SET.11,12 Al-
though it is a very important subject, the dephasing time
mainly determined by the zero frequency fluctuations, and
this limit our result coincides with previous expressions.13
0163-1829/2003/67~3!/035301~12!/$20.00 67 0353
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The structure of the paper is the following. In Sec. II w
discuss the basic properties of the SCB qubit and the ef
of gate voltage fluctuations. Furthermore the difference
tween asymmetric and symmetric definitions of noise sp
tral density is noted and also the connection to mixing ti
and the Coulomb staircase. In Sec. III the model for the S
is introduced and in Sec. IV the real-time diagramma
Keldysh technique is described and the expression for
spectral density of voltage fluctuations on the SET island
derived. Section V describes the properties of the volta
fluctuations in different frequency regimes, the effect on
mixing time and the Coulomb staircase both for a norm
state SET and a superconducting SET.

II. THE SINGLE COOPER-PAIR BOX QUBIT

The qubit is here made up of the two lowest lying ener
levels in a single Cooper-pair box~SCB! ~see Fig. 1!.7 An
SCB is a small superconducting island coupled to a sup
conducting reservoir via a Josephson junction. The Ham
tonian of the system can be written in the charge basis a12

Hq5(
n

4Eqb~n2ng!2un&^nu

2
EJ

2
@ un&^n11u1un11&^nu#, ~1!

whereEqb5e2/Cqb is the charging energy,n is the number of
extra Cooper pairs on the island,EJ is the Josephson energ
of the junction andng5Cg

qbVg
qb/2e is the number of gate-

induced Cooper pairs. In order to get a good Cooper-pair
we needkBT!EJ!Ec,D, whereD is the superconducting
gap andT is the temperature. The low temperature is
quired to prevent thermal excitations and the high superc
ducting gap is needed to suppress quasiparticle tunne
The eigenenergies now form parabolas, varying with the g
©2003 The American Physical Society01-1
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voltage. For suitable values of the gate voltage~close tong
51/2), and forEJ!Ec , the system reduces to an effectiv
two level system as the two lowest lying charge states
well separated from the states with higher energy. Includ
only the two lowest lying states in Eq.~1! the qubit Hamil-
tonian becomes

Hq52
4Eqb

2
~122ng!sz2

EJ

2
sx , ~2!

wheresx,z are the Pauli matrices~and the statesu↑&5(0
1) and

u↓&5(1
0) correspond to zero and one extra Cooper pair on

qubit island!. By changing the gate voltage the eigenstates
the qubit can be tuned from being almost pure charge st
to a superposition of charge states.

The ground state/first excited state of the system, writ
in the charge basis (EJ50) are

u0&5cos~h/2!u↑&1sin~h/2!u↓&,

u1&52sin~h/2!u↑&1cos~h/2!u↓&, ~3!

whereh5arctan@EJ/4Eqb(122ng)# is the mixing angle. The
energy difference between the two states isDE
5A(4Eqb)

2(122ng)21EJ
2 and the average charge of th

eigenstates is

Q052eu^↓u0&u252e sin2~h/2!,

Q152eu^↓u1&u252e cos2~h/2!. ~4!

A. Qubit transitions induced by SET voltage fluctuations

When the SET is turned on in order to measure the qu
the voltage fluctuations on the SET island induce a fluctu
ing charge on the qubit island. This is equivalent to a flu
tuating qubit gate chargeng→ng1dng(t), giving rise to a
fluctuating term in the qubit Hamiltonian, written in th
charge basis as

FIG. 1. The energy bands of an SCB. The statesu0& and u1&
denote the eigenstates on the island. The quasiparticle bran
have been left out for simplicity. The gap is due to hybridization
the charge states by the Josephson coupling.
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dHq~ t !5
4Eqb

2
2dng~ t !sz52ekdV~ t !sz , ~5!

wherek5Cc /Cqb. HeredV(t) represents the voltage fluc
tuations on the SET island, and we have neglected a t
quadratic indng(t). In the qubit eigenbasis, using the rot
tion defined by Eq.~3!, the fluctuations in Eq.~5! become

dH~ t !52ekdV~ t !@cos~h!sz1sin~h!sx#. ~6!

The fluctuating voltage on the SET island can induce tr
sitions between the eigenstates of the qubit. If the capaci
coupling to the SET is small (k!1) we can use the Ferm
golden rule to calculate the transition rates

G rel~DE!5
e2

\2

EJ
2

DE2
k2SV~DE/\!, ~7!

Gexc~DE!5
e2

\2

EJ
2

DE2
k2SV~2DE/\!, ~8!

whereG rel is the relaxation rate andGexc is excitation rate
andSV(DE) is the asymmetric@see Eq.~9!# spectral density
of the voltage fluctuations on the SET island. The fracti
EJ /DE5sin(h) comes from Eq.~6! as it is only sx that
causes any transitions between the states. Note that
cos(h)sz term causes fluctuation of the energy levels, lead
to phase fluctuations and dephasing.

B. Asymmetric noise—Coulomb staircase

In our calculations we emphasize the energy excha
between the qubit and the SET and separate between
contributions from processes leading to the qubit loosing
ergy and the contribution from processes leading to the q
gaining energy~or, equivalently, the SET absorbing or em
ting energy!. Because of this, we will maintain this separ
tion of the noise spectral density of the SET into contrib
tions from positive and negative frequencies and theref
use the asymmetric expression for the voltage fluctuation

SV~v!5E
2`

`

e2 ivt^dV~t!dV~0!&. ~9!

As we are primarily interested in the processes in the S
we chose our reference so that positive frequencies co
spond to the SET absorbing energy and negative frequen
correspond to the SET emitting energy.

One example where the separation is necessary is in
scribing the back action of the SET while measuring t
so-called Coulomb staircase, i.e., the average charge o
qubit as a function of its gate voltage. In an ideal situati
with no energy available from an external source, at z
temperature, the qubit would follow the ground state ad
batically and the charge would increment in steps of 2e at
ng5n10.5, n integer. These steps are not perfectly sha
because of the Josephson energy mixing the charge st
This mixing of charge states results in a maximal derivat
given by 4EC /EJ .7 When adding a noise source, e.g.,

hes
f

1-2
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FULL-FREQUENCY VOLTAGE NOISE SPECTRAL . . . PHYSICAL REVIEW B 67, 035301 ~2003!
increasing the temperature or attaching a noisy measure
device, the steps will be rounded further due to a finite po
lation of the excited state.

Assuming that the SET is the dominant noise source,
that the two state approximation of the qubit is valid, t
steady-state population of the qubit is given by

P1
st,qb5Gexc~DE!/@Gexc~DE!1G rel~DE!# ~10!

P0
st,qb5G rel~DE!/@Gexc~DE!1G rel~DE!#. ~11!

The corresponding expression for the average charge is
given by

Q~DE!5Q0~DE!P0
st,qb~DE!1Q1~DE!P1

st,qb~DE!,
~12!

where Q↑/↓ is the charge of the excited state/ground st
defined in Eq.~4!. If we setP1

st,qb50 andP0
st,qb51, we re-

cover the ideal Coulomb staircase, as this corresponds to
system following the ground state adiabatically.

C. Symmetric noise—Mixing time

For quantities that depend on the summed rate of re
ation and excitation processes in the SET the separatio
absorption and emission might not be necessary, and
symmetrised expression for voltage fluctuations

SV
sym~v!5E

2`

`

dte2 ivt^dV~t!dV~0!1dV~0!dV~t!&

~13!

can be used. Note thatSV
sym(v)5SV(v)1SV(2v).

One example is the time it takes the qubit to reach
steady state, after the SET is switched on. This time is ca
the mixing time, and the information about the initial sta
population is lost on this timescale. For weak coupling
is11,12

1

tmix
5G rel~DE!1Gexc~DE!}SV

sym~DE/\!. ~14!

III. SET MODEL

We follow the outline of Ref. 14 and model the SET~see
Fig. 2! by the Hamiltonian

H5HL1HR1HI1V1HT5H01HT , ~15!

FIG. 2. The SET.
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Hr5(
kn

ekn
r akrn

† akrn , HI5(
ln

e lncln
† cln ~16!

describe noninteracting electrons in the left/right le
(Hr ,r P$L,R%) and on the island (HI). The quantum num-
bers n denote transverse channels including spin, andk,l
denote momenta. The Coulomb interaction on the island
described by

V~N̂!5EC~N̂2nx!
2, ~17!

whereN̂ denotes the excess number operator,EC5e2/2C the
charging energy (C5CL1CR1Cg1Cc), nx the fractional
number of electrons induced by the external voltages@nx is
the fractional part of (CLVL1CRVR1CgVg)/e], and e the
electron charge. The tunneling term is

HT5 (
r 5L,R

(
kln

~Tkl
rnakrn

† clne2 i F̂1Tkl
rn* cln

† akrnei F̂!

5H21H1, ~18!

where the operatore6 i F̂ changes the excess particle numb
on the island by61 andTkl

rn are the tunneling matrix ele

ments.F̂ is the canonical conjugate toN̂,(@F̂,N̂#5 i ). In
this case of a metallic island containing a large number
electrons, the charge degree of freedomN50,61, . . . , is to
a very good approximation independent of the electron
grees of freedoml ,n. The termsH1 andH2 represent elec-
tron tunneling to and from the SET island. The form of t
tunneling terms~with theei F̂ term! is a consequence of sepa
rating state space into electronl, n, and chargeN degrees of
freedom. This is also reflected in the partitioning of the de
sity matrix introduced below.

The spectral density of voltage fluctuations on the S
island is described by the Fourier transform of the volta
voltage correlation function

SV~v!5
e2

C2E2`

`

dte2 ivt Tr$rst~ t0!dN̂~t!dN̂~0!%

5
e2

C2E2`

`

dte2 ivt Tr$rst~ t0!@N̂~t!N̂~0!2N̄2#%,

~19!

whereN̄ is the average ofN̂. TheN̄2 term in Eq.~19! assures
that the correlation function vanishes for larget. In Fourier
space this term does not contribute at finite frequency, an
zero frequency it compensates for the steady state delta f
tion. In order to simplify our expressions we leave this te
out, and keep the frequency finite during the calculations

In Eq. ~19! rst(t0) is the density matrix of the system i
the steady-state, which is assumed to have been reach
some timet0 before the fluctuation occurs (t0,min$0,t%).
1-3
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rst5req
e

^ rst
c is the tensor product of the equilibrium~Fermi

distributed! density matrixreq
e for the electron degrees o

freedom in each reservoir (L,R,I ) and a reduced densit
matrix rst

c , describing the charge degrees of freedom. Si
the tunneling events between the SET island and the e
trodes are incoherent due to the low conductance of the
nel junctions, the charge states will be incoherent, andrst

c is
therefore taken to be diagonal15 with elementsPN

st denoting
the steady-state probability of being in charge stateN.

IV. DIAGRAMMATIC TREATMENT

We now expand the correlation function in Eq.~19! in a
perturbation series in terms of the tunneling Hamilton
(HT) along a Keldysh time contour~see Fig. 3!. The trace
over the electron degrees of freedom is then evaluated u
Wick’s theorem, which is possible since the tunneling Ham
tonian is only bilinear in the fermionic operators. Rewritin

Eq. ~19! in the interaction picture gives~excluding theN̄2

term!

SV~v!5
e2

C2E2`

`

dte2 ivt

3Tr$r~ t0!S~ t0 ,t!N̂~t!S~t,0!N̂~0!S~0,t0!%,

~20!

whereS(t2 ,t1) is the S matrix that brings the system from
the timet1 to time t2, i.e., for t2.t1

S~ t2 ,t1!5e2 iT*
t1

t2dtHT(t)512 i E
t1

t2
dt1HT~t1!

1~2 i !2E
t1

t2
dt1E

t1

t1
dt1dt2HT~t1!HT~t2!1•••,

~21!

and analogously fort2,t1. Defining T as the time-ordering
operator along the Keldysh contour we can write Eq.~20! as

FIG. 3. The propagation of the unperturbed steady state den
matrix. This corresponds to the first term in Eq.~22!.
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SV~v!5
e2

C2E2`

`

dte2 ivtFTr$r~ t0!N̂~t!N̂~0!%

2 i E
2`

0

dt1 Tr$Tr~ t0!N̂~t!N̂~0!HT~t1!%

1
~2 i !2

2! E
2`

0

dt1E
2`

0

dt2

3Tr$Tr~ t0!N̂~t!N̂~0!HT~t1!HT~t2!%1•••G .
~22!

Since the unperturbed Hamiltonian does not contain
couplings between the leads and the island nor between
leads themselves, their degrees of freedom are indepen
Moreover, as the trace of independent degrees of freedo
equal to the product of the respective traces and every
turbation term contains one operator from one of the le
and one operator from the island, only terms containing
even number of perturbation terms will contribute. Using t
diagrammatic language of Ref. 14, the noise correlat
function SV(v) can be given a diagrammatic formulation.

Figure 3 shows a diagrammatic representation of the
term in Eq.~22! with zero HT perturbations, involving the
evolution of the state described by the density matrix its
along the Keldysh time contour. This process is represen
by a solid line starting and ending at the the density mat
including the charge~fluctuation! operatorsN̂(t) and N̂(0)
marked by dots. This gives the expectation value~statistical
average! of the charge fluctuation correlation~in the ‘‘ground
state’’! in the absence of any transport process.

The first contributions to charge transport come from
third term in Eq.~22! with oneH1 and oneH2 perturbation,
describing tunneling onto the SET island and back, chang
the charge stateN to N61. A diagrammatic representation o
this would be the middle part of Fig. 4. Since the charg
transfer process can be viewed as an electron-hole excita
creating a hole on an electrode and an electron on the isl

ity

FIG. 4. An example of a specific diagram. The wiggly line
correspond to island lines and the solid lines correspond to
lines. The right-most part correspond to an electron-hole excita
while the left-most part corresponds to a correction to the exte
vertex. The middle part corresponds to a tunneling event as only
diagrams connecting the upper and lower branch changes the
ber of extra charges on the island.
1-4
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in Fig. 4 there are new additional lines with arrows rep
senting electron-hole propagators~excitations!. Every inter-
nal time will form a vertex and the propagato
^Ta(t1)a†(t2)& will form a line going fromt2 to t1. In this
case with macroscopic metallic reservoirs with many tra
verse channels, the main contributing terms14 will appear in
combinations of

^TH1~t1!H2~t2!&5(
r 1

(
r 2

(
k1l 1n1

(
k2l 2n2

@T
k1l 1

r 1n1* Tk2l 2

r 2n2

3^Tak1r 1n1
~t1!ak2r 2n2

† ~t2!&

3^Tck1r 1n1

† ~t1!ck2r 2n2
~t2!&#, ~23!

which means that there will always be pairs of internal lin
with reversed start and end points, one being a reser
propagator and one being an island propagator, as show
Fig. 5. These line-pairs are replaced by a single line, co
sponding to an electron-hole excitation, with an energy eq
to the difference in energy between the two lines.

In order to facilitate the evaluation of the time-order
diagrams in Eq.~22!, we rewrite the Fourier transform in Eq
~19! as

SV~v!5
e2

C2E2`

`

dte2 ivt Tr$rst~ t0!N̂~t!N̂~0!%

5
e2

C2E2`

0

dte2 ivt Tr$rst~ t0!N̂~t!N̂~0!%

1
e2

C2E2`

0

dte1 ivt Tr$rst~ t0!N̂~0!N̂~t!%

52
e2

C2
ReF E

2`

0

dte2 ivt Tr$rst~ t0!N̂~t!N̂~0!%G ,
~24!

where we have used that the steady-state is time invar
Furthermore we fix the specific time ordering of all intern
and external times in all diagrams. This make the diagra
straightforward to evaluate in the frequency domain as
integrals thus become recursive Laplace transforms. Ret
ing to Eq. ~22! and drawing all the diagrams of the lowe
nontrivial order we can divide them into two categorie
Dressings of the propagatorPN,N8(v) that takes the system
from the charge stateN to the stateN8 ~see Fig. 6! and vertex
correction~see Fig. 7!.

FIG. 5. Two internal electron lines with reversed start and e
points. They can be replaced by a single line with an energy e
to the difference in energy between the two corresponding to
electron-hole excitation.
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Calculating for instance, the diagram in Fig. 6~h! using
the diagrammatic technique outlined in Ref. 14 yields

DN52(
r

lim
h→01

i

pE dE
g r

1~E!

\v1E2DN1 ih
, ~25!

whereDN5V(N11)2V(N) is the charging energy cost o
moving one electron from one of the leads onto the isla
when there areN extra electrons there. The factorg r

1(«) is
the inelastic~golden rule! tunneling rate through junctionr
for electrons tunneling to the island@correspondinglyg r

2(«)
is the inelastic tunneling rate of electrons tunneling from
island through junctionr ] given by the expression

g r
6~«!5

p

\ (
n
E dEr~«1E2eVr !r~E!

3 f 6~«1E2eVr ! f 7~E!uTrnu2, ~26!

wherer is the density of states in the reservoirr and on the
island, both assumed to be either superconductors or no
metal, f 1(E) is the Fermi distribution,f 2(E)512 f 1(E),
Trn is the tunneling matrix element, here assumed to be
dependent of energy andVr5(m r2m I)/e is the voltage bias
across ther junction. Separating Eq.~25! into real and imagi-
nary parts we get

d
al
n

FIG. 6. All the diagrams that enter the propagator, to the low
order.

FIG. 7. All the vertex corrections of the external vertexN̂(t),
denoted by a dot, within the sequential tunneling approximati
Note the correspondence to Fig. 6.
1-5
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DN52(
r

lim
h→01

i

pE dEg r
1~E!F \v1E2DN

~\v1E2DN!21h2

2
ih

~\v1E2DN!21h2G . ~27!

The real part of the integral is small in the tunnel limit whe
the conductance is small, so we neglect these renorma
tion effects~see Ref. 14! and concentrate on the imagina
part, which gives

DN52(
r

g r
1~DN2\v!. ~28!

Introducing the notation

gN
1~v!5 (

r 5R,L
g r

1~DN2\v!,
h
ec

f
n
th
e

th
of

in

th

th

03530
a-

gN
2~v!5 (

r 5R,L
g r

2~DN211\v!, ~29!

all the diagrams in Fig. 6 can be calculated in the same w
resulting in

~a!⇒gN
1~v!, ~d!⇒gN

2~v!, ~g!⇒2gN
2~v!,

~b!⇒gN
1~2v!, ~e!⇒gN

2~2v!, ~h!⇒2gN
1~v!,

~c!⇒2gN
2~2v!, ~ f!⇒2gN

1~2v!, ~ i!⇒ i

v
.

~30!

In the same way, the vertex corrections in Fig. 7 can
calculated yielding
~a!
i

v
@gN

1~0!2gN
1~v!#, ~d!

i

v
@gN

2~0!2gN
2~v!#, ~g!2

i

v
@gN

2~0!2gN
2~v!#,

~b!
i

v
@gN

1~0!2gN
1~2v!#, ~e!

i

v
@gN

2~0!2gN
2~2v!#, ~h!2

i

v
@gN

1~0!2gN
1~v!#,

~c!2
i

v
@gN

2~0!2gN
2~2v!#, ~ f!2

i

v
@gN

1~0!2gN
1~2v!#, ~ i!1, ~31!
a-
ere

e,
be

le
r
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in
where the expression~i! in Eq. ~31! corresponds to the zerot
order correction of the vertex. To lowest order, the total sp
tral density can be written

SV~v!52
e2

C2
ReH (

N,N8,N9
PN

stV̂N,N8~v!P̂N8,N9~v!N9J
52

e2

C2
Re$NW TP̂~v!V̂~v!PW st%, ~32!

whereNW andPW st are column vectors (NW T is the transpose o
NW ) containing the number of extra electrons on the isla
and the steady-state probabilities, respectively. Note thus
the elementP0

st refers to the steady-state probability of th
SET to be in the state with 0 extra charges, unlike for
qubit, whereP0

st,qb refers to the steady-state probability

being in the lower energy eigenstate.V̂(v) is a matrix whose
elementsV̂N8,N(v) are the sum of all vertex corrections
Fig. 7 which take the system from the stateN to the stateN8

and P̂(v) is a matrix whose elementsP̂N9,N8(v) are the
sum of all diagrams in Fig. 6 that take the system from
stateN8 to the stateN9. Incidentally, Eq.~32! is valid for
arbitrary order, as long as the vertex correction and
propagator are dressed to the appropriate order.
-

d
at

e

e

e

In order to facilitate the evaluation of higher order di
grams we define an irreducible diagram as a diagram wh
it is impossible to draw an auxiliary vertical line at any tim
without crossing an electron-hole line. An example can
seen in Fig. 8.

The diagrams in Fig. 6 are all the first order irreducib
diagrams, except Fig. 6~i!, which is just the free propagato
P̂N,N8

(0) (v)5( i /v)dN,N8 , wheredN,N8 is a Kronecker delta.
Using irreducible diagrams allows us to write down a m

trix Dyson equation in frequency space for the frequen
dependent propagatorP̂(v) between different charge state
~Fig. 9!

P̂~v!5P̂ (0)~v!1P̂ (0)~v!Ŝ~v!P̂~v!. ~33!

Solving forP̂(v) and inserting the explicit form ofP̂ (0)(v)
we get

FIG. 8. This diagram contains three irreducible diagrams as
between it is possible to draw a vertical auxiliary line~dashed lines!
separating them.
1-6
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P̂~v!5
i

v
S 12

i Ŝ~v!

v
D 21

. ~34!

Note that the explicit time ordering in every diagram, mea
that in frequency space any specific diagram can be wri
as a product of irreducible diagrams and free propagator

The matrix elementŜN8,N(v) of the irreducible propaga
tor ~self-energy! Ŝ(v) is the sum of the irreducible diagram
that take the system from the stateN to the stateN8 and 1
5dN,N8 is the unit matrix with the same dimension asŜ(v).
Note that the frequency dependence comes directly from
Laplace transform over the timet, which introduces an aux
iliary line with energy\v. All diagrams located between th
times t5t and t50 therefore depend onv.

A. The self-energyŜ„v…

The Dyson equation allows us to appropriately sum up
diagrams to a certain order by calculating the self-energ
that order and then inserting it into Eq.~34!. As the reser-
voirs are assumed to be in local equilibrium, we chose
include only diagrams containing at most one electron-h
excitation at any given time. This approximation correspon
to keeping the irreducible diagrams where any vertical l
cuts at the most one internal line. This is equivalent to
sequential tunneling approximation leading to the Mas
equation of orthodox SET theory. The diagrams entering
self-energy to this order are all drawn in Figs. 6~a!–6~h!.

B. Vertex corrections

To calculate the noise spectral density we also need
sum all vertex corrections to the same order. As the sequ
tial tunneling approximation only includes terms with

FIG. 9. A graphical representation of the Dyson equation in
~34!. The termsSNN8 are irreducible diagrams that take the syste
from the stateN to the stateN8.
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most one tunneling event at a time, all the vertex correcti
that enter are those drawn in Fig. 7.

C. Main result

All diagrams which enter Eq.~24! within our approxima-
tions are drawn in Fig. 10. Adding them together gives

SV~v!5
2e2

C2 (
N

PN
st ReH NLN2

i

v
@~N11!gN

1~v!

1NgN
1~2v!!G~LN112LN!

2
i

v
@~N21!gN

2~v!1NgN
2~2v!#~LN212LN!,

~35!

where LN5(N8N8PN8,N(v) and PN
st is the steady-state

probability of there beingN extra electrons on the island. I
Eq. ~35! we have used that the steady-state probabilities
fill the relation PN11

st 5@gN
1(0)/gN11

2 (0)#PN
st ~see, for in-

stance Ref. 16!.
The first term in Eq.~35! corresponds to the result in Eq

~27! of Ref. 13 but with frequency-dependent tunnelin
rates, while the other terms originate from the vertex corr
tions. The asymmetry in the noise with respect to posit
and negative frequencies arises solely from these vertex
rections. In the limitv→0 Eq. ~35! coincides with the zero-
frequency limit given in Ref. 13. Note that the frequenc
independent terms in the vertex corrections cancel.

Using the relation Re$P̂(v)%52(1/v)Ŝ(v)Im$P̂(v)%
@this is the real part of Eq.~33!, using that the free propagato
and the first order self energies are purely imaginary# Eq.
~35! can be rewritten in matrix form, which gives the ma
result in this paper,

SV~v!5
2e2

C2
NW TF11S Ŝ~v!

v
D 2G21

ĝ~v!

v2
PW st, ~36!

.

FIG. 10. The sum of all diagrams within the sequential tunneling approximation. The propagatorsPNN8 , which is the sum over all the
diagrams that take the system from the stateN to the stateN8, are calculated using a Dyson equation~drawn graphically in Fig. 9!.
1-7
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where ĝ(v) is a tridiagonal matrix whose elements a
ĝN,N(v)5gN

2(v)2gN
1(v), ĝN11,N(v)5gN

1(v) and

ĝN21,N(v)52gN
2(v).

Note that contrary toŜ(v), ĝ(v) is not symmetric in
frequency and for negative frequencies larger than the m
mally available energy from the SETĝ(v) is analytically
zero while for positive frequencies,ĝ(v) does not tend to
zero but to a finite value.

V. BACK-ACTION DURING MEASUREMENT

When measuring with the SET, the bias voltage is ty
cally large enough to allow for a dc current through the S
but not much larger, which implies that only the charge sta
0 and 1 have a nonzero steady-state probability. In this c
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they are given byP0
st5g1

2(0)/@g1
2(0)1g0

1(0)# and P1
st

5g0
1(0)/@g1

2(0)1g0
1(0)#. We assumeD0

L,0, D0
R.0, and

uD0
Lu.uD0

Ru so that electrons typically tunnel from the left t
the right, and there is a finite dc current through the SET.
will use these assumptions about the bias throughout the
maining part of the paper, except in the section about
off-state noise of the normal state SET.

A. Low-frequency regime

In the low-frequency regime, defined as the regime wh
g0

2(v) andg1
1(v) are exponentially small, the charge stat

0 and 1 are the only states energetically accessible,
taking into account the externally available energy\v. In
this case the matrix inversion in Eq.~36! is easy to calculate
analytically and the noise spectral density is given by
SV~v!5
2e2

C2

P0
stg0

1~v!1P1
stg1

2~v!

v21@g0
1~v!1g0

1~2v!1g1
2~v!1g1

2~2v!#2
. ~37!
is
t is

ur
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land
ec-
ld

lar
e re-

of
alcu-

the
rre-
itive
nergy.
This expression has a very simple form: The sum of
steady state probabilities weighted by the inelastic tunne
rates for transitions away from the state, normalized b
denominator containing the finite lifetimes of the states. F
zero frequency this corresponds to classical telegraph no
Note that Eq.~37! is valid both in the normal and superco
ducting states, the difference only entering in the express
for the ratesg0,1

6 (v).

B. High-frequency regime

In the high-frequency limit the spectral noise density
the SET should be independent of the bias and be domin
by the Nyquist noise, which in this regime (\v@kBT) is17

SV
Nyq~v!52\v Re$Z~v!%5

2\vRuu

11~vRuuC!2
, ~38!

whereZ(v) is the impedance of the SET island to grou
and Ruu5(1/RT

L11/RT
R)21. In this limit Ŝ(v)!v and the

matrix inversion in Eq.~36! can be Taylor expanded an
approximated by the first termi /v@11(Ŝ(v)/v)2#21

'( i /v)1. Still assuming the voltage bias to be small enou
to keep only the steady-state probabilitiesP0

st and P1
st non-

zero, Eq.~36! gives

SV~v!5
2e2

C2

P0
st@g0

1~v!1g0
2~v!#1P1

st@g1
2~v!1g1

1~v!#

v2
.

~39!

In the high-frequency limit,\v@$EC ,eV%, all rates are
similar and they are proportional both to the normal st
tunnel conductance and the frequency
e
g
a
r
e.

ns

f
ed

h

e

g0
6~v!'g1

6~v!5
\v

2e2 F 1

RT
L

1
1

RT
RG1O~1!, ~40!

where O(1) indicates a bias-dependent constant. This
valid both in the normal and superconducting states. I
clear that inserting Eq.~40! into Eq. ~39! gives Eq.~38!. It
might be interesting to note that it is enough to include fo
charge states to recover the full Nyquist noise. If only tw
charge states were included, an extra charge on the is
would prevent further electrons to tunnel until the extra el
tron has left the island, and the correlation effectively wou
reduce the noise to that of a single junction. For simi
reasons, for intermediate frequencies the noise should b
duced, compared to the Nyquist noise.

C. Normal state SET

For an SET operated in the normal state, the density
states can be assumed to be energy independent when c
lating the tunneling rates in Eq.~26!. Using r I ,n(E)
5r r ,n(E)5rN , the tunneling ratesg6(v) can be written

FIG. 11. A schematic picture of the different processes in
SET for different frequencies. Note that negative frequencies co
spond to processes where the SET emits energy, while pos
frequencies correspond to processes where the SET absorbs e
1-8
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gN
1~v!5

p

\ (
r

a0
r G1~DN

r 2\v!, ~41!

gN
2~v!5

p

\ (
r

a0
r G2~DN21

r 1\v!, ~42!

where a0
r 5(nuTrnu2rN

2 5Rk /4p2RT
r is the dimensionless

conductivity (Rk is the quantum resistance andRT
r is the

tunneling resistance of junctionr ), G2(E)5E/@12exp
(2bE)#, G1(E)5E exp(2bE)/@12exp(2bE)#, and b
51/kBT. Note thatDN

r includes both charging and biasin
energies.

At zero temperature, theG6 become step functions mu
tiplied by a linear termG2(E)5uEuu(E), G1(E)5uEuu
(2E). In this limit the rates are easy to analyze.

For frequencies of small magnitudesu\vu,uD1
r u,uD21

r u
only the charge statesu0& and u1& are energetically allowed
and we can use Eq.~37! to calculate the noise spectral de
sity. Even though the expression in Eq.~37! looks very simi-
lar to the classical expression with frequency depend
rates, this frequency dependence of the rates change
behavior quite drastically. The spectral noise density is
longer symmetric with respect tov, and there is a finite
maximum energy available for emission from the SE
which can be seen in Fig. 12 asSV50 for large negative
frequencies\v,2uD0

Lu. This means that if the energy spli
ting of the qubit is larger than the energy gained by putt
an extra electron on the island (D0

L), there is not enough
energy available from the SET to excite the qubit, and
SET behaves as a passive load, only able to absorb ene

The preference of the SET to absorb energy rather t
emit is also clear asSV(v).SV(2v) for any v.0. This
means that any two-level system with finite energy splitt
driven to steady-state solely by the SET will not have
equal steady-state probability of both states.

1. Low-frequency regime

For low frequenciesu\vu,uD0
Ru when no backward tun

neling processes are allowed~see Fig. 11!, the noise spectra
density can be written

FIG. 12. Spectral noise density for an SET run in normal mo
The calculation was done for zero temperature and with symme
tunnel junctionsRR5RL521.5 kV. The dc current through the
SET was 1.5 nA,nx50.25, EC52.5 K.
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SV~v!5
e2

C2

2I /e12pv@P0
sta0

L1P1
sta0

R#

v214@g0
1~0!1g1

2~0!#2
, ~43!

where the first term in the numerator I
52eg0

1(0)g1
2(0)/@g0

1(0)1g1
2(0)# is the dc current

through the SET. We see that the difference compared w
classical telegraph-noise is the term linear inv in the nomi-
nator. This is a quantum mechanical correction originat
from the vertex corrections. In this regime the frequen
dependent part of the tunneling rates in the denomina
cancel.

In the symmetrized noiseSV
sym(v)5SV(v)1SV(2v),

the linear term in the numerator cancels out. Thus in t
region, for quantities that are proportional to the symm
trized noise, such as the mixing time@see Eq.~14!#, the clas-
sical telegraph noise give the same result. But for other qu
tities, such as the steady-state probabilities of a qubit dri
by the SET@see Eq.~10! and Eq.~11!#, the difference is
evident even for small frequencies.

2. Coulomb staircase

Using the SET to measure the average charge of
Cooper-pair box qubit it is reasonable to assume that
back action from the SET is the dominant noise source.
the degeneracy point of the qubit, the energy splitting
tween its two eigenstates isEJ . If EJ,D0

R we can use Eq.
~43! to calculate the Coulomb staircase@Eq. ~12!# close to
the degeneracy as

^Q&5eF11
8Ecpa0

\I /e
dngG5eF11

4Ec

eRTI
dngG , ~44!

where dng is the deviation from the degeneracy point (ng

51/2) and we have assumed symmetric junctions (a0
L5a0

R

5a0 or RT
L5RT

R5RT) and a symmetric voltage bias in th
SET. Thus, close to the degeneracy, we will always ge
linear charge increase for suitable choice of SET bias. In
regime the derivative is thus determined by the curr
through the SET rather than the Josephson energy in
qubit.

Away from the degeneracy point, when the energy sp
ting of the qubit is increased, the low-frequency requirem
for Eq. ~43! may not be fulfilled. In order to calculate th
influence from the noise on the Coulomb staircase for a
trary qubit gate voltage we have to include the full expre
sion from Eq.~35!. The result for a typical setup is plotted i
Fig. 13, demonstrating that the back-action noise from
SET introduces additional smearing of the Coulomb sta
case. This can be compared to the results by Nazaro18

where the influence of the back action of an SET in t
normal state is calculated on a small metallic island in
normal state.

3. Mixing time

Using the tunneling rates in Eqs.~41!,~42! and inserting
them into Eq.~35! we can calculate the mixing timetmix due

.
ic
1-9
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to the voltage fluctuation on the SET-island as a function
the energy splitting. Using a state-of-the-art rf-SET~Ref. 19!
coupled to a qubit with realistic parameters~see caption!, as
shown in Fig. 14, this would give a mixing time of approx
mately 10ms. This should be compared with the measu
ment timetms needed to resolve the two charge states in
same setup which is about 0.4ms. The resulting signal-to
noise ratio~SNR! is SNR5Atmix /tms'5, which indicates
that single-shot read out is possible.

4. Off-state noise—Qubit reset

One property of the SET used as a charge qubit read
device is that it may be switched off by lowering the drivin
bias so that sequential tunneling is no longer possible,
both 0,D0

L and 0,D0
R . In this regime the voltage noise i

determined by cotunneling processes.20 Since cotunneling is
a second order process in the tunneling conductance the
age noise in the off state4,21 is several orders of magnitud
smaller than the on-state noise.

Taking energy exchange with the qubit into account th
may be a first order tunneling event in the SET, even tho
the driving bias is too small for sequential tunneling. T
energy taken from relaxing the qubit may stimulate a phot
assisted first-order tunnel event in the SET. At zero temp

FIG. 13. The Coulomb staircase of an SCB driven to ste
state by the SET run in normal state. The parameters we have
for the SCB areEqb52.5 K, EJ50.1 K, D52.5 K and for the SET
we have usedEC52.5 K, RR5RL521.5 kV, andnx50.25.

FIG. 14. The mixing time of an SCB caused by the SET. T
inset shows an expanded view around\v'Eqb. Thus, for an en-
ergy splitting of the qubit of approximatelyEqb, the mixing time is
around 10 ms. The parameters used wereEC52.5 K, Eqb

50.8 K, EJ50.15 K, RR5RL521.5 kV, k50.01, I dc59.6 nA.
03530
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ture the condition for such an event is simplyDE
.min$D0

L ,D0
R%. The voltage noise spectral density of the SE

in the off state is shown in Fig. 15. The curve has be
calculated using Eq.~35!, with P0

st51. This implies that in
order to benefit from the low voltage fluctuations in the o
state the SET should be switched off by switching both
driving bias to zero and using the SET gate voltage to pu
far into the Coulomb cotunneling regime, i.e.,nx'0.

The nonlinearity of the voltage noise spectral density m
also be used for fast relaxation of the qubit, i.e., as a qu
reset button. If the gate voltage of the SET is such thatDE
>uD0

Lu'D0
R , and the driving bias is zero, the qubit rela

ation rate is first order in the tunnel conductance, while
excitation rate is given by cotunneling. The normal state S
may thus be used for qubit reset, or in other words a
switchable dissipative environment to the qubit.

D. Superconducting SET

Compared with a normal state SET~NSET! the supercon-
ducting SET~SSET! shows two main differences. The den
sity of states in the reservoirs is changed by the superc
ducting energy gapD, and in addition to quasiparticle
tunneling also Cooper pair tunneling may occur. We w
consider an SSET biased so that sequential quasiparticle
neling is allowed, and in this regime Cooper pair tunneli
may be neglected. Thus the same model as before ca
used, only taking into account the changed quasiparticle d
sity of states. As we are interested in an SET made ou
aluminum, we use the BCS density of states

r~E!5rN

uEu

E22D2
u~ uEu2D!, ~45!

whererN is the density of states of the normal state. Inse
ing these into the expression for the tunneling rates in
~26! we get for zero temperature~see, e.g., Ref. 22!

y
ed

FIG. 15. Noise spectral density of an SET in the off state. N
that only contributions from positive frequencies remain, as no
ergy can be emitted from the SET within the sequential tunne
approximation. The noiseless region is given byD0

l 2\v.0.
1-10
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g r
6~w!5

p

\

a0
r u~7\v6eVr22D!

2D7\v6eVr

3F ~\v2eVr !
2K S \v2eVr62D

\v2eVr72D D
2~2D7\v6eVr !

2H K S \v2eVr62D

\v2eVr72D D
2ES \v2eVr62D

\v2eVr72D D J G ,
whereK (x) and E(x) are elliptic integrals of the first and
second kind. These rates behave just as theIV curve for an
SIS junction. The singularities in the superconducting de
sity of states introduce discontinuities into the tunneli
rates. These discontinuities will also introduce discontin
ties in the noise spectral density.

Comparison between an SSET and an NSET. Comparing
the noise spectral density of an NSET and an SSET~see Fig.
16! is not completely straightforward as the SSET requi
considerably higher voltage bias in order to get sequen
quasiparticle tunneling through the SET, i.e.ueVL2eVRu
.4D1EC(122nx). Therefore when comparing these tw
in the on state~i.e. while measuring!, we use the same tunne
conductance and gate voltage, and then choose a voltage
that gives the same dc current through the two SET’s. Thi
motivated by the fact that the zero frequency noise is de
mined by the dc current through the SET, this biasing the
fore yields the same zero frequency telegraph noise for b
the SSET and the NSET.

Apart from the discontinuities in the spectral density
the SSET, the finite frequency noise differs in another imp
tant aspect. Although the two SET’s carry the same dc c
rent, the processes producing that current are qualitati
different. In the superconducting SET biased just above
threshold the energy gain in each single tunnel event is q
small, determined by approximately max$ueVLu,ueVRu%22D.
The relatively large current is an effect of the divergent d
sity of state peaks in the reservoirs. In the normal state S
carrying the same current the maximum energy that may
extracted from a single tunneling event is instead quite la
proportional to max$ueVLu,ueVRu%.

Comparing the voltage noise spectral density for nega
frequencies, capable of exciting the measured system,

FIG. 16. Comparing the spectral noise density for a superc
ducting and a normal conducting SET. The parameters used
RL5RR521.5 kV, EC52.5 K, nx50.25, andI dc59.6 nA.
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find that the SSET noise is zero for\v,
2(max$ueVLu,ueVRu%22D), while the NSET spectrum extend
down to\v'2max$ueVLu,ueVRu%'22D.

Measuring the Coulomb staircase with an NSET and
SSET biased to the same dc current will thus give differ
results. The Coulomb staircase is sharper for the SSET
cause the lower amount of energy extractable from the S
reduces the excitation rate for the two-level system, and
discontinuities in the noise spectral density of the SSET
also clearly visible, as seen in Fig. 17. Even though this
completely different bias regime, similar structure appears
Ref. 23.

Note that the staircases in Fig. 17 has been calculated
zero temperature and for a fixed voltage bias across the S
and that the dc current is different in Figs. 17 and 13. Wh
calculating the total mixing time, the sum of relaxation a
absorption rates enters, and the difference between an S
and an NSET diminishes. The lower tendency for the sup
conducting SET to emit is compensated for by an increa
tendency to absorb energy.

Since the mixing time due to an SSET dependends on
sum of the contributions from absorptive and emissive p
cesses, it is thus not very different from an NSET carryi
the same dc current. An example can be seen in Fig. 18

VI. CONCLUSIONS

We have calculated the full frequency spectral density
voltage fluctuations in a single electron transistor~SET!,

n-
re

FIG. 17. Comparison of an ideal Coulomb staircase and a s
case where the qubit is driven to steady state by either an SET in
normal or in the superconducting state. We have use the same
rameters as in Fig. 13.

FIG. 18. The mixing time due to the noise from the SET r
either in the normal state or in the superconducting state, using
same dc current through the SET~approximately 10 nA!.
1-11
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used as an electrometer biased above the Coulomb thres
so that the current through the SET is carried by sequen
tunneling events. We take the energy exchange between
SET and the measured system into account using a real-
diagrammatic Keldysh technique. We find simple analyti
expressions for the noise in the low- and high-frequency
gimes and in between we calculate the noise numeric
The complexity of the numerical calculation is limited to th
inversion of aNXN matrix whereN is the number of charge
states involved, typicallyN<5.

Previous expressions for the voltage fluctuations, wh
the energy exchange is not taken into account, are by de
tion symmetric with respect to positive and negative frequ
cies. We show that there is an asymmetry, technically aris
from the first order vertex corrections of the external ve
ces, so that the noise capable of exciting the measured
tem is always less than the noise that will relax the measu
system, at any given frequency. The importance of this
ference is shown by calculating the Coulomb staircase o
d

J.
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Cooper pair box, as measured by the SET. Interestingly
difference has a tendency to cancel in the expression for
symmetric noise, i.e., the sum of the positive and nega
frequency noise. This implies that the classical calculation
a reasonably good approximation for that quantity.

The divergence in the superconducting density of sta
results in discontinuities in the voltage noise spectral den
of the superconducting SET~SSET!. Compared to a norma
state SET carrying the same DC current the SSET also
considerably less ability to excite the measured system.
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