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Full-frequency voltage noise spectral density of a single-electron transistor
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We calculate the full-frequency spectral density of voltage fluctuations in a single-electron traf&#stor

used as an electrometer biased above the Coulomb threshold so that the current through the SET is carried by
sequential tunneling events. We consider both a normal-state SET and a superconducting SET. The whole
spectrum, from low-frequency telegraph noise to quantum noise at frequencies comparable to the SET charging
energy Ec /%) to high-frequency Nyquist noise, is described. We take the energy exchange between the SET
and the measured system into account using a real-time diagrammatic Keldysh technique. The voltage fluc-
tuations determine the backaction of the SET on the measured system, and we specifically discuss the case of
superconducting charge qubit read-out and measuring the so-called Coulomb staircase of a single Cooper-pair
box.
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[. INTRODUCTION The structure of the paper is the following. In Sec. Il we
discuss the basic properties of the SCB qubit and the effect
Solid-state realizations of qubits are of real interest due t®f gate voltage fluctuations. Furthermore the difference be-
the possibility of using lithographic techniques to integratetween asymmetric and symmetric definitions of noise spec-
the large number of qubits, needed for a fully functional Qc_tral density is noted and also the connection to mixing time
The Single_electron transistOSET) has been suggested as aand the Coulomb staircase. In Sec. Ill the model for the SET
read-out device for different solid-state charge qubits. is introduced and in Sec. IV the real-time diagrammatic
Aassimeet al* have shown that the radio-frequency SET Keldysh technique is described and the expression for the
(Ref. 6 (rf SET) may be used for single shot read-out of the spectral density of voltage fluctuations on the SET island is
single cooper-pair BoxSCB) qubit.® This is possible if the derived_. Se(_:tior_l V describes the prqperties of the voltage
measurement time,,s needed to resolve the two states of thefluctuations in different frequency regimes, the effect on the
qubit is much shorter than the tinig;,, on which the qubit Mixing time and the Coulomb _stalrcase both for a normal-
approaches its new steady-state determined by the bacRtate SET and a superconducting SET.
action due to voltage fluctuations on the SET. In a previous
short papet we provided further support for this result by Il. THE SINGLE COOPER-PAIR BOX QUBIT
calculating the full frequency voltage noise spectral density

of the SET, including the effect of energy exchange between The qubit is here made up of the two lowest lying energy
the qubit and the SET. levels in a single Cooper-pair bd6CB) (see Fig. 1" An

In this paper we give a full account of the calculation asSCB is & small superconducting island coupled to a super-
well as a thorough discussion of the effect of back action irfonducting reservoir via a Josephson junction. The Hamil-
measuring the so-called Coulomb staircase of an SCB qubifonian of the system can be written in the charge bas as
We also include a section about the back action from a su-
perconducting SET.

Since the qubit is carefully shielded from all unwanted
interactions with its environment it is reasonable to assume
that the back action from the SET charge measurement is the
dominating noise source, even though the two systems are
only weakly coupled. This further motivates choosing mea-
surements on a charge qubit to discuss the spectral propertiséiereE ,=€?/Cp is the charging energyis the number of
of SET back action, compare, e.g., Ref. 10. In nonqubit sysextra Cooper pairs on the islari; is the Josephson energy
tems, e.g., a normal-state single-electron box, other sourced the junction andnnggb\/gb/Ze is the number of gate-
of dissipation dominate over the back action from the chargénduced Cooper pairs. In order to get a good Cooper-pair box
measurement. Furthermore we do not discuss the dephasimg needkg T<E;<E.<A, whereA is the superconducting
of the qubit induced by the presence of the SE% Al- gap andT is the temperature. The low temperature is re-
though it is a very important subject, the dephasing time igjuired to prevent thermal excitations and the high supercon-
mainly determined by the zero frequency fluctuations, and irducting gap is needed to suppress quasiparticle tunneling.
this limit our result coincides with previous expressidhs.  The eigenenergies now form parabolas, varying with the gate

Hq=; 4Eq(n—ng)?[n)(n|

Es
= LI+ 1+ [n+ 1)), ®
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4Eq,
OHy(t)= Tzang(t)az=2e;<5V(t)crz, (5)
15| where k=C,/Cgp,. Here 8V(t) represents the voltage fluc-
tuations on the SET island, and we have neglected a term
%-10 quadratic inong(t). In the qubit eigenbasis, using the rota-
g | tion defined by Eq(3), the fluctuations in Eq(5) become
sl SH(t)=2eksV(t)[cog n)o,+SIiN(7)oy]. (6)
The fluctuating voltage on the SET island can induce tran-
0 ‘ ‘ ‘ sitions between the eigenstates of the qubit. If the capacitive
0.0 0.5 1.0 15 2.0 coupling to the SET is small{<1) we can use the Fermi
n, golden rule to calculate the transition rates
FIG. 1. The energy bands of an SCB. The stafssand |1) e? E3 )
denote the eigenstates on the island. The quasiparticle branches L're(AE)= ﬁ_AEZK Sv(AE/R), ()

have been left out for simplicity. The gap is due to hybridization of

the charge states by the Josephson coupling. S
e” Ej
=_ 2 2 —
voltage. For suitable values of the gate voltdgese ton, FedAE) %2 AE2 «“Sy(—AE/R), (8)
=1/2), and forE;<E_., the system reduces to an effective _ _ _ o
two level system as the two lowest lying charge states arwherel' is the relaxation rate anbi, is excitation rate

well separated from the states with higher energy. IncludingndSy(AE) is the asymmetri¢see Eq(9)] spectral density

only the two lowest lying states in E@l) the qubit Hamil-  of the voltage fluctuations on the SET island. The fraction
tonian becomes E;/AE=sin(z) comes from Eq.6) as it is only o that
causes any transitions between the states. Note that the
4Ey, = cos(n)o, term causes fluctuation of the energy levels, leading
He=——(1-2ng)o,— 5 ox, (2)  to phase fluctuations and dephasing.
whereo, , are the Pauli matrice@nd the statel§ )= (3) and B. Asymmetric noise—Coulomb staircase

|1)=(9) correspond to zero and one extra Cooper pair onthe | oyr calculations we emphasize the energy exchange
qubit islgnd. By changing the ga_lte voltage the eigenstates ofystween the qubit and the SET and separate between the
the qubit can be tuned from being almost pure charge statentributions from processes leading to the qubit loosing en-
to a superposition of charge states. _ergy and the contribution from processes leading to the qubit
_ The ground stqte/ﬁrst excited state of the system, W”tte'@)aining energyor, equivalently, the SET absorbing or emit-
in the charge basisH;=0) are ting energy. Because of this, we will maintain this separa-
) tion of the noise spectral density of the SET into contribu-
|0)=cod 7/2)|1) +sin(7/2)| 1), tions from positive and negative frequencies and therefore
use the asymmetric expression for the voltage fluctuations
|1)=—sin(7/2)[T)+cod 7/2)|]), €

where n=arctafiE/4E (1 - 2ny)] is the mixing angle. The Sv(w)ZJ e '"(8V(7)8V(0)). 9
energy difference between the two states ISE o

= J(4Eg?(1-2ny)?+EJ and the average charge of the As we are primarily interested in the processes in the SET

eigenstates is we chose our reference so that positive frequencies corre-
spond to the SET absorbing energy and negative frequencies
Qo=2€|(]]0)|?=2esir?(7/2), correspond to the SET emitting energy.
One example where the separation is necessary is in de-
Q1=2e|<¢|1)|2=2ecosz( 7l2). (4 scribing the back action of the SET while measuring the

so-called Coulomb staircase, i.e., the average charge of the
qubit as a function of its gate voltage. In an ideal situation
with no energy available from an external source, at zero
When the SET is turned on in order to measure the qubittemperature, the qubit would follow the ground state adia-
the voltage fluctuations on the SET island induce a fluctuatbatically and the charge would increment in steps efé
ing charge on the qubit island. This is equivalent to a fluc-ng=n+0.5, n integer. These steps are not perfectly sharp
tuating qubit gate chargeg— ng+ dny(t), giving rise to a  because of the Josephson energy mixing the charge states.
fluctuating term in the qubit Hamiltonian, written in the This mixing of charge states results in a maximal derivative
charge basis as given by 4£./E;.” When adding a noise source, e.g., by

A. Qubit transitions induced by SET voltage fluctuations
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% where
2
1sland Ce RR CR
m HrZ% Erknalrnakmv HI=% flnCITnCIn (16)
describe noninteracting electrons in the left/right lead
Cgb. EJ g gqb (H;,re{L,R}) and on the islandH,). The quantum num-

bersn denote transverse channels including spin, &rid
denote momenta. The Coulomb interaction on the island is

FIG. 2. The SET. described by
increasing the temperature or attaching a noisy measurement V(N)= EC(N— ny?, 17
device, the steps will be rounded further due to a finite popu- A
lation of the excited state. whereN denotes the excess number operdgr= e?/2C the

Assuming that the SET is the dominant noise source, andharging energy ¢=C+Cg+Cy+C;), n, the fractional
that the two state approximation of the qubit is valid, thenumber of electrons induced by the external voltaggsis
steady-state population of the qubit is given by the fractional part of €, V| + CgrVg+Cy4Vy)/€], ande the

stab electron charge. The tunneling term is
Plyq =L oxd AE)/[Texd AE) +T'1o(AE) ] (10

PYP=T o AE)/[Tod AE) + T o(AE)]. (1D Hi= 3 3 (Tdalgcne 4 Ti* chayne ™)
The corresponding expression for the average charge is then _
given by =H +H", (18)
Q(AE)=Q(AE)PS™MAE)+Q4(AE)PS*RAE), where the operatani”i’ changes the excess particle number

(120  on the island by=1 andT,] are the tunneling matrix ele-

where Qy, is the charge of the excited state/ground statdnents. @ is the canonical conjugate ®,([$,N]=i). In
defined in Eq.(4). If we set Pstqb 0 and Pstqb 1, we re- this case of a metallic island containing a large number of

k%ectrons the charge degree of freeddm0,=1, ..., isto

a very good approximation independent of the electron de-
grees of freedonh,n. The termsH™ andH ™~ represent elec-
tron tunneling to and from the SET island. The form of the

N tunneling termgwith thee'® term) is a consequence of sepa-
For quantities that depend on the summed rate of relaxating state space into electrom, and chargdN degrees of

ation and excitation processes in the SET the separation gfeedom. This is also reflected in the partitioning of the den-
absorption and emission might not be necessary, and thgty matrix introduced below.

cover the ideal Coulomb staircase, as th|s corresponds to t
system following the ground state adiabatically.

C. Symmetric noise—Mixing time

symmetrised expression for voltage fluctuations The spectral density of voltage fluctuations on the SET
. island is described by the Fourier transform of the voltage-
ﬁym(w):f dTe—im<5V(T) 8V(0)+ 8V(0) V(7)) voltage correlation function
13 e . o
can be used. Note th&)™ ) = Sy() + Sy(— ). Sv(w)= @f_mdfe T Tr{ps(to) SN(7) SN(0)}
One example is the time it takes the qubit to reach its
steady state, after the SET is switched on. This time is called e _ .. —_
the mixing time, and the information about the initial state = &fxdTe_'wTTr{Pst(to)[N(T)N(O)—NZ]},
population is lost on this timescale. For weak coupling it
isth12 (19

whereN is the average dfl. TheN? term in Eq.(19) assures
that the correlation function vanishes for largeln Fourier
space this term does not contribute at finite frequency, and at
zero frequency it compensates for the steady state delta func-
tion. In order to simplify our expressions we leave this term
We follow the outline of Ref. 14 and model the SESee  out, and keep the frequency finite during the calculations.

=T AE) + T d AE) = SY™AE/R).  (14)

Tmix

IIl. SET MODEL

Fig. 2) by the Hamiltonian In Eq. (19 ps(to) is the density matrix of the system in
the steady-state, which is assumed to have been reached at
H=H +Hg+H+V+Hi=Hy+Hq, (15  some timet, before the fluctuation occurdqo<mir{0,7}).
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FIG. 3. The propagation of the unperturbed steady state density : — 1

matrix. This corresponds to the first term in E§2). T 0

FIG. 4. An example of a specific diagram. The wiggly lines
correspond to island lines and the solid lines correspond to lead

Ps= p:q® pS; is the tensor product of the equilibriuffrermi  lines. The right-most part correspond to an electron-hole excitation
distributed density matringq for the electron degrees of While the Ieﬁ-most part corresponds to a corregtion to the external
freedom in each reservoiL(R,1) and a reduced density vertex. The middle part corresponds to a tunneling event as only the

e - . _diagrams connecting the upper and lower branch changes the num-
matrix pg;, describing the charge degrees of freedom. Slnc%er of extra charges on the island
the tunneling events between the SET island and the elec- '
trodes are incoherent due to the low conductance of the tun-
nel junctions, the charge states will be incoherent, aiis 2 ..
therefore taken to be diagohalwith elementsPy denoting Sy(w)= e_zf dre-ier
the steady-state probability of being in charge stéte CoJ =

Tr{p(to)N(7)N(0)}

0 n “
_if d7y Tr{Tp(to)N(7)N(O)H1(71)}
IV. DIAGRAMMATIC TREATMENT -

—i)2 ro 0
We now expand the correlation function in E49) in a + ( 2,) f dTlf dr,
perturbation series in terms of the tunneling Hamiltonian ST T
(Hy) along a Keldysh time contoussee Fig. 3. The trace
over the electron degrees of freedom is then evaluated using
Wick’s theorem, which is possible since the tunneling Hamil-

XTH{Tp(to) N(T)N(O)H () H(7o)} + - - - |

tonian is only bilinear in the fermionic operators. Rewriting (22)

) ) i i i i N2
:Eq. (19) in the interaction picture giveexciuding theN Since the unperturbed Hamiltonian does not contain any
erm couplings between the leads and the island nor between the

leads themselves, their degrees of freedom are independent.
Moreover, as the trace of independent degrees of freedom is

B C Ciwr equal to the product of the respective traces and every per-
Sv(w)= @fwd’re turbation term contains one operator from one of the leads
and one operator from the island, only terms containing an

X Tr{p(to)S(te, IN(7)S(7,00N(0)S(0/to)}, even number of perturbation terms will contribute. Using the

diagrammatic language of Ref. 14, the noise correlation
(200 function Sv(w) can be given a diagrammatic formulation.
Figure 3 shows a diagrammatic representation of the first
where S(t,,t;) is the S matrix that brings the system from term in Eq.(22) with zeroHT perturbations, mvolvmg the
the timet. 1o timet,. i.e.. fort,>t evolution of the staFe described by.the densﬂy matrix itself
1 2 ' 271 along the Keldysh time contour. This process is represented
by a solid line starting and ending at the the density matrix,

L L including the chargéfluctuation operatorsN(7) and N(0)
S(ty,ty)=e I T/dtHr =1 ij drH(7y) marked by dots. This gives the expectation valsitistical
ty average of the charge fluctuation correlatigim the “ground
) - state”) in the absence of any transport process.
+(_i)2f dTlJ drdmHr(m)H(m) + - - -, The first contributions to charge transport come from the
t t third term in Eq.(22) with oneH ™ and oneH ™ perturbation,

(22) describing tunneling onto the SET island and back, changing
the charge statd to N= 1. A diagrammatic representation of
this would be the middle part of Fig. 4. Since the charge-

and analogously fot,<t;. Defining T as the time-ordering transfer process can be viewed as an electron-hole excitation,
operator along the Keldysh contour we can write &f) as  creating a hole on an electrode and an electron on the island,
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g ) N N+1 & N N-1 , N N
— T DN
N N+1 N N-1 N N
© = E=€~¢ '
& & N N+1 N N-1 N N
_ b) Z e Z h) w
FIG. 5. Two internal electron lines with reversed start and end Nl N N1 N
points. They can be replaced by a single line with an energy equa
to the difference in energy between the two corresponding to an o N N » N N )
electron-hole excitation. j i !
N N N N N

in Fig. 4 there are new additional lines with arrows repre-

senting electron-hole propagatgexcitations. Every inter- FIG. 6. All the diagrams that enter the propagator, to the lowest
nal time will form a vertex and the propagator order.

(Ta(7;)a’(r,)) will form a line going fromr, to 7. In this

case with macroscopic metallic reservoirs with many trans- Calculating for instance, the diagram in Fighp using
verse channels, the main contributing tettngill appear in  the diagrammatic technique outlined in Ref. 14 yields
combinations of

: +
¥r (E)
TH+ H7 — TrlananZ DN:_E I|m fdc (25)
( (t1)H (712)) rEl rzz k1|21n1 kgnz Kyly ' Kolp T 77%0+ “hw+E— Ay+in’
X(Tay e n, (1181 0 (72)) whereAy=V(N+1)—V(N) is the charging energy cost of

moving one electron from one of the leads onto the island
X<Tck1r1n1( 1)Ciyrn,(72))]: (23 \when there arél extra electrons there. The factgy () is
which means that there will always be pairs of internal lines. the inelastic(golden rulg tunneling rate through junction

with reversed start and end points, one being a reservofP" &lectrons tunneling to the islaridorrespondinglyy, (e)
the inelastic tunneling rate of electrons tunneling from the

propagator and one being an island propagator, as shown |i
Fig. 5. These line-pairs are replaced by a single line, corre!Sland through junction] given by the expression
sponding to an electron-hole excitation, with an energy equal

to the difference in energy between the two lines. N ™

In order to facilitate the evaluation of the time-ordered v(e)=5 ; f dEp(e +E—eV;)p(E)
diagrams in Eq(22), we rewrite the Fourier transform in Eq.
(19) as X5 (e+E—eV,)f (E)|TM|?, (26)

e’ [~ Ciwr A wherep is the density of states in the reservoiand on the
Sv(w)= &f_wdTe Trips(to)N(T)N(O)} island, both assumed to be either superconductors or normal
metal, f*(E) is the Fermi distributionf ~(E)=1—f"(E),
0 . L T™ is the tunneling matrix element, here assumed to be in-
= —ZJ dre™ " Tr{ps(to)N(7)N(0)} dependent of energy ang} = (u, — w,)/€ is the voltage bias
CoJ e across the junction. Separating E@25) into real and imagi-
nary parts we get

e2 0 ) ~ A
+ _f dre" " Tr{ps(to) N(O)N(7)}
Cc2)-« N+1

=2§—22Re{fldrei“”Tr{pst(tO)N(T)N(O)}, a) { d) § g)w

(24) N+1

where we have used that the steady-state is time invariant. b) !,; e) !7 h)w

Furthermore we fix the specific time ordering of all internal
and external times in all diagrams. This make the diagrams

straightforward to evaluate in the frequency domain as all N
integrals thus become recursive Laplace transforms. Return- C l) —o—
ing to Eqg.(22) and drawing all the diagrams of the lowest /6\ /9\

nontrivial order we can divide them into two categories:

Dressings of the propagatdfy n/(w) that takes the system  FIG. 7. All the vertex corrections of the external vertir),
from the charge statd to the statéN’ (see Fig. $and vertex  denoted by a dot, within the sequential tunneling approximation.
correction(see Fig. 7. Note the correspondence to Fig. 6.
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h(l)‘l’ E_AN
(hw+E—Ay)2+ 72

Dy=-3 iim — [ dEy; (E) (@)= 3 7 (Aygtho), 29
—ot

r

in all the diagrams in Fig. 6 can be calculated in the same way,
_ |- (27) resulting in
(ho+E—AN)+ 7
The real part of the integral is small in the tunnel limit where (A=yy(0), (D=yy(w), (@=—yy(w),

the conductance is small, so we neglect these renormaliza-
tion effects(see Ref. 13 and concentrate on the imaginary

part, which gives (D=yw(—w), @=y(—0), (h=-y(),
Dy=-— T(An—Thw). 28 - o]
N2y (A he) @8 (©=-m(-0), H=-n(-w), (H=-.
Introducing the notation (30
PR F(An—Fiw), In the same way, the vertex corrections in Fig. 7 can be
mw(w) r=§R:,L v (An—fio) calculated yielding

@R O-R@] D [RO-nm@] (@[O0 m(w)],
B[RO -R(-0)].  (@=[wO -] (=[50~ 3i(w)]

(©- =~ [0 -m(-o)l, (- —[RO-vi(-w)] (L (31)

where the expressidin) in Eq.(31) corresponds to the zeroth In order to facilitate the evaluation of higher order dia-
order correction of the vertex. To lowest order, the total specgrams we define an irreducible diagram as a diagram where

tral density can be written it is impossible to draw an auxiliary vertical line at any time,
without crossing an electron-hole line. An example can be
o2 seen in Fig. 8.
—2° R PN/ (e TTer vl 60)N” The diagrams in Fig. 6 are all the first order irreducible
Sv(w) 2 N,NE’,N” V(@ (@) diagrams, except Fig.(8, which is just the free propagator
, 0N (0)=(i/w) 8y nr , Wheredy v, is a Kronecker delta.
e ST 9 2 Using irreducible diagrams allows us to write down a ma-
_o T s
2(:2 Re(N'LL(w)V(w)P?}, (32) trix Dyson equation in frequency space for the frequency

dependent propagatcf[(w) between different charge states

whereN and P are column vectorsN" is the transpose of (F19- 9

KI) containing the number of extra electrons on the island (@) =)+ TTO(0)3 (o) 1(w). (33)
and the steady-state probabilities, respectively. Note thus that

the eIementPf',t refers to the steady-state probability of the Solving forIT(w) and inserting the explicit form dfi °)(w)
SET to be in the state with O extra charges, unlike for thewe get

qubit, whereP$'% refers to the steady-state probability of

being in the lower energy eigenstaté.w) is a matrix whose

|
|
eIements\A/N,,N(w) are the sum of all vertex corrections in !
Fig. 7 which take the system from the st&t¢o the stateN’ :
|

£\

and IT(w) is a matrix whose element . \/(w) are the
sum of all diagrams in Fig. 6 that take the system from the

7

Stat.EN' to the stateN”. Incidentally, Eq.(32) is \(a|id for FIG. 8. This diagram contains three irreducible diagrams as in
arbitrary order, as long as the vertex correction and theetween itis possible to draw a vertical auxiliary liashed lines
propagator are dressed to the appropriate order. separating them.
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N N N____ N N____ N N°” N’ most one tunneling event at a time, all the vertex corrections
‘ TT(w) ‘ = |HNI§€”)| +N§m |HN,§§*’~)| | ZN(‘;g)| | 11("’3,| that enter are those drawn in Fig. 7.

N N N N N N’ N N
FIG. 9. A graphical representation of the Dyson equation in Eq. C. Main result

(34). The terms3 s are irreducible diagrams that take the system

from the stateN to the stateN’. All diagrams which enter Egq24) within our approxima-

tions are drawn in Fig. 10. Adding them together gives

, i iS(w) "
M(w)=—|1- — : (34) 2€? o i +
Sv(@)="7 2 PARGNAN= ZTIN+1) 7 (w)
Note that the explicit time ordering in every diagram, means
that in frequency space any specific diagram can be written
as a product of irreducible diagrams and free propagators.
The matrix eIemenﬁN/,N(w) of the irreducible propaga- i
tor (self-energy 3 (w) is the sum of the irreducible diagrams ——[(N=1)yy(@) +Nyy(— @) ](An-1—AN),
that take the system from the stadteto the stateN’ and 1 w
= &y.nv i the unit matrix with the same dimension36w). (35
Note that the frequency dependence comes directly from the
Laplace transform over the time which introduces an aux- where Ay=3,N'IIy () and P is the steady-state
iliary line with energys w. All diagrams located between the propability of there beindN extra electrons on the island. In

Ny (=) [(Ans1—Ap)

timest=r7 andt=0 therefore depend oa. Eq. (35) we have used that the steady-state probabilities ful-
fill the relation P} ;=[yx(0)/vn:1(0)IP} (see, for in-
A. The self-energy3: () stance Ref. 16

. . The first term in Eq(35) corresponds to the result in Eq.
The Dyson equation allows us to appropriately sum up the(27) of Ref. 13 but with frequency-dependent tunneling

diagrams to a certain order by calculating the self-energy Q,e5 while the other terms originate from the vertex correc-
that order and then inserting it into E(B4). As the reser- iqns The asymmetry in the noise with respect to positive
voirs are assumed to be in local equilibrium, we chose 1q,,4 negative frequencies arises solely from these vertex cor-
include only diagrams containing at most one electron-hole,iions. In the limitw— 0 Eq.(35) coincides with the zero-
excitation at any given time. This approximation correspondsrrequency limit given in Ref. 13. Note that the frequency-

to keepirr:g the irreducible diaﬁrams \r/]vhere any vclartical ”rr‘]emdependent terms in the vertex corrections cancel.
cuts at the most one internal line. This is equivalent to the . . A a ~
g Using the relation RET(w)}=— (/)3 (w)Im{I1(w)}

sequential tunneling approximation leading to the Master > .
equation of orthodox SET theory. The diagrams entering th%t::('js ;zéhﬁr;?a(l)ﬁjaer: (;Lllzqu)r?()a'rgiselgga'[rza;)ﬁ]reelgeifngg)igg;tor

self-energy to this order are all drawn in Figsa)e-6(). (35) can be rewritten in matrix form, which gives the main

result in this paper,
B. Vertex corrections

To calculate the noise spectral density we also need to g2 3 (w) 2 —1A( )
sum all vertex corrections to the same order. As the sequen- Sy(w)= 22N 1+ w ) Now pst (36)
tial tunneling approximation only includes terms with at 2 © w?
N IN><NI Nel N IN><NI Nol N IN><N| N
E NN S / 1;[(](]?) IN'><N'l 2 N o / I;II(&)) IN'><N'l Z NN Py 1;1150)) } N>l
NN* a NN — NN*
N N+l N N-1
N IN+1><N+11 N+l N IN-L><N-11 Nt N IN><N| N
Z aeone | P \ l;[)f(l(N))) > IN'><N'l z o~-one | P \ l;[[g(#{)) > IN'><N'l Z N X /<_\ l;ITg(;)) } IN'><N'l
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NN NN NN ¢ >
N N N N N N+l N
t t ==t t t =t t t =t
t T 0 t T 0 t T 0

FIG. 10. The sum of all diagrams within the sequential tunneling approximation. The propaldaters which is the sum over all the
diagrams that take the system from the stdt® the stateN’, are calculated using a Dyson equatioinawn graphically in Fig. @
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where }(w) is a tridiagonal matrix whose elements arethey are given byP3t= v, (0)/[ vy (0)+ 75(0)] and Pit
WN(©) = V(@) = i(0),  Wean(@)=7i(@)  and =75 (0)/L¥1 (0)+ 5 (0)]. We assumeg<0, Ag>0, and
I (@)= — (). |A5|_>|A§| so that electrons typically tunnel from the left to
Néte that contrary t&(w), ¥(w) is not symmetric in the right, and there is a finite dc current through the SET. We
' will use these assumptions about the bias throughout the re-

frequency and for negative frequencies larger than the max'ﬁnaining part of the paper, except in the section about the

mally available energy from the SEAT(w) is analytically  ff-state noise of the normal state SET.
zero while for positive frequencieéf,(w) does not tend to
zero but to a finite value. A. Low-frequency regime

In the low-frequency regime, defined as the regime where
Yo (w) andy; (w) are exponentially small, the charge states
When measuring with the SET, the bias voltage is typi-O and 1 are the only states energetically accessible, also
cally large enough to allow for a dc current through the SETtaking into account the externally available enerfgy. In
but not much larger, which implies that only the charge stateshis case the matrix inversion in E(B6) is easy to calculate
0 and 1 have a nonzero steady-state probability. In this cassnalytically and the noise spectral density is given by

V. BACK-ACTION DURING MEASUREMENT

2¢€? P3g (@) +Piy1 ()
y=— & — . (37
Sv(w C? w+[yg(w)+ vy (—w)+ vy (0)+ 7y (—w)]?

This expression has a very simple form: The sum of the ho 1
steady state probabilities weighted by the inelastic tunneling yg(w)~yf(w):—2 —+ | T0(1), (40
rates for transitions away from the state, normalized by a 2e°|Ry Ry

denominator containing the finite lifetimes of the states. For
zero frequency this corresponds to classical telegraph noise. o _ o
Note that Eq(37) is valid both in the normal and supercon- where O(1) indicates a bias-dependent constant. This is

ducting states, the difference only entering in the expressionélid both in the normal and superconducting states. It is
for the ratesy; (). clear that inserting Eq40) into Eq. (39) gives Eq.(38). It

might be interesting to note that it is enough to include four

charge states to recover the full Nyquist noise. If only two
charge states were included, an extra charge on the island

In the high-frequency limit the spectral noise density ofyyould prevent further electrons to tunnel until the extra elec-

the SET should be independent of the bias and be dominatgghn has left the island, and the correlation effectively would

by the Nyquist noise, which in this regimé ¢>kgT) is'’  reduce the noise to that of a single junction. For similar
reasons, for intermediate frequencies the noise should be re-

B. High-frequency regime

2hwR duced, compared to the Nyquist noise.
W) =2k w REZ(w :—H, (39 ’
Svll Qe
whereZ(w) is the impedance of the SET island to ground C. Normal state SET
and RH=(1/R#+ 1/R$)‘1. In this limit 3(w)<w and the For an SET operated in the normal state, the density of

matrix inversion in Eq.(36) can be Taylor expanded and states can be assumed to be energy independent when calcu-
approximated by the first termi/w[1+ (3 (w)/w)?]"t lating the tunneling rates in Eq(26). Using p; n(E)
~(i/w)1. Still assuming the voltage bias to be small enough=Pr.n(E)=pn, the tunneling rates~(w) can be written

to keep only the steady-state probabilitie§ and P3' non-

zero, Eq.(36) gives SET emits  : SET absorbs
() = 2 PRI (@)+ 70 (@)]+ Py () 7 ()] il M H’H’jﬁ - ,Iﬂ:’l -
c % PO mac

FIG. 11. A schematic picture of the different processes in the

In the high-frequency limithw>{Ec,eV}, all rates are  SET for different frequencies. Note that negative frequencies corre-

similar and they are proportional both to the normal statespond to processes where the SET emits energy, while positive
tunnel conductance and the frequency frequencies correspond to processes where the SET absorbs energy.
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e? 2l/e+ 27Tw[P(S)Ia|5+ Pitag
_ i Suw)=— — " — (43
g 040 - A ] C* @™ +4[yy(0)+ v, (0)]
\
B \ | .
3 020 - _ where the first term in the numerator |
> / \\ =2ey, (0)y7 (0)/[y5(0)+ v, (0)] is the dc current
/ through the SET. We see that the difference compared with
0.00 ] classical telegraph-noise is the term lineawirin the nomi-

nator. This is a quantum mechanical correction originating
from the vertex corrections. In this regime the frequency

FIG. 12. Spectral noise density for an SET run in normal mode.dem:‘ndent part of the tunneling rates in the denominator

The calculation was done for zero temperature and with symmetrigancel' . . y B
tunnel junctionsR=R, =21.5 KX. The dc current through the N the symmetrized nois&)"(w)=Sy(w)+Sy(~®),
SET was 1.5 nAn,=0.25, Ec=2.5 K. the linear term in the numerator cancels out. Thus in this

region, for quantities that are proportional to the symme-
trized noise, such as the mixing tifeee Eq(14)], the clas-
- sical telegraph noise give the same result. But for other quan-
yi(w)=— > abl " (Ah—fw), (41) tities, such as the steady-state probabilities of a qubit driven
ho T by the SET[see Eq.(10) and Eq.(11)], the difference is
evident even for small frequencies.

T
n(w)= % > agl' " (Ay_ 1 +hw), (42 2. Coulomb staircase
r

Using the SET to measure the average charge of the
where afh=3,|T"|?p2=R/47°R’ is the dimensionless Cooper—pair box qubit it is_ reasonab_le to assume that the
conductivity R is the quantum resistance am} is the back action from th_e SET is the _domlnant noise source. At
tunneling resistance of junctiom), I' (E)=E/[1—exp the degeneracy point of the qubit, theRenergy splitting be-
(—BE)], T*(E)=EexpBE)[1—exp(BE)], and B tween its two eigenstates ;. If E_J<AO we can use Eq.
—1kgT. Note thatAl includes both charging and biasing (43 to calculate the Coulomb staircapq. (12)] close to
energies. the degeneracy as

At zero temperature, thE* become step functions mul-
tiplied by a linear terml' " (E)=|E|0(E), I'*(E)=|E|# _
(—E). In this limit the rates are easy to analyze. (Q)=e
For frequencies of small magnitudésw|<|A}|,|A" ]
only the charge statg®) and|1) are energetically allowed where 8ny is the deviation from the degeneracy poimta(
and we can use E@37) to calculate the noise spectral den- =1/2) and we have assumed symmetric junction§= o}
sity. Even though the expression in E§7) looks very simi- =4 or Rt=Rf=R;) and a symmetric voltage bias in the
lar to the classical expression with frequency dependen$geT, Thus, close to the degeneracy, we will always get a
rates, this frequency dependence of the rates changes thgear charge increase for suitable choice of SET bias. In this
behavior quite drastically. The spectral noise density is NGegime the derivative is thus determined by the current
longer symmetric with respect t@, and there is a finite through the SET rather than the Josephson energy in the
maximum energy available for emission from the SET.qubit.
which can be seen in Fig. 12 & =0 for large negative Away from the degeneracy point, when the energy split-
frequenciesiw< —|Ag|. This means that if the energy split- ting of the qubit is increased, the low-frequency requirement
ting of the qubit is larger than the energy gained by puttingfor Eq. (43) may not be fulfilled. In order to calculate the
an extra electron on the islands{g), there is not enough influence from the noise on the Coulomb staircase for arbi-
energy available from the SET to excite the qubit, and thedrary qubit gate voltage we have to include the full expres-
SET behaves as a passive load, only able to absorb energgion from Eq.(35). The result for a typical setup is plotted in
The preference of the SET to absorb energy rather thaRig. 13, demonstrating that the back-action noise from the
emit is also clear a$,(w)>Sy(—w) for any ®>0. This  SET introduces additional smearing of the Coulomb stair-
means that any two-level system with finite energy splittingcase. This can be compared to the results by NaZ&rov,
driven to steady-state solely by the SET will not have anwhere the influence of the back action of an SET in the
equal steady-state probability of both states. normal state is calculated on a small metallic island in the
normal state.

8E.maq

LA
7ille * Ng

1+ ong|=e o/ . (49

1. Low-frequency regime

For low frequencies$f | <|AR| when no backward tun- 3. Mixing time
neling processes are allowéske Fig. 1}, the noise spectral Using the tunneling rates in Eq&t1),(42) and inserting
density can be written them into Eq.(35) we can calculate the mixing tims,;, due
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3.00 r 0.20
E‘ . i:i:llding SET = 0.15
o= - N . AN
& 200 | , / £ AN
2 Z 010 g
S ) 3 S~
2100 —r & 005
2 |
g | 0.00
0.00 . -2 0 2 4 6
0.00 1.00 2.00 3.00 ho/E

n
) FIG. 15. Noise spectral density of an SET in the off state. Note
FIG. 13. The Coulomb staircase of an SCB driven to steadythat only contributions from positive frequencies remain, as no en-
state by the SET run in normal state. The parameters we have usetgy can be emitted from the SET within the sequential tunneling
for the SCB areE,=2.5 K, E;=0.1 K, A=2.5 K and for the SET  approximation. The noiseless region is givenAly— A w>0.

we have used-=2.5 K, Rg=R_ =21.5 K2, andn,=0.25.

to the voltage fluctuation on the SET-island as a function Otture. thf condition _ for sugh an event S SimplyE

the energy splitting. Using a state-of-the-art rf-S@ef. 19 = min{Ag Ag}. Th_e voltage noise spectral density of the SET
coupled to a qubit with realistic parametdsee caption as 1" the Off state is shown in F'S? 15. The curve has been
shown in Fig. 14, this would give a mixing time of approxi- calculated using Eq35), with Po=1. This implies that in
mately 10us. This should be compared with the measure-0rder to benefit from the low voltage fluctuations in the off-
ment timet,,s needed to resolve the two charge states in thétate the SET should be switched off by switching both the
same setup which is about Oub. The resulting signal-to- driving bias to zero and using the SET gate voltage to put it
noise ratio(SNR) is SNR= {7 /tme=5, which indicates far into the Coulomb cotunneling regime, i.e,~0.

that single-shot read out is possible. The nonlinearity of the voltage noise spectral density may
also be used for fast relaxation of the qubit, i.e., as a qubit
4. Off-state noise—Qubit reset reset button. If the gate voltage of the SET is such thiat

One property of the SET used as a charge qubit rez:1d-0u%|A0|~A , and the driving bias is zero, the qubit relax

device is that it may be switched off by lowering the driving atiqn rate is fir_st qrder in the tunngl conductance, while the

bias so that sequential tunneling is no longer possible, i.e_qxcnatlon rate is given by co_tunnellng. T'he normal state SET

both 0<Aj and 0<AF. In this regime the voltage noise is M&Y thus be used for qubit reset, or in other words as a

determined by cotunneling proces€8since cotunneling is  SWitchable dissipative environment to the qubit.

a second order process in the tunneling conductance the volt-

age noise in the off staté! is several orders of magnitude

smaller than the on-state noise. D. Superconducting SET

Taking energy exchange with the qubit into account there

may be a first order tunneling event in the SET, even though Compared with a normal state SENSET) the supercon-

the driving bias is too small for sequential tunneling. Theducting SET(SSET) shows two main differences. The den-

energy taken from relaxing the qubit may stimulate a photonsity of states in the reservoirs is changed by the supercon-

assisted first-order tunnel event in the SET. At zero temperaducting energy gapA, and in addition to quasiparticle
tunneling also Cooper pair tunneling may occur. We will

8 ‘ ‘ : ‘ consider an SSET biased so that sequential quasiparticle tun-
W neling is allowed, and in this regime Cooper pair tunneling

6 f_:z: / A may be neglected. Thus the same model as before can be
—_ 2l // used, only taking into account the changed quasiparticle den-
E 41 ! ] sity of states. As we are interested in an SET made out of
QE o= / aluminum, we use the BCS density of states

2 L Il(u/Ec/

oL . ‘

0 2 4 6 8 10 |E|
ho/E p(E)=pn 35 A(IEI=D), (45)

FIG. 14. The mixing time of an SCB caused by the SET. The
inset shows an expanded view arouh@d~Ey,. Thus, for an en- ) .
ergy splitting of the qubit of approximateB,, the mixing time is wherepy is the density of states of the normal state. Insert-
around 10 us. The parameters used wel.=2.5 K, Ey  ing these into the expression for the tunneling rates in Eg.
=0.8 K, E;=0.15 K, Rge=R, =21.5 K2, x=0.01,14,=9.6 nA. (26) we get for zero temperatufsee, e.g., Ref. 22
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FIG. 16. Comparing the spectral noise density for a supercon- F|G. 17. Comparison of an ideal Coulomb staircase and a stair-
ducting and a normal conducting SET. The parameters used wegse where the qubit is driven to steady state by either an SET in the
RL=Rr=21.5 K}, Ec=2.5 K, n,=0.25, andl 4.= 9.6 nA. normal or in the superconducting state. We have use the same pa-

rameters as in Fig. 13.

+

. 7 apd(FhoreV,—2A)
W= T AT hereV,

find that the SSET noise is zero forhw<
—(max|eV,|,|eVkl}—24), while the NSET spectrum extends
ho—eV,+2A down to w~—max|eV||eVkl}~—2A.
m) Meas_unng the Coulomb staircase W!th an N_SET gnd an
SSET biased to the same dc current will thus give different
ho—eV,+=2A results. The Coulomb staircase is sharper for the SSET be-
m) cause the lower amount of energy extractable from the SET
reduces the excitation rate for the two-level system, and the
discontinuities in the noise spectral density of the SSET are
' also clearly visible, as seen in Fig. 17. Even though this is a
o ] completely different bias regime, similar structure appears in
where K(x) and E(x) are elliptic integrals of the first and Ref 23
second kind. These rates behave just asl'theurve for an Note that the staircases in Fig. 17 has been calculated for
SIS junction. The singularities in the superconducting den-zerg temperature and for a fixed voltage bias across the SET,
sity of states introduce discontinuities into the tunnelinggngd that the dc current is different in Figs. 17 and 13. When
rates. These discontinuities will also introduce discontinui-(;z-;1|cu|aﬁng the total mixing time, the sum of relaxation and
ties in the noise spectral density. _ absorption rates enters, and the difference between an SSET
Comparison between an SSET and an NSEdmparing  and an NSET diminishes. The lower tendency for the super-
the noise spectral density of an NSET and an S8€ Fig.  conducting SET to emit is compensated for by an increased
16) is not completely straightforward as the SSET requires{endency to absorb energy.
considerably higher voltage bias in order to get sequential sjnce the mixing time due to an SSET dependends on the
quasiparticle tunneling through the SET, ijeVi—eVkl  sum of the contributions from absorptive and emissive pro-
>4A+Ec(1-2n,). Therefore when comparing these two cesses, it is thus not very different from an NSET carrying

in the on Statéi.e. while measurinp we use the same tunnel the same dc current. An examp|e can be seen in F|g 18.
conductance and gate voltage, and then choose a voltage bias

that gives the same dc current through the two SET’s. This is VI. CONCLUSIONS

motivated by the fact that the zero frequency noise is deter- )
mined by the dc current through the SET, this biasing there- Ve have calculated the full frequency spectral density of
fore yields the same zero frequency telegraph noise for botMoltage fluctuations in a single electron transist8ET),

X

(ﬁw—evr)ZK(

—(ZAiﬁwieVr)z( K(

E hw—eV,=2A
Tlho—eV,72A

the SSET and the NSET. 8

Apart from the discontinuities in the spectral density of
the SSET, the finite frequency noise differs in another impor- 6| . NSET
tant aspect. Although the two SET's carry the same dc cur- —— SSET

rent, the processes producing that current are qualitatively
different. In the superconducting SET biased just above the

Ty, [MS]
~
\\

threshold the energy gain in each single tunnel event is quite 5l

small, determined by approximately n{gd/|,|eVy/}—2A. /

The relatively large current is an effect of the divergent den- 0 . ‘

sity of state peaks in the reservoirs. In the normal state SET 0 2 4 6 8 10

carrying the same current the maximum energy that may be ho/E

extracted from a single tunneling event is instead quite large, €

proportional to mage\, |,|eVxl}- FIG. 18. The mixing time due to the noise from the SET run

Comparing the voltage noise spectral density for negativeither in the normal state or in the superconducting state, using the
frequencies, capable of exciting the measured system, waame dc current through the SEdpproximately 10 nA
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used as an electrometer biased above the Coulomb threshdliboper pair box, as measured by the SET. Interestingly the
so that the current through the SET is carried by sequentiaifference has a tendency to cancel in the expression for the
tunneling events. We take the energy exchange between tlsymmetric noise, i.e., the sum of the positive and negative
SET and the measured system into account using a real-tinfeequency noise. This implies that the classical calculation is
diagrammatic Keldysh technique. We find simple analyticala reasonably good approximation for that quantity.
expressions for the noise in the low- and high-frequency re- The divergence in the superconducting density of states
gimes and in between we calculate the noise numericallyresults in discontinuities in the voltage noise spectral density
The complexity of the numerical calculation is limited to the of the superconducting SE(BSET). Compared to a normal
inversion of aN XN matrix whereN is the number of charge state SET carrying the same DC current the SSET also has

states involved, typicallN<5. considerably less ability to excite the measured system.
Previous expressions for the voltage fluctuations, where
the energy exchange is not taken into account, are by defini- ACKNOWLEDGMENTS
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