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Ab initio calculation of the ideal tensile and shear strength of cubic silicon nitride
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In this study, the ideal tensile and shear strength of the recently discovered cubic spinel silicon nitride
polymorph was calculated using anab initio density functional technique. The stress-strain curve of the cubic
silicon nitride structure was calculated from simulations of applied«11 and«23 components of strain, and the
ideal strengths were estimated at;45 and;49 GPa, respectively. In addition, the elastic constants of the cubic
structure were determined and a value of;311 and;349 GPa was estimated for the bulk and shear modulus,
respectively. The estimates of the elastic constants were found to be in reasonable agreement with existing data.
Using a previously reported empirical relation, the hardness of the cubic phase was also estimated:;47 GPa.
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I. INTRODUCTION

Silicon nitride (Si3N4) has been a material of great r
search interest over the years because of its unique mec
cal and electronic properties. It is well known that silico
nitride exhibits excellent resistance to wear, corrosion,
thermal shock.1 Furthermore, silicon nitride exhibits superio
mechanical properties at high temperatures, and thus,
considered to be an ideal material for use in various appl
tions, such as engine components, extrusion dies, and cu
tools.1

The two well-known polymorphs of silicon nitride are th
a- andb-Si3N4 phases. Thea phase, with a density of ap
proximately 3.183 g cm23, is generally synthesized at amb
ent pressure and below temperatures of 2000 K. Theb phase,
with a density of approximately 3.200 g cm23, is the more
stable of the two and is obtained from a transformation of
a to b phase at high temperatures.2 Both of the configura-
tions have an underlying atomic structure, which is hexa
nal and only differs along thez axis in the stacking sequenc
In particular, thea phase has a space group ofP31c, with 28
atoms in the unit cell, and theb phase has the space grou
P63 /m ~with the subgroupP63), with 14 atoms in the unit
cell.3

Over the last decade, particular interest in the hig
pressure behavior of Si3N4 has grown. This was due to the
oretical predictions that indicated that nitride materials,
particular, carbon nitrides, may be produced where the st
ture may exhibit a hardness comparable to, if not grea
than, diamond.4–8 In 1999, Zerret al.9 reported the synthesi
of a cubic Si3N4 spinel structure (c-Si3N4 , space group
Fd-3m or subgroupFd3). The authors showed that the ne
polymorph of silicon nitride has a density of 3.9
60.12 g cm23 ~;23% higher than thea or b phases!. In
addition, the spinel structure of cubic silicon nitride w
found to have an atomic arrangement of silicon atoms co
dinated fourfold and sixfold to the nitrogen atoms in a 1
ratio, whereas in thea and b phases the silicon atoms a
only fourfold coordinated with the nitrogen atoms.

Various studies have been reported that have emplo
0163-1829/2003/67~3!/035210~4!/$20.00 67 0352
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theoretical methods to understand better the propertie
silicon nitride. Using various methods the atomic and el
tronic structure, bulk modulus, various mechanical prop
ties, and the lattice parameters of crystallinea- andb-Si3N4
have been studied.3,10–13This is also the case with the ne
cubic c-Si3N4 polymorph. Various physical properties hav
been reported, including the electronic properties,14,15 lattice
parameters,9,14,16–18material properties,14,16,17,19,20and ther-
mal properties.21 However, the calculation of the ‘‘ideal’
strength of cubic silicon nitride has not so far been report

In this paper, anab initio numerical calculation of the
stress-strain curves ofc-Si3N4 is discussed. Initially, the
method of calculation used to investigate the material beh
ior is outlined. Following this, the results obtained from t
simulation procedure are presented, and finally, these re
are discussed in detail.

II. CALCULATION METHOD & RESULTS

The equilibrium structure, elastic constants, and ot
properties of a single-crystal cubic silicon nitride were det
mined using the Vienna ab-initio simulation package~VASP!.
The core region and valence electrons of the atoms in
supercell are described by the Vanderbilt ultras
pseudopotential.22 In addition, the electron-electron ex
change interaction was described using the generalized
dient approximation~GGA! and the local density approxima
tion ~LDA !.23–25 The GGA employed a Perdew-91~PW91!
functional form,26 and a Ceperley-Alder27 form was em-
ployed in the LDA. In both cases, the numerical integrati
of the Brillouin zone was performed using a discrete 434
34 Monkhorst-Pack28 k-point sampling and the plane-wav
cutoff was chosen as 31.96 Ry.

The underlyingc-Si3N4 unit cell structure was obtaine
from the cubicFd-3m space group configuration. In the un
cell there are 56 atoms: using the Wyckoff notation, there
one group of Si atoms~octahedral bonds! in the 8a @1

8,
1
8,

1
8#

position, the second group of Si atoms~tetrahedral bonds! in
the 16d @1

2,
1
2,

1
2# position, and the N group of atoms in the 32e

~@x,x,x#, wherex50.251d) position. The lattice constant de
©2003 The American Physical Society10-1
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termined experimentally and the optimizedd value were
originally reported by Zerret al. asa57.8060.08 Å andd
>0.0074, respectively.9 However, in this study the value
obtained by Jianget al.29 were employed for the initial di-
mensions of the supercell,a>7.733 91 Å andd>0.0084.

As mentioned, the initial supercell was configured us
the dimensions given by Jianget al.29 and subsequently a
procedure was applied to relax the structure. The relaxa
process was performed for a peak force at each atomic si
0.01 eV Å21 and a peak stress in the supercell of 0.1 G
The tensile and shearing simulations were performed by
plying a «11 and «23 strain, respectively. At each step th
applied strain was increased by a uniform strain of 0.01,
the atomic structure of the supercell was relaxed using
conjugate gradient method, in all directions except in
direction of the applied strain. At each step the super
configuration of the previous step was employed.30 It is im-
portant to note that at each step the conjugate grad
method was performed only after a finite temperature of 1
was applied to the supercell structure for 0.1 ps. In this ca
the predefined temperature value was selected to provi
sufficient amount of energy to the supercell to displace
atomic configuration by a small amount.

In this study the stress-strain curves for an applied ten
and shear stress were modeled. It is clear that beyond
point of maximum strain deformation the relaxed structu
may show increased bond lengths at certain bonds, sug
tive of fracture. However, it is beyond the scope of the c
rent paper to present such results and, thus, only the st
strain data to the point of failure is presented. The relev
elastic constants for the cubic structure areC11, C12, and
C44 because of the high symmetry. The unit cell configu

FIG. 1. Unit cell representation of the spinel cubic Si3N4 lattice
structure, in the@100# direction: the cell origin is defined at th
bottom left silicon atom.
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tion of the cubic phase is illustrated in Fig. 1. From t
simulation procedure the tensile and shear stresses d
mined as a function of strain deformation are presented
Fig. 2. Additionally, certain material parameters were es
mated. The elastic constants, bulk and shear moduli, and
optimized lattice constant were estimated and are given
Table I: where possible the results are compared to va
found in the literature. It is important to note that the bu
modulus was defined as@(C1112C12)/3# in this study. Fur-
thermore, the shear modulus was defined as the averag
the tetragonal and rhombohedral shear moduli, (C11
2C12)/2 andC44, respectively. The results for the data o
tained from both the GGA and LDA methods are presen
in Table I.

III. DISCUSSION

In this study, two different exchange-correlation potent
functions, the LDA and GGA, where employed to charact
ize the atomic behavior of the cubic phase of silicon nitrid
In many cases, the two potential functions provide com
rable results. In this study, as a matter of convenience o
the LDA results are presented in Fig. 2. Furthermore, in
case of the shear and bulk moduli, an average result of
two functions is presented in the following discussion. Ho
ever, as mentioned, in Table I all the LDA and GGA resu
are presented for each parameter. Even though there i
conclusive argument to use an average value, it is sugge
that a better estimate of the true value can be obtained si
generally, the LDA results tend to overestimate and the G
results underestimate the modeled elastic constants. In
case of the lattice constants, the LDA results tend to und
estimate and the GGA results overestimate.16,31Additionally,
it is important to note that the results obtained in this stu
are for an applied temperature of 0 K, where all experimen
results were, in general, measured at room temperature. T
it is reasonable to expect a discrepancy between the
presented in Table I.

In Fig. 2 the tensile stress response as a function of
plied strain is plotted for an applied«11 strain component.
From this data the ideal tensile strength ofc-Si3N4 can be
estimated:;45 GPa. It is clear that the maximum tensi
strength is taken as the maximum in the stress-strain cu
Beyond the point of maximum tensile stress, the cu
monotonically decreases indicating the failure of the latti
Similarly, the shear stress as a function of the applied«23
strain component is given. From these data the ideal sh
strength in this direction was estimated:;49 GPa. Unlike
the tensile stress data, in this case, the data do not exhi
decrease in the stress for an increase in the applied s
above a value of 0.15. For a«23 strain of 0.16 the simulation
procedure could not be completed, due to the fact that a la
change in the structure was induced, representative of st
tural failure. Thus the stress value at a strain of 0.16 co
not be calculated and the maximum shear stress is define
a strain of 0.15. It should be noted that since the sh
strength strongly depends on the shear direction, determi
the weakest shear direction, which may be the slip plane
direction, is important. This particular question is curren
0-2
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FIG. 2. Induced tensile and
shear stress~at a temperature of 0
K! as a function of applied strain
deformation,«11 and«23, respec-
tively.
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under consideration and will be a part of future work. F
thermore, it is worthy of note that the strain definition us
in this study is equivalent to the ‘‘engineering strain’’ defin
tion used by Morriset al.32

As mentioned previously, the relevant elastic consta
C11, C12, andC44 were calculated and these three indep
dent elastic constants describe completely the elastic be
ior of the cubic spinel structure. The LDA and GGA resu
of the elastic constants, presented in Table I, are comp
with the theoretical and experimental data obtained from
literature. It is clear that all the results are in reasona
agreement. It is important to note that the difference in

TABLE I. Bulk ( B0) and shear (G0) moduli, relevant elastic
constants~in units of GPa!, and lattice parameters~in units of Å!,
estimated from the currentab initio numerical procedure~at a tem-
perature of 0 K! and compared to the range of experimental a
theoretical data obtained from the literature. Where possible b
LDA and GGA results from the simulation procedure are presen

This work Past work

LDA GGA Experimenta Theoryb

Material properties
~GPa!

B0 310.9 272.5 300–308 280–411
G0 264.6 252.0 258–340

Elastic constants
~GPa!

C11 550.6 499.6 532.6
C12 191.0 159.0 191.2
C44 349.4 333.6 341.0

Lattice parameters

a ~Å! 7.6640 7.7585 7.80 7.72–7.76
d 0.0072 0.0072 0.0074–0.008

aReferences 9, 15, and 17.
bReferences 9, 14, 16, and 19.
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shear modulus is due to the different methods used to e
mate the value. For example, Soignardet al.16 used an aver-
age of the Hashin-Shtrikman bounds to estimate the sh
modulus.

In 1998, Teter6 reported that a good correlation exists b
tween the shear modulus and the Vickers indentation h
ness value of many of the known high-strength materia
Thus, using the result presented in Table I for the sh
modulus and the correlation reported by Teter, it is estima
that cubic spinel silicon nitride has a Vickers indentati
hardness of approximately 47 GPa. In this case an averag
the LDA and GGA results of the shear modulus was used
estimate the hardness value. The current value is higher
the value reported by Soignardet al.,16 ;30 GPa. However,
considering the fact that different methods were used to
timate the shear modulus, the values are in reasonable a
ment. Even if a large error margin is assumed for the e
mate in this study of the hardness~greater than 10%, it is
likely to be less than this limit!, the spinel cubic silicon ni-
tride structure, nevertheless, can be classified as a ‘‘hard
‘‘superhard’’ material based on the data presented. Exp
mental values reported in the literature19 also give a lower
value for the shear modulus and, thus, a lower hardn
value,;43 GPa in the latter case. Nevertheless, the exp
mental value is in reasonable agreement with the res
given in this study and does suggest thatc-Si3N4 is currently
the second hardest material synthesized after diamond~con-
sidering the data of Teter!.6,9,19 It is important to note that in
the Teter publication, there is no explicit definition of th
shear modulus. However, in the author’s opinion Teter
fines the shear modulus as the average value of theC44 and
(C112C12)/2 elastic constants, which is also indicated in
publication of Tanakaet al.19 Thus, in this study, the shea
modulus is the average of the tetragonal and rhombohe
shear moduli.

It is interesting to note that the spinel structure is not r
by any account. The structure has been reported for m
binary and ternary metal oxides, silicates, and sulphides9,16

It has been argued that the higher shear modulus and,

d
th
d.
0-3
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hardness values observed inc-Si3N4 can be attributed to the
stronger bonds in silicon nitride since the nitride exhib
much greater covalent bonding. For example, in the ox
spinels the degree of Cauchy violation

C44

C12
Þ1

is virtually nonexistent: C44/C12h1. However, in this
study it is found that forc-Si3N4 , C44/C12h1.95. Such a
high value is indicative of covalent bonding and a simi
result has been reported in the literature.16

It should be noted that fracture in ‘‘real’’ materials wou
be assumed to originate at points of weakness such as su
flaws, microcracks in the bulk of the structure, or bulk stru
tural defects~including the effects of dislocations on th
strength of the structure!. In this study, the lattice contains n
t.

el

th

. B

ra

R.

.
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such points of weakness. Therefore, it is reasonable to ex
that the present estimate of the ‘‘ideal’’ strength should
considerably greater than experimental measurements.

IV. SUMMARY

An ab initio density functional numerical technique use
to determine the induced stresses in cubic Si3N4 , as a func-
tion of applied strain deformation. The ‘‘ideal’’ tensile and
shear strength of the cubic silicon nitride polymorph und
fully relaxed condition was determined to be; 45 and; 49
GPa, respectively. The elastic constants for the cubic st
ture were also determined and comparison with existing
sults demonstrated good agreement. Using a previously
ported correlation between the shear modulus and hard
of several materials, an estimate of the hardness of cu
silicon nitride was determined:;47 GPa.
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