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Mott transitions in correlated electron systems with orbital degrees of freedom
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Mott metal-insulator transitions in avi-fold orbitally degenerate Hubbard model are studied by means of a
generalization of the linearized dynamical mean-field theory. The method allows for an efficient and reliable
determination of the critical interactidd, for any integer fillingn and differentM at zero temperature. For half
filling a linear dependence df. on M is found. Inclusion of thefull) Hund’s rule exchangd results in a
strong reduction olJ.. The transition turns out to change qualitatively from continuouslfef to discon-
tinuous for any finited. This result is confirmed using the exact-diagonalization method/fer2.
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I. INTRODUCTION account®!® The exact-diagonalizatiofED) method is re-
stricted to rather small system sizes, and data are available
The Mott metal-insulator transitiofiMIT) has been the for M<2 orbitals only*® The M dependence of the critical
subject of numerous experimental and theoretical investiganteraction strengttJ,, for different integer fillingsn is par-
tions over the past decadks.As a transition from a para- ticularly interesting. Detailed results faf. as a function of
magnetic metal to a paramagnetic insulator that is driven bj¥ andn are available from the Gutzwiller approximation and
the competition between the conduction electrons’ kinetidrom a slave-boson approagfi: Numerical DMFT-QMC
energy and their mutual Coulomb repulsion, the Mott MIT calculations have been performed fir<3.'*'® Remark-
represents a prime example for a quantum phase transitiofbly, in the limit of large orbital degenerady —« an ana-
Realizations of the Mott transition can be found in differentlytical treatment of the DMFT becomes possible for the
3d transition-metal oxidés’ as well as in alkali-doped MIT.* A scaling U;=U.,=M for the actual transition is
fullerides?° for example. Its description is a challenging task found whileU ;M is obtained for the critical interaction
for many-body theory. where the insulating solution breaks dowriThis is consis-
The minimal model to describe the Mott transition is thetent with the linear dependence for lartyefound in Refs. 9
Hubbard modé&lwhich in its simplest form contains the local and 11 and with the square-root dependence reported in Ref.
Coulomb interaction between the electrons in a conductio®. However, there is still a need for a DMFT method which
band formed by aingle orbital only. The investigation of works atT=0 and which allows for an efficient and reliable
such a single-band model might be justified in some cases, idetermination ofJ . for arbitraryn and M and for a model
particular, as an effective model for low-energy properties. Aincluding the full exchange interaction.
consistent description of the experimental observations for Here we present and apply a proper multiband generali-
the above-mentioned systems, however, certainly requirezation of the so-called linearized DMRIL-DMFT) (Ref. 19
the use of more realistic models which include orbital de-which is a simple but rather successful technique that origi-
grees of freedom, possible crystal-field splittings, etc. nally was developed for the critical regime of the Mott MIT
Theoretical advances in the past decade—mainly due tm the single-band model. Within the L-DMFT the lattice
the development of the dynamical mean-field thé8ry problem is mapped onto an Anderson impurity model with a
(DMFT)—have led to an increased understanding of multiosingle bath site only by considering a simplified self-
rbital Hubbard models. Recent investigations have eitheconsistency condition just at the critical point. The approach
concentrated on fundamental questions such as the nature @dn be considered to be the simplest nontrivial variant of the
the Mott MIT as a function of orbital degenerdc}® more systematic projective self-consistent metiB&CM
or, within the so-called local-density approximation by Moeller et al® It allows for extremely fast numerical
(LDA) +DMFT approach, on a realistic description of the calculations or even analytical results to estimate the critical
transition. parameters. Extensions have been considered fofMio&-
Nevertheless, there are still no reliable DMFT results forHubbard or charge-transfeMITs in a d-p model?! for a
the zero-temperatureTE0) Mott transition in general quantum-critical point in the periodic Anderson moéeind
multiband models: Numerical methods to solve the DMFTfor the M =2 degenerate Hubbard model at half filling and
equations are either restricted to fairly large temperatured=0.'% Furthermore, a general two-site DMERef. 23 has
[quantum Monte CarldQMC) approach or have not yet been developed which reduces to the L-DMFT at the MIT
been extended to the multiband casfphumerical but is not restricted to the critical point. An application to
renormalization-grougNRG) method. Additionally, due to  multiband systems is likewise possible but has not yet been
the sign problem within the QMC approach only a simplified considered.
exchange part of the Coulomb interaction can be taken into As concerns effective single-band models, the linearized
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DMFT has been tested extensively by comparing with nu- Ns

merical results from the full DMFT. For the standard Hub- Hi=2 toC) oCiwot D €k@E o olkan

bard modei®?* but also for different thin-film and semi- ar OO ack=2

infinite surface geometriésas well as for thel-p modef® a ng

remarkable agreement has been found: Detailed trends of + E Vk(ciT wokasTH.C) 3
as a function of electronic model parameters and as a func- aok=2 0

tion of parameters characterizing the lattice geometry arg ... to=t; . The self-energy (w) of H' is identified with

&he self-energy of the lattice modél and yields, via the

ord:r Qf?jfew petrc?né r;]ave to b? t(_)lehrt?ted. d extensi lattice Dyson equation, the on-site Green functiGiw).
S IS demonstrated nere, a straightiorward extension oypq 4iter determines the one-particle parameters! ‘obr,

L'DMET 1o be a fast but relisble tool m ths case as well SIUVlenty. the: hybridzation functom(w) =2, Vi/(v
since the effective impurity model includes the completei’“_ek) via the DM|/:T seli-consistency conditiod («)
atomic part and the self-consistently determined bath with @ 4~ o~ 2 (@) = 1/G(w).

the complete degeneraéglthough restricted to a single site Within the full DMFT an infinite number of _bath degrees
only). Furthermore, the reliability of the L-DMFT for the of f(eedom Ns—o are necessary to fulfill the self-
multiband case is checked by comparing with different fullyconglstency equauon.l This implies the need for.further ap-
numerical DMFT techniques whenever results are availablé:.’rox'matlons to treal’. Contrary, a simple two-site model

All DMFT calculations discussed in this paper were per-'S considered here. For;=2 the model(3) can be solved
formed on a Bethe lattice wittf= 1, corresponding to band- exactly; however, a simplified self-consistency condition
width of 4. ' must be tolerated.

Our approach rests on the assumption that similar to the
single-band model, the MIT is characterized by a vanishing
[l. MODEL AND LINEARIZED DMFT weight of a low-energy quasiparticle resonance. Close to the
MIT it is then plausible to neglect any internal structure of
the quasiparticle peak and to assume that there is no influ-
ence of high-energy features on the low-energy part of the
excitation spectrum. The quasiparticle peak is then approxi-
Ho= > tijCiTijao (1) ma_ted by a single.pole_at the Fermi energysé'ekzzz,u)
ijac which reproduces itself in the DMFT self-consistency cycle.
One can proceed as for the single-band mdeid is finally
and the direct and the exchange part of the on-site Coulomleft with the following simple algebraic self-consistency
interaction: equation which determines the critical parameteld (
=Vi-2):

We consider a multiband Hubbard-type modé¢kEH,
+H, including an intraorbital hopping

1
lez_ Z , Uaa’craoci-ra’g—’cia’g'ciaa VZZZM(ZO)- (4)
laa oo
1 Here M is the second moment of the noninteracting den-
+2 3 JuwchoCh ClapCiare, () Sity of statesM{)=dxx’p©(x). Formally, Eq.(4) is the
iaa oo’ same as that in the single-band motfaHowever, the qua-
. o o siparticle weightz has to determined from the degenerate
using standard notationsis a site index, and=1,| refers  model(3). We calculatez=1/[1—3"(0)] from the spectral
to the spin dlrect|0r!. The different o_rb|tals Iabel_ed by  representation o6(w) by summing the residuaV? in the
=1,... M are considered to be equivalent, aklis the  |imit V—0. The residua are obtained by standéBdllouin-
orbital degeneracy. Exploiting atomic symmetries, we haveyignen degenerate perturbation theory up to the ordér
Uaa’ = (U + ZJ) 5aa’ + U(l_ 50101’) and Jaa’ :‘](1_ 5(1&”) This yleldS an eXpreSSiOﬂZ:Z(V,Ec,to,U,J) :VZF(GC
as usual(see, e.g., Ref. 27 Opposed to calculations using —t; U, J)/M+O(V*). Using e;=pu in the limit V—0
the QMC methodsee, e.g., Refs. 13 and)184, includes  ang settingt,=t;=0 to fix the energy to zero, we obtain
the full exchange part and thus preserves rotational invaritrom Eq. (4) F(x,U,J)=1 as a condition for the MIT. This

ance. condition is different for different orbital degeneraby and
The DMFT assumes the self-energy to be local. Furthermteger filingn=1,...,M—1.

more, the self-energy as well as the Green function are diag-
onal with respect to the orbital index for the model con-
sidered here. In case of equivalent orbitals and in the absence
of any spontaneous symmetry breaking, we thus have For an integer fillingn and for anyU larger than a critical
2ijap(®) = 80,52 (w) and likewise for the local Green interactionU.=U(n,M) there are two critical values for the
function: Gj; ,5(@) = 6,5G(w). Within the framework of the  chemical potential . (U) which can be obtained by solving
DMFT, the modelH is mapped onto an impurity model’ F(w,U)=1 for u (the casel=0 is considered firgt For
=H{+H; whereH/ is the local part of the interactiof2) at U>U.(n,M) andu_(U)<u<u,(U) the system is a Mott
a distinguished sité; and insulator with integer fillingn. On the other hand, fog

Ill. RESULTS AND DISCUSSION
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FIG. 1. Ap(U) for half filling n=M and differentM as ob- ";0 1 2
tained from Eq(7). Results from the full DMFT using ED, NRG, WM
and the PSCMRefs. 14 and 20are shown for comparison.

FIG. 2. Critical interaction U, for different fillings n

<u_(U) or u>u,(U), a noninteger filling is realized, and =1.2,...,M—1 and differentM as a function oh/M. Symbols:
the system becomes metallic. The chemical potential is &DMFT results. Lines: simple fit functionUc(n,M)=Un
continuous function of the filling1’ in the vicinity ofn for ~ =M.M)—c(1—(n/M))? andc=—0.217+2.67IM.
any U<Ug(n,M) but w(n") is discontinuous at’=n with o
a jump fromu_(U) to u, (U) for U>U4n,M). U, is de- almost negI|g|bIe.. One can state that the agreement of the

obtained by solving=(«,U)=1 for U. for bothM=1 andM=2. _
For half filing n=M and arbitraryM we succeeded with ~ The generalized L-DMFT predictd (n=M,M) to de-
a completely analytical calculation féi(w,U): pend linearly onM, see Eq.(6). This agrees with previous
results from the Gutzwiller methot, slave-boson
1l M+1 M 2 calculations;® the noncrossing approximation for low
F(u,U)/MP= 2 MU=z + e 1)U} temperaturé® and the projective technique for largé.*®

This finding can easily be understood by looking at the
2 weight factors in the Lehmann representation of the spectral
. (5 density of the two-site Anderson model. Expanding into the
different configurations, one finds that the ground state is
For U<U, and half filingn=M in the symmetric model, composed of the order dfl singlet states in the limi/
the chemical potential is fixed tgu=(M—2%)U due to —0 and that there are of the order Mf excited states cou-
particle-hole symmetry. Then we findF= M(zo)(4'\/| pling to the ground state. Hence, there are of the ordéf of

1

+
2

M N M+1
MU-ux pu—(M-1)U

+2)2/U? which results in the critical interaction processes to be considered in theperturbation theory
which are contributing to the spectral weight near0.
Udn=M,M)=(4M+2) M, 6) This implieszxM?2V2/U? and eventually results it <M.

In Fig. 2 the dependence &f; on bothn andM is shown
By solving F(u,U)=1 with Eq. (5) for U>U_. we obtain for all integer fillings andVi<5. We findU, to be reduced
the jump in the chemical potential away from half filling, consistent with previous
results>®2~14The fit shows an almost perfect quadratic de-

[ U2 pendence ol on the filling.
Ap=p,—u_=U B— B2—1+ — @ Let us now discuss the influence of the Hund'’s rule cou-
o u? pling J on the Mott transition al =0. Contrary to the QMC

method, the full exchange part of the on-site Coulomb inter-

where B=1+1/[2(2M+1)*(U/U)?]. The result for action can easily be included in the L-DMFT calculation. A
An(U) is shown in Fig. 1 foM =1, ... ,5.Here and here- quantitative influence, i.e., a reduction bf, due toJ has
after we setM (2°)=1. For fixedM andU—<, the jump in  already been observed in Refs. 5 and 13. This behavior is
the chemical potential increases linearly with For U also evident from our L-DMFT results, as shown below.
—U¢, Au(U) shows a square-root behavior. The situation is, however, more complicated: It turns out

Qualitatively and even quantitatively, this agrees wellthat a finiteJ leads to aqualitative change of the nature of
with results from numerical methods to solve the full DMFT the T=0 Mott transition. This is illustrated in Fig. 3 which
equations. In particular, we compare with results from EDshows theU dependence of the quasiparticle weightor
calculations which we have performed with=6 for M various values ol andn=M=2. Note thatz is plotted not
=2 (circles and with data available fof =0 from the pro-  only close to the transition but also forfar belowU . which
jective self-consistent methddrosses'® The nondegenerate means that the self-consistency relatighis used for anyJ.
caseM =1 has already been discussed in Ref. 24. Mor This is reasonable as long as there is a clear separation be-
=2 andns=6 the error due to finite-size effects in the ED is tween the low-energyquasiparticl¢ and the high-energy
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FIG. 3. U dependence of the quasiparticle weighfor n=M FIG. 5. Local moment at the impurity sit&?) as a function of
=2 and differentd. Dashed lines correspond to metastable solu-U for differentJ. Dashed lines: metastable solutions; vertical lines:
tions; vertical lines indicate the actual Mott transitionUst U.,. actual Mott transition folJ =U_.

ment increases withJ, typical for a strongly correlated nor-
mal metal. AtU. it jumps to(S?)=2 for any finiteJ. Simi-
larly, the quasiparticle weigtht decreases with increasirng
and drops to zero d from afinite valuez>0. In Fig. 3
this is indicated by solid vertical lines.

The phase diagram in th&J(J) plane is shown in Fig. 6.
e critical interaction for the actual transition is plotted
together withU ., andU_ 3. U, is found to be very close to

tallic states with finitez>0 but different slopedzZ/dU are \L]JE%fgr Ii';gsviljue;' d’\rlggicth?et d?;l{:?iiiyd?j mf(; gre;]rabe X‘Tge of
coexisting in a finite range of interaction strengths, namely ' ¢ ¢

. to U~5.
for U larger tharlJ , (given byz=0) and forU smaller than ¢ . _— .
another critical valudJ, 5> U, , where they mergé® Interestingly, similar results have been obtained before-

The actual critical interaction strength, where the tran- hand t_)y a rather.d|ffefrent method: Applying a generalized
Gutzwiller approximation to a degenerate two-band model,

comparing the respective energies with the energy of th)é%unemanret al.” found the Mott transition to be discontinu

nauaio. i s shown i ig 4 01, For ang~0 1~ (1% A7 T 410 o be copeus 20 o
is found thatU. ,<U.<U_3. At U. the energies of the me- . e : 9 y
. : s ' : estimates the critical interaction strength as compared to the
tallic and insulating states cross as functionsUofConse- . S o
" PR . ; . L-DMFT, the reduction olU, by a finiteJ is stronger. Com-
quently, the transition ai=0 is discontinuous with a jump

in physical quantities such as the double occupamy,) mon to both methods, however, is the qualitative change of

=dE/dU. Equivalently, one can look at the local magneticthe Mott transition for a finite).
moment at the impurity sités?) (see Fig. 5. The local mo- We have additionally checked the nature of the Mott tran-

sition by a fully numerical evaluation of the DMFT equa-
tions using the ED method with;=6 sites forn=M=2.

scale(Hubbard bands Although the approximation becomes
guestionable for highez and patrticularly in the limiz—1,
the trend ofz(U) looks rather plausible in whole range.

In the critical regime where goes to zero continuously,
we find z(U) to decrease witldecreasing Uvhich seems to
be unphysical. In fact, this behavior belongs to a metastabh]ah
state(dashed lingwhile for the true ground staisolid line)
z(V) is always decreasing with increasitly The two me-

ﬁ[c,s The results forJ=0 andJ=0.1 are shown in Fig. 7. The
E-E, [ ARRA AN AR AR critical interactionU. is found to be somewhat smaller when
x U
0.02-  Metal (metastable),.- ; - ¢
O == Twsulator 77 7
0.0 Metal (stable)
—0.04 g | PR [ EPIPR
0.04 f p;
U 1
o2 v % 0.5 1
J

FIG. 4. Energy of the two metallic solutions relative to the en-
ergy of the insulator fod=0.1. AtU, , (filled circle) the metastable FIG. 6. (U,J) phase diagram fon=M=2. U.: critical inter-
metallic state continuously merges with the insulating statéJAt  action for the MIT.U, 3: maximumU up to which a metallic solu-
(crosg the two metallic states merge. The discontinuous phase trartion is found.U ,: critical U wherez—0 [U.,=14/3—3J for J
sition takes place dtl, (open circle. >0 andM{P=1].
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<S> that the actual critical interactiod . remains continuous in
the limit J—0 asU.— U, ;. Note that to uncover this subtle

<S*> distinction it has been necessary to extend the theory beyond

thez— 0 limit.

0.5 1

‘7z IV. CONCLUSION
le To summarize, we have presented an extension of the lin-

i earized dynamical mean-field theofly-DMFT) to multior-
0 5 1 bital Hubbard models including tHell exchange term. This
allows a reliable calculation of the critical interaction

FIG. 7. DMFT-ED results 1f=6) for theU dependence of the strengthU, for the zero-temperature Mott transition analyti-
quasiparticle weightleft scale and the local momertright scalg.  cally for all M at half filling and numerically for all integer
J=0 andJ=0.1 forn=M=2. filings n#M andM <5. We find a linear dependence 0f

on the number of orbitals. Remarkably, a qualitative change

compared to the L-DMFT result as shown in Fig. 6. More of the nature of th& =0 Mott transition is observed for any
importantly, however, the ED calculations show the samdinite J: the transition becomes discontinuous with a finite
qualitative trend: The slope af(U) approaches-> at a  jump of the quasiparticle weight &t close toU, 3.
critical valueU=U_ 3. This clearly indicates a second meta-  For finite temperatures one might speculate that a fihite
stable metallic solution and a discontinuous transition andncreases the tendency for a first-order Mott transition. This
thus corroborates our results discussed above. Figure 7 alsould be of experimental relevance for the Mott transition in
shows theU dependence of the local magnetic momenttransition-metal oxides.
where the effect is even more pronounced. Note that in the The L-DMFT for correlated electron systems with orbital
insulator(S?) is close but not equal to the prediction of the degrees of freedom is a handy and trustworthy approach with
linearized DMFT(S?) =2 (cf. Fig. 5. This is due to residual large potential for future applications. One might consider,
local fluctuations which are neglected by the L-DMFT for for instance, the multiband Hubbard model investigated in
the insulating phase. the context of the LDA-DMFT approach for the transition-

The limit J—0 which appears to be somewhat excep-metal oxide \4O;.'8 The L-DMFT can be easily extended to
tional can be analyzed easily. From Fig. 3 it is obvious thatanswer questions about the importance of efiepands(ne-
the critical interactiorlJ , at whichz— 0 in the metastable glected in Ref. 18on the Mott transition, or the influence of
phase shows a discontinuous jump from a vallig=5  the full exchange term. We have already observed a signifi-
<Uj3 for J>0 to U,,=10=U_.3 for J=0. To find the cant quantitative change df. when excluding the spin-
physical reason for this discontinuity tf. ,, one can again dependent part from the exchange term in E. This
look at the Lehmann representation of the spectral densitghould have consequences for a realistic description of the
for V—0. The main difference between the cake0 and  MIT in transition-metal oxides which are worthy of study.
the caselJ>0 consists of the fact that fai>0 only those
configurations with a triplet on the impurity site contribute to
the (singled ground state in the limiV—0 (see Fig. 5 As
compared withJ=0 this is about a factor of 2 configurations ~ We acknowledge the support of the Grant-in-Aid for Sci-
less. Thus, the discontinuous jump Of , is caused by a entific Research from_the Ministry of Education, Science,
strong suppression of orbital fluctuations due to a fidita  Sports and CulturéY.O.) and the Deutsche Forschungsge-
similar argument in a slightly different context has been putmeinschaft through the Sonderforschungsbereich(220.)
forward in Ref. 16. On the other hand, it should be stressedand 484(R.B.).
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