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The dimerized one-dimensional Hubbard model is studied in the framework of lattice density-functional
theory(LDFT). The single-particle density matrix; with respect to the lattice sites is considered as the basic
variable. The corresponding interaction-energy functiongly;;] is defined by Levy’s constrained search.
Exact numerical results are obtained W(y,,,v,3), wherey;,=1v; ;.1 for oddi and y,3=7; ;,, for eveni
are the nearest-neighbor density-matrix elements along the chain. The domain of representahjlinadfhe
functional dependence &¥(y1,,7,3) are analyzed. A simple, explicit approximation\é( y»,y»3) iS pro-
posed, which is derived from scaling properties\Wf exact dimer results, and known limits. Using this
approximation, LDFT is applied to determine ground-state properties and charge-excitation gaps of finite and
infinite dimerized chains as a function of the Coulomb-repulsion streddgtrand of the alternatiomt of the
hopping integralg;; (tj;=t* dt). The accuracy of the method is demonstrated by comparison with available
exact solutions and accurate numerical calculations. Goals and limitations of the present approach are dis-
cussed particularly concerning its ability to describe the crossover from weak to strong electron correlations.
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[. INTRODUCTION diverse areas, the LDA-based approach fails systematically

in accounting for phenomena that involve strong electron-

Hohenberg and Kohn replaced the wave function by thecorrelation effects as observed, for example, in Mott insula-
electronic densityp(r) as the fundamental variable of the {0rS, heavy-fermion materials, or high- superconductors.

many-body problem and thereby achieved a crucial break! hese systems are usually described in the framework of

through in the theoretical description of the electronic propﬂarsgneégzped_ Iattll_)ce pHar?%moleanf t Sduch daf tﬁ\ntdfefson,
erties of mattet.Since then, density-functional theofi®FT) ubbard, manser-rarr-ropleand related models that 1ocus

has been the subject of a remarkable evolution. Formal imo" the most rele\(e;]nt .eleclltrlog dyngn|1|(;s at Iqw energles.
rovements, extensions, and uncountable successful appIicH9 wever, even with simp ffied mode Interactions and a
b ' S Binimal number of orbitals per atom, a detailed understand-
tions to a large variety of problems have developed thi

i . . , ﬁng of the electronic properties in the strongly correlated
theory to the most efficient, albeit not infallible, method of jjnit remains a serious theoretical challenge. Exact results

determining physical and chemical properties of matter fromy o (are or numerically very demanding, and a variety of
first principles®® DF calculations are usually based on the gjaborate many-body techniques have been specifically de-
Kohn-Sham (KS) scheme that reduces the correlatedyeloped in order to study this problefhBeing in principle
N-particle problem to the solution of a set of self-consistentgn exact theory, the limitations of the DF approach have to
single-particle equatiorfsWhile this transformation is for- pe ascribed to the approximations used for exchange and
mally exact, the form of the interaction-energy functional correlation and not to the underlying formalism. It is there-
W[ p(r)] involved in the KS equations is not known explic- fore very interesting to extend the range of applicability of
itly. Practical implementations of DFT always require ap- DFT to the many-body lattice models that describe the phys-
proximations to\A/[p(F)], or equivalently to the exchange ics of sftlron_gly é:orrglat;ad systerlni. Moreover, the .develop-
and correlation(XC) functional Exc[p(F)], on which the ment of lattice density-functional theofi.DFT) constitutes

i £ 1h its d d aliv. Theref d an intrinsically inhomogeneous approach and provides a true
quality of the results depends crucially. Therefore, undery o native to the LSDA and related gradient-corrected meth-

standing the functional dependenceWfp(r)] and explor-  ods. Thus, studies on simple models can open new insights
ing new ways of improving its approximations are central tojnto the properties ofV, which should also be useful for

the development of DF methods. i future extensions to more realistic Hamiltonians and first-
The most extensively used forms f@v[ p(r)] are pres- principles calculations.
ently the local-density approximatiofLDA),* its spin- Several physical problems have been already investigated

polarized version or local-spin-density approximation by applying the concepts of DFT to lattice models, for ex-
(LSDA), and the gradient corrected extensinghich were  ample, the band-gap problem in semiconductbtie role of
originally derived from exact results for the homogeneousoff-diagonal elements of the density matrix and the noninter-
electron gas. Despite an unparalleled success in the moattingv representability in strongly correlated systethsy
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the development of energy functionals of the density matrixenergy and the charge-excitation gap of finite and infinite
with applications to Hubbard and Anderson modélg pre-  dimerized chains are determined as a function of Coulomb-
vious works*® we have considered a density-matrix func- repulsion strengtiJ/t and hopping-integral alternatiost.
tional theory of many-body lattice models, which is analo-The LDFT results are contrasted with accurate numerical so-
gous to Gilbert’'s approach in the continudfrand applied it  lutions in order to discuss goals and limitations of the present
to the Hubbard Hamiltonian with uniform nearest-neighborapproach. Finally, Sec. V summarizes the main conclusions
(NN) hopping integralg;; =t. The interaction energyv of ~ and points out some future perspectives.

the Hubbard model has been calculated exactly as a function

of the density matrixy;; for various periodic lattices having II. DENSITY-FUNCTIONAL THEORY ON A LATTICE
¥ij = v12 for all nearest neighborisandj. An analysis of the . o
functional dependence &/(y,,) for different band fillings We consider the many-body Hamiltonian

and lattice structures revealed very interesting scaling
propertiest On this basis, a simple general approximation to 1
W(1) has been derived, which yields a remarkable agree- ~ H=, tijci’rac]-(,+§ > VidmrChoCr 1 CnoCles (1)
ment with available exact results in one-dimensio(idD) o kimn

systems and which predicts successfully the ground-state en-
ergy and charge-excitation gap of the 2D Hubbard model Mherec! (C:,) is the usual creatiofannihilation operator
the complete range of interaction strengtffhis shows that for an eI(:actron with spiny at site or orbitaii. The hoppin
DFT with an appropriate approximation W is an efficient P ' ppIng

tool for determining the electronic properties of many-bodym.tegraISt‘i deflne_ the lattice(e.g., 1D chalns_, square, or
lattice models. triangular 2D lattices and the range of the single-particle

The purpose of this paper is to extend the method b};nteractions(e.g., up to first or second neighbpr&rom the

allowing for alternations of the density-matrix elements ab irlitio perspective,ti.j is given by the exte_rnal potential
between nearest neighbors in order to study the dimerize¥ex(r) and by the choice of the basléy,, defines the type
1D Hubbard model. This problem has motivated a considerof many-body interactions which may be repulsive
able research activity in past years, particularly concerningCoulomb-like or attractive(in order to simulate electronic
the role of electron correlations in the dimerization of poly- Pairing and which are usually approximated as short ranged
mer chains like polyacetylerfé.In this context two qualita- (€-9-, intra-atomig Equation(1) is mainly used in this sec-
tively different regimes may be distinguished depending orfion to present the general formulation that can then be ap-
the relative importance of the intraatomic Coulomb repulsiorPlied to various specific models by simplifying the interac-
U and the NN hopping integral On one side, for small//t, ~ tions. A particularly relevant example, to be considered in
the dimerization can be regarded as a bond-order wave th§fme detail in following sections, is the single-band Hubbard
opens a gap at the Fermi surface of the 1D single-partici&tamiltonian with NN hopping§.The nondimerized form of
band structure(Peierls distortion On the other side, for this model is obtained from Eql) by settingt;; = —t for i
largeU/t, local charge fluctuations are severely reduced an@ndj NN's, t;; =0 otherwise, and\jnm=U 6 Snmkn-

the low-energy properties are dominated by antiferromag- The hopping matrixt;; plays the role given in conven-
netic (AF) correlations between spin degrees of freedom. Irtional DFT to the external potentie,(r). Consequently,
this case the dimerization can be regarded as an alternatidhe single-particle density matriy;; between lattice sites

of the strength of AF correlations along the chain or spin-replaces the continuum densip(r) as the basic variable.
Peierls state. One of our aims is to analyze the differenceshe situation is similar to the density-matrix functional
between these two types of behaviors in the framework otheory proposed by Gilbert for the study of nonlocal pseudo-
LDFT. The properties of dimerized chains are also very 'n'potentialsvex,(F,F’).16'18'19The ground-state energg;s and

teresting_ from a pgrely metho.dological .point of view. They density matrixy?® are determined by minimizing the energy
provide in fact a simple, physically motivated means of Xt nctional g

ploring the functional dependence @[ y;;] by including
additional degrees of freedom, thereby allowing for a larger
flexibility. Moreover, several exact results are available to ELyij 1= Exlvij 1+ WL ¥] 2
compare with(e.g., Bethe-ansatz solution for the nondimer-
ized Hubbard chain, finite-ring Lanczos diagonalizations, owith respect toy;; . E[ y;;] is defined for all density matrices
density-matrix renormalization-group calculatignsvhich  that can be written as
allow to quantify the accuracy of the final results.

The remainder of the paper is organized as follows. In
Sec. Il the main steps in the formulation of LDFT are briefly o _— ot A
recalled. The properties of the interaction-energy functional Vi ; Yijo ; (W], Cio W) ©
W of the dimerized Hubbard model are discussed in Sec. Ill.
The domain of representability of; and the scaling behav- for all i and |, where |¥) is an N-particle state. In other
ior of W are investigated. A simple explicit approximation to words, y;; derives from a physical state and is said to be
W is derived, which is appropriate for direct calculations. pure-statéN representablé® The first term in Eq(2) is given
Section IV is concerned with applications. The ground-statédy

’
oo
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JW

tij+ (9_yij)uika:8kaujkm (10

EK:% tij vij - (4) Mo

It represents the kinetic energy associated with the electroni\fzvIth the following conditions relatingy., and e, :

motion in the lattice and includes all single-particle contri-

butions. Notice that Eq(4) yields the exact kinetic energy eke<p if =1, (11
and that no corrections ok have to be included in other

parts of the energy functional as in the KS approach. The Erg=p If 0<m,<l, (12)
second term in Eq(2) is the interaction-energy functional

given byt and

W['y”] 8k0.>,LL If 7]k()': 0 (13)

Self consistency is implied by the dependencé\f 7;; on
7o andu;, . Equationg10)—(13) hold exactly in all inter-
action regimes. They are analogous to the well-known results
(5)  of density-matrix functional theory in the continuufhHow-
ever, notice the difference with the KS-like approach consid-
where the minimization implies a search over laparticle ~ €red in Ref. 12, which assumes noninteractngepresent-
states W[ ;1) that satisfy ability, and where only integer occupations are allowed.

The importance of fractional natural-orbital occupations
has already been stressed in previous density-matrix func-
tional studies in the continuufi.In fact, in the case of mod-

‘I’[Yij]> =%ij (6)  els one observes that<Op,,<1 for all ke except in very
special situations like the uncorrelated limW,{,,,=0) or

f i andi h - | f th the fully polarized ferromagnetic state in the Hubbard model.
or alli andj. W[ y;;] represents the minimum value of the r;s “c5n pe  understood  from perturbation-theory

interac‘Fion energy compat_ible with a given density matrixarguments—none of they,, should be a good quantum
ij - It is often expressed in terms of the Hartree-Fock ent umber forV % 0—and has been explicitly demonstrated
ergy, in exact solutions for finite systems or for the 1D Hubbard
chain?? Therefore, casél?) is the only relevant one in gen-
eral. All ¢, in Eq. (10) must be degenerate, or equivalently,

Imn

’
oo

11 ST,
=m|n[§ kE Vklmn<q’[7ij]|CEUCLU'CnU’CIo|q’['yij]>]!

> cl.g,
o

<‘I’[7ij]

1
Enel 7ij1=3 .% Viik(Yije Ykio' = Ooor Yita Yije) (1)
oo’ t|]+(9W/(9|J:|j (14)
and the correlation enerdyd v;;] as
Clearly, approximations ofV in terms of the diagonaly;
alone can never yield such a behavior. Given a self-

W ¥ij 1=End vij 1+ Ed 73] (8)  consistent scheme that implements the variational principle,
the challenge remains to find good approximations to
W and E. are universal functionals of;; in the sense that WLv;], which are simple enough to be applied in practical
they are independent af;, i.e., of the system under study. calculations.
They depend on the considered interactions or model, as de-
fined byVy;mn, on the number of electror¥,, and on the [l INTERACTION-ENERGY FUNCTIONAL
structure of the many-body Hilbert space, as givermNgynd
the number of orbitals or sites, .
E[ y] is minimized by expressing;; = yij; + vij, in terms
of the eigenvalues),, (occupation numbeysand eigenvec-
tors u;,, (natural orbitaly as

In order to determin&\V[ y;; ] from Eq.(5) we look for the
extremes of

F=EEV Wick,cl CnaCrolW 1—(W|w
2k|mn[ kimn{ ¥ CkoCrrg CroCiol W) 1+ &(1— (W[ W))

yijUZEK Uik ko Uk - 9 mr
+2 N[ (P el e WY~y 15
Lagrange multiplierse and Xy, (ex, =Nk, /7,) are intro- Z; il ¢ |§ ool V)= % 13
duced in order to impose the usual constraits 7,,= Ne
and S| uj,/?=1. Derivation with respect ta,, and 7,  with respect to]¥). Lagrange multiplierss and \ij have
(0=<,,=<1) yields the eigenvalue equatidns® been introduced to enforce the normalization#f and the
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representability ofy;; as required by Eq6). Derivation with ~ where the minimization is performed with respect
respect to{ V|, &, and\;; yields the eigenvalue equatidis to all N-particle states |W[y;]) that satisfy
(P[y1124Cl,Cio ¥ ij1) = v; for NN ij. For repulsive in-
1 teractions W[ v;i ] represents the minimum average number
ot P T B _ - - ;
Z )\ijci(,cj(,|\lf>+§ E ViimnCkoCmgrCnoClol ¥)=€|¥), of double occupations corresponding to a given degree of
ne 'fr':” electron delocalization, i.e., to a givep;. Equation(16)
(16)  then reduces to

and the auxiliary conditions (V|¥)=1 and v;

=(¥|2,cl,¢,/¥). The Lagrange multipliera;; play the > NG | WY+ UD Ny (W) =¢|P).  (19)
role of hopping integrals to be chosen in order tiwt) ) !

yields the giveny;;. The pure-state representability ¢f;

ensures that there is always a solution. The subsef;of  This eigenvalue problem can be solved numerically for finite
which can be represented by a ground state of (Ef). for ~ systems with various boundary conditions. To this aim we
some\;;, is the physically relevant one, since it necessarilyexpand|\lf[yij]> in a complete set of basis stateh,,) that
includes the absolute minimuryﬁS of E[ y;;]. Nevertheless, have definite occupation numbers, at all orbitalsio:

it should be noted that pure-state representahlemay be Niy| @)= v™| D) with ¥ =0 or 1. The values of!" sat-

io io io

considered, which can only be described by excited states @ty the usual conservation of the number of electrdhs
by linear combinations of eigenstates of Iﬂ}G).l“_ —Ne; +Ng, and of thez component of the total spis,
The general functional v;;], valid for all lattice struc-  _ ~Ng,)/2, whereN, =3.»™ . For not too large clus-
1 loa lo*

tures and for all types of hybridizations, can be simplified alers etThe

the expense of universglity if the hopping integrals are shorEq_ (18—the ground state of Eq19—can be determined
ranged. For example, if only NN hoppings are consideredy, gnarse-matrix diagonalization procedures such as the

the kinetic energyEy is independent of the density-matrix | 3nc70s jterative methdd. For large chains, the properties
elements between sites that are not NN’s. Therefore, the cony; [Woly;]) can be calculated using the density-matrix

strained_ search in EqS) may be restricte(_j_ to tth[ViJD renormalization-groudDMRG) method* that allows reli-
that satisfy Eq(6) only fori=j and for NNij. This reduces 4 extrapolations to the infinite-length limit. Finally, in the
significantly the number of variables W[ y;;] and renders  5pqence of dimerizations¢=0), translational symmetry im-
the determination and interpretation of the functional depenp“es that all NN, are the same, and therefore one may set
dence far simpler. Nij=A\ for all NN ij. The lowest eigenvalue of EGL9) can

_In Sec. lil A we present and discuss exact results for thgne, e determined from Lieb and Wu's exact solution of the
interaction energyV[ y;;] of the dimerized Hubbard model 1p Hubbard model following the work by ShiBa.

on representative finite and infinite chains. These are ob- |, Fig. 1 the interaction energy of dimerized Hubbard

tained by solving Eq(16) using accurate numerical methods. cpaing is shown in the form of constant-energy curves given

The dependence of the interaction energy on the alternatmgy W( Y12, 729 =\Epe, Where y;,=7v; ., for odd i and

. . . . 1 1 1,1

NN deqsﬁy-mgtnx elllemen.t$1.2 andy,;is gnalyzed. Scalmg' v23=7vii+1 fOr eveni are the density-matrix elements or

properties are identified within the domain of representabllltybond orders between NN'E, == U/4 stands for the Hartree-

of Yij - On the basis of thege rgsults, we propose in Seg. B ook energy, and\ is a constant (&\<1). Results are

a simple general approximation ¥/(y.2,7,3), which is resented for théN,=12 site ring and for the infinite 1D

useful for practical applications. A first test on the accurac;}ghain which were obtained from E(L9) by using Lanczos

of this approximation is also provided by comparison Withdiagonalization and DMRG methods, respectivaf Only

available exact solutions. positive y;1, and y»,5 are considered since this is the relevant
domain when all the hopping integrals have the same sign. In

stat¢W o[ y;;]1) corresponding to the minimum in

A. Exact calculated W[ y;;] of the dimerized Hubbard model bipartite lattices, like open chains or rings with ey, the
In the following we consider the dimerized 1D Hubbard Sign of the NN bond orders can be changed without altering
model which in the usual notation is given®oy W by changing the sign of the local orbitals at one of the

sublattices. ThusN(y12,¥23) = W(— y12,— v23). Moreover,
W(v12, 729 =W(7v23,v12) as even and odd sites can be in-
ot a oo terchanged by a simple translatioN(is even for rin
H= 2 tijCiT"C"”JFUEi MiyMit - (17 The gomai);] of de?inition otV is ﬁ(estricted by thegt)ure—
state representability of;; . The axesy;,=0 andy,3=0 in
The NN hopping integrals;; take two alternating values: F_ig. 1_ represent a co!lection of disconnected dimers or fully
t; 14 1=ty,=t+ Ot for oddi andt; ; , ;=t,s=t— ot for eveni. dimerized states, while/;,= y,3 corresponds to nondimer-

The corresponding interaction-energy functional reads ized states. In between, the degree of dimerization can be
measured by the angleé=arctanf;,,/vy,3). The degree of

electron delocalization for eack is characterized byy

. ~n = Jv2+ v2.. which i “(d)<y<+d) |
W[ yi;]=min u (PLyilngng [Py D[, (18 Y12t V23 Whlc.h is bounded byy"(d)<y<y(4) in )
[ order thaty;; remains pure-state representable. The density-

(Do
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1.0 ity, more precisely, when the normal to the curve
=1%(¢) is parallel toVEy = (t15,t23).

0.8 Concerning the lower boungf®(¢), one should first note
that asy decreasesy<y°(¢), it is possible to construct
correlated statelslf[yij]> having increasingly localized elec-

o 0 trons. Charge fluctuations can then be reduced more effi-
Al ciently for smallery, and therefore the Coulomb interaction
o 0.4 energy decreases with decreasyngsee Eq(18) and Fig. 1.
W reaches its minimum valué/,,= U maxX0,N.—N,} in the
strongly correlated limit wherey=y*(¢). For half band

0.2 filling, this corresponds to a fully localized state having
v*(¢$)=0 andW,=0. However, note that foN.#N,, W

0.0 reachedV,, already fory™(¢)>0 since partially delocalized

1.0 states can be found having minimal Coulomb repulsion. This
is the case, for example, in a fully polarized ferromagnetic
state.

0.8 Figure 1 also provides a qualitative picture of the func-
tional dependence AV for dimerized chains. On one side,
for strongly dimerized states =0 or ¢=m/2) the

0.6 . .

™ constantW curves resemble circumference arcs, the gradient
}c.\' VW being approximately radial. This type of behavior is

0.4 most clearly seen for weak or moderate correlatioRs (
=0.3), while in the localized regimex&0.1) it holds only

0.2 for a very limited range oy around¢=0 or ¢=m/2. On

' the other side, for weakly to moderately dimerized states

(¢p=mI8—m/4) the level curves can be regarded in first ap-
proximation as straight lines parallel tp;,=— y,3. The
0.4 0.6 0.8 1.0 very weak dependence oW on ¢ implies that for ¢
’y =7/4 the ground-state values ¢f5 and 35, which result
12 from the minimization ofE=Ex+W, are very sensitive to
FIG. 1. Constant interaction-energy curves of the orle_'[he hopping aIternatLoﬁt. In tact, significant variations ap
dimensional (1D) Hubbard model as given byW(yy,, 7,9  are necessary untVW=—VEyx(1+6t/t,1—6t/t) even
=\Eqe, WhereE-=U/4 is the Hartree-Fock energy andis a  for ét/t<1. This is particularly notable for weak correla-
constant (BsA<1). The NN density-matrix elements ang;,,  tions since théN=E curve is strictly linear fof ¢— /4|
=y, for oddi, andy; ;1= y,3 for eveni. Results are given faile) < 0.05. Therefore, a discontinuous change frefij/ y35=1
]E'Tre N,=12 site ring andb) the ir(;finite chain, Ibotr(1j at half bagc(ij to ¥95/y35=0.91 is found atU=0 and arbitrary smalkt.
= A= s s ; :
fnes the Jmi of representabily of, . Uniess indicated, e dif- C\ U 0 742 and & are continuous functions of, ai-
ference i\ between contiguous cu;vesAs\:o.l. though the dependence @ remains very stron_g for small
St, as can be inferred from the level curves in the figure.
. Comparing Figs. (& and 1b), one observes that the results
matrix elements along the curve=y%(¢) are the largest foy N,=12 andN,=% are quite similar. The rather rapid
bond orders that can be achieved on a given lattice and foonvergence with chain length suggests Mty,,, vo2) is
: 0 0y_ .0 ; " . g
given N, and Ne [(712,729 =7 (¢)(COSesing)]. They  not very sensitive to the details of the considered system,
represent the maximum electron delocalization for edch even if the minimization constraints in E(.8) apply only to
and yield the extremes of the kinetic enefy=2t;;7;;, NN bond orders. This is of interest for practical applications,
with different ¢ corresponding to different,/t,5. Thus, for  as it will be discussed below.
y=7%#) the density matrix can be represented by the |n Fig. 2 the interaction energy is shown as a function
ground state of the uncorrelated Hubbard model for somef y for representative values @, including in particular
t1o/to3 (U=0). In the absence of degeneracy the underlyinghe fully dimerized ¢=0) and nondimerized = 7/4)
electronic statefW,) is a single Slater determinant, and cases. Despite the quantitative differences among the various
W(%,,739) =Epe. Consequently, the upper bound fpico- ¢, several qualitative properties are shared by all the curves:
incides with thex =1 curve in Fig. 1. The correlation energy (i) As already discussed, the domain of representability of
Ec=W-Ey vanishes as expected in the fully delocalizedy is bound for each by the bond orden?(¢) in the un-
limit. For U=0, the minimization of the energg=Ey as a correlated limit.y° decreases monotonously with increasing
function of y;; can be stated in terms of the representability¢ for 0< ¢=< /4 showing that a compromise betweemp,
of y;; alone. In this case the equilibrium condition yielding and y,3 is made when the two bonds are active. This is an
y?js is achieved at the borders of the domain of representabilimportant contribution to the> dependence ofv.

0.0
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FIG. 2. Interaction energyV of the 1D Hubbard model at half
band filling (No=N,) as a function ofy= \/y212+ yzzs for different
values of¢p=arctanfy;,/ y,3): (a) ring with N,= 12 sites(b) infinite
chain. The density-matrix elements ayg;, ;= y;, for oddi, and
’Yi,i-%-l: Y23 for eVeni.

FIG. 3. Interaction energyV of the 1D Hubbard model as a
function of y/y° for different ¢=arctanf,/y,3). y= \/y212+ y223
and y%(¢) is the largest representable value pffor a given ¢,
which corresponds to the uncorrelated limit@=< v°, see Fig. 1
Results are shown fd@a) the N,= 12 site ring andb) the infinite

chain, both at half band filling.
(i) In the delocalized limitW(y°, ¢) =Ee=U/4 for all

¢, since the electronic state yielding the largess a single L ) 0
Slater determinant. Moreover, one observes thatgy di-  ange by consideringV(y,¢) as a function ofy/y(#), as

verges aty=1° for all ¢. This is a necessary condition in displayed in Fig. 3. In t_hi§ form thg results for differegt
order that the ground-state density matrix satisfés<,°  appearas remarkably similar, s.howmg that the largest part of
for arbitrary smallU>0, as expected from perturbation the dependence iV on the ratioy;,/y,3 comes from the
theory. domain of representability of;; given by its upper bound
(iii) Starting fromy=v°, W decreases with decreasipg ~ ¥°(#) [¥*(¢)=0 for half band filling. An analogous scal-
reaching its lowest possible valug/=0 for y=0 (N, ing behavior has been found in previous numerical studies of
=N,). The decrease al with decreasingy means that the W(v12) of nondimerized Hubbard models, wheye, refers
reduction of the Coulomb energy due to correlations is donéo the NN density-matrix element.n this case one observes

at the expense of kinetic energy or electron delocalization. thatW(y:,) depends weakly on system sig, band filling
(iv) In the limit of small y, one observes thats= 2. n=N¢/N,, and lattice structure, MV is measured in units of

Therefore, forU/t>1, y9%«t/U and Egsoth/U, a well- the Hartree-Fock energye and if y45 is scaled within the
known result in the Heisenberg limit of the half-filled Hub- relevant domain of representabilityy,, ¥3,]. In the present
bard model® context, Fig. 3 implies that the change\iviassociated to a

given change in the degree of delocalizatign/°(¢) can be
regarded as nearly independentfoand system size. A good
general approximation t@V(y,¢) can then be obtained by
In order to compare thg dependence oV for different  applying such a scaling to the functional dependence ex-
¢ and to analyze its scaling behavior, it is useful to bring thetracted from a simple reference system. An appropriate
domains of representability for differenb to a common choice is provided by the fully dimerized chain correspond-

B. Scaling approximation to W[ ;]
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ing to =0, which can be worked out analytically. In this

case the system consists of a collection of dimers, and the 0.04f— ¢=m16  —— N=12
exact interaction energy reads B — N =
UNa 2 -
W(y,¢=0)=—=(1=v1=v9. (20) 0.00 .
004  ¢=n/8

Scaling the functional dependence of the dimer interaction
energy to theg-dependent domain of representability, one

obtains
UN, y |?
Wo(y,¢)= 2 (1— Vi1- m} ) (21)

which we propose as approximation\éfor dimerized sys-
tems. Notice thaWW,(y,®) preserves the previous general
properties(i)—(iv) and that it is of course exact fap=0 0.00
[v°(¢#=0)=1]. In practice, the system specific function 0.04
Y°(¢) can be easily obtained by integration of the single- '
particle spectrum.

It is important to remark that the density matriceg
involved in the approximate function&V, are pure-stat®
representable. Equatiaf21) applies to they;; obtained by 0.09"
scaling the off-diagonal elements of the density matri;z%es
that derive from uncorrelated statg®,) having N, elec-

trons oAn N, sites, and a uniform density distribution FIG. 4. Comparison between the exact interaction-energy func-
(Vo|Z,Nis|¥o)=Ne/Ny=1. In other terms,y; has the tional W,, of the Hubbard model and the approximatidfy given
form ;=\ y% with O0=\=<1 for all i#j, and y;;= yﬂ =1 by Eq.(21). Results are given for thd,= 12 site ring(dasheg and

for all i. In order to show the pure-state representability ofthe infinite chain(solid) as a function ofy= \/y?,+ y3, for different

7ij » We consider two normalizeN-particle statesW,) and  ¢=arctanfy,/ y,9).

| ¥,y satisfying(V,|=,c/.cj,|V,)=0 for allij. This con-
dition is fulfilled, for example, by statea and b having

0.00
0.04

(W,-W_ U

applied in the framework of LDFT to determine several
different defined total spinSor S,, or by superpositions of properties of the dimerized 1D Hubbard model. Comparison

pureS or pureS, states sharing no common eigenvalues is made with exact results whenever possible in order to
The density matrix represented Hy)=a|W,)+g|W,)  2SS€SS the performance of the method.

with a?+p%=1 is then given byy,;=(V|=,cl,c;,|V)
= azyi"’} +/5’2yibj , where ]} and y}’j are the density matrices
corresponding t9W¥,) and|W¥,). Therefore, all the density In Figs. 5 and 6, the ground-state enerys, kinetic
matrices in the segment defined Ip& and 'yibj are pure-state energyEx, and Coulomb energ¥. of the 1D Hubbard
N representable. The representability of a scaled uncorrelatatiodel are given as a function of the Coulomb-repulsion
yio- at half band filling follows from the previous lemma by strengthU/t for different hopping alternationét. Accurate
taking | W ,)=|¥y), which hasS=0 or 1/2, andV¥,) equal  numerical results are also shown, which were obtained using
to the fully localized state with one electron per site andthe Lanczos-diagonalization metidfor N,=12 or the
maximal S=N/2, for which y}=0 for all i#j, andy; ~ DMRG method” for the infinite chain. In the case of the
=1 for all i. Consequently, the;; in the domain of defini- nondimerized infinite chain, Lieb and Wu'’s exact soluffon
tion of W, and the ground-state density matriogs derived i taken as reference. The results foy=12 andN, = are
from it are all pure-stat& representable. qualitative very similar.Eys increases monotonically with
Figure 4 compares E@21) with the exactW(vy,¢) fora U/t sinceaEgs/&U=(ﬁiTﬁu>>0, vanishing in the limit of
12-site Hubbard ring and for the infinite chain. One observedJ/t=c. ForU/t<4, this is essentially a consequence of the
that the proposed approximation follows rather closely thencrease oEc*U, asEx and y;; remain very much like in
exact results for ally and ¢. The largest discrepancies are the uncorrelatet =0 state. In contrast, fdd/t>4 the elec-
found for vanishing or moderate dimerizatio®.g., ¢  trons become increasingly localized, and the increadg,of
=37/16 or ¢=w/4) and relatively largey (y=0.8). In all  results form the increase &y which approaches zero as
cases the quantitative differences remain smaWy( |vij| decreases. At the same tint&; tends to zero as charge
—W|/U=<0.047 for ¢=m/4 and|Wy;—W|/U=<0.045 for¢p  fluctuations are suppresséske Figs. 5 and)6
=37/8), which is quite remarkable taking into account the Comparison between LDFT and the exact results shows a
simplicity of the approximation. In the following, ER1) is  very good agreement. This concerns not daly but also the

IV. DIMERIZED HUBBARD CHAINS
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FIG. 5. Ground-state enerdy,s=Ex+ Ec, kinetic energyEy, FIG. 6. Ground-state enerdy,s=Ex+Ec, Kinetic energyEy ,

and Coulomb energi of dimerized Hubbard rings with hopping and Coulomb energi . of dimerized infinite Hubbard chains with
integralst;; =t(1= ét), Coulomb interactiortJ, N,=12 sites, and  hopping integralst;; =t(1* ét). The symbols are obtained using
Ne=N, electrons. The symbols are obtained from exact Lanczoshe density-matrix renormalization-group meth@ekf. 24 and the
diagonalizationgRef. 23 and the solid curves correspond to the solid curves correspond to the present lattice density-functional
present lattice density-functional theory. theory (see Fig. 5.

separate kine_tic find Coul_omb cont_ributions ir_1dicating thation of E[y,] is performed using analytical expressions for
electron localization and intra-atomic correlations are COrE, andW [see Egs(4) and(21)]. One concludes that LDFT.
rectly descrlbed_ for alU/t. Moreover, this also shows that compined with Eq(21) as approximation to the interaction
the results obtained for the ground-state energy are not thehergy functional, provides an efficient and correct descrip-
consequence of strong compensations of errors. Concernifgn of the ground-state properties of the 1D Hubbard model

the accuracy ofy andEc, one generally observes that a i the complete range of interaction strength and dimeriza-
somewhat higher precision is achieved Ey, whose func-  tjgn.

tional dependence is known exactly, as comparedE¢g The charge excitation or band gap

which derives from an approximation W [Eq. (21)]. For

6t/t=0.1, the LDFT calculations are nearly indistinguish-

able from the exact one@.g., |Egs— Eggl/t<0.03 for 6/t AE =Ego(Net+ 1)+ Egf(Ne— 1)~ 2E((Ne)  (22)
=0.1). Even the largest quantitative discrepancies, found for

the nondimerized chain at intermedi&iét, are pretty small.

For instance, forst=0 and U/t=4, we obtain |EgS is a property of considerable interest in strongly correlated
—Egd/t=0.020 for the 12-site ring andE4—Egd/t  systems which can be related to the discontinuity in the de-
=0.044 for the infinite chain. Comparing Figs. 5 and 6, onerivative of the kinetic and correlation energies per site with
observes that the performance of the method is sometimeg€spect to the electron density The determination oAE,
higher for the 12-site ring than for the infinite chain. For constitutes a much more serious challenge than the calcula-
example, Fig. 6 shows th& (Ec) is slightly overestimated tion of ground-state properties such Bgs, Ex, and Ec
(underestimated for st=0 and U/(U+4t)=0.7-0.8, particularly in the framework of a density-functional formal-
whereas folN,=12 a much better agreement with the exactism. Results foAE. of the 1D Hubbard model are given in
result is found(see Fig. 5. In any case it is important to Figs. 7 and 8 as a function of the Coulomb repulsion strength
recall that no artificial symmetry breaking is required to de-U/t for different values of the hopping alternatiaft (n
scribe correlation-induced localization correctly, as it often=1). AE; vanishes forét=0 andU/t=0, and increases
occurs in other approachds.g., mean-field spin-density- with increasingu/t or ét. Comparison between LDFT and
wave statg Moreover, the present calculations remainLanczos exact diagonalizationdN{=12) or the Bethe-
simple and numerically not demanding, since the minimiza-ansatz solutioff (N,=% and 6t=0) shows fairly small
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FIG. 7. Charge-excitation gapE. of dimerized Hubbard rings FIG. 8. Charge-excitation gapE. of dimerized 1D Hubbard
with N,= 12 sites, hopping integratg =t(1= 6t), and band filling  chains with hopping integrals;=t(1=t) and band fillingn
n=N./N,=1. The symbols refer to exact numerical diagonaliza-=N./Ny=1. The crosses refer to exact Bethe-ansatz results for
tions (Ref. 23 and the curves to the present lattice density- 5t=0 (see also Fig. )7
functional approach.

V. SUMMARY AND OUTLOOK
guantitative discrepancies. In the most difficult nondimerized
case, we findAE.—AESY<0.18 for N,=12, and|AE,
—AEZY<0.34 for Ny=c. For smallU/t and 6t=0, AE,
is somewhat underestimated fb,=12 and overestimated

A density-functional approach to lattice-fermion models
has been applied to the dimerized 1D Hubbard Hamiltonian.
In this framework the basic variable is the single-particle
! ; density matrixy;; and the key unknown is the interaction-
for Ny =cc. The latter is mainly due to the fact that HQ1)  gnergy functional[ ¥j]- In the present paper we have first
fails to reproduce the engoner?tlal decrease\&; for U/t ipyestigated the functional dependence/sbn the density-
—0 (Na=% and 6t=0).”" As in previous properties, the matrix elementsy;, and y,; between nearest neighbors in
accuracy improves with increasingi. Figure 7 shows that dimerized chains §; i+ 1=y1» for oddi and y; ; 1= v,3 for
the LDFT results for nonvanishing dimerization ain, eveni). Rigorous results foW(y;,,v,3) were derived from
=12 are very close to the exact oneRAE.—AEZY/t  finite-ring Lanczos diagonalizations and from DMRG calcu-
<0.011 already forst/t=0.1). Therefore, one expects that lations for the infinite chain. An analysis of these exact re-
the predictions folN,=% and §t>0 should be reliable. Fi- sults shows thatV can be appropriately scaled as a function
nally, one may note that in the limit of lardé/t, the hop-  y/y°(¢); where y=\/y2,+ y5, and y°(¢) is the largest
ping alternationst has little effect on the charge gap. As the representabley for a given ¢=arctanf;,/y,3). A simple
electrons tend to localize fay/t—o, AE.—U+Ey, where  general approximation t@V was then proposed which takes
Ep= —4t is the energy of the bottom of the single-particle advantage of this scaling behavior and which provides with a
band. The present lattice density-functional scheme describesified description of correlations from weak- to strong-
correctly the crossover from a band insulator to a Mott insu-coupling regimes. Finally, using this approximation, several
lator, which occurs in dimerized chains ldét is varied from  ground-state properties and the charge-excitation gap of
the weak-interaction to the strong-interaction regime. dimerized chains have been determined successfully as a
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function of Coulomb-repulsion strength/t and hopping al- cations in very low symmetry situations including metal

ternationét. clusters and disordered systems.
The accuracy of the results encourages more or less
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