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Electronic properties of the dimerized one-dimensional Hubbard model
using lattice density-functional theory
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The dimerized one-dimensional Hubbard model is studied in the framework of lattice density-functional
theory~LDFT!. The single-particle density matrixg i j with respect to the lattice sites is considered as the basic
variable. The corresponding interaction-energy functionalW@g i j # is defined by Levy’s constrained search.
Exact numerical results are obtained forW(g12,g23), whereg125g i ,i 11 for odd i andg235g i ,i 11 for eveni
are the nearest-neighbor density-matrix elements along the chain. The domain of representability ofg i j and the
functional dependence ofW(g12,g23) are analyzed. A simple, explicit approximation toW(g12,g23) is pro-
posed, which is derived from scaling properties ofW, exact dimer results, and known limits. Using this
approximation, LDFT is applied to determine ground-state properties and charge-excitation gaps of finite and
infinite dimerized chains as a function of the Coulomb-repulsion strengthU/t and of the alternationdt of the
hopping integralst i j (t i j 5t6dt). The accuracy of the method is demonstrated by comparison with available
exact solutions and accurate numerical calculations. Goals and limitations of the present approach are dis-
cussed particularly concerning its ability to describe the crossover from weak to strong electron correlations.
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I. INTRODUCTION

Hohenberg and Kohn replaced the wave function by

electronic densityr(rW) as the fundamental variable of th
many-body problem and thereby achieved a crucial bre
through in the theoretical description of the electronic pro
erties of matter.1 Since then, density-functional theory~DFT!
has been the subject of a remarkable evolution. Formal
provements, extensions, and uncountable successful app
tions to a large variety of problems have developed t
theory to the most efficient, albeit not infallible, method
determining physical and chemical properties of matter fr
first principles.2,3 DF calculations are usually based on t
Kohn-Sham ~KS! scheme that reduces the correlat
N-particle problem to the solution of a set of self-consist
single-particle equations.4 While this transformation is for-
mally exact, the form of the interaction-energy function

W@r(rW)# involved in the KS equations is not known expli
itly. Practical implementations of DFT always require a
proximations toW@r(rW)#, or equivalently to the exchang
and correlation~XC! functional EXC@r(rW)#, on which the
quality of the results depends crucially. Therefore, und
standing the functional dependence ofW@r(rW)# and explor-
ing new ways of improving its approximations are central
the development of DF methods.

The most extensively used forms forW@r(rW)# are pres-
ently the local-density approximation~LDA !,4 its spin-
polarized version or local-spin-density approximatio5

~LSDA!, and the gradient corrected extensions,6 which were
originally derived from exact results for the homogeneo
electron gas. Despite an unparalleled success in the m
0163-1829/2003/67~3!/035115~10!/$20.00 67 0351
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diverse areas, the LDA-based approach fails systematic
in accounting for phenomena that involve strong electr
correlation effects as observed, for example, in Mott insu
tors, heavy-fermion materials, or high-Tc superconductors
These systems are usually described in the framework
parametrized lattice Hamiltonians such as Anderso7

Hubbard,8 Pariser-Parr-Pople,9 and related models that focu
on the most relevant electron dynamics at low energ
However, even with simplified model interactions and
minimal number of orbitals per atom, a detailed understa
ing of the electronic properties in the strongly correlat
limit remains a serious theoretical challenge. Exact res
are rare or numerically very demanding, and a variety
elaborate many-body techniques have been specifically
veloped in order to study this problem.10 Being in principle
an exact theory, the limitations of the DF approach have
be ascribed to the approximations used for exchange
correlation and not to the underlying formalism. It is ther
fore very interesting to extend the range of applicability
DFT to the many-body lattice models that describe the ph
ics of strongly correlated systems. Moreover, the devel
ment of lattice density-functional theory~LDFT! constitutes
an intrinsically inhomogeneous approach and provides a
alternative to the LSDA and related gradient-corrected me
ods. Thus, studies on simple models can open new insi
into the properties ofW, which should also be useful fo
future extensions to more realistic Hamiltonians and fir
principles calculations.

Several physical problems have been already investig
by applying the concepts of DFT to lattice models, for e
ample, the band-gap problem in semiconductors,11 the role of
off-diagonal elements of the density matrix and the nonint
actingv representability in strongly correlated systems,12 or
©2003 The American Physical Society15-1
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the development of energy functionals of the density ma
with applications to Hubbard and Anderson models.13 In pre-
vious works14,15 we have considered a density-matrix fun
tional theory of many-body lattice models, which is ana
gous to Gilbert’s approach in the continuum,16 and applied it
to the Hubbard Hamiltonian with uniform nearest-neighb
~NN! hopping integralst i j 5t. The interaction energyW of
the Hubbard model has been calculated exactly as a func
of the density matrixg i j for various periodic lattices having
g i j 5g12 for all nearest neighborsi and j. An analysis of the
functional dependence ofW(g12) for different band fillings
and lattice structures revealed very interesting sca
properties.14 On this basis, a simple general approximation
W(g12) has been derived, which yields a remarkable agr
ment with available exact results in one-dimensional~1D!
systems and which predicts successfully the ground-state
ergy and charge-excitation gap of the 2D Hubbard mode
the complete range of interaction strength.15 This shows that
DFT with an appropriate approximation toW is an efficient
tool for determining the electronic properties of many-bo
lattice models.

The purpose of this paper is to extend the method
allowing for alternations of the density-matrix elementsg i j
between nearest neighbors in order to study the dimer
1D Hubbard model. This problem has motivated a consid
able research activity in past years, particularly concern
the role of electron correlations in the dimerization of po
mer chains like polyacetylene.17 In this context two qualita-
tively different regimes may be distinguished depending
the relative importance of the intraatomic Coulomb repuls
U and the NN hopping integralt. On one side, for smallU/t,
the dimerization can be regarded as a bond-order wave
opens a gap at the Fermi surface of the 1D single-part
band structure~Peierls distortion!. On the other side, for
largeU/t, local charge fluctuations are severely reduced
the low-energy properties are dominated by antiferrom
netic ~AF! correlations between spin degrees of freedom
this case the dimerization can be regarded as an altern
of the strength of AF correlations along the chain or sp
Peierls state. One of our aims is to analyze the differen
between these two types of behaviors in the framework
LDFT. The properties of dimerized chains are also very
teresting from a purely methodological point of view. Th
provide in fact a simple, physically motivated means of e
ploring the functional dependence ofW@g i j # by including
additional degrees of freedom, thereby allowing for a lar
flexibility. Moreover, several exact results are available
compare with~e.g., Bethe-ansatz solution for the nondim
ized Hubbard chain, finite-ring Lanczos diagonalizations,
density-matrix renormalization-group calculations!, which
allow to quantify the accuracy of the final results.

The remainder of the paper is organized as follows.
Sec. II the main steps in the formulation of LDFT are brie
recalled. The properties of the interaction-energy functio
W of the dimerized Hubbard model are discussed in Sec.
The domain of representability ofg i j and the scaling behav
ior of W are investigated. A simple explicit approximation
W is derived, which is appropriate for direct calculation
Section IV is concerned with applications. The ground-st
03511
x

-

r

on

g

e-

n-
n

y

d
r-
g

n
n

at
le

d
-

n
ion
-
es
f
-

-

r

-
r

n

l
I.

.
e

energy and the charge-excitation gap of finite and infin
dimerized chains are determined as a function of Coulom
repulsion strengthU/t and hopping-integral alternationdt.
The LDFT results are contrasted with accurate numerical
lutions in order to discuss goals and limitations of the pres
approach. Finally, Sec. V summarizes the main conclusi
and points out some future perspectives.

II. DENSITY-FUNCTIONAL THEORY ON A LATTICE

We consider the many-body Hamiltonian

H5(
i j s

t i j ĉis
† ĉ j s1

1

2 (
klmn
ss8

Vklmnĉks
† ĉms8

† ĉns8ĉls , ~1!

whereĉis
† ( ĉis) is the usual creation~annihilation! operator

for an electron with spins at site or orbitali. The hopping
integrals t i j define the lattice~e.g., 1D chains, square, o
triangular 2D lattices! and the range of the single-partic
interactions~e.g., up to first or second neighbors!. From the
ab initio perspective,t i j is given by the external potentia
Vext(rW) and by the choice of the basis.Vklnm defines the type
of many-body interactions which may be repulsi
~Coulomb-like! or attractive~in order to simulate electronic
pairing! and which are usually approximated as short rang
~e.g., intra-atomic!. Equation~1! is mainly used in this sec
tion to present the general formulation that can then be
plied to various specific models by simplifying the intera
tions. A particularly relevant example, to be considered
some detail in following sections, is the single-band Hubb
Hamiltonian with NN hoppings.8 The nondimerized form of
this model is obtained from Eq.~1! by settingt i j 52t for i
and j NN’s, t i j 50 otherwise, andVklnm5Udkldnmdkn .

The hopping matrixt i j plays the role given in conven
tional DFT to the external potentialVext(rW). Consequently,
the single-particle density matrixg i j between lattice sites
replaces the continuum densityr(rW) as the basic variable
The situation is similar to the density-matrix function
theory proposed by Gilbert for the study of nonlocal pseu
potentialsVext(rW,rW8).16,18,19The ground-state energyEgs and
density matrixg i j

gs are determined by minimizing the energ
functional

E@g i j #5EK@g i j #1W@g i j # ~2!

with respect tog i j . E@g i j # is defined for all density matrice
that can be written as

g i j 5(
s

g i j s5(
s

^Cuĉis
† ĉ j suC& ~3!

for all i and j, where uC& is an N-particle state. In other
words, g i j derives from a physical state and is said to
pure-stateN representable.20 The first term in Eq.~2! is given
by
5-2
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EK5(
i j

t i j g i j . ~4!

It represents the kinetic energy associated with the electr
motion in the lattice and includes all single-particle cont
butions. Notice that Eq.~4! yields the exact kinetic energ
and that no corrections onEK have to be included in othe
parts of the energy functional as in the KS approach. T
second term in Eq.~2! is the interaction-energy functiona
given by21

W@g i j #

5minF1

2 (
klmn
ss8

Vklmn̂ C@g i j #uĉks
† ĉms8

† ĉns8ĉlsuC@g i j #&G ,

~5!

where the minimization implies a search over allN-particle
statesuC@g i j #& that satisfy

K C@g i j #U(
s

ĉis
† ĉ j sUC@g i j #L 5g i j ~6!

for all i and j. W@g i j # represents the minimum value of th
interaction energy compatible with a given density mat
g i j . It is often expressed in terms of the Hartree-Fock
ergy,

EHF@g i j #5
1

2 (
i jkl
ss8

Vi jkl ~g i j sgkls82dss8g i l sgk js! ~7!

and the correlation energyEC@g i j # as

W@g i j #5EHF@g i j #1EC@g i j #. ~8!

W and EC are universal functionals ofg i j in the sense tha
they are independent oft i j , i.e., of the system under stud
They depend on the considered interactions or model, as
fined byVklmn , on the number of electronsNe , and on the
structure of the many-body Hilbert space, as given byNe and
the number of orbitals or sitesNa .

E@g# is minimized by expressingg i j 5g i j ↑1g i j ↓ in terms
of the eigenvalueshks ~occupation numbers! and eigenvec-
tors uiks ~natural orbitals! as

g i j s5(
k

uikshksujks* . ~9!

Lagrange multipliersm and lks («ks5lks /hks) are intro-
duced in order to impose the usual constraints(kshks5Ne

and ( i uuiksu251. Derivation with respect toujks* and hks

(0<hks<1) yields the eigenvalue equations15,16
03511
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hks(
i

S t i j 1
]W

]g i j
Duiks5«ksujks , ~10!

with the following conditions relatinghks and«ks :

«ks,m if hks51, ~11!

«ks5m if 0 ,hks,1, ~12!

and

«ks.m if hks50. ~13!

Self consistency is implied by the dependence of]W/]g i j on
hks anduiks . Equations~10!–~13! hold exactly in all inter-
action regimes. They are analogous to the well-known res
of density-matrix functional theory in the continuum.16 How-
ever, notice the difference with the KS-like approach cons
ered in Ref. 12, which assumes noninteractingv represent-
ability, and where only integer occupations are allowed.

The importance of fractional natural-orbital occupatio
has already been stressed in previous density-matrix fu
tional studies in the continuum.16 In fact, in the case of mod-
els one observes that 0,hks,1 for all ks except in very
special situations like the uncorrelated limit (Vklmn50) or
the fully polarized ferromagnetic state in the Hubbard mod
This can be understood from perturbation-theo
arguments—none of thehks should be a good quantum
number forVklmnÞ0—and has been explicitly demonstrate
in exact solutions for finite systems or for the 1D Hubba
chain.22 Therefore, case~12! is the only relevant one in gen
eral. All «ks in Eq. ~10! must be degenerate, or equivalent

t i j 1]W/] i j 5 i j . ~14!

Clearly, approximations ofW in terms of the diagonalg i i
alone can never yield such a behavior. Given a s
consistent scheme that implements the variational princi
the challenge remains to find good approximations
W@g i j #, which are simple enough to be applied in practic
calculations.

III. INTERACTION-ENERGY FUNCTIONAL

In order to determineW@g i j # from Eq.~5! we look for the
extremes of

F5
1

2 (
klmn
ss8

@Vklmn̂ Cuĉks
† ĉms8

† ĉnsĉlsuC&#1«~12^CuC&!

1(
i , j

l i j S ^Cu(
s

ĉis
† ĉ j suC&2g i j D ~15!

with respect touC&. Lagrange multipliers« and l i j have
been introduced to enforce the normalization ofuC& and the
5-3



ril

s

a
o
ed
ix
co

en

th
l
o
s.
ti

lit
II

c
ith

rd

:

ct

er
of

ite
we

the
s
rix

e

set

the

ven

r
-

nt
. In

ing
he

n-

-

lly
-

be

ity-
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representability ofg i j as required by Eq.~6!. Derivation with
respect tô Cu, «, andl i j yields the eigenvalue equations14

(
i j s

l i j ĉis
† ĉ j suC&1

1

2 (
klmn
ss8

Vklmnĉks
† ĉms8

† ĉnsĉlsuC&5«uC&,

~16!

and the auxiliary conditions ^CuC&51 and g i j

5^Cu(sĉis
† ĉ j suC&. The Lagrange multipliersl i j play the

role of hopping integrals to be chosen in order thatuC&
yields the giveng i j . The pure-state representability ofg i j
ensures that there is always a solution. The subset ofg i j ,
which can be represented by a ground state of Eq.~16! for
somel i j , is the physically relevant one, since it necessa
includes the absolute minimumg i j

gs of E@g i j #. Nevertheless,
it should be noted that pure-state representableg i j may be
considered, which can only be described by excited state
by linear combinations of eigenstates of Eq.~16!.14

The general functionalW@g i j #, valid for all lattice struc-
tures and for all types of hybridizations, can be simplified
the expense of universality if the hopping integrals are sh
ranged. For example, if only NN hoppings are consider
the kinetic energyEK is independent of the density-matr
elements between sites that are not NN’s. Therefore, the
strained search in Eq.~5! may be restricted to theuC@g i j #&
that satisfy Eq.~6! only for i 5 j and for NNi j . This reduces
significantly the number of variables inW@g i j # and renders
the determination and interpretation of the functional dep
dence far simpler.

In Sec. III A we present and discuss exact results for
interaction energyW@g i j # of the dimerized Hubbard mode
on representative finite and infinite chains. These are
tained by solving Eq.~16! using accurate numerical method
The dependence of the interaction energy on the alterna
NN density-matrix elementsg12 andg23 is analyzed. Scaling
properties are identified within the domain of representabi
of g i j . On the basis of these results, we propose in Sec. I
a simple general approximation toW(g12,g23), which is
useful for practical applications. A first test on the accura
of this approximation is also provided by comparison w
available exact solutions.

A. Exact calculatedW†g i j ‡ of the dimerized Hubbard model

In the following we consider the dimerized 1D Hubba
model which in the usual notation is given by8

H5 (
^ i j &s

t i j ĉis
† ĉ j s1U(

i
n̂i↓n̂i↑ . ~17!

The NN hopping integralst i j take two alternating values
t i ,i 115t125t1dt for odd i andt i ,i 115t235t2dt for eveni.
The corresponding interaction-energy functional reads

W@g i j #5minFU(
l

^C@g i j #un̂l↑n̂l↓uC@g i j #&G , ~18!
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where the minimization is performed with respe
to all N-particle states uC@g i j #& that satisfy

^C@g i j #u(sĉis
† ĉ j suC@g i j #&5g i j for NN i j . For repulsive in-

teractions,W@g i j # represents the minimum average numb
of double occupations corresponding to a given degree
electron delocalization, i.e., to a giveng i j . Equation~16!
then reduces to

(̂
i j &
s

l i j ĉis
† ĉ j suC&1U(

i
n̂i↑n̂i↓uC&5«uC&. ~19!

This eigenvalue problem can be solved numerically for fin
systems with various boundary conditions. To this aim
expanduC@g i j #& in a complete set of basis statesuFm& that
have definite occupation numbersn is

m at all orbitals is:

n̂isuFm&5n is
m uFm& with n is

m 50 or 1. The values ofn is
m sat-

isfy the usual conservation of the number of electronsNe
5Ne↑1Ne↓ and of thez component of the total spinSz

5(Ne↑2Ne↓)/2, whereNes5( in is
m . For not too large clus-

ters, the stateuC0@g i j #& corresponding to the minimum in
Eq. ~18!—the ground state of Eq.~19!—can be determined
by sparse-matrix diagonalization procedures such as
Lanczos iterative method.23 For large chains, the propertie
of uC0@g i j #& can be calculated using the density-mat
renormalization-group~DMRG! method24 that allows reli-
able extrapolations to the infinite-length limit. Finally, in th
absence of dimerization (dt50), translational symmetry im-
plies that all NNg i j are the same, and therefore one may
l i j 5l for all NN i j . The lowest eigenvalue of Eq.~19! can
then be determined from Lieb and Wu’s exact solution of
1D Hubbard model following the work by Shiba.22

In Fig. 1 the interaction energyW of dimerized Hubbard
chains is shown in the form of constant-energy curves gi
by W(g12,g23)5lEHF, where g125g i ,i 11 for odd i and
g235g i ,i 11 for even i are the density-matrix elements o
bond orders between NN’s.EHF5U/4 stands for the Hartree
Fock energy, andl is a constant (0<l<1). Results are
presented for theNa512 site ring and for the infinite 1D
chain, which were obtained from Eq.~19! by using Lanczos
diagonalization and DMRG methods, respectively.23,24 Only
positiveg12 andg23 are considered since this is the releva
domain when all the hopping integrals have the same sign
bipartite lattices, like open chains or rings with evenNa , the
sign of the NN bond orders can be changed without alter
W by changing the sign of the local orbitals at one of t
sublattices. Thus,W(g12,g23)5W(2g12,2g23). Moreover,
W(g12,g23)5W(g23,g12) as even and odd sites can be i
terchanged by a simple translation (Na is even for rings!.

The domain of definition ofW is restricted by the pure
state representability ofg i j . The axesg1250 andg2350 in
Fig. 1 represent a collection of disconnected dimers or fu
dimerized states, whileg125g23 corresponds to nondimer
ized states. In between, the degree of dimerization can
measured by the anglef5arctan(g12/g23). The degree of
electron delocalization for eachf is characterized byg
5Ag12

2 1g23
2 , which is bounded byg`(f)<g<g0(f) in

order thatg i j remains pure-state representable. The dens
5-4
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matrix elements along the curveg5g0(f) are the largest
bond orders that can be achieved on a given lattice and
given Na and Ne @(g12

0 ,g23
0 )5g0(f)(cosf,sinf)#. They

represent the maximum electron delocalization for eachf
and yield the extremes of the kinetic energyEK5(t i j g i j ,
with differentf corresponding to differentt12/t23. Thus, for
g5g0(f) the density matrix can be represented by
ground state of the uncorrelated Hubbard model for so
t12/t23 (U50). In the absence of degeneracy the underly
electronic stateuC0& is a single Slater determinant, an
W(g12

0 ,g23
0 )5EHF. Consequently, the upper bound forg co-

incides with thel51 curve in Fig. 1. The correlation energ
EC5W2EHF vanishes as expected in the fully delocaliz
limit. For U50, the minimization of the energyE5EK as a
function of g i j can be stated in terms of the representabi
of g i j alone. In this case the equilibrium condition yieldin
g i j

gs is achieved at the borders of the domain of representa

FIG. 1. Constant interaction-energy curves of the o
dimensional ~1D! Hubbard model as given byW(g12,g23)
5lEHF , whereEHF5U/4 is the Hartree-Fock energy andl is a
constant (0<l<1). The NN density-matrix elements areg i ,i 11

5g12 for odd i, andg i ,i 115g23 for eveni. Results are given for~a!
the Na512 site ring and~b! the infinite chain, both at half band
filling ( Ne5Na). l51 corresponds to uncorrelated states and
fines the limit of representability ofg i j . Unless indicated, the dif-
ference inl between contiguous curves isDl50.1.
03511
or

e
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il-

ity, more precisely, when the normal to the curveg

5g0(f) is parallel to¹W EK5(t12,t23).
Concerning the lower boundg`(f), one should first note

that asg decreases,g,g0(f), it is possible to construc
correlated statesuC@g i j #& having increasingly localized elec
trons. Charge fluctuations can then be reduced more
ciently for smallerg, and therefore the Coulomb interactio
energy decreases with decreasingg @see Eq.~18! and Fig. 1#.
W reaches its minimum valueW`5U max$0,Ne2Na% in the
strongly correlated limit whereg5g`(f). For half band
filling, this corresponds to a fully localized state havin
g`(f)50 andW`50. However, note that forNeÞNa , W
reachesW` already forg`(f).0 since partially delocalized
states can be found having minimal Coulomb repulsion. T
is the case, for example, in a fully polarized ferromagne
state.

Figure 1 also provides a qualitative picture of the fun
tional dependence ofW for dimerized chains. On one side
for strongly dimerized states (f.0 or f.p/2) the
constant-W curves resemble circumference arcs, the grad
¹W W being approximately radial. This type of behavior
most clearly seen for weak or moderate correlationsl
>0.3), while in the localized regime (l<0.1) it holds only
for a very limited range off aroundf50 or f5p/2. On
the other side, for weakly to moderately dimerized sta
(f.p/8–p/4) the level curves can be regarded in first a
proximation as straight lines parallel tog1252g23. The
very weak dependence of¹W W on f implies that for f
.p/4 the ground-state values ofg12

gs andg23
gs , which result

from the minimization ofE5EK1W, are very sensitive to
the hopping alternationdt. In fact, significant variations off
are necessary until¹W W52¹W EK}(11dt/t,12dt/t) even
for dt/t!1. This is particularly notable for weak correla
tions since theW5EHF curve is strictly linear foruf2p/4u
,0.05. Therefore, a discontinuous change fromg12

gs/g23
gs51

to g12
gs/g23

gs50.91 is found atU50 and arbitrary smalldt.
For U.0, g12

gs and g23
gs are continuous functions ofdt, al-

though the dependence ondt remains very strong for smal
dt, as can be inferred from the level curves in the figu
Comparing Figs. 1~a! and 1~b!, one observes that the resul
for Na512 andNa5` are quite similar. The rather rapi
convergence with chain length suggests thatW(g12,g23) is
not very sensitive to the details of the considered syst
even if the minimization constraints in Eq.~18! apply only to
NN bond orders. This is of interest for practical application
as it will be discussed below.

In Fig. 2 the interaction energyW is shown as a function
of g for representative values off, including in particular
the fully dimerized (f50) and nondimerized (f5p/4)
cases. Despite the quantitative differences among the var
f, several qualitative properties are shared by all the curv

~i! As already discussed, the domain of representability
g is bound for eachf by the bond orderg0(f) in the un-
correlated limit.g0 decreases monotonously with increasi
f for 0<f<p/4 showing that a compromise betweeng12
and g23 is made when the two bonds are active. This is
important contribution to thef dependence ofW.

-

-

5-5
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~ii ! In the delocalized limit,W(g0,f)5EHF5U/4 for all
f, since the electronic state yielding the largestg is a single
Slater determinant. Moreover, one observes that]W/]g di-
verges atg5g0 for all f. This is a necessary condition i
order that the ground-state density matrix satisfiesggs,g0

for arbitrary small U.0, as expected from perturbatio
theory.

~iii ! Starting fromg5g0, W decreases with decreasingg,
reaching its lowest possible valueW50 for g50 (Ne
5Na). The decrease ofW with decreasingg means that the
reduction of the Coulomb energy due to correlations is d
at the expense of kinetic energy or electron delocalizatio

~iv! In the limit of small g, one observes thatW}g2.
Therefore, forU/t@1, ggs}t/U and Egs}t2/U, a well-
known result in the Heisenberg limit of the half-filled Hub
bard model.10

B. Scaling approximation to W†g i j ‡

In order to compare theg dependence ofW for different
f and to analyze its scaling behavior, it is useful to bring
domains of representability for differentf to a common

FIG. 2. Interaction energyW of the 1D Hubbard model at hal
band filling (Ne5Na) as a function ofg5Ag12

2 1g23
2 for different

values off5arctan(g12/g23): ~a! ring with Na512 sites~b! infinite
chain. The density-matrix elements areg i ,i 115g12 for odd i, and
g i ,i 115g23 for eveni.
03511
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range by consideringW(g,f) as a function ofg/g0(f), as
displayed in Fig. 3. In this form the results for differentf
appear as remarkably similar, showing that the largest pa
the dependence ofW on the ratiog12/g23 comes from the
domain of representability ofg i j given by its upper bound
g0(f) @g`(f)50 for half band filling#. An analogous scal-
ing behavior has been found in previous numerical studie
W(g12) of nondimerized Hubbard models, whereg12 refers
to the NN density-matrix element.14 In this case one observe
thatW(g12) depends weakly on system sizeNa , band filling
n5Ne /Na , and lattice structure, ifW is measured in units o
the Hartree-Fock energyEHF and if g12 is scaled within the
relevant domain of representability@g12

` ,g12
0 #. In the present

context, Fig. 3 implies that the change inW associated to a
given change in the degree of delocalizationg/g0(f) can be
regarded as nearly independent off and system size. A good
general approximation toW(g,f) can then be obtained b
applying such a scaling to the functional dependence
tracted from a simple reference system. An appropri
choice is provided by the fully dimerized chain correspon

FIG. 3. Interaction energyW of the 1D Hubbard model as a
function of g/g0 for different f5arctan(g12/g23). g5Ag12

2 1g23
2

and g0(f) is the largest representable value ofg for a givenf,
which corresponds to the uncorrelated limit (0<g<g0, see Fig. 1!.
Results are shown for~a! the Na512 site ring and~b! the infinite
chain, both at half band filling.
5-6
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ing to f50, which can be worked out analytically. In th
case the system consists of a collection of dimers, and
exact interaction energy reads

W~g,f50!5
UNa

4
~12A12g2!. ~20!

Scaling the functional dependence of the dimer interac
energy to thef-dependent domain of representability, o
obtains

W0~g,f!5
UNa

4 S 12A12F g

g0~f!G
2D , ~21!

which we propose as approximation toW for dimerized sys-
tems. Notice thatW0(g,f) preserves the previous gener
properties~i!–~iv! and that it is of course exact forf50
@g0(f50)51#. In practice, the system specific functio
g0(f) can be easily obtained by integration of the sing
particle spectrum.

It is important to remark that the density matricesg i j
involved in the approximate functionalW0 are pure-stateN
representable. Equation~21! applies to theg i j obtained by
scaling the off-diagonal elements of the density matricesg i j

0

that derive from uncorrelated statesuC0& having Ne elec-
trons on Na sites, and a uniform density distributio

^C0u(sn̂isuC0&5Ne /Na51. In other terms,g i j has the
form g i j 5lg i j

0 with 0<l<1 for all iÞ j , andg i i 5g i i
0 51

for all i. In order to show the pure-state representability
g i j , we consider two normalizedN-particle statesuCa& and
uCb& satisfying^Cau(sĉis

† ĉ j suCb&50 for all i j . This con-
dition is fulfilled, for example, by statesa and b having
different defined total spinsS or Sz , or by superpositions o
pure-S or pure-Sz states sharing no common eigenvalu
The density matrix represented byuC&5auCa&1buCb&
with a21b251 is then given byg i j 5^Cu(sĉis

† ĉ j suC&
5a2g i j

a 1b2g i j
b , whereg i j

a andg i j
b are the density matrice

corresponding touCa& and uCb&. Therefore, all the density
matrices in the segment defined byg i j

a andg i j
b are pure-state

N representable. The representability of a scaled uncorrel
g i j

0 at half band filling follows from the previous lemma b
taking uCa&5uC0&, which hasS50 or 1/2, anduCb& equal
to the fully localized state with one electron per site a
maximal S5Ne/2, for which g i j

b 50 for all iÞ j , and g i i
b

51 for all i. Consequently, theg i j in the domain of defini-
tion of W0 and the ground-state density matricesg i j

gs derived
from it are all pure-stateN representable.

Figure 4 compares Eq.~21! with the exactW(g,f) for a
12-site Hubbard ring and for the infinite chain. One obser
that the proposed approximation follows rather closely
exact results for allg and f. The largest discrepancies a
found for vanishing or moderate dimerization~e.g., f
53p/16 or f5p/4) and relatively largeg (g.0.8). In all
cases the quantitative differences remain small (uW0
2Wu/U<0.047 for f5p/4 and uW02Wu/U<0.045 for f
53p/8), which is quite remarkable taking into account t
simplicity of the approximation. In the following, Eq.~21! is
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applied in the framework of LDFT to determine sever
properties of the dimerized 1D Hubbard model. Comparis
is made with exact results whenever possible in order
assess the performance of the method.

IV. DIMERIZED HUBBARD CHAINS

In Figs. 5 and 6, the ground-state energyEgs , kinetic
energy EK , and Coulomb energyEC of the 1D Hubbard
model are given as a function of the Coulomb-repuls
strengthU/t for different hopping alternationsdt. Accurate
numerical results are also shown, which were obtained us
the Lanczos-diagonalization method23 for Na512 or the
DMRG method24 for the infinite chain. In the case of th
nondimerized infinite chain, Lieb and Wu’s exact solution22

is taken as reference. The results forNa512 andNa5` are
qualitative very similar.Egs increases monotonically with
U/t since]Egs /]U5^n̂i↑n̂i↓&.0, vanishing in the limit of
U/t5`. ForU/t,4, this is essentially a consequence of t
increase ofEC}U, asEK andg i j remain very much like in
the uncorrelatedU50 state. In contrast, forU/t.4 the elec-
trons become increasingly localized, and the increase ofEgs
results form the increase ofEK which approaches zero a
ug i j u decreases. At the same time,EC tends to zero as charg
fluctuations are suppressed~see Figs. 5 and 6!.

Comparison between LDFT and the exact results show
very good agreement. This concerns not onlyEgs but also the

FIG. 4. Comparison between the exact interaction-energy fu
tional Wex of the Hubbard model and the approximationW0 given
by Eq.~21!. Results are given for theNa512 site ring~dashed! and
the infinite chain~solid! as a function ofg5Ag12

2 1g23
2 for different

f5arctan(g12/g23).
5-7
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separate kinetic and Coulomb contributions indicating t
electron localization and intra-atomic correlations are c
rectly described for allU/t. Moreover, this also shows tha
the results obtained for the ground-state energy are not
consequence of strong compensations of errors. Concer
the accuracy ofEK and EC , one generally observes that
somewhat higher precision is achieved forEK , whose func-
tional dependence is known exactly, as compared toEC ,
which derives from an approximation toW @Eq. ~21!#. For
dt/t>0.1, the LDFT calculations are nearly indistinguis
able from the exact ones~e.g., uEgs2Egs

exu/t<0.03 for dt/t
50.1). Even the largest quantitative discrepancies, found
the nondimerized chain at intermediateU/t, are pretty small.
For instance, for dt50 and U/t54, we obtain uEgs

2Egs
exu/t50.020 for the 12-site ring anduEgs2Egs

exu/t
50.044 for the infinite chain. Comparing Figs. 5 and 6, o
observes that the performance of the method is someti
higher for the 12-site ring than for the infinite chain. F
example, Fig. 6 shows thatEK (EC) is slightly overestimated
~underestimated! for dt50 and U/(U14t)50.7–0.8,
whereas forNa512 a much better agreement with the exa
result is found~see Fig. 5!. In any case it is important to
recall that no artificial symmetry breaking is required to d
scribe correlation-induced localization correctly, as it oft
occurs in other approaches~e.g., mean-field spin-density
wave state!. Moreover, the present calculations rema
simple and numerically not demanding, since the minimi

FIG. 5. Ground-state energyEgs5EK1EC , kinetic energyEK ,
and Coulomb energyEC of dimerized Hubbard rings with hoppin
integralst i j 5t(16dt), Coulomb interactionU, Na512 sites, and
Ne5Na electrons. The symbols are obtained from exact Lanc
diagonalizations~Ref. 23! and the solid curves correspond to th
present lattice density-functional theory.
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tion of E@g i j # is performed using analytical expressions f
EK andW @see Eqs.~4! and~21!#. One concludes that LDFT
combined with Eq.~21! as approximation to the interactio
energy functional, provides an efficient and correct desc
tion of the ground-state properties of the 1D Hubbard mo
in the complete range of interaction strength and dimeri
tion.

The charge excitation or band gap

DEc5Egs~Ne11!1Egs~Ne21!22Egs~Ne! ~22!

is a property of considerable interest in strongly correla
systems which can be related to the discontinuity in the
rivative of the kinetic and correlation energies per site w
respect to the electron densityn. The determination ofDEc
constitutes a much more serious challenge than the calc
tion of ground-state properties such asEgs , EK , and EC
particularly in the framework of a density-functional forma
ism. Results forDEc of the 1D Hubbard model are given i
Figs. 7 and 8 as a function of the Coulomb repulsion stren
U/t for different values of the hopping alternationdt (n
51). DEc vanishes fordt50 and U/t50, and increases
with increasingU/t or dt. Comparison between LDFT an
Lanczos exact diagonalizations (Na512) or the Bethe-
ansatz solution22 (Na5` and dt50) shows fairly small

s

FIG. 6. Ground-state energyEgs5EK1EC , kinetic energyEK ,
and Coulomb energyEC of dimerized infinite Hubbard chains with
hopping integralst i j 5t(16dt). The symbols are obtained usin
the density-matrix renormalization-group method~Ref. 24! and the
solid curves correspond to the present lattice density-functio
theory ~see Fig. 5!.
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quantitative discrepancies. In the most difficult nondimeriz
case, we finduDEc2DEc

exu,0.18t for Na512, and uDEc

2DEc
exu,0.34t for Na5`. For smallU/t anddt50, DEc

is somewhat underestimated forNa512 and overestimated
for Na5`. The latter is mainly due to the fact that Eq.~21!
fails to reproduce the exponential decrease ofDEc for U/t
→0 (Na5` and dt50).22 As in previous properties, the
accuracy improves with increasingdt. Figure 7 shows tha
the LDFT results for nonvanishing dimerization andNa

512 are very close to the exact ones (uDEc2DEc
exu/t

,0.011 already fordt/t50.1). Therefore, one expects th
the predictions forNa5` anddt.0 should be reliable. Fi-
nally, one may note that in the limit of largeU/t, the hop-
ping alternationdt has little effect on the charge gap. As th
electrons tend to localize forU/t→`, DEc→U1Eb , where
Eb524t is the energy of the bottom of the single-partic
band. The present lattice density-functional scheme descr
correctly the crossover from a band insulator to a Mott in
lator, which occurs in dimerized chains asU/t is varied from
the weak-interaction to the strong-interaction regime.

FIG. 7. Charge-excitation gapDEc of dimerized Hubbard rings
with Na512 sites, hopping integralst i j 5t(16dt), and band filling
n5Ne /Na51. The symbols refer to exact numerical diagonaliz
tions ~Ref. 23! and the curves to the present lattice densi
functional approach.
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V. SUMMARY AND OUTLOOK

A density-functional approach to lattice-fermion mode
has been applied to the dimerized 1D Hubbard Hamiltoni
In this framework the basic variable is the single-partic
density matrixg i j and the key unknown is the interaction
energy functionalW@g i j #. In the present paper we have fir
investigated the functional dependence ofW on the density-
matrix elementsg12 and g23 between nearest neighbors
dimerized chains (g i ,i 115g12 for odd i andg i ,i 115g23 for
eveni ). Rigorous results forW(g12,g23) were derived from
finite-ring Lanczos diagonalizations and from DMRG calc
lations for the infinite chain. An analysis of these exact
sults shows thatW can be appropriately scaled as a functi
g/g0(f); where g5Ag12

2 1g23
2 , and g0(f) is the largest

representableg for a given f5arctan(g12/g23). A simple
general approximation toW was then proposed which take
advantage of this scaling behavior and which provides wit
unified description of correlations from weak- to stron
coupling regimes. Finally, using this approximation, seve
ground-state properties and the charge-excitation gap
dimerized chains have been determined successfully a

-
-

FIG. 8. Charge-excitation gapDEc of dimerized 1D Hubbard
chains with hopping integralst i j 5t(16dt) and band filling n
5Ne /Na51. The crosses refer to exact Bethe-ansatz results
dt50 ~see also Fig. 7!.
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function of Coulomb-repulsion strengthU/t and hopping al-
ternationdt.

The accuracy of the results encourages more or
straightforward applications of the present approach to
lated problems such as multileg ladders or the tw
dimensional square lattice with first and second NN h
pings (t-t8 Hubbard model!. Moreover, the possibility of
generalizing the present scaling approximation to an a
trary number of independent variablesg i j deserves to be
investigated in detail, since it would open the way to app
d

k

. R
d
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cations in very low symmetry situations including met
clusters and disordered systems.
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