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Renormalized perturbation theory for Fermi systems: Fermi surface deformation
and superconductivity in the two-dimensional Hubbard model
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Divergencies appearing in perturbation expansions of interacting many-body systems can often be removed
by expanding around a suitably chosen renormalized~instead of the noninteracting! Hamiltonian. We describe
such a renormalized perturbation expansion for interacting Fermi systems, which treats Fermi surface shifts
and superconductivity with an arbitrary gap function via additive counterterms. The expansion is formulated
explicitly for the Hubbard model to second order in the interaction. Numerical solutions of the self-consistency
condition determining the Fermi surface and the gap function are calculated for the two-dimensional case. For
the repulsive Hubbard model close to half-filling we find a superconducting state withd-wave symmetry, as
expected. For Fermi levels close to the van Hove singularity a Pomeranchuk instability leads to Fermi surfaces
with a broken square lattice symmetry, whose topology can be closed or open. For the attractive Hubbard
model the second-order calculation yields ans-wave superconductivity with a weakly momentum dependent
gap, whose size is reduced compared to the mean-field result.

DOI: 10.1103/PhysRevB.67.035112 PACS number~s!: 71.10.Fd, 74.20.Mn
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I. INTRODUCTION

Unrenormalized perturbation expansions of interact
electron systems around the noninteracting part of
Hamiltonian are generally plagued by infrared divergenc
Some of the divergencies are simply due to to shifts of
Fermi surface, while others signal instabilities of the norm
Fermi liquid toward qualitatively different states, such as
perconducting or other ordered phases. This problem is o
treated by self-consistent resummations of Feynman
grams, where a finite or infinite subset of skeleton diagra
with the interacting propagatorG on internal lines, is
summed.1 Symmetry breaking can be built into the structu
of G as an ansatz, and the size of the corresponding o
parameter is determined self-consistently. This standard
proach has been very useful in many cases. However, res
mation schemes beyond first order~Hartree-Fock! require
extensive numerics, since the full self-energy has to be
termined self-consistently, and delicate low-energy structu
cannot always be resolved. A more serious problem is
fact that self-energy and vertex corrections are not treate
equal footing in most feasible resummation schemes. T
often leads to unphysical results.

In this work we will describe and apply an alternativ
procedure, which was formulated long ago by Nozie`res,2 and
more recently discussed in the mathematical literature a
way of carrying out well-defined perturbation expansions
weakly interacting Fermi systems.3,4 The basic idea is to
choose an improved starting point for the perturbation
pansion, by adding a suitable counterterm to the noninter
ing part of the Hamiltonian, and subtracting it from the i
teraction part. The counterterm is quadratic in the Fe
operators, and has to be determined from a self-consiste
condition. In Sec. II we will describe how Fermi surfac
deformations and superconductivity can be treated by
0163-1829/2003/67~3!/035112~8!/$20.00 67 0351
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method. Explicit expressions up to second order in the in
action are derived for the case of the Hubbard model in S
III. Results obtained from a numerical solution of the se
consistency equations in two dimensions will follow in Se
IV. For the repulsive Hubbard model we have obtained
perconducting solutions withd-wave symmetry, in agree
ment with widespread expectations,5 and with recent renor-
malization group calculations which conclusively establish
d-wave superconductivity at weak coupling.6–8 In addition,
for Fermi levels close to the van Hove singularity, deform
tions which break the square lattice symmetry occur. T
confirms the recently proposed possibility of symmet
breaking Fermi surface deformations~‘‘Pomeranchuk
instabilities’’!.9–12

II. RENORMALIZED PERTURBATION EXPANSION

We consider a system of interacting spin-1
2 fermions with

a HamiltonianH5H01HI , where the noninteracting part

H05(
k,s

jknks , ~1!

with jk5ek2m, contains the kinetic energy and the chem
cal potential, whileHI is a fermion-fermion interaction term
We are particularly interested in lattice systems, for wh
the dispersion relationek is not isotropic. We consider only
ground-state properties, that is the temperature is z
throughout the whole article.

The bare propagator in a standard many-body per
bation expansion13 aroundH0 is given by

G0~k!5
1

iv2jk
, ~2!
©2003 The American Physical Society12-1
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where v is the Matsubara frequency andk5(v,k). This
progagator diverges forv→0 and k→kF , for any Fermi
momentum kF , since jkF

50. As a consequence, man
Feynman diagrams diverge. A well-known singularity is t
~usually! logarithmic divergency of the one-loop particle
particle contribution to the two-particle vertex in the Coop
channel, which leads to a (log)n divergency of the n-loop
particle-particle ladder diagram. This signals a possible C
per instability toward superconductivity. Much stronger d
vergencies occur in diagrams with multiple self-energy ins
tions on the same internal propagator line, leading
nonintegrable powers ofG0(k).3,4 These singularities are
due to Fermi surface shifts generated by the interaction t
in the Hamiltonian.

The divergency problems and the superconducting in
bility can be treated by splitting the Hamiltonian in a diffe
ent way, namely, as2

H5H̃01H̃I , ~3!

where H̃05H01dH0 and H̃I5HI2dH0, and expanding
aroundH̃0. The countertermdH0 must be quadratic in the
creation and annihilation operators to allow for a straightf
ward perturbation expansion based on Wick’s theorem. I
possible to chosedH0 such thatH̃I does not shift the Ferm
surface corresponding toH̃0 anymore, and divergencies du
to self-energy insertions are removed. In the superconduc
state spontaneous symmetry breaking can be included
ready indH0, with an order parameterDk whose value on
the Fermi surface is not shifted byH̃I . We will now describe
this procedure in more detail.

A. Normal state

A countertermdH05(k,sdjknks leads to a renormalized
dispersion relationj̃k5jk1djk in the unperturbed part o
the Hamiltonian,

H̃05(
k,s

j̃knks , ~4!

and correspondingly to a bare propagator

G̃0~k!5
1

iv2 j̃k

. ~5!

The Fermi surfaceF̃ associated withH̃0 is given by the
momentak̃F satisfying the equationj̃k50. The Fermi sur-
face of the interacting system is given by the solutions of
equationG21(0,k)50. This surface coincides with the un
perturbed one, corresponding toH̃0, if the renormalizedself-

energyS̃5G̃0
212G21 vanishes onF̃, that is if

S̃~0,k!50 for kPF̃. ~6!

This imposes a self-consistency condition on the coun
terms which can be solved iteratively. For isotropic syste
the shift of jk can be chosen as a momentum-independ
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constant, which may be interpreted as a shift of the chem
potential. For anisotropic systems, however, one gener
has to adjust the whole shape of the Fermi surface. That
procedure really works at each order of the perturbation
pansion has been shown rigorously for a large class
systems.14

The shift functiondjk is uniquely determined by the self
consistency condition only on the~interacting! Fermi surface
F̃. For momenta away from the Fermi surface,djk can be
chosen to be any sufficiently smooth function ofk which
does not lead to artificial additional zeros ofj̃k .

The perturbation expansion of the renormalized se

energy S̃ involves two types of vertices: the usual two
particle vertex given by the interactionHI and a one-particle
vertex due to the counterterm2dH0 in H̃I . In Fig. 1 we

show the Feynman diagrams contributing toS̃ up to second
order in the interaction. The above-mentioned divergenc
of Feynman diagrams with self-energy insertions on inter
propagator lines are removed in the renormalized expan

around H̃0, since in productsG̃0S̃G̃0 . . . S̃G̃0 only one
simple pole atk5(0,k̃F) survives, all other poles being can

celled by the corresponding zeros of the self-energyS̃.

B. Superconducting state

To treat superconducting states we also add counterte
containing Cooper pair creation and annihilation operato
in addition to a shift ofjk . We consider only spin single
pairing, but triplet pairing could be dealt with analogous
We thus expand around a BCS mean-field Hamiltonian

H̃05(
k,s

j̃knks1(
k

@Dka2k↓
† ak↑

† 1Dk* ak↑a2k↓#, ~7!

whereDk is the gap function, which has to be determin
self-consistently. In terms of Nambu operators

Ck5S ak↑
a2k↓

† D and Ck
†5~ak↑

† ,a2k↓! ~8!

one can rewriteH̃0 in more compact form as

FIG. 1. The Feynman diagrams contributing to the renormali

self-energyS̃ at first and second-order perturbation theory; the tw
particle vertices represent the antisymmetrized interaction, o
particle vertices the counterterm, and lines the renormalized b

propagatorG̃0.
2-2
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H̃05(
k

j̃kCk
†s3Ck2(

k
Ck

†~Dk8s12Dk9s2!Ck , ~9!

wheres1 , s2, ands3 are the Pauli matrices, andDk8 (Dk9) is
the real~imaginary! part ofDk . The two expressions~7! and
~9! for H̃0 differ by the constant~c-number! (kj̃k , which
must be taken into account only when absolute energies
computed. The bare Nambu matrix propagatorG̃0

52^CC†& 0̃ following from H̃0 is given by

G̃0
21~k!5S iv2 j̃k Dk

Dk* iv1 j̃k
D . ~10!

Extending the self-consistency condition for the norm
state, we now require that the matrix self-energyS5G̃0

21

2G21 vanishes on the Fermi surface~defined byj̃k50),
that is

S~0,k!50 for kPF̃. ~11!

Thus, forv50 andk on the Fermi surface, neither the d
agonal nor off-diagonal elements ofG̃0

21(k) are shifted by

the interaction termH̃I . The Feynman diagrams in Fig.
also apply to the superconducting case, if lines are in
preted as Nambu matrix propagators.

C. Alternative methods

The above renormalized perturbation theory is remin
cent of the perturbation theory for symmetry broken pha
formulated by Georges and Yedidia,15 where an order-
parameter-dependent free-energy function is constructe
adding Onsager reaction terms to the mean-field contr
tions, and the actual order parameter is determined by m
mizing this free energy.

Conventional self-consistent perturbation theory can a
be formulated with counterterms.16 Since the counterterm
are dynamical~time or frequency dependent! in that case,
one has to switch from a Hamiltonian formulation to a pa
integral representation of the theory. Instead of expand
around the bare actionS05(kCk

†G0
21(k)Ck , in fully self-

consistent perturbation theory one expands aroundS̃0

5(kCk
†G21(k)Ck , whereG is the full propagator~includ-

ing off-diagonal elements in a superconducting state!. Here
Ck andCk

† are Grassmann variables. The difference betw

S0 and S̃0 is the countertermdS̃052(kCk
†S(k)Ck , where

S5G0
212G21 is the usual~unrenormalized! self-energy.

The self-consistency condition readsS(k)50 for all k,
where S is given by all self-energy diagrams construct
with lines G, quartic vertices corresponding to the intera
tion, and quadratic vertices2S. This condition is equivalen
to the usual formula expressingS as a sum over all skeleto
diagrams with lines given byG. The whole self-energy func
tion has to be determined self-consistently for all mome
and frequency variables, which is computationally quite
pensive. By contrast, in the renormalized perturbation the
used in our work only the minimal amount of sel
03511
re

l

r-

-
s

by
u-
i-

o

g

n

-

a
-
ry

consistency necessary for removing the singularities is
quired, such that the unknown counterterm can be par
etrized in a much smaller function space. Note also tha
conventional self-consistent approximations one often
tains unphysical artifacts since self-energy and vertex cor
tions are not treated on equal footing.

III. APPLICATION TO THE HUBBARD MODEL

In this section we derive explicit expressions for the se
energy and the counterterms for the ground state (T50) of
the Hubbard model, up to second order in the renormali
perturbation expansion. The one-band Hubbard model17

H5(
i,j

(
s

t ijcis
† cjs1U(

j
nj↑nj↓2mN ~12!

describes lattice electrons with a hopping amplitudet ij and a
local interactionU. Herecis

† and cis are creation and anni
hilation operators for electrons with spin projections on a
lattice site i, and njs5cis

† cis . Note that we have included
the termmN with the total particle number operatorN in our
definition of H. The noninteracting part ofH can be written
in momentum space asH05(kjknks wherejk5ek2m and
ek is the Fourier transform oft ij .

Our numerical results will be given for the Hubba
model on a square lattice with a hopping amplitude2t be-
tween nearest neighbors and a much smaller amplitude2t8
between next-nearest neighbors. The corresponding dis
sion relation is

ek522t~coskx1cosky!24t8 coskx cosky . ~13!

We now derive expressions for the self-energy and the res
ing self-consistency equations up to second order inU.

A. Normal state

1. First order

To first order inU the self-energy is obtained as

S̃ (1)~k!5UE
k8

G̃0~k8!eiv801
2djk , ~14!

where*k is a short-hand notation for the frequency and m
mentum integral, including the usual factors of (2p)21 for
each integration variable. The first term results from diagr
(1a) in Fig. 1, the second from diagram (1b). Note that the
tadpole diagram (1a) yields a k-independent contribution
since the Hubbard interaction is local. The self-consiste
condition @Eq. ~6!# for S̃ (1) yields, after carrying out thev8
integration,

djk5UE ddk8

~2p!d
Q~m2ek82djk8!, ~15!

to be satisfied~at least! for kPF̃. Since the right hand side
of this condition is a constant, it is natural to definedjk by
this constant for allk. Using Luttinger’s theorem one ca
identify the above momentum integral with the particle de
2-3
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ARNE NEUMAYR AND WALTER METZNER PHYSICAL REVIEW B 67, 035112 ~2003!
sity per spin, such thatdjk5Un/2, wheren is the total den-
sity. The self-consistency condition thus yields then(m) re-
lation of the interacting system. Since the counterterm can
chosenk independently at first order, it may be interpreted
a shift of the chemical potential.

2. Second order

Diagrams (2b) and (2c) from Fig. 1 obviously cance
each other to the extent that the first-order diagrams (a)
and (1b) cancel. Writing djk5dj (1)1djk

(2) with dj (1)

given by the constant on the right-hand side of Eq.~15!, such
that djk

(2) is of orderU2 for all k, the sum of contributions
from (2b) and (2c) is of orderU3 and can thus be ignore
at second order. Hence only diagram (2a) contributes to the
second-order self-energy. Using the Feynman rules,13 one
obtains

S̃ (2)~k!5U2E
q
P̃0~q!G̃0~k2q!, ~16!

where P̃0(q)52*k8G̃0(k8)G̃0(k81q). Adding first- and
second-order terms, one arrives at the second order
consistency condition

djk5UE ddk8

~2p!d
Q~2 j̃k8!1S̃ (2)~0,k!. ~17!

The countertermdjk has to be chosen such that the abo
equation is satisfied for allkPF̃, that is for allk satisfying

j̃k50. SinceS̃ (2)(0,k) is momentum dependent,djk cannot
be chosen constant any more. As a consequence, the F
surface of the interacting system will be deformed by int
actions, even if the volume of the Fermi sea is ke
fixed. Luttinger’s theorem can be used to determ
the density from the volume of the Fermi sea asn

52*@ddk/(2p)d#Q(2 j̃k).

B. Superconducting state

For the matrix elements of the Nambu propagator we
the standard notation

G~k!5S G~k! F~k!

F* ~k! 2G~2k!
D , ~18!

and an analogous expression forG̃0(k). The matrix elements
of the self-energy are denoted by

S̃~k!5S S̃~k! S̃~k!

S̃* ~k! 2S̃~2k!
D . ~19!

1. First order

In the presence of an off-diagonal countertermDk , the

diagonal part ofS̃ is still given by Eq.~14! to first order,
whereG̃0(k) now depends on the gap function:
03511
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G̃0~k!52
iv1 j̃k

v21 j̃k
21uDku2

. ~20!

The first-order self-consistency relation~15! thus generalizes
to

djk5UE ddk8

~2p!d

1

2
~12 j̃k8 /Ek8!, ~21!

with Ek5Aj̃k
21uDk

2u. Note that the above integral is th
BCS formula for the average particle density per spin.

The off-diagonal matrix element ofS̃ is obtained from
diagrams (1a) and (1b) in Fig. 1 as

S̃(1)~k!52UE
k8

F̃0~k8!1Dk ~22!

to first order inU, with

F̃0~k!5
Dk

v21 j̃k
21uDku2

. ~23!

The off-diagonal part of the self-consistency condition@Eq.
~11!# follows as

Dk52UE ddk8

~2p!d

Dk8

2Ek8

. ~24!

Extended as a condition for allk ~and not just onF̃) this is
nothing but the gap equation for the Hubbard model as
tained by standard BCS theory. The self-consistency rela
requires thatDk be constant on the Fermi surface, such th
one naturally chooses a constantDk5D as an ansatz for al
k. A nontrivial solutionD5” 0 of this gap equation can obvi
ously be obtained only for the attractive Hubbard mod
(U,0).

2. Second order

Diagrams (2b) and (2c) cancel each other for the sam
reason as in the normal state. The contribution from diagr
(2a) to the diagonal part of the self-energy is still given b
formula ~16!, with G̃0 from Eq. ~20! and

P̃0~q!52E
k8

@G̃0~k8!G̃0~k81q!1F̃0~k8!F̃0* ~k81q!#.

~25!

The second-order contribution to the off-diagonal matrix

ement ofS̃ is

S̃(2)~k!5U2E
q
P̃0~q!F̃0~k2q!. ~26!

The self-consistency relations read

djk5UE ddk8

~2p!d

1

2
~12 j̃k8 /Ek8!1S̃ (2)~0,k!, ~27!
2-4
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Dk52UE ddk8

~2p!d

Dk8

2Ek8

2S̃(2)~0,k!. ~28!

In the appendix we present more explicit expressions
S̃ (2)(0,k) and S̃(2)(0,k), obtained by carrying out the fre
quency integrals.

C. Numerical solution

The self-consistency conditions are non-linear equati
for the countertermsdjk and, in the superconducting stat
Dk . The Fermi surface of the interacting system,F̃, on
which the self-consistency conditions must be satisfied
not knowna priori. The equations involve one momentu
integral at first order, and two momentum integrals at sec
order. Such a non-linear system can only be solved ite
tively. In this subsection we describe some details of
algorithm.

Since the counterterms are determined by the s
consistency conditions only on the Fermi surface, their m
mentum dependence away fromF̃ can be parametrized in
many ways. We have chosendjk and Dk as constant along
the straight lines connecting the line defined by the condit
ukxu1ukyu5p with the points (0,0) and (p,p) of the Bril-
louin zone, respectively~see Fig. 2!. For a numerical solu-
tion the remaining tangential momentum dependence is
cretized by up to 256 points.

The iteration procedure starts with a tentative choice
counterterms. To be able to reach a symmetry broken s
tion one usually has to offer at least a small symmetry bre
ing counterterm in the beginning.18 In each iteration step new
counterterms are determined via Eq.~17! in the normal state,
and by Eqs.~27! and~28! for the superconducting state. Th
right-hand side of these equations is evaluated using
counterterms obtained in the previous step, andk is chosen
on the Fermi surface defined by the previousdjk . The mo-
mentum integrals are carried out using a Monte Carlo r
tine. The iteration is continued until convergence is achiev
that is until the counterterms remain invariant within nume
cal accuracy from step to step. In all cases studied diffe
choices of initial counterterms lead to the same unique s

FIG. 2. Parametrization of counterterms in the first quadran
the Brillouin zone; the counterterms are constant along the stra
lines connecting the line from (p,0) to (0,p) with the points (0,0)
and (p,p), respectively; the dashed line illustrates a typical Fer
surface.
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tion. The symmetry breaking terms are much larger than
stochastic noise from the Monte Carlo routine in all resu
shown.

The density is kept fixed by adjusting the chemical pote
tial during the iteration procedure. To avoid a higher nume
cal effort we have computed the density from the Fermi s
face volume in the normal state~justified by Luttinger’s
theorem!, and from the BCS formula for the density in su
perconducting solutions. The latter reduces to the Fermi
face volume in the normal state limit, such that the poten
error of this approximation is very small as long as the gap
small.

IV. RESULTS

We now discuss the most interesting results obtain
within the renormalized perturbation theory described abo
focusing mainly on the repulsive Hubbard model (U.0),
for which we have found superconducting solutions w
d-wave symmetry, as well as symmetry-breaking Fermi s
face deformations.

A. Repulsive Hubbard model

The following results for the repulsive Hubbard mod
have been computed for the parameterst8520.15t and U
53t. The interaction is thus in the weak to intermedia
coupling regime. For too smallU-values it becomes very
hard to resolve the small superconducting gap in the num
cal solution.

We have solved the self-consistency equations for vari
densities ranging fromn50.88 to 0.90, for which the Ferm
surfaces are quite close to the saddle points of the bare
persion relationek , located at (p,0) and (0,p). In all cases
the normal state is unstable toward superconductivity. T
gap function in the superconducting state obtained from
self-consistency equations has adx2-y2-wave shape, with
slight deviations from perfect d-wave symmetry in cas
where the Fermi surface breaks the symmetry of the squ
lattice. This is in agreement with widespread expectations
the Hubbard model,5 and in particular with recen
renormalization-group arguments and calculations.6–8 In Fig.
3 we show the gap functions obtained at the densitien
50.88 and 0.9, respectively. We note that the size of the
is roughly one order of magnitude smaller than the criti
cutoff scaleLc at which Cooper pair susceptibilities diverg
in one-loop renormalization group calculations for comp
rable model parameters.6–8 There are various possible rea

f
ht

i

FIG. 3. Gap function forn50.88 ~larger amplitude! and n
50.9 ~smaller amplitude! as a function of the angle with respect
the kx axis.
2-5



b
n

ua
u

je
n

nc
on
ul

b
fo
is
m
te
su
th

of

la
al
o

ns
t

o-

s

th
en
s.
rm

iffer
s

em
are
f
ed
of

ces
elf-
tric
de-

om
face

ex-
wn

rms
hift

on

us
nals
ce

try,

ur-

er-
ker
ts
i
flec-
an-
he
y in
e

for

try-

on-

n
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sons for this quantitative discrepancy. First, and proba
most importantly, the enhancement of effective interactio
due to fluctuations, especially antiferromagnetic spin fluct
tions, is captured much better by a renormalization-gro
calculation. Second, the approximate Fermi surface pro
tion of vertices driving the renormalization-group flow ca
lead to an overestimation of effective interactions and he
of critical energy scales. Furthermore, a renormalizati
group calculation within the symmetry broken phase co
yield a gap that is somewhat smaller thanLc .

No evidence for superconductivity in the repulsive Hu
bard model was found within the perturbation expansion
the free energy used earlier in Ref. 15. The reason for th
probably a purely numerical problem: it is very hard to co
pute the free energy with an accuracy that suffices to de
the tiny lowering induced by the order parameter of the
perconductor. In addition, the computers available in
early ninties were of course less powerful than today.

While superconductivity is the only possible instability
the normal Fermi liquid state in the weak-coupling limit~ex-
cept for the case of perfect nesting at half-filling!, at higherU
one should also consider the possibility of other, in particu
magnetic, instabilities. This could be done within renorm
ized perturbation theory by allowing for counterterms intr
ducing magnetic or charge order.

The Fermi surface is always deformed by interactio
The shifts generated by the momentum dependence of
countertermdjk are not very large. They are more pr
nounced near the saddle points ofek , where small energy
shifts lead to relatively large shifts ink space. This agree
with earlier non-self-consistent19 and self-consistent20,21 per-
turbative calculations of Fermi surface deformations in
Hubbard model at weak coupling, and also with a rec
renormalization-group calculation of Fermi surface shift8

However, the results presented in Fig. 4 show that the Fe

FIG. 4. Fermi surfaces of the interacting system for differe
densitiesn.
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surface of the interacting system can nevertheless d
strikingly from the bare one. For the densitie
n50.88–0.889 the Fermi surface of the interacting syst
obviously breaks the point group symmetry of the squ
lattice. For n50.88 and 0.888 even the topology o
the Fermi surface is changed by interactions. The deform
surface has open topology in these cases, instead
being closed around the points (0,0) or (p,p) in the Bril-
louin zone. Note that the symmetry-broken Fermi surfa
shown here correspond to stable solutions of the s
consistency equations for the counterterms, while symme
solutions are unstable. Note also that symmetry-breaking
formations of the Fermi surface cannot be obtained fr
perturbative expansions around the symmetric Fermi sur
as in Ref. 19.

More details about the Fermi surface shifts can be
tracted from a plot of the second order counterterms, sho
in Fig. 5. The actual shifts are determined by these te
plus a constant due to the first-order counterterm and a s
of the chemical potential. At a fixed density the interacti

shifts the Fermi surface outward at points whereS̃ (2)(0,k̃F)
is minimal, and inward where it is maximal. Interactions th
reduce the curvature of the Fermi surface near the diago
in the Brillouin zone. Figure 5 reveals that the Fermi surfa
deformation is slightly asymmetric also forn50.9, but the
symmetry breaking is too small to be seen in Fig. 4.

If the Fermi surface breaks the square lattice symme
the gap functionDk cannot have pured-wave symmetry any
more. See, for example, the gap function at densityn
50.88 in Fig. 3. The deviation from perfectd-wave form is
however quite small, since the symmetry breaking Fermi s
face deformation is small.

The density regime around the van Hove filling charact
ized by a symmetry-broken Fermi surface shrinks at wea
couplingU. It is a priori clear that superconductivity persis
down to arbitrarily small values ofU, regardless of Ferm
surface deformations, since the latter never break the re
tion invariance, such that the singularity in the Cooper ch
nel is not cut off. One may wonder, however, whether t
superconducting gap destroys the Pomeranchuk instabilit
the weak coupling limit. To clarify this, we have solved th
self-consistency equations near the van Hove filling
smaller values ofU down to U52t. It turned out that the
superconducting gap vanishes faster than the symme
breaking component of the countertermdjk , as a function of
decreasingU. It thus seems that the coexistence of superc

t

FIG. 5. Second-order countertermsS̃ (2)(0,k̃F) as a function of
the angle with respect to thekx axis, for the densitiesn50.888,
0.889, and 0.9~from bottom to top!.
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RENORMALIZED PERTURBATION THEORY FOR FERMI . . . PHYSICAL REVIEW B 67, 035112 ~2003!
ductivity and a symmetry-broken Fermi surface persists
arbitrarily smallU-values, if the density is tuned sufficientl
close to the van Hove point.

Interaction-induced Fermi surface deformations wh
break the symmetry of the square lattice were already
cussed earlier in the literature. Yamase and Kohno10 obtained
symmetry-broken Fermi surfaces within a slave boson me
field theory for the t-J model, and Valenzuela an
Vozmediano11 within a Hartree-Fock calculation for the ex
tended Hubbard model~including nearest-neighbor interac
tions!. For the Hubbard model~with purely local interaction!
the first indication that symmetry-breaking Fermi surface
formations may occur came from a calculation of effect
interactions via a one-loop renormalization group flow.9 The
interactions in the forward scattering channel turned ou
favor symmetry-breaking Pomeranchuk instabilities of
Fermi surface, if the latter is close to the van Hove poin
This was confirmed most recently by a perturbative calcu
tion of the Landau function.22 A systematic stability analysis
of the Hubbard model using Wegner’s Hamiltonian flo
equation method also confirmed that symmetry-break
Fermi surface deformations are among the strong
instabilities.12 It remained an open question, howev
whether such Fermi surface instabilities would be cut off
the superconducting gap. We have observed within
renormalized perturbation theory that symmetry-break
Fermi surface deformations occur indeed more easily, if
system is forced to stay in a normal state, by settingDk
50. Whether a symmetry-broken Fermi surface and su
conductivity coexist can be seen only by performing a c
culation within the symmetry-broken state. This has not
been done using the renormalization group or flow equa
methods.

From a pure symmetry-group point of view the symme
breaking generated by the Pomeranchuk instability is equ
lent to that in ’’nematic’’ electron liquids, first discussed b
Kivelson et al.23 These authors considered doped Mott ins
lators, that is it strongly interacting systems. A general the
of orientational symmetry-breaking in fully isotropic~not lat-
tice! two- and three-dimensional Fermi liquids has been
ported by Oganesyanet al.24 Superconducting nemati
states, in which discrete orientational symmetry breaking
velops in addition to d-wave superconductivity, have be
considered recently by Vojtaet al.25 Motivated by experi-
mental properties of single-particle excitations in cuprate
perconductors they performed a general classification
field-theoretic analysis of various phases with an additio
order parameter on top ofdx22y2 pairing.

B. Attractive Hubbard model

For the attractive Hubbard model (U,0) the renormal-
ized perturbation expansion already yieldss-wave supercon-
ductivity at first order, which is equivalent to BCS mea
field theory.26 At this level the gap function is constant ink
space. Extending the calculation to second order, a w
momentum dependence ofDk is generated, as seen in Fig.
for the parametersU522t, t8520.15t, andn50.9. More
importantly, the overall size of the gap is strongly reduced
03511
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fluctuations included in the second-order terms. The aver
gap in Fig. 6 is only one third of the corresponding mea
field gap. It has been pointed out previously that fluctuatio
not contained in mean-field theory reduce the size of m
netic and other order parameters even in the weak-coup
limit.15,27

V. CONCLUSION

In summary, we have formulated a renormalized pert
bation theory for interacting Fermi systems, which tre
Fermi surface deformations and superconductivity via ad
tive counterterms. This method is very convenient for stu
ing the role of fluctuations for spontaneous symmetry bre
ing in a controlled weak-coupling expansion. A concre
application of the expansion carried out to second or
yields several nontrivial results for the two-dimension
Hubbard model. In particular, for the repulsive model w
have obtained the gap function of the expectedd-wave su-
perconducting state and, for Fermi levels close to the
Hove energy, an interacting Fermi surface with broken latt
symmetry, and in some cases even open topology.
symmetry-breaking pattern of the states with symmet
broken Fermi surfaces is equivalent to that of ’’nemati
electron liquids discussed already earlier from a differ
point of view.23,25

The present work can be extended in several interes
directions. After fixing the counterterms one can compute
full momentum and energy dependence of the self-ene
and hence the spectral function for single-particle exc
tions. At second order the combined effects of symme
breaking and quasi-particle decay are captured. Allowing
other symmetry-breaking counterterms, for example sp
density waves, one can study the competition of magne
charge, and superconducting instabilities, as well as t
possible coexistence. Finally, the formalism can be exten
to finite temperature. In that case the singularities of the b
propagator are cut off by the smallest Matsubara freque
but Fermi surface shifts and symmetry breaking can still
conveniently taken into account by counterterms. The s
consistency condition can be imposed at zero frequency a
analytical continuation to real frequencies.
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FIG. 6. Gap function forn50.9 as a function of the angle with
respect to thekx axis for the attractive (U522t) Hubbard model.
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APPENDIX: FREQUENCY INTEGRALS

The Matsubara frequency integrals in the second or
self-energy contributions can be carried out analytically
using the residue theorem. We only present the results fo
superconducting case; the normal state results can be re
ered by settingDk50 in the following expressions.

The frequency integrals relevant for the evaluation ofP̃0
defined by Eq.~25! are

E dk0

2p
G̃0~k!G̃0~k1q!5

Ek1Ek1q

2EkEk1q

j̃kj̃k1q2EkEk1q

q0
21@Ek1Ek1q#2

1
iq0

2EkEk1q

j̃kEk1q2Ekj̃k1q

q0
21@Ek1Ek1q#2

~A1!

and
-

t.

e

v
,

03511
er
y
he
ov-

E dk0

2p
F̃0~k!F̃0* ~k1q!5

Ek1Ek1q

2EkEk1q

DkDk1q*

q0
21@Ek1Ek1q#2

.

~A2!

The imaginary part ofP̃0 does not contribute toS̃(0,k).
Carrying out theq0 integral in Eqs.~16! and ~26! yields

S̃ (2)~0,k!52U2E
q
E

k8
j̃k2qC~k,k8,q!, ~A3!

S̃(2)~0,k!5U2E
q
E

k8
Dk2qC~k,k8,q!, ~A4!

where

C~k,k8,q!5
Ek8Ek81q2 j̃k8j̃k81q2Dk8Dk81q

*

4Ek2qEk8Ek81q@Ek2q1Ek81Ek81q#
.

~A5!
e-
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