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Renormalized perturbation theory for Fermi systems: Fermi surface deformation
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Divergencies appearing in perturbation expansions of interacting many-body systems can often be removed
by expanding around a suitably chosen renormalizestead of the noninteractingdamiltonian. We describe
such a renormalized perturbation expansion for interacting Fermi systems, which treats Fermi surface shifts
and superconductivity with an arbitrary gap function via additive counterterms. The expansion is formulated
explicitly for the Hubbard model to second order in the interaction. Numerical solutions of the self-consistency
condition determining the Fermi surface and the gap function are calculated for the two-dimensional case. For
the repulsive Hubbard model close to half-filling we find a superconducting statedwitive symmetry, as
expected. For Fermi levels close to the van Hove singularity a Pomeranchuk instability leads to Fermi surfaces
with a broken square lattice symmetry, whose topology can be closed or open. For the attractive Hubbard
model the second-order calculation yieldssawave superconductivity with a weakly momentum dependent
gap, whose size is reduced compared to the mean-field result.
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[. INTRODUCTION method. Explicit expressions up to second order in the inter-
action are derived for the case of the Hubbard model in Sec.
Unrenormalized perturbation expansions of interactingll. Results obtained from a numerical solution of the self-
electron systems around the noninteracting part of the&onsistency equations in two dimensions will follow in Sec.
Hamiltonian are generally plagued by infrared divergencieslV. For the repulsive Hubbard model we have obtained su-
Some of the divergencies are simply due to to shifts of thgperconducting solutions witli-wave symmetry, in agree-
Fermi surface, while others signal instabilities of the normalment with widespread expectationsnd with recent renor-
Fermi liquid toward qualitatively different states, such as su-malization group calculations which conclusively established
perconducting or other ordered phases. This problem is ofted-wave superconductivity at weak couplificf In addition,
treated by self-consistent resummations of Feynman diagfor Fermi levels close to the van Hove singularity, deforma-
grams, where a finite or infinite subset of skeleton diagramdjons which break the square lattice symmetry occur. This
with the interacting propagatoc on internal lines, is confirms the recently proposed possibility of symmetry-
summed: Symmetry breaking can be built into the structurebreaking Fermi surface deformationg‘Pomeranchuk
of G as an ansatz, and the size of the corresponding ordénstabilities”).>~*2
parameter is determined self-consistently. This standard ap-
proa_lch has been very usefL!I in many cases. However,_ resum- | RENORMALIZED PERTURBATION EXPANSION
mation schemes beyond first ordé@dartree-Fock require
extensive numerics, since the full self-energy has to be de- We consider a system of interacting sgirfermions with
termined self-consistently, and delicate low-energy structurea HamiltonianH=Hg+H,, where the noninteracting part
cannot always be resolved. A more serious problem is the
fact that self-energy and vertex corrections are not treated on
equal footing in most feasible resummation schemes. This Ho=k2 &Nk (1)
often leads to unphysical results. a

In this work we will describe and apply an a[ternative with &= €,— ., contains the kinetic energy and the chemi-
procedure, Wh'ch was formulated long agoiby Npeé and g potential, whileH, is a fermion-fermion interaction term.
more recently discussed in the mathematical literature as e are particularly interested in lattice systems, for which
way of carrying out well-defined perturbation expansions fory,q gispersion relatiow, is not isotropic. We consider only
weakly interacting Fermi systents. The basic idea is to ground-state properties, that is the temperature is zero
choose an improved starting point for the perturbation ex’[hroughout the whole article.
pansion, by adding a suitable counterterm to the noninteract- The bare propagator in a standard many-body pertur-
ing part of the Hamiltonian, and subtracting it from the in- bation expansior® aroundH is given by
teraction part. The counterterm is quadratic in the Fermi
operators, and has to be determined from a self-consistency 1
condition. In Sec. Il we will describe how Fermi surface Go(K)= ———,
deformations and superconductivity can be treated by this lo— &
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where w is the Matsubara frequency and=(w,k). This

progagator diverges foo—0 andk—kg, for any Fermi -
momentumkg, since ng=0. As a consequence, many

Feynman diagrams diverge. A well-known singularity is the Ib
(usually logarithmic divergency of the one-loop particle- a
2b 2c

la

particle contribution to the two-particle vertex in the Cooper

channel, which leads to a (Idg}livergency of the n-loop @
particle-particle ladder diagram. This signals a possible Coo-

per instability toward superconductivity. Much stronger di- 2a

vergencies occur in dlz_igrams with multiple S(_alf-energy_ NSEr £1G. 1. The Feynman diagrams contributing to the renormalized
tions on the same internal propagator line, leading to

nonintegrable powers oGo(k).3'4 These singularities are self-energy2, at first and second-order perturbation theory; the two-

. . . - article vertices represent the antisymmetrized interaction, one-
idnuteh;[aol-lfaerrnniql;osnﬂrafsce shifts generated by the interaction terrﬁarticle vertices the counterterm, and lines the renormalized bare
The divergency problems and the superconducting instd2'0P29atoGo.
bility can be treated by splitting the Hamiltonian in a differ-

ent way, namely, &s constant, which may be interpreted as a shift of the chemical

potential. For anisotropic systems, however, one generally
H=Hy+H,, ) has to adjust the whole shape of the Fermi surface. That this
procedure really works at each order of the perturbation ex-
where HOZHO+ 6H, and H|:H|—5Ho, and expanding Pansion 4has been shown rigorously for a large class of
aroundH,. The counterterméH, must be quadratic in the systems: , ) ) ) )
creation and annihilation operators to allow for a straightfor- 1€ Shift functiondg, is uniquely determined by the self-
ward perturbation expansion based on Wick’s theorem. It i£Onsistency condition only on thénteracting Fermi surface
possible to choséH,, such thaf, does not shift the Fermi - FOr momenta away from the Fermi surfac, can be
N . . chosen to be any sufficiently smooth function lofwhich
surface corresponding td, anymore, and divergencies due . . ~
to self-energy insertions are removed. In the superconducting®€S Nnot lead to artificial additional zeros &f. _
state spontaneous symmetry breaking can be included al- The ~perturbatlon expansion of the renormalized self-
ready in8H,, with an order parametek, whose value on energy 2 involves two types of vertices: the usual two-

the Fermi surface is not shifted ¥ . We will now describe ~ Particle vertex given by the interactid#y, and a one-particle

this procedure in more detalil. vertex due to the counterterm sHy in H,. In Fig. 1 we
show the Feynman diagrams contributing®aip to second
A. Normal state order in the interaction. The above-mentioned divergencies

of Feynman diagrams with self-energy insertions on internal

A counterterméHq =X ,8&n,, leads to a renormalized . . : .
' propagator lines are removed in the renormalized expansion

dispersion relatioré, = &+ 8¢, in the unperturbed part of

the Hamiltonian. around Hy, since in productsG,3 G, . . . 3G, only one
simple pole ak=(0kg) survives, all other poles being can-
HOZE Zn, (4) celled by the corresponding zeros of the self-eneigy
k,o .
and correspondingly to a bare propagator B. Superconducting state
To treat superconducting states we also add counterterms
~ 1 containing Cooper pair creation and annihilation operators,
Go(k)= (5
0 - ~

in addition to a shift of¢,. We consider only spin singlet
pairing, but triplet pairing could be dealt with analogously.
The Fermi Surface’%~ associated With:]o is given by the We thus expand around a BCS mean-field Hamiltonian
momentak; satisfying the equatio,=0. The Fermi sur-

f f the interactin m is given h lutions of th 0o 7 oot *
cquaton '(0K) -0, Ths sutace coincides with he un- 10 2% Dk 3 (Al afaga ] ()
perturbed one, correspondinghiy, if the renormalizedself-

o= &

where A, is the gap function, which has to be determined

energyS =G, '~ G~ vanishes or, that is if self-consistently. In terms of Nambu operators
S(0k)=0 for ke (6) a;
. . y V= ¢ | and ¥i=(af;.a ) ®)
This imposes a self-consistency condition on the counter- aly

terms which can be solved iteratively. For isotropic systems 5
the shift of £, can be chosen as a momentum-independendne can rewritdH, in more compact form as
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- - consistency necessary for removing the singularities is re-
Ho:; §k‘I’E03‘1’k—; Wi(Aro1—ALo) Wy, (9  quired, such that the unknown counterterm can be param-
etrized in a much smaller function space. Note also that in
whereo;, o,, ando are the Pauli matrices, ar, (A}) is conventional self-consistent approximations one often ob-
the rea'(imaginary part OfAk . The two expressior@) and tains unphysical artifaCtS Since Self.'energy and vertex correc-
(9) for H, differ by the constantc-numbey =, Z,, which  1ONS are not treated on equal footing.
must be taken into account only when absolute energies are
computed. The bare Nambu matrix propagat@,
= — (Vw5 following from Hy is given by In this section we derive explicit expressions for the self-
energy and the counterterms for the ground state @) of

Ill. APPLICATION TO THE HUBBARD MODEL

o

_ iw—&, Ay the Hubbard model, up to second order in the renormalized
Gy H(k)= .~ (100 perturbation expansion. The one-band Hubbard ntbdel
Ak lw+ gk
Extending the self-consistency condition for the normal H=> > tijCiTo_CjU+ u>, njtnj; — uN (12
] ]

state, we now require that the matrix self-enedy égl

— G~ ! vanishes on the Fermi surfa¢defined by~§k=0), describes lattice electrons with a hopping amplittidand a
that is local interactionU. Herec! andc;, are creation and anni-
hilation operators for electrons with spin projectionon a
3(0k)=0 for ke F. (11 lattice sitei, and nj(,=ciT,,ciU. Note that we have included
) ) . the termuN with the total particle number operathrin our
Thus, foro=0 andk on the Fermi surface, neither the di- yefinition of H. The noninteracting part dfl can be written
agonal nor off-diagonal elements & *(k) are shifted by in momentum space a$,=3, &Ny, Where&,=e,— u and
the interaction ternH,. The Feynman diagrams in Fig. 1 € is the Fourier transform of; .
also apply to the superconducting case, if lines are inter- Our numerical results will be given for the Hubbard

preted as Nambu matrix propagators. model on a square lattice with a hopping amplitude be-
tween nearest neighbors and a much smaller amplitutie
C. Alternative methods between next-nearest neighbors. The corresponding disper-

. . ) . sion relation is
The above renormalized perturbation theory is reminis-

cent of the perturbation theory for symmetry broken phases €= — 2t(cosky+cosk,) —4t’ cosk, cosk,. (13
formulated by Georges and Yedidia,where an order- ) )
parameter-dependent free-energy function is constructed h{/& NOW derive expressions for the self-energy and the result-
adding Onsager reaction terms to the mean-field contribul'd Self-consistency equations up to second ordey.in
tions, and the actual order parameter is determined by mini-
mizing this free energy. A. Normal state

Conventional self-consistent perturbation theory can also

: - 1. First order
be formulated with counterterni®.Since the counterterms

are dynamicaltime or frequency dependénin that case, To first order inU the self-energy is obtained as

one has to switch from a Hamiltonian formulation to a path

integral representatipn of the J’Eheiolry. Instegd of expanding i(l)(k)ZUf éo(k’)e‘“"m—éfk, (14)
around the bare actio8,==,¥ G, “(K)¥, in fully self- K’

consistent perturbation theory one expands aroyd where[, is a short-hand notation for the frequency and mo-
=3, ¥!G (k) ¥, whereG is the full propagatofinclud-  mentum integral, including the usual factors of2 * for

ing off-diagonal elements in a superconducting statiere  each integration variable. The first term results from diagram
% and‘l’l are Grassmann variables. The difference betweefila) in Fig. 1, the second from diagraml§. Note that the

Sp andS, is the counterterndS,= — =, W 3(k)¥,, where tadpole diagram (&) yields a k-independent contribution,
EZGal_Gfl is the usual(unrenormalizell self-energy. since the Hubbard interaction is local. The self-consistency
The self-consistency condition readyk)=0 for all k,  condition[Eq. (6)] for %) yields, after carrying out the’
where 3 is given by all self-energy diagrams constructed!ntégration,

with lines G, quartic vertices corresponding to the interac- L,
tion, and quadratic vertices X. This condition is equivalent SE = Uf dk
to the usual formula expressigas a sum over all skeleton K (2m)8
diagrams with lines given b. The whole self-energy func- _
tion has to be determined self-consistently for all momentdo be satisfiedat least for k e 7. Since the right hand side
and frequency variables, which is computationally quite ex-of this condition is a constant, it is natural to defifg, by
pensive. By contrast, in the renormalized perturbation theoryhis constant for alk. Using Luttinger’'s theorem one can
used in our work only the minimal amount of self- identify the above momentum integral with the particle den-

O(u— €0 — &), (15
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sity per spin, such thaé,=Un/2, wheren is the total den- ~ i+ &
sity. The self-consistency condition thus yields ti(g) re- GoK) == =3
lation of the interacting system. Since the counterterm can be Wt &t [Ay

choserk independently at first order, it may be interpreted asrpe first-order self-consistency relatiétf) thus generalizes
a shift of the chemical potential. to

(20

2. Second order

di,r

Diagrams (d») and (x) from Fig. 1 obviously cancel 5§k:UJ (2)d E(l_gk’/Ek’)' (21)
each other to the extent that the first-order diagrams) (1
and (1) cancel. Writing 6é=66M+ 56 with 66 \ith E,=\/E2+|AZ]. Note that the above integral is the
given by the constant on the right-hand side of &%), such  Bcs formula for the average particle density per spin.
that 8¢ is of orderU? for all k, the sum of contributions  Tpe off-diagonal matrix element & is obtained from
from (2b) and () is of orderU® and can thus be ignored diagrams (&) and (1) in Fig. 1 as
at second order. Hence only diagramajZontributes to the

second-order self-energy. Using the Feynman rtiesne =1 -
obtains St )(k)Z—Ufk,Fo(k')JrAk (22)

32 = ~ to first order inU, with
2¥(k)=U quo(q)Go(k—q), (16)

- Ay

Folk)=—————. 23
o B o 29

where I1o(q) = — [ Go(k’)Go(k’ + ). Adding first- and

second-order terms, one arrives at the second order self-

consistency condition The off-diagonal part of the self-consistency condit[&g.
(11)] follows as

di L <,
5§k=uf SO(—&)+XP(0k). 17 dik’ Ay
(2m) Ay=— Uf —.
(2m)9 2E,
The countertermsé, has to be chosen such that the above

equation is satisfied for ak e 7, that is for allk satisfying E;(ttﬁ{:]%egu?ihzC;:Siteigz;ggﬁ;é??ﬁ;gh{;ﬁ;rzngog‘: ;SS ob.

<~ . “'(2) . 3 . .
gk_(r)]' SinceX“/(0k) is momentum dependenigy canrr:ot tained by standard BCS theory. The self-consistency relation
e chosen constant any more. As a consequence, the Ferpa, ires’than\, be constant on the Fermi surface, such that
surface of the interacting system will be deformed by inter-j e naturally chooses a constdnt=A as an ansatz for all
actions, even if the volume of the Fermi sea is keptk. A nontrivial solutionA #0 of this gap equation can obvi-

fixed. Lu_ttinger’s theorem can be used tp Oletermineously be obtained only for the attractive Hubbard model
the density from the volume of the Fermi sea Bms (U<0)

=2/[d%/(2m)"]0 (—&y).

(24)

2. Second order

B. Superconducting state Diagrams (®) and (Z) cancel each other for the same
For the matrix elements of the Nambu propagator we uséeason as in the normal state. The contribution from diagram
the standard notation (2a) to the diagonal part of the self-energy is still given by
formula (16), with G, from Eq. (20) and
G(k) F(k)
SO —a(-k)" 1w - & (KNEA(K! E B (K
Ho(Ol)=—fk,[Go(k )Go(K’ +a) +Fo(k")Fg (k' +a)].
and an analogous expression @g(k). The matrix elements (25
of the self-energy are denoted by The second-order contribution to the off-diagonal matrix el-
~ ~ ement of3, is
- 3(k) S(k)
S(ky=| - - . (19 B 5 B
S'(k) —2(-k) s<2><k)=u2f o()Fo(k—0). (26)
q

1. First order The self-consistency relations read

In the presence of an off-diagonal countertef, the
diagonal part of, is still given by Eq.(14) to first order,

di%’ 1 ~ ~
e 5 =uf —— (1= EL)+3@0k), (27)
whereGy(k) now depends on the gap function: S (2m)4 2 fic 1B (
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(O7n) (TE,TC) 0.01 T T T T T T
/ 3
-0.01r V V g
) s
,//) ¢
(0,0) (,0) FIG. 3. Gap function forn=0.88 (larger amplitudg and n

=0.9 (smaller amplitudeas a function of the angle with respect to
FIG. 2. Parametrization of counterterms in the first quadrant othe k, axis.
the Brillouin zone; the counterterms are constant along the straight
lines connecting the line from,0) to (Oar) with the points (0,0) tion. The symmetry breaking terms are much larger than the
and (rr, ), respectively; the dashed line illustrates a typical Fermistochastic noise from the Monte Carlo routine in all results
surface. shown.
The density is kept fixed by adjusting the chemical poten-
KA tial during the iteration procedure. To avoid a higher nur_neri-
Ay=— f i_g(z)(o,k)_ (28) cal effort we have computed the density from the Fermi sur-
(27T)d 2Ey face volume in the normal statgustified by Luttinger’'s
theorem, and from the BCS formula for the density in su-
perconducting solutions. The latter reduces to the Fermi sur-
In the appendix we present more explicit expressions foface volume in the normal state limit, such that the potential
3@(0k) and S?(0k), obtained by carrying out the fre- error of this approximation is very small as long as the gap is
guency integrals. small.

IV. RESULTS
C. Numerical solution

The self-consistency conditions are non-linear equations.we now dlscus§ the most mterestlng resul;s obtained
for the counterterms¢, and, in the superconducting state within the renormalized perturbation theory described above,

. . . ~ focusing mainly on the repulsive Hubbard modél % 0),
Ay. The Fermi surface of the interacting systef, on .for which we have found superconducting solutions with

which the self-consistency conditions must be satisfied, i, ae symmetry, as well as symmetry-breaking Fermi sur-
not knowna priori. The equations involve one momentum éﬁce deformationé

integral at first order, and two momentum integrals at secon
order. Such a non-linear system can only be solved itera- _
tively. In this subsection we describe some details of our A. Repulsive Hubbard model
algorithm. The following results for the repulsive Hubbard model
Since the counterterms are determined by the selfhave been computed for the parametérs —0.1% and U
consistency conditions only on the Fermi surface, their mo—3t. The interaction is thus in the weak to intermediate
mentum dependence away fraf can be parametrized in coupling regime. For too small-values it becomes very
many ways. We have choseif, andA, as constant along hard to resolve the small superconducting gap in the numeri-
the straight lines connecting the line defined by the conditiorcal solution.
[ky| +[ky| =7 with the points (0,0) and,) of the Bril- We have solved the self-consistency equations for various
louin zone, respectivelysee Fig. 2. For a numerical solu- densities ranging from=0.88 to 0.90, for which the Fermi
tion the remaining tangential momentum dependence is dissurfaces are quite close to the saddle points of the bare dis-
cretized by up to 256 points. persion relatiore, , located at ¢,0) and (Or). In all cases
The iteration procedure starts with a tentative choice othe normal state is unstable toward superconductivity. The
counterterms. To be able to reach a symmetry broken solugap function in the superconducting state obtained from the
tion one usually has to offer at least a small symmetry breakself-consistency equations has dz2-wave shape, with
ing counterterm in the beginnir§In each iteration step new slight deviations from perfect d-wave symmetry in cases
counterterms are determined via Etj7) in the normal state, where the Fermi surface breaks the symmetry of the square
and by Eqs(27) and(28) for the superconducting state. The lattice. This is in agreement with widespread expectations for
right-hand side of these equations is evaluated using ththe Hubbard model, and in particular with recent
counterterms obtained in the previous step, frid chosen  renormalization-group arguments and calculatibidn Fig.
on the Fermi surface defined by the previai& . The mo- 3 we show the gap functions obtained at the densities
mentum integrals are carried out using a Monte Carlo rou=0.88 and 0.9, respectively. We note that the size of the gap
tine. The iteration is continued until convergence is achievedis roughly one order of magnitude smaller than the critical
that is until the counterterms remain invariant within numeri-cutoff scaleA . at which Cooper pair susceptibilities diverge
cal accuracy from step to step. In all cases studied differerih one-loop renormalization group calculations for compa-
choices of initial counterterms lead to the same unique solurable model paramete?s® There are various possible rea-
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FIG. 5. Second-order counterterd$?(0k¢) as a function of
the angle with respect to thig, axis, for the densities1=0.888,
0.889, and 0.9from bottom to top.

surface of the interacting system can nevertheless differ
strikingly from the bare one. For the densities

n=0.88-0.889 the Fermi surface of the interacting system
obviously breaks the point group symmetry of the square
lattice. For n=0.88 and 0.888 even the topology of

the Fermi surface is changed by interactions. The deformed
surface has open topology in these cases, instead of

L — ' being closed around the points (0,0) ar,¢r) in the Bril-

FIG. 4. Fermi surfaces of the interacting system for dif‘ferentIOUIn zone. Note that the symmetry-broke_n Fermi surfaces
densitiesn. shown here correspond to stable solutions of the self-
consistency equations for the counterterms, while symmetric

. o . , solutions are unstable. Note also that symmetry-breaking de-
sons for this quantitative discrepancy. First, and prObabI3f0rmations of the Fermi surface cannot be obtained from

most |mportan_tly, the enh_anceme_nt of effectlye 'nFeraCt'on%erturbative expansions around the symmetric Fermi surface
due to fluctuations, especially antiferromagnetic spin fluctua:

- as in Ref. 19.
tions,

is captured much better by a renormalization-group . . :
calculation. Second, the approximate Fermi surface projec- More details about the Fermi surface shifts can be ex-

tion of vertices driving the renormalization-group flow can f[ract_ed from a plot of the_ second order counterterms, shown
lead to an overestimation of effective interactions and henct! F19- 5. The actual sh|fts_are determined by these term_s
of critical energy scales. Furthermore, a renormalizationP!US @ constant due to the first-order counterterm and a shift
group calculation within the symmetry broken phase couldPf the chemical potential. At a fixed density the |nte~ract|on
yield a gap that is somewhat smaller thag. shifts the Fermi surface outward at points wha/&)(0kg)

No evidence for superconductivity in the repulsive Hub-is minimal, and inward where it is maximal. Interactions thus
bard model was found within the perturbation expansion foreduce the curvature of the Fermi surface near the diagonals
the free energy used earlier in Ref. 15. The reason for this i# the Brillouin zone. Figure 5 reveals that the Fermi surface
probably a purely numerical problem: it is very hard to com-deformation is slightly asymmetric also for=0.9, but the
pute the free energy with an accuracy that suffices to detestymmetry breaking is too small to be seen in Fig. 4.
the tiny lowering induced by the order parameter of the su- If the Fermi surface breaks the square lattice symmetry,
perconductor. In addition, the computers available in thehe gap functiom\, cannot have purd-wave symmetry any
early ninties were of course less powerful than today. more. See, for example, the gap function at density

While superconductivity is the only possible instability of =0.88 in Fig. 3. The deviation from perfedtwave form is
the normal Fermi liquid state in the weak-coupling lifék-  however quite small, since the symmetry breaking Fermi sur-
cept for the case of perfect nesting at half-filingt highetU  face deformation is small.
one should also consider the possibility of other, in particular The density regime around the van Hove filling character-
magnetic, instabilities. This could be done within renormal-ized by a symmetry-broken Fermi surface shrinks at weaker
ized perturbation theory by allowing for counterterms intro-couplingU. It is a priori clear that superconductivity persists
ducing magnetic or charge order. down to arbitrarily small values o), regardless of Fermi

The Fermi surface is always deformed by interactionssurface deformations, since the latter never break the reflec-
The shifts generated by the momentum dependence of th@n invariance, such that the singularity in the Cooper chan-
countertermsé, are not very large. They are more pro- nel is not cut off. One may wonder, however, whether the
nounced near the saddle points gf, where small energy superconducting gap destroys the Pomeranchuk instability in
shifts lead to relatively large shifts ik space. This agrees the weak coupling limit. To clarify this, we have solved the
with earlier non-self-consistelitand self-consistefft?* per-  self-consistency equations near the van Hove filling for
turbative calculations of Fermi surface deformations in thesmaller values oJ down toU=2t. It turned out that the
Hubbard model at weak coupling, and also with a recensuperconducting gap vanishes faster than the symmetry-
renormalization-group calculation of Fermi surface sHifts. breaking component of the countertesi#y, as a function of
However, the results presented in Fig. 4 show that the FerndecreasindJ. It thus seems that the coexistence of supercon-
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ductivity and a symmetry-broken Fermi surface persists for 0.17 . . —
arbitrarily smallU-values, if the density is tuned sufficiently

close to the van Hove point. S0.1660 ]
Interaction-induced Fermi surface deformations which L ]

break the symmetry of the square lattice were already dis-
cussed earlier in the literature. Yamase and Kdfnbtained 0.1625—— . ‘ . .
symmetry-broken Fermi surfaces within a slave boson mean- ¢
field theory for the t-J model, and Valenzuela and _ ) )
Vozmediand! within a Hartree-Fock calculation for the ex-  FIG- 6. Gap function fon=0.9 as a function of the angle with
tended Hubbard modéeincluding nearest-neighbor interac- respect to the, axis for the attractively = —2t) Hubbard model.
tiong). For the Hubbard modéWith purely local interaction ) ) )
the first indication that symmetry-breaking Fermi surface defluctuations included in the second-order terms. The average
formations may occur came from a calculation of effectivedap in Fig. 6 is only one third of the corresponding mean-
interactions via a one-loop renormalization group ffovihe ~ field gap. It has been pointed out previously that fluctuations
interactions in the forward scattering channel turned out td'0t contained in mean-field theory reduce the size of mag-
favor symmetry-breaking Pomeranchuk instabilities of thenetic and other order parameters even in the weak-coupling
Fermi surface, if the latter is close to the van Hove points.“m't- '
This was confirmed most recently by a perturbative calcula-
tion of the Landau functiof? A systematic stability analysis
of the Hubbard model using Wegner’s Hamiltonian flow
equation method also confirmed that symmetry-breaking In summary, we have formulated a renormalized pertur-
Fermi surface deformations are among the strongedsation theory for interacting Fermi systems, which treats
instabilities'® It remained an open question, however, Fermi surface deformations and superconductivity via addi-
whether such Fermi surface instabilities would be cut off bytive counterterms. This method is very convenient for study-
the superconducting gap. We have observed within ouing the role of fluctuations for spontaneous symmetry break-
renormalized perturbation theory that symmetry-breakingng in a controlled weak-coupling expansion. A concrete
Fermi surface deformations occur indeed more easily, if theapplication of the expansion carried out to second order
system is forced to stay in a normal state, by settlyg yields several nontrivial results for the two-dimensional
=0. Whether a symmetry-broken Fermi surface and superHubbard model. In particular, for the repulsive model we
conductivity coexist can be seen only by performing a cal-have obtained the gap function of the expeatedave su-
culation within the symmetry-broken state. This has not yeperconducting state and, for Fermi levels close to the van
been done using the renormalization group or flow equatiotdove energy, an interacting Fermi surface with broken lattice
methods. symmetry, and in some cases even open topology. The
From a pure symmetry-group point of view the symmetrysymmetry-breaking pattern of the states with symmetry-
breaking generated by the Pomeranchuk instability is equivabroken Fermi surfaces is equivalent to that of "nematic”
lent to that in "nematic” electron liquids, first discussed by electron liquids discussed already earlier from a different
Kivelson et al>® These authors considered doped Mott insu-point of view?32°
lators, that is it strongly interacting systems. A general theory The present work can be extended in several interesting
of orientational symmetry-breaking in fully isotropieot lat-  directions. After fixing the counterterms one can compute the
tice) two- and three-dimensional Fermi liquids has been refull momentum and energy dependence of the self-energy,
ported by Oganesyaret al?* Superconducting nematic and hence the spectral function for single-particle excita-
states, in which discrete orientational symmetry breaking detions. At second order the combined effects of symmetry
velops in addition to d-wave superconductivity, have beerbreaking and quasi-particle decay are captured. Allowing for
considered recently by \Vojtat al?® Motivated by experi- other symmetry-breaking counterterms, for example spin-
mental properties of single-particle excitations in cuprate sudensity waves, one can study the competition of magnetic,
perconductors they performed a general classification andharge, and superconducting instabilities, as well as their
field-theoretic analysis of various phases with an additionapossible coexistence. Finally, the formalism can be extended
order parameter on top ak2_,2 pairing. to finite temperature. In that case the singularities of the bare
propagator are cut off by the smallest Matsubara frequency,
but Fermi surface shifts and symmetry breaking can still be
B. Attractive Hubbard model conveniently taken into account by counterterms. The self-
For the attractive Hubbard modell&0) the renormal- ~ consistency condition can be imposed at zero frequency after
ized perturbation expansion already yietdwave supercon- analytical continuation to real frequencies.
ductivity at first order, which is equivalent to BCS mean-
field theory?® At this level the gap function is constant n
space. Extending the calculation to second order, a weak
momentum dependence 4f, is generated, as seen in Fig. 6  We are grateful to C. Castellani, A. Georges, M. Keller, D.
for the parametertl= —2t, t'=—-0.1%, andn=0.9. More  Rohe, and M. Salmhofer for valuable discussions, and to D.
importantly, the overall size of the gap is strongly reduced byRohe also for a critical reading of the paper.

V. CONCLUSION
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APPENDIX: FREQUENCY INTEGRALS

The Matsubara frequency integrals in the second order
self-energy contributions can be carried out analytically by
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Ek+Ek+q AkA~’k€+q

2ExEiiq g3+ [Ex+Exiql®
(A2)

dko~  ~
[ S0 (k)=

using the residue theorem. We only present the results for the _ ~
superconducting case; the normal state results can be recolVhe imaginary part ofil; does not contribute t& (0k).

ered by setting\,=0 in the following expressions.

The frequency integrals relevant for the evaluatiorﬁgf
defined by Eq(25) are

ExtEiiq ~§k~§k+q_ EvEiiq
2BBi+q 5+ [Ext Exiql®

dko~ ~
| B0 Bolk )=

ido ~§k|5k+q_|5|<~§|<+q
2Bt q g5+ [Ex+Egsql?
(A1)

and

Carrying out theg integral in Eqs(16) and (26) yields

i<2>(o,k)=—u2ff L Ckk,a), (A3
qJk’
’é(Z)(Oak):UZJf Aquc(kak’:q)v (A4)
aJk’
where
Clk' )= EErrq— & éirsq— Al g .
AEy_ ExEr 4 ol Ex— gt Exr +Epriql
(AS)
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