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Electronic dynamic Hubbard model: Exact diagonalization study
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A model to describe electronic correlations in energy bands is considered. The model is a generalization of
the conventional Hubbard model that allows for the fact that the wave function for two electrons occupying the
same Wannier orbital is different from the product of single-electron wave functions. We diagonalize the
Hamiltonian exactly on a four-site cluster and study its properties as a function of band filling. The quasipar-
ticle weight is found to decrease and the quasipatrticle effective mass to increase as the electronic band filling
increases, and spectral weight in one- and two-particle spectral functions is transferred from low to high
frequencies as the band filling increases. Quasiparticles at the Fermi energy are found to be more “dressed”
when the Fermi level is in the upper half of the bahdle carriersthan when it is in the lower half of the band
(electron carriers The effective interaction between carriers is found to be strongly dependent on band filling
becoming less repulsive as the band filling increases and attractive near the top of the band in certain parameter
ranges. The effective interaction is most attractive when the single-hole carriers are most heavily dressed, and
in the parameter regime where the effective interaction is attractive, hole carriers are found to “undress,” hence
become more like electrons, when they pair. It is proposed that these are generic properties of electronic energy
bands in solids that reflect a fundamental electron-hole asymmetry of condensed matter. The relation of these
results to the understanding of superconductivity in solids is discussed.
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I. INTRODUCTION electrons can avoid each other by developing elaborate inter-
atomic correlations. For this situation the ordinary single-
The fact that the Coulomb repulsion between two elecband Hubbard model may be adequate. However, when the
trons in a doubly occupied atomic orbital is smaller than the?@nd is more than half-filled, some Wannier orbitals raee-

value predicted from the expectation value of the Coulom ss%rilydoubly occm:pbied. Thg &ezumnq[ Iartge cost in ICOU'
interaction with single-electron wave functions establishe omb energy cannot be avoided ayy interatomic correia-

that atomic orbitals are not infinitely rigitielectrons will Hons, mste_ad, It can be reduced by the elec_trons developing
develop intra-atomic correlations to reduce their Coulom ntra-atomic correlations. The conventional single-band Hub-
repulsion. This well-known fact is not incorporated in the ard model cannot describe this; hence it is inadequate to

conventional single-band Hubbard modelhich assumes describe electronic energy bands that are more than half-full:

; L it is necessary to introduce another degree of freedom. Here
that two electrons of opposite spin will doubly occupy the' 'S ' : . : o
PP P y Py this is achieved by having a second atomic orbital in the

same single-electron atomic orbital. Dynamic Hubbard del. which b : ial ied the band
models$ attempt to remedy this deficiency by either introduc-Mod€!, which becomes increasingly occupied as tne ban
filling increases beyond half-filling. As we will see in this

ing an auxiliary boson degree of freedom to mimic the or- th i lectron-hol v in the band
bital relaxation that occurs on double atomic occupancy opaper, the resulting eectron-nole asymmetry in the ban

by allowing more than one atomic orbital. Here we consider®34S€S the quasiparticle weight of carrie;rs in the upper half
aypurely e?ectronic dynamic Hubbard model with two orbit- of the bandholeg to be smaller than that in the lower half of

als per site and no auxiliary boson degree of freedom. the_ bancKeIectr_onss anpl th_eir effective mass to be Iarger._ We
The model considered here has some superficial resent?-e“eve t_hat this physics 1S ge’.‘efa”y a part of.the.physms of
blance to various multiorbital Hubbard models that hr;wee'.ecmnIC energy band§ In sohds_. Its quantitative importance
been considered in the past such as the degenerate Hubbé{\‘&l depend on the particular solid “”d‘?r con3|d¢rat|on.
model? the Falicov-Kimball modef, and the Anderson lat- In Sec. Il we |_ntr0_duc§ the electronl_c dy”a”_"c Hubbar_d
tice model However conceptually it is rather different. The model to be studied in this paper. Section lll gives analytic

goal is not to model the physics of electrons in degeneratéeSUItS in limiting cases, and Sec. 1V presents numerical re-
atomic orbitals, or of two different partially occupied bands ;ults for effective Interaction, qua_s!parucle weight, and effec-
in a solid, or of local magnetic moments interacting with tive mass as a function of band filling and model parameters.

conduction electrons, or of mixed valence. Rather, we ar ection V presents resul'ts for optical absorption, and in Sec.
interested in modeling the physics of a single band andHI W‘?t dl_scuss ;hetrelgtlon betwteen _the p?ra_mlete\r/\s/ in the
based on general argumentargue that it is necessary, to amiftonian and atomic _parameters in materials. We con-

understand single-band physics, to include at least one oth l,ude in Sec. VIl with a _d|§cussmn of the app!lcablhty qf

higher-lying orbital besides the one that is being filled as the '€S€ results to the description of real electrons in real solids.

electronic band is being filled. This second orbital becomes

increasingly important as the filling of the band increases

beyond one-half. The static(conventional single-band Hubbard model is
When an electronic energy band is less than half-fulldefined by the Hamiltonian

IIl. MODEL HAMILTONIAN
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‘ with H; given by Eq.(3a). We expect the various hopping
H:_ijza tijcionU+U2i ity (D) matrix elements;, t];, t; to be similar in magnitude and
v hence will assume for the remainder of this paper

which properly emphasizes the fact that the intra-atomic =t/ =t} (4
electron-electron repulsion is the dominant source of elec- .

tronic correlation in solids. Here]|, creates an electron in a @nd furthermore that the hopping connects only nearest-
Wannier orbital centered at lattice siteand the hopping Neighbor sites; hencg;=t for i,j nearest neighbors, zero

amplitudet;; is the Fourier transform of the single-electron otherwise. _ _
band energy, : It should be pointed out that we do not expect the quali-

tative physics of the model to depend on the particular
choice for the hoppings, E@4). For example, in Ref. 7 the
same-site Hamiltonian, Eq3a), was considered with hop-
pingst/; =t{;=0 instead of Eq(4), and the same qualitative
physics was obtained as in the model considered here. Cer-
tainly, quantitative differences will occur depending on these
choices, which should be studied in the future. In this con-
pection it is also relevant to note that in a recent study of the
periodic Anderson model, different choices of the hybridiza-
tion (whether same site or neighboring sjtegere found to
Mot affect the underlying physiés.

1 )
tij =y 2 i M. )

The fundamental problem with the Hubbard Hamiltonian,
Eq. (1), is that it implicitly assumes that the state of two
electrons in a Wannier orbital is a single Slater determinan
clic [0), with |0) the state of the empty orbital. This is
incorrect, precisely because of the existence of the electro
electron interaction described by the Hubbardwe extend
the Hamiltonian, Eq(1), to allow for the fact that when two
electrons occupy the same Wannier orbital, intra-orbital elec- ll. ANALYTIC RESULTS
tronic correlations will develop due to the large local A. Noninteracting band structure
electron-electron repulsion. This effect can be described by . . .
having at least two Wannier orbitals per site, which the elec- The smgle-electron part of the Hamiltonian, E@), is,
trons will partially occupy to reduce their Coulomb repul- after Fourier transforming,

sion. Letc| andc/] be the operators creating electrons into Cr
. . . . . T ’T o
these Wannier orbitals. We consider the local Hamiltohian H=S (ckU CKU)HK< o |- (58
k g
Hi=Unj;n; +U'n/;n{ +en/+Vnin/
€K 6k_t,
—t'>, (¢l ¢/ +H.c), (33) Hi=| e—t'  ecte (5b)

with
. . r ot _ [
with nj,=cj,Ci,, andnj,=c/,Ci,, Ni=ny;+n;;, njy=n;;

lo?

+n/, . In the extreme tight-binding limit the Wannier orbitals €= —2tcosk 6
become atomic orbitals, and we will cast the discussion irfOr a one-dimensional geometry. Two bands result, with the
that language even though it should be more generally appl'bnergy versuk relation
cable.

The primed orbital is higher in energy by than the € €
unprimed orbital, hence more extended in space, so that the E&'2= et Ei \/ (E +(e—t")2. (7
Coulomb repulsioiJ’ should be smaller thad. The orbital

energye will generally satisfy the relation<<e<<U, so that The two bands are separated by an indirect gap
when the site is doubly occupied electrons will partially oc-

cupy this orbital to reduce their Coulomb repulsion and there €

i istificati ; i i i A=EZ_,—Ei__= = +(2t—t")?

is no justification for neglecting this second orbital as is done k=07 k== 2

in the Hamiltonian, Eq(1). V describes the Coulomb repul-

sion between one electron in each orbital dhdhe intra- € o

atomic hybridization between these orbitals. The lattice +\| 3] FEH)T—4t, ®

Hamiltonian is then
which is always positive foe>0. The bandwidth of the two
bands is approximately given bp,=4t+2t’, D,=4t
T 1oat o b T —2t'. Figure 1 shows the band structure for various param-
H=—-2 [ticl,cip+t(cl,c/,+H.c)+t)c ¢/, : : _ _
] o eters. Note that the effective mass in the lower band is larger
near the top of the band than near the bottom; this effect
+ 2 H;, (3b) become; much more pronounced in the presence of electron-
i electron interactions.
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with u,, v, obtained from diagonalization d¢,, Eq. (5b).
Using this operator in Eq.10) we have simply

Ak, 0)=8(w—(Ef—p)) (12)

and the quasiparticle weight for a single electron in this band
is the coefficient of theS function in Eq.(12):

Zk= 1. (13)

B. Quasiparticle weight for an interacting system
In an interacting many-body system the spectral function
has the form

Ak, 0) =2 (W= (ex— )+ ALK, 0), (14

where 0sz,<1 is the quasiparticle weight, andl] is the
incoherent part of the spectral function. We define the quasi-
particle weight in our model at the Fermi energy by

2(N)=|(On-1/Cak 0l ONI?, (15
with the quasiparticle operator defined by
CakFO': ukFCkFU+kaCl,(F‘T’ (16)

with uZ2+v2=1. We choose the particular linear combina-

FIG. 1. Noninteracting band structure for the model under con+tjon that maximizes the quasiparticle weight, Efj5). The

sideration for various parameter@) As e increases, the gap be-
tween lower and upper bands increas@s.As t’ increases the

bandwidth of the lower band increases and that of the upper band

decreases.

The zero-temperature single-electron spectral function for

the system with\ electrons is

Aa(kaw):%: |<nN+l|CLkU|ON>|2

X 8(w— (ENTT—EN*?

+ )+ (NN 1] Cakol On) |2
X 8(w+(ER '—Ep '-un-1). (9

Here, |ny)| is the nth excited state of the system witk
electrons (=0 is the ground staje EE is the eigenvalue,
and uy=E}"'—E), un_1=E§—E} ' For a metaluy
= un-1=p and we redefine the frequeney— v+ u so that

Aa(ki©)= 2 (- 1l 0N 00— (BY T —E5 ™)

+ (= 1] Carol ONYIZ S0+ (ENTH—E5 1))
(10

The indexa labels the fermion operator of the unprimed or

primed orbital, or an appropriate linear combination thereof.

The creation operator for an electron in band 1 is given by

Ciko=UkCkoy T ViCiy » (11

following simple relations are easily proved:

z(N)=Z [1{On-1/Ci,|On}IZ+]{On-1]Cci,|ON)IZ],

17
Ei |<ON71|CiU|ON>|2

Uy = 2N : (183
Z |<ON71|Ci,a-|ON>|2

vi = (18b)

E

Z(N)

Equation (17) gives the total quasiparticle weight at the
Fermi energy, and 4 z gives the amount of spectral weight
in the incoherent part of the spectral function. The quantities
Uk, Uk indicate how much of the quasiparticle resides in the

lower and upper orbitals, respectively. For a single-band con-
ventional Hubbard model the quasiparticle weight at the
Fermi energy is given by the first term in E@.7).

C. Optical conductivity and effective mass

The current operator in our model is given by

JZ”E [(CiT+10'+Cilila)(cia'_{—ci,o')_H'C']7 (19)

and we will compute the optical conductivity at zero tem-
perature given by
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2 oy X _
or(w)=nS, KOIMI® [(0[3[m)] KO S (B —E0). (20 z,=1(0lc,[T)|2+[(0lc[T)[2=1. (27b

m Em~Eo Hence the single-site spectral function for a hole has other

The optical sum rule states that the integral of the opticaterms in addition to the quasiparticle term sirzgec 1, while
conductivity is the site spectral function for an electron is a singléunc-
tion. Consequently, in the solid the spectral function for a

* o single electron in the ground state of the Hamiltonian, Eqg.
0 doo(w)= E<O|_T|0>' (21 (3), is a & function, while the spectral function for a single
hole in the lower band has incoherent contributions, as dis-
with the kinetic energy given by cussed in Ref. 3.
We can define quasiparticle operators for the lower band
tE (Cla'+ c’T)(c|+5o+ Cly 50)- (22 Ei(, as operators connecting the site ground states,
~t
In our two-orbital model, optical transitions include both ¢iy|0)=lo), (289
“intraband” transitions as well as interband transitions to the it
second band. For parameters where a clear separation of en- c, |O)=m), (28b

ergy scales occurs one can define an effective Hamiltonian
descrlblng the low-energy part of the Hilbert space and writend the relation between bare electron and quasiparticle op-
a “partial” conductivity sum rule erators i$

Cip=[1+(S—1)n; _,ICi, (29)

Replacing the bare fermion operators in the kinetic energy,
Eqg. (3b), in terms of the quasiparticle operators yields an
effective Hamiltonian for quasiparticles in the lower band, of

fowmdw(fl(w):A|:g<0|_Teff|0>’ (23

whereT¢; is the kinetic energy in the lower band, and the
high-frequency cutoffw,, excludes transitions to the second

band. the form
D. Strong-coupling limit Hetr= _ti]z(r [1+(S=D)(ni, o+ N}, o)
We consider the Hamiltonian, E@3), in the parameter o~ = ~y
regime +(S=1)"n;, _,nj _,1(c{,Cj,+H.C). (30

This Hamiltonian gives rise to a “correlated hopping” term

which leads to a pairing of holes. The enhancement of the
U U Vs et (24D hopp?ng amplitude for a hole \(vhen the sit.es involved in the

hopping process have an additional hole is

These conditions ensure that a single electron at a site resides

primarily in the lower orbital, while in the doubly occupied At=t3(1-9) 3D

site two electrons of opposite spin reside primarily in theand leads to superconductivity as discussed in detail

higher orbital. Some results in this limit were discussed ingjsewherd?

Ref. 7. The site eigenstates to lowest ordet’irare

U'+2e<V+e<U, (243

~ IV. NUMERICAL RESULTS
ITy=11)10)+30)|7), (253
We diagonalize the Hamiltonian, Eq(3), on an
[TT)=10)|T 1)+ &'[|1)[0)+]0)])|0)], (25b)  (N=4)-site lattice with number of electronl, ranging
from O to 8, as appropriate to fill the lower band. The maxi-
mum number of states in the Hilbert space is 4900. To reduce
the computational complexity and because we will be inter-
o5=t'le, (269  ested in the case of large Coulomb interactions, we discard
all states where there are more than two electrons at any
t! given site from the Hilbert space. We also discard states that
S =— (26b) have two electrons of the same spin at a site, because we will
V-U'—e€ not be interested in spin-polarized states. This simplification
: = A : ; should not change the qualitative physics of interest here,
;I'lhg single-site quasiparticle weight for a hole is, from Eq'and such states certainly become irrelevant in the limit of
' large interorbital repulsio; however, it could have a quan-
T 2 /Tt 2_ N2 a2 titative effect for smallV and should be investigated further.
zo=|(UeTDPHIAleTD 2= (5+ 8=, (274  With these simplifications the maximum size of the Hilbert
space is 1024 states when there are six electrons in the four-
and the single-site quasiparticle weight for an electron is  site system.

where the firsfsecond ket in the product refers to the lower
(highen orbital, and
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______ 256 states ﬁ ﬁ ﬁ ﬁ full bamd- — - — - .5 F(a) per1odic boundary conditionsJ
- - ThH _____ < TTrol 3 X U2, e=2, t'=0.2 3
512 states ﬁ * ﬁ ﬁ ole L0 F O U'=4, ¢=2, t'=0.2 _J
— N\-1024 st i 4 + hid ?— — — =/ 2holes & “E o u=-2, e=1, t'=-0.2 =
- _* 3 + U-2, e-2, t'-0.5 3
- —\768st } ++——— 3 holes 05:— /0_:
delectrons — 1576 st | ; e ;— — —{- 4holes 0.0 E E
3electrons — Yrgzst L — T f= = f - E -
2electrons — St: 1 : ;_ - —0.5 :I 11 | 111 1 | L1l 1 | L1l 1 E
1electron — — A Sstates 0 2 4 6 8
empty band_— — — 1state N
sites:t 1 2 3 4
2-0 :I LI LILILI IJ LIILIILILI LILILILI T I-.
FIG. 2. Schematic depiction of states in four-site cluster for 1.5 ) antiperiodic boundary cond, 3
different band fillings. Because of the larggein the lower orbital, § —ou g
two electrons at the same site will predominantly occupy the higher § Lo - —
orbital. The number of states in the Hilbert space for each filling is > o5k : A
also given. E b =
0.0F 5 5]
E ~. :é 3
Figure 2 shows schematically the band under consider- -0.5F | | | l—:
ation and the number of states in the Hilbert space for dif- S
o ; 0 2 4 6 8
ferent positions of the Fermi level. Note that there are many N,
more states in the Hilbert space for a given number of holes
in the band than for the same number of electrons. This fact 20 prTTT T T TTT T T TS
alone indicates that the system will be more incoherent when 1.5 ¢ free ends boundary cond. 3
the band is more than half-filled compared to when it is less 10 E SRR
than half-filled. The figure shows one representative state in E \ » 3
each sector: when there is one electron at the site, it resides = 05 o
primarily in the lower orbital; when there are two electrons at E e 3
) . i ; ; 0.0F =
the site, they are depicted as occupying the higher orbital E ~ } E
which will be the dominant contribution in the parameter -0.5F | | | _.:-
L1 1 111 1 L1l 1 L1l 1 1

range of interest.

°II
ol—

2 4 8
Ne

A. Choice of boundary conditions FIG. 3. Effective interaction, Eq32), vs band filling for differ-

For the small system under study boundary conditions arent boundary conditions, for four sets of parametersl here and
of course important. We have calculated properties of thén the following figures. For all cases hetk=10 andV=6. The
system using periodic, antiperiodic, and free-end boundar{ines through the data are a guide to the eye. Solid lihe=2, €
conditions (BC's). While periodic BC's may yield results =2,t'=0.2. Dashed lineu’=4, e=2,t'=0.2. Dash-dotted line:
closer to the thermodynamic limit in some cases, we believ® =2, €=1,1'=0.2. Dotted linelU’=2, e=2, t'=0.5.
free-ends BC's are preferable for several reasons. Most im-
portantly, the single-particle eigenstates for the finite chairthe band. This behavior should persist for larger systems.
are nondegenerate with free-end BC's, while degenerat@uantitatively, we expect the magnitude of the attractive in-

states occur for both periodic and antiperiodic BC's. teraction to be somewhat smaller for the infinite system than
Consider the effective interaction between two electrondor the small clustet?
in the chain withN, electrons, defined as Another reason to use free-end boundary conditions is

that the optical sum rule is satisfied in that case for the finite
Uer(Ne) =Eo(Ng) + Eo(Ng—2) —2Eo(N—1), (32) systemt* while if periodic boundary conditions are used, the

“Drude weight” needs to be added by hand to the optical
with E¢(Ng) the ground-state energy with, electrons. Fig- response. Furthermore, the expression for the quasiparticle
ure 3 shows the effective interaction versus band occupatioweight, Eq.(17), is not correct when there are degenerate
for various parameter values. For all the different boundarystates at the Fermi energy. Hence we will use free-end
conditions the effective interaction becomes attractive neaboundary conditions for the remainder of this paper.
the top of the band for certain parameter values. This is a
robust effect. On the other hand, it can be seen that the ef-
fective interaction can be negative for the half-filled band
case for periodic BC’s, and it is zero near the bottom of the We begin our study with a look at the energy level spec-
band for antiperiodic BC’s. These are spurious effects relatettum of the model. We choose sets of parameters that yield a
to finite system degeneracies, which are expected to dissaplear separation of the spectrum of the lower-band states.
pear in the thermodynamic limit Instead, for free-end BC's  Figure 4 shows the energy levels as a functiorNgf the
the effective interaction is repulsive except near the top ohumber of electrons in the cluster, for a noninteracting case

B. Quasiparticle bands
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20T N L IR quasiparticle band is substantially narrower when the carriers
(a) — ] are holegdmore than half-filled bandcompared to the corre-
15— o — E — sponding case when the carriers are electrons. In the effec-
% r — = ——— ] tive strong-coupling Hamiltonian one obtains a quasiparticle
> 101_ - E bandwidth that decreases monotonically as the electronic
P S~ band filling increases:
o L -~ ~ 4
& =F —— 3 2
c S5 J— —] Ne
® C— — — ] D(ng)=D 1—?(1—8)} , (33
OO' m '_JS_' e with 0=<n.=N,/N<2 the band filling.
C. Quasiparticle properties versus band filling
TS T = 1"="1="3 We consider first a case where the second band is well
sk ; — = —i separated in energy, witb=10. Consider the evolution of
° F— —— §= I the quasiparticle weight at the Fermi energy, given by Eq.
G ———y | —}—— (17), as the magnitude of the Coulomb interactions increase,
§ - — == shown in Fig. %a). The quasiparticle weight is 1 for the
> 4 = = noninteracting case, and it remains 1 in the presence of in-
& == \ —_—=— ] teractions at the bottom and at the top of the band, since the
s 2 S B single electron and the single hole behave as free particles.
0 e When the band filling increases from empty or decreases
T from full the quasiparticle weight decreases in the presence
0 2 4 6 8 of interactions and is lowest at the half-filled band. Thus the
Ne spectral function will have largest incoherent contribution at

) ) . and close to half-filling, as one expects in the conventional
FIG. 4. Energy eigenvalues for the different band fillings. Pa'single-band Hubbard model
rameters are(@ =12, t'=0.2, U=V=U'=0; (b) =6, t The quasiparticle weights in Fig.(& appear to be

=0.2, U=20, V=12, U’'=2. The dashed lines show the separa- .
tion between the “intraband” states described approximately by theele(:tron hole symmetric. However, a close look reveals that,

Hamiltonian, Eq.(3), below it, and the rest of the states in the except for the noninteracting case, the quasiparticle weight

Hilbert space. For other less extreme parameters no clear separatif)(}lr thIeSI'S alwayg slightly smaller than the corresponding
is seen. Note that in the interacting cdbgthe spectrum is strongly one for electrons, 1.e.,

electron-hole asymmetric, with the lower-band bandwidth for holes

(Neg>4) much smaller than for electrondl{<4). 2(ne)>2(2—ne), (34)

for ne<1. This effect is due to the presence of the second

(@) and for an interacting cagb). The dashed line separates band and will exist always as long @s<e in our model.
the low-lying band “intraband” states from the other states. Figure 8b) shows the effective interaction defined by Eq.
For the noninteracting case, the spectrum in the lower bantB2) versus band filling for these cases. The effective inter-
is nearly symmetric for electrons and holes, as one woul@ction becomes more repulsive as the bare repulsion param-
expect. Instead, with electron-electron interactions a largeters increase and is approximately electron-hole symmetric
electron-hole asymmetry exists. in this case, as in the case of the conventional Hubbard

Consider first the states for a single electrbh€1) and  model.
for a single hole N.=7). There are four states in each case We can estimate the effective mass or the effective hop-
(= the number of sites in the clusjeland the distance be- ping amplitude for the quasiparticle from the difference in
tween the lowest and highest intraband state is the bandnergy between the ground state and the first excited state.
width. Clearly, for the interacting case the hole bandwidth isFigure §a) shows the results for these cases. For the nonin-
much smaller than the electron bandwidth. The effectiveteracting casé.; is approximately constant versus band fill-
mass of the quasiparticle is inversely proportional to theng, and as the repulsive interactions increase it decreases as
spacing between intraband states. Clearly, the quasihole tke number of carriers in the band increases. Here the
substantially heavier than the quasielectron in the presenagectron-hole asymmetry due to the fact tleat~ is more
of electron-electron interactions for these parameter valuesapparent, with holes always being heavier than electrons.

As the number of electrons or of holes is increased, the Next we consider the effect of decreasing the interband
number of intraband states increases. There are 6 intrabamaergy separatioe in the presence of Coulomb repulsion.
states for the half-filled band\;=4) and 12 states for all Figure 6 shows results far=10, 5, 4, and 2. A& decreases,
other occupations, because states with double site occupantlye quasiparticle properties become increasingly electron-
are pushed to much higher energies due to the large Coulontible asymmetric. The quasiparticle weight, shown in Fig.
repulsions. Note the asymmetry in the spectra in the interac6(a), is substantially smaller for holes than for electrons as
ing case for band filling less and more than one-half: thébecomes small. Similarly the effective hopping amplitude
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FIG. 5. The parameters used are 10,t’=0.2, and the follow- FIG. 6. Same as Fig. 5 faf=0.2,U=10,V=6, U'=5, ande
ing interactions. Solid linesdJ=V=U'=0. Dashed linest)=3, values given in the figures. As decreases holes become more

V=2, U’'=1. Dash-dotted linesU=6, V=4, U’'=3. Dotted incoherent and heavier, i.e., smalleandt,;.
lines:U=10,V=6, U’'=5. Plotted vs band fillind\ are(a) qua-
siparticle weight at the Fermi energy, E4.7); (b) effective inter-  repulsiveU;, where the quasiparticle weight for two holes
action Eq.(32); (c) effective hopping defined as the energy gapis smaller than for one hole. Similarly the effective hopping
betwgen the ground state an_d the first excited state. Note that evemig. 7(c)] for two holes is larger than for one hole when
for this case of larges there is a small electron-hole asymmetry, . s attractive and smaller whes,; is repulsive. In other
with the quasiparticle weight and effective hopping being S“ghtlywords, quasiparticles “undress,” i.e., increase their quasipar-
smaller for holes than for electrons. ticle weight and decrease their effective mass, when they
pair.
shown in Fig. 6c) decreases as the band filling increases, It is also interesting to examine the expectation value of
and holes are much heavier than electrons wadrecomes the kinetic energy operator, E@2). This is shown in Fig. 8
small. The effective interactiofFig. 6b)] remains repulsive for the three parameter sets under consideration. The kinetic
for these parameters for all band fillings. energy is lowered both when electrons are added to the
For Sufficienﬂy smalle and not too |arng’, however, empty band and when holes are added to the full band. For
the effective interaction at the top of the band will becomethe case of attractivé).¢; where the single hole is highly
atractive. Figure 7 shows results fe=2 andU’=2. We dressedsmallz) and the effective hopping is smallest, the
also show for comparison the cases2, U'=5 and e kinetic energy is highest, as one would expect. As Fig. 8
=5 U ! :2l where the effective interaction is a|WayS repu|_ ShOWS, in that case Only when a second hole is added to the
sive: both smalle and smallU’ are required to yield an full band does the kinetic energy decredmdow twice the
attractive interaction for holes. value of the single-hole kinetic energy. This indicates that
It is interesting to examine the quasiparticle weight andPairing of holes is driven by a lowering of the kinetic energy
effective hopping amplitude for these cases. For the paranit this model.
eters whereJ ¢ is attractive the quasiparticle weight for a  Finally, Fig. 9 shows the composition of the quasiparti-
single hole is smallest, and the quasiparticle weight is large€les, as given by the quantitieg_,vy_ in Eq. (18). As €
for two holes[Fig. 7(a)]. This is in contrast to the cases of decreases the quasiparticles occupy predominantly the higher
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1.0 Tw— FIG. 8. Expectation value of the kinetic operator, E2p), for
:'5 - 3 the same parameters as in Fig. 7. Note that for the case of attractive
0.5 - = effective interaction(solid line) the kinetic energy for two holes is
o.0F 3 lower than twice the kinetic energy for one hole, while in the cases
- \T 3 of repulsive effective interaction it is higher.
_0_5'||||||||||||||||||||I'
0 2 4 6 8
band filling in which regions of parameter space is the effective interac-
2.0 T AT T tion between holes attractive and shed some light on its ori-
- Jc) l Ur=2, e=2 | . gn.
150 - _—_B:-g. e-g ] Figure 10 shows the dependencellf;s for two holes at
- N »e 3 the top of the band on various Hamiltonian parameters. As
$ L0 \ s 3 seen in Fig. 1), Uy is attractive when the repulsive in-
© - / 3 teraction in the higher orbital)’, is sufficiently small. This
0.5 — : _ is because two electrons at a site will occupy dominantly the
- y 3 higher atomic orbital in the regime where pairing occurs. The
P ST B .#'. A I energy difference between the two atomic orbitalsplays
0

2 b :F I 5 8 an important role: both for large and for smallthe attrac-
and FiHng tion is suppressed, wite~ 1.5 yielding the largest range of

FIG. 7. Same as Fig. 5 far =0.2, U=10, V=6 and values of U’ whereUs; is attractive. This value o€ is found to be
e andU’ given in the figure. For smak andU’ (solid lineg the ~ optimal for a wide range of the parametérsV, andt’; i.e.,
effective interaction is attractive for holes; in that case, the quasiit is set by the value of the hopping amplitutte 1.
particle weight at the Fermi energy for the band filled with two  In contrast, attraction between holes is favored by a large
holes is larger than for the band with one h@g and the effective  value of the lower orbital repulsiod, as seen in Fig. 16)
hopping is larger for the band with two holes than for the band with(we ignore the small region of very small whereU; is

one hole. attractive which is presumably unphysicarhis is because
orbital (Iargeka) when the number of electrons in the band ]
increases. In the case where the pairing interaction is attrac- 1.00 a2 g
tive the quasiparticle weight for a hole in the system with U 1
two holes is also dominantly in the higher orbital, because of : ]
the large probability for two holes to be on the same site; in o 0.75 E 7]
contrast, for smalk and largerU’ when the holes are not . r

paired, vy, is much smaller for the system with two holes wr 0.50 B
because the holes occupy different sites. For the case of large C ]
e, the quasiparticle weight is dominantly in the lower orbital 0.25F B
for all fillings. These results indicate that a necessary but not _

sufficient condition for pairing in this model is that param- 0.00,

eters be such that there is a large probability for electrons to band F1lling

occupy the higher orbital when the band is close to full.

FIG. 9. Composition of the quasiparticles, from Etg), for the
parameters of Fig. Ty, andka give the amplitude of the quasi-
particle at the Fermi energy in the lower and upper atomic orbitals.

As seen in the previous section, the model can give rise tés the band filling increases,_ decreases ang,_ increases, with
pairing for carriers near the top of the quasiparticle band withthe changes being largest for the case of attractive effective inter-
repulsive Coulomb interactions. In this section we examineaction

D. Hole pairing
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FIG. 10. Dependence of effective interaction for two holes in  FIG. 11. Dependence of kinetic energy difference between
the filled band on Hamiltonian parameters. The values @fre  single holes and pair of holes, E@5), on Hamiltonian parameters,
given in the figuresfa) versusU’, with U=10,V=6,t'=0.2; (b) for the same cases as Fig. 9.
versusU, with U'=2, V=6, t'=0.2; (c) versust’, with U=10,

V=6,U"'=2. with the kinetic energy operator given by E@2). It can be
seen by comparison with Fig. 10 that the kinetic energy is
the attraction requires a large change in the state of the regways lowered 4 T>0) when the carriers pair, i.e., in the
maining electron when a second electron is removed frO”ﬂegime wherdJ (( is attractive. The conditioA T>0 is nec-
the site. IfU becomes small, two electrons will occupy the essary but not sufficient to yieltd;<0. This is because

smaller rather than the higher orbital and this effect is lostpairing is associated with a decrease in kinetic energy and an
Slmllarly, we f|nd(n0t ShOWI) that Iarge values of the inter- increase in potentia' energy in this model.

orbital Coulomb repulsiorV are favorable to pairing: the
dependence dil.;; on V is similar to the dependence &h
shown in Fig. 10b).

As a function of the interorbital hybridizatioti, pairing In conventional models of superconductivity pairing
will occur whent’ is not too large, as seen in Fig. (€D arises from an effective electron-electron attraction induced
Again, the reason is presumably that the states of an electrddy coupling to a boson degree of freedom that does not dif-
in a singly and in a doubly occupied site need to be suffiferentiate between electrons and holes. The resulting effec-
ciently different, which will not happen if the two orbitals tive interaction is electron-hole symmetric, and in such mod-
are strongly mixed by’. els pairing is driven by a lowering of the potential rather than

It is interesting to examine the change in kinetic energythe kinetic energy. We can describe such a scenario in our
when carriers pair. In Fig. 11 we plot the difference betweermodel by assuming negative values of the on-site interaction
twice the kinetic energy of a hole in the filled band and thatU, presumably resulting from integrating out a boson. We

E. Comparison with conventional pairing

of two holes in the filled band: also take a very large value of the interorbital spacirsp as
to approach a single-band Hubbard model and compute the
AT=2(T)1 hote—{T)2 holes (350 effective interaction between two hol@shich is the same as
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and when it is repulsive. In contrast, in the dynamic Hubbard
regime the quasiparticle weight for the case of two holes
becomes much larger than for a single hole when holes pair.
Note, however, that, can be bigger tham; even when the
effective interaction is still repulsive. In Fig. (18 we show
the behavior of the effective hopping amplitude defined from
the difference in energy between the ground state and first
excited state in the model. In the conventional regime, holes
becomes heavier than single particlés/{;<<1) when they
pair; in contrast, in the dynamic Hubbard regime, paired
holes are much lighter than single holes when pairing occurs.
However, once again pairs can be lighter than single holes
even when the effective interaction is still repulsive. This is
of course a finite-size effect because in an infinite system for
low-hole-concentration holes would be far from each other if
not bound in a pair. Finally, Fig. 18) compares the change
in kinetic energy upon pairing. In the conventional regime
the kinetic energy increases upon pairing, so that the differ-
ence between twice the single-hole kinetic energy and the
e e pair kinetic energy is negative, while the kinetic energy de-
-0.5 0.0 0.5 1.0 creases strongly upon pairing in the dynamic Hubbard re-
Use gime.

These results illustrate the qualitative difference in the
physics of pairing in these two different regimes. In the re-
gime of dynamic Hubbard physics, pairing is associated with
undressing? i.e., an increase in quasiparticle weight, de-
crease in quasiparticle mass, and lowering of the kinetic en-
ergy. In the conventional regime, the physics of pairing is
exactly opposite; pairing is associated with dressing, i.e.,
smaller quasiparticle weight, larger quasiparticle mass, and

= T an.increase in kinetic energy for the pair. In summary, upon
0.5 0.0 0.5 0 pairing quasiparticles become more coherent and lighter in
Uger the dynamic Hubbard regime and more incoherent and

heavier in the conventional regime.

FIG. 12. Comparison of behavior of model in conventional  Note that the attractive Hubbard model can describe con-
(electron-hole symmetriaegime and regime of dynamic Hubbard yentional superconductivity both in the short-coherence-
physics. Para,meters usedlfor dy_namic Hubbard regimé&ar&o0, length regime(large attractivel) and in the regime where
:i/o:ngf rEeZiiwyet ::?Lgo "’t‘r,'i% Zra\rllilgg S?Sso fngbf?;:]g?ngof?;’;n' the coherence length is thousands of lattice spacisgell
1510 8. In both cases . is caleulated from Eq(32) and the attractiveU). The qualitative contrast that we make here

eff between the physics of that model and the physics of the

results are plotted vl ¢;. (a) Ratio of quasiparticle weights for . . .
two holes and for one holéb) ratio of hopping amplitudes for two dynamic Hubbard model applies to both regimes.

holes and one holdr) difference in kinetic energy of single holes

T fa]I T | LI I LI

Zz/Zl

™ -0.5 0.0 0.5 1.0
Uger

" (b

1.5 ()

1.0 dyn.Hub.

AT

0.5

0.0

T
b=t
v:x
=

SlAdsiaaliigg

and paired holes, Eq35). V. OPTICAL CONDUCTIVITY

between two electronsrom Eq.(32). Not surprisingly,U ¢ We calculate the optical conductivity given by EQO).

for this conventional regime is attractiyeepulsive whenU The total optical spectral weight in the model is related to the
is attractive(repulsive. expectation value of the kinetic energy operator as given by

It is interesting to compare the behavior of the model inEq. (21). We will divide the frequency range into a low-
the conventional regimé.e., attractive Hubbard model re- frequency range with cutofb,,=2, which defines the low-
gime) with that in the regime discussed in the previous sub{frequency spectral weigh#,, and denote the remaining
section where holes pair, which we call the “dynamic Hub-spectral weight at higher frequencies By,. The low-
bard” regime. We compute the effective interactibh.sy  frequency spectral weight includes the “intraband” spectral
versusU'’ in the dynamic Hubbard regime and versus weight; it also includes some low-frequency absorption that
(positive and negativein the conventional regime, and in is not intraband when the lower band is close to full and
Fig. 12 we plot various properties as a function of the resultnot too large.
ing effective interactiorlJ.¢; in both regimes. Figure 13) Figure 13 shows the dependence of the integrated optical
shows the ratio of quasiparticle weights in the system withspectral weights on band filling, for three sets of parameters.
two holes and one hole. In the conventional regiméz, is  For Fig. 13a), with =10, the absorption is approximately
less than 1 both when the effective interaction is attractiveelectron-hole symmetric; however, even in this case with
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< U-2 ] FIG. 14. Comparison of optical conductivity for one electron
g —] and one hole fot’=0.2 and values o given in the figure. Here
® - . and in the following figures of optical conductivity, ti&functions
§~ [ p in Eq. (20) are broadened to Lorentzians with widf=0.25. The
§ 2 ] lowest-frequencysd function at the “Drude precursor” frequency
N /* ] (Ref. 19 is shifted tow=0 and represented by a Drude fofsgmi-
ol I .\J. {1 .?.‘.EI. ] Lorentzian). Note that for largee the conductivities for electrons
0 2 8 and holes are very similar, for smadlthe conductivity for holes is

band Fllhnq very small, and in particular the intraband conductivity is much

. - smaller than for the case of large
FIG. 13. Integrals of optical conductivityy, denotes the low-

frequency integral, Eq(23), with cutoff o, =2; A, denotes the |nstead, fore=2 there is a dramatic difference in the optical
high-frequency optical spectral weight fas>wy, and A=A, conductivity for electrons and holes: for holes, the intraband
+A, the total optical spectral weight E21). Parameters ar&l  conductivity is very small and most of the optical absorption
=10, V=6,1t'=0.2, anq values o)’ and e given in the figures  gccyrs at higher frequencies.
(same parameters as Figs. 7-9 Next we consider the behavior of the optical conductivity
upon doping. For the case of large it is similar for elec-
large € it can be seen that for holes the intraband low-trons and for holes, as seen in Fig. 15: the intraband conduc-
frequency absorption is somewhat lower and the hightivity per carrier decreases slightly with doping, and some
frequency absorption is somewhat higher than for electronsspectral weight is added at higher frequencies. For the case
As e decreasefFig. 13b)] and even more so whdd’ also  of small e, Fig. 16, the behavior is similar for electrons but
decreaseqFig. 13¢)], the intraband absorption becomes dramatically different for holes: in the latter case, there is a
much smaller for holes than for electrons. Note also that fofarge increase in the low-frequency spectral weight for the
the case of Fig. 1®) whereUy; is still repulsive between case of two holes, which is due to the undressing of holes
holes the low-frequency absorption for two holes is onlywhen they pair. Furthermore, there is an overall shift of the
slightly larger than for one hole; instead, ©$ is decreased nonintraband spectral weight at higher frequencies to lower
andU¢; becomes attractivig=ig. 13c)] the intraband optical frequencies. Similar behavior is found in other realizations of
absorption for two holes becomes more than twice the intraglynamic Hubbard modefS.Such a transfer of optical spec-
band optical absorption for one hole, because optical spectratal weight from high to low frequencies has been seen in
weight is transferred from high to low frequencies whenhigh-T, cuprates upon hole doping and upon lowering the

pairing occurs. temperature  below the  superconducting  critical
Figure 14 compares the optical conductivity for the nearlytemperaturé®-2°
empty and the nearly full bands, for the cases with10 and Finally we show the behavior of optical absorption in the

e=2. For the larges case, the intraband conductivitper  regime of conventional pairing. We choose a large value of
particlg is only slightly smaller for holes than for electrons. the on-site attraction to illustrate the behavior clearly; how-
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FIG. 15. Comparison of optical conductivity for one carrier and  Fi. 16. Same as Fig. 15 for parameters2, U’ =2. For the
two carriers in the band. The optical conductivity for one carrier isgage of electrons the results are similar to Fig. 15; for the case of

multiplied by a factor of 2 to make it comparable to the optical hojes they are very different; for the case of two holes there is a

conductivity for two carriers(a,) Electrons,(b) holes. I,—|ere and in |5rge increase in the low-frequency absorption and an overall shift
the next figureU =10, V=6, t'=0.2. Here,e=10, U'=5. Note i, the optical absorption to lower frequencies.

that the optical conductivity is similar for one and two carriers
(normalized to number of carrigrboth for electrons and for holes,
with the low frequency absorptioriper carriey being slightly
smaller when the number of carriers is larger.

to atomic quantities by comparison of properties obtained
from it and properties of the electronic states of the atom
obtained from quantum chemical calculations. As the sim-
plest example we discuss here qualitatively the relation be-
ever, the qualitative behavior persists for a smaller attractivéween the Hamiltonian parameters and electrons in a hydro-
interaction. The optical absorption is electron-hole symmetgenic ion with nuclear chargeZ within the Hartree

ric as one would expect, and most of the optical spectrahpproximation. The difference in energy between an electron
weight is at low frequencieéintraband in this case for all in the 1s and 2 atomic orbitals corresponds to the energy

band fillings. Comparing the case of one hole and two holegjifference between the two single-particle eigenstates in Eq.
(or one electron and two electronis Fig. 17b), it is seen  (36), namely,

that pairing is associated with a decrease in the low-

frequency optical spectral weight; i.e., quasiparticles become / ) " ,.3
more dressed when they pair. This is in accordance with the €4t °~13.6xZ XZ’
behavior found for the quasiparticle weight and effective

hopping in Fig. 12 and qualitatively different to the behaviorin eV units here and in what follows. For small we have
in the dynamic Hubbard model regime. approximately

(37

e~10.2Z2. (39
VI. RELATION WITH ATOMIC PHYSICS AND WITH

. , .
REAL MATERIALS We will assume&t’ small in what follows so that the strong-

coupling analysis is applicable. The repulsidnn the lower
For any given atom one can relate the parameters in therbital corresponds to the repulsion of two electrons in the
site Hamiltonian 1s orbital:

U=17Z. (39
Hi=Unj;n; +U'n/;n{ +en/ +Vnin/ o _ . .
In the Hartree approximation the single-electron orbital with
wave functionpce™?" expands upon double occupancy to
'S (¢l +H.c) 36) longxe ~ exp P pancy
- wave functiongxe™ “", with
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It can be seen that in the atod™>V>U" for all Z. As Z
decreases, all Coulomb repulsions decrease, as welbad
the overlapS. This is the regime favorable for pairing in this
model. The Hartree calculation is of course very approxi-
mate, and in particular it overestimates the overlap matrix
elementS Nevertheless, it illustrates the basic trend. For
orbitals higher than theslthe energy levels become closer in
energy and the effects discussed in this paper should become
stronger.

In summary, the atomic chargg with Z— 2 the charge of
the ion when the relevant band is full, is the key atomic
parameter. For small the parameters in the Hamiltonian
studied in this paper move towards the regime of interest,
namely, small Coulomb repulsidd’, small interband sepa-
ration e, and small overlap matrix elemest In that regime
electron-hole asymmetry in the band becomes dominant,
holes become heavily dressed in the normal state, and they
10 strongly undress when they pair.
® For highT, cuprates the relevant band of interest is one
formed by overlapping planar oxygemmr orbitals in the

FIG. 17. Optical absorption for parameters in the “conven- 1 e .
tional” regime, given in the caption of Fig. 12, with strong on-site _Cqu planesz. Since in the undoped systefmo holes the

attractive interactiond =—8, giving rise to effective attraction ionisO~, Z=0in th's case. For M_gg the rele\iant band2|s
U.s= —5.6. (a) Integrated optical absorption, same cutoff as in formed by overlapping borop,, orbitals in theB planes; _
Fig. 13. Note that the low-frequency absorption does not increase s1dZ=1. The fact that the planes are negatively charged in
the number of carriers increases from one to t@.Optical con-  both cases £<2) favors the physics discussed here, with
ductivity for one and two holegessentially the same as for 1 and 2 the effects stronger for the cuprates due to the smaller
electrons for these parameterslote that upon pairing the low- Even stronger hole dressing and highigfs would be ex-
frequency absorption decreases strongly as paired carriers are mgdected in a structure with even smallé+for example, if
highly dressed. one managed to make a material WNT planes doped with
some holes{=-1).
— 5 The material LiIBC has been recently proposed as a can-
Z=7Z- 76 (40 didate for high-temperature superconductivity when hole
doped, by analogy with MgB within electron-phonon
We identify the Coulomb repulsion in the upper orbitdl,,  theory?® Because the (BC) planes in that material would be
as the repulsion of two electrons in the Hartree expandegigg negatively charged than the,jB in MgB,, i.e., effec-
orbital, i.e., tively Z=1.5 instead ofZ=1, we expect this not to be a
_ modification of MgB, conducive to higheiT.’'s within the
U’=17Z=U-5.31. (41 physics discussed here. If such material was found to have a

. 3 . .
We can estimate the Coulomb repulsion between electrons ihc 1arger than MgB, as predl_cted, it would directly con-
the two different orbitalsy, by calculating the Coulomb in- tradict the assumptions of this paper and prove the inappli-
tegral for one electron in theslorbital and another in the cability of the concepts discussed here to real materials.

expanded Hartree orbital. This yieldia eV)
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VIl. DISCUSSION
2 72
V:27.ZEZLE+Z. (42) Electrons in solids interact with each other with an inter-
(Z+2)3 action strength ¢>=14.4 eVA) that is of the same magni-
tude as the interaction strength of electrons with ions. It was

e e 200N o he beginings o sol-siae phvscs th
P 9 Bloch’s approach of prioritizing the electron-ion interaction

in the o_loubly and singly occupied sites. In the model, that 'Sver the electron-electron interaction wasazhhocassump-
approximately

tion that could certainly not be rigorously justified. Even

1 though Landau’s Fermi liquid theory with the concept of a
S= (Ilc{m)zt’ 4 —) , (43) quasiparticle provides an explanation for the fact that many
€ V-U'—-¢€ properties of solids look amazingly “independent-electron-
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like,” the fundamental role of electron-electron interactions The results found here corroborate some of our earlier
in solids is still not well understood. findings concerning the importance of electron-hole
This paper is part of a continuing effort to understand theasymmetry® and display clearly the interpolation between
role of electronic correlation in energy bands. We argue thathe conventional understanding of electronic correlations in
a key fact that has been ignored in previous treatments of thenergy bands and the physics stressed in the theory of hole
problem is the dependence of quasiparticle weight on banduperconductivity. In the conventional understanding elec-
filling and the fundamental role of electron-hole asymmetrytrons and holes are similar, quasiparticles are undressed
In this paper we studied a “minimal model” that incorpo- when the band is almost empty and almost full, and the
rates these key features. We believe that this physics is pagressing and importance of electron-electron interactions in-
of the physics of all electronic energy bands: that quasiparerease as one approaches the half-filed band from either
ticle weights at the Fermi level when the band filingl0  side. Instead, in the theory of hole superconductivity in its
<n<2) is below and above the half-filled band=1) are  simplest interpretation the dressing of a quasiparticle in-
related by creases monotonically as the band filling increases from the
empty to the full band. As we have seen in this paper, the
z(n)>z(2—n), (45  actual situation is always in between these two limiting de-
scriptions, with the relationship, Eq45), holding in all

with n<1, i.e., that holes aralwaysmore dressed than elec- CaS€s. o _ _
trons. How different the quasiparticle weights in the lower 1€ essential difference between conventidsgitio and

and upper halves of the band are determines how importafyn@mic Hubbard models concerning “intraband” physics is
the new physics originating in this effect is. This in turn that the state of a given electron is the same in the singly and
depends on the ionic charge(Z— 2=ionic charge when the doubly occupied atoms in the static Hubbard model, while it
band is ful) with the strongest effects occurring for small 'S different in the dynamic Hubbard model. Through this
Because quite generally in an atom the intra-orbital Coulominodification of the state the intraband bare particles, which
repulsion is linear irZ [e.g., Eq.(39)] and the energy level Were strongly interacting with repulsidd, become weakly
spacing is quadratic irZ [e.g., Eq.(38)], the effects dis- interacting quasiparticles with interactiah . This occurs at
cussed here will become unimportant for sufficiently lafge the level of a single site and is expressed by the relation
We have called the models describing this physics udy_betv!een bare particle operatars. and quasiparticle opera-
namic Hubbard models.” In these models, unlike the case ofors ¢, :
the conventional Hubbard model, the strength of the on-site _ -
repulsion U becomes a dynamical variable that can take Cio=[1+(S=1)n; _,]ICi,. (46)
more than one value depending on the state of the two elec P L . N
trons in the atom. Heré) this gynamics is incorporated b;rhe guasiparticle dynamics is described by the kinetic en-

having two electronic orbitals per site; in other work we haveg 2’ Eq.(30), and the local repulsiobl, and their weight is
9 . ; 'S Per site, . ) further modified by the weak interactions in the quasiparticle
described this dynamics with a single electronic orbital pe

I . . . .
site and an auxiliary boson degree of freedde 242While band. The quasiparticle weight at the Fermi energy can be

the model discussed here is more realistic and closer to thaepproxmately written as

physics of real atoms, the models with auxiliary boson de-

grees of freedom are simpler to treat theoreticaly and thus z(n)=
may Yyield useful insight into the fundamental physics of this

class of models. From the results in this paper and in previwith 0<n=2 the band filling, and the “intraband” quasipar-
ous work we believe that dynamic Hubbard models withticle weightz, defined by

only electronic degrees of freedom and those with auxiliary

boson degrees of freedom share the same fundamental phys- Zip= |<0N_1|EkFU|oN>|2 (48)

ics.

We have studied the two-orbital model by exact diagonal-calculated using the ground states of the Hamiltonian for the
ization of a small cluster. It should be possible to study largeintraband quasiparticlegEq. (30) plus weak on-site repul-
clusters with more computing power and more sophisticatedion]. In particularz;,(n—0)=2z,(n—2)=1 and is smallest
numerical techniques such as Lanczos diagonalizatiomear the half-filled band, as in the conventional Hubbard
density-matrix renormalization group, and quantum Montemodel. The factor multiplyingz;, in Eq. (47) isolates the
Carlo methods. We believe that the qualitative physics foundnain effect of electron-hole asymmetry. However, evgn
here is likely to exist in larger systems. will exhibit some additional electron-hole asymmetof the

The calculations in this paper yield the properties of in-same sighdue to the dependence of the effective bandwidth
teracting electrons in a model Hamiltonian for the entireon filling, Eq. (33): the residual intraband interactions will
range of band fillings from empty to full, without uncon- more strongly dress the quasiparticles in the upper half of the
trolled approximations. Before this work such studies hadband where the effective bandwidth is smaller.
only been performed for simpler models such as the single- For materials with large ionic charggé Swill be close to
band conventional Hubbard model, which as we have arguet, electrons and holes will be very similar, and the dominant
lacks some essential physics. The results found here shoutttessing will occur near the half-filled band. Instead, for ma-
qualitatively apply to all electronic energy bands in solids. terials with smallz, Swill be much smaller than 1, the phys-

2

Zip(N), (47)

n
1+(S-1)5
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ics of hole superconductivity will dominate, and holes will length of the Cooper pairs increases, and one moves towards
be highly dressed near the full band and strongly undress a@ke regime of “conventional” superconductivif§.

the local hole concentration increases. We propose that the
physics of high-temperature superconductivity in solids is
described by the latter regime. As the parameters become
less extreme with increasing ionic chargehe dressing of
holes in the normal state becomes less extreme, the undress-The author is grateful to Fred Driscoll for providing the
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