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Electronic dynamic Hubbard model: Exact diagonalization study
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Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

~Received 15 July 2002; revised manuscript received 8 November 2002; published 6 January 2003!

A model to describe electronic correlations in energy bands is considered. The model is a generalization of
the conventional Hubbard model that allows for the fact that the wave function for two electrons occupying the
same Wannier orbital is different from the product of single-electron wave functions. We diagonalize the
Hamiltonian exactly on a four-site cluster and study its properties as a function of band filling. The quasipar-
ticle weight is found to decrease and the quasiparticle effective mass to increase as the electronic band filling
increases, and spectral weight in one- and two-particle spectral functions is transferred from low to high
frequencies as the band filling increases. Quasiparticles at the Fermi energy are found to be more ‘‘dressed’’
when the Fermi level is in the upper half of the band~hole carriers! than when it is in the lower half of the band
~electron carriers!. The effective interaction between carriers is found to be strongly dependent on band filling
becoming less repulsive as the band filling increases and attractive near the top of the band in certain parameter
ranges. The effective interaction is most attractive when the single-hole carriers are most heavily dressed, and
in the parameter regime where the effective interaction is attractive, hole carriers are found to ‘‘undress,’’ hence
become more like electrons, when they pair. It is proposed that these are generic properties of electronic energy
bands in solids that reflect a fundamental electron-hole asymmetry of condensed matter. The relation of these
results to the understanding of superconductivity in solids is discussed.

DOI: 10.1103/PhysRevB.67.035103 PACS number~s!: 71.10.Fd, 74.20.Mn
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I. INTRODUCTION

The fact that the Coulomb repulsion between two el
trons in a doubly occupied atomic orbital is smaller than
value predicted from the expectation value of the Coulo
interaction with single-electron wave functions establish
that atomic orbitals are not infinitely rigid:1 electrons will
develop intra-atomic correlations to reduce their Coulo
repulsion. This well-known fact is not incorporated in th
conventional single-band Hubbard model,2 which assumes
that two electrons of opposite spin will doubly occupy t
same single-electron atomic orbital. Dynamic Hubba
models3 attempt to remedy this deficiency by either introdu
ing an auxiliary boson degree of freedom to mimic the
bital relaxation that occurs on double atomic occupancy
by allowing more than one atomic orbital. Here we consid
a purely electronic dynamic Hubbard model with two orb
als per site and no auxiliary boson degree of freedom.

The model considered here has some superficial res
blance to various multiorbital Hubbard models that ha
been considered in the past such as the degenerate Hu
model,4 the Falicov-Kimball model,5 and the Anderson lat
tice model.6 However conceptually it is rather different. Th
goal is not to model the physics of electrons in degene
atomic orbitals, or of two different partially occupied ban
in a solid, or of local magnetic moments interacting w
conduction electrons, or of mixed valence. Rather, we
interested in modeling the physics of a single band a
based on general arguments,3 argue that it is necessary, t
understand single-band physics, to include at least one o
higher-lying orbital besides the one that is being filled as
electronic band is being filled. This second orbital becom
increasingly important as the filling of the band increas
beyond one-half.

When an electronic energy band is less than half-f
0163-1829/2003/67~3!/035103~15!/$20.00 67 0351
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electrons can avoid each other by developing elaborate in
atomic correlations. For this situation the ordinary sing
band Hubbard model may be adequate. However, when
band is more than half-filled, some Wannier orbitals arenec-
essarily doubly occupied. The resulting large cost in Co
lomb energy cannot be avoided byany interatomic correla-
tions; instead, it can be reduced by the electrons develop
intra-atomic correlations. The conventional single-band H
bard model cannot describe this; hence it is inadequat
describe electronic energy bands that are more than half-
it is necessary to introduce another degree of freedom. H
this is achieved by having a second atomic orbital in
model, which becomes increasingly occupied as the b
filling increases beyond half-filling. As we will see in thi
paper, the resulting electron-hole asymmetry in the ba
causes the quasiparticle weight of carriers in the upper
of the band~holes! to be smaller than that in the lower half o
the band~electrons! and their effective mass to be larger. W
believe that this physics is generally a part of the physics
electronic energy bands in solids. Its quantitative importa
will depend on the particular solid under consideration.

In Sec. II we introduce the electronic dynamic Hubba
model to be studied in this paper. Section III gives analy
results in limiting cases, and Sec. IV presents numerical
sults for effective interaction, quasiparticle weight, and effe
tive mass as a function of band filling and model paramet
Section V presents results for optical absorption, and in S
VI we discuss the relation between the parameters in
Hamiltonian and atomic parameters in materials. We c
clude in Sec. VII with a discussion of the applicability o
these results to the description of real electrons in real so

II. MODEL HAMILTONIAN

The static~conventional! single-band Hubbard model i
defined by the Hamiltonian
©2003 The American Physical Society03-1
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H52 (
i , j ,s

t i j cis
† cj s1U(

i
ni↑ni↓ , ~1!

which properly emphasizes the fact that the intra-atom
electron-electron repulsion is the dominant source of e
tronic correlation in solids. Here,cis

† creates an electron in
Wannier orbital centered at lattice sitei, and the hopping
amplitudet i j is the Fourier transform of the single-electro
band energyek :

t i j 5
1

N (
k

eik(Ri2Rj )ek . ~2!

The fundamental problem with the Hubbard Hamiltonia
Eq. ~1!, is that it implicitly assumes that the state of tw
electrons in a Wannier orbital is a single Slater determin
ci↑

† ci↓
† u0&, with u0& the state of the empty orbital. This i

incorrect, precisely because of the existence of the elect
electron interaction described by the HubbardU. We extend
the Hamiltonian, Eq.~1!, to allow for the fact that when two
electrons occupy the same Wannier orbital, intra-orbital e
tronic correlations will develop due to the large loc
electron-electron repulsion. This effect can be described
having at least two Wannier orbitals per site, which the el
trons will partially occupy to reduce their Coulomb repu
sion. Letcis

† andcis8
† be the operators creating electrons in

these Wannier orbitals. We consider the local Hamiltonia7

Hi5Uni↑ni↓1U8ni↑8 ni↓8 1eni81Vnini8

2t8(
s

~cis
† cis8 1H.c.!, ~3a!

with nis5cis
† cis , and nis8 5cis8

†cis8 , ni5ni↑1ni↓ , ni85ni↑8
1ni↓8 . In the extreme tight-binding limit the Wannier orbita
become atomic orbitals, and we will cast the discussion
that language even though it should be more generally ap
cable.

The primed orbital is higher in energy bye than the
unprimed orbital, hence more extended in space, so tha
Coulomb repulsionU8 should be smaller thanU. The orbital
energye will generally satisfy the relationt,e,U, so that
when the site is doubly occupied electrons will partially o
cupy this orbital to reduce their Coulomb repulsion and th
is no justification for neglecting this second orbital as is do
in the Hamiltonian, Eq.~1!. V describes the Coulomb repu
sion between one electron in each orbital andt8 the intra-
atomic hybridization between these orbitals. The latt
Hamiltonian is then

H52(
i j

@ t i j cis
† cj s1t i j8 ~cis

† cj s8 1H.c.!1t i j9 c
is

8†
cj s8 #

1(
i

Hi , ~3b!
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with Hi given by Eq.~3a!. We expect the various hoppin
matrix elementst i , t i j8 , t i j9 to be similar in magnitude and
hence will assume for the remainder of this paper

t i j 5t i j8 5t i j9 ~4!

and furthermore that the hopping connects only near
neighbor sites; hencet i j [t for i , j nearest neighbors, zer
otherwise.

It should be pointed out that we do not expect the qu
tative physics of the model to depend on the particu
choice for the hoppings, Eq.~4!. For example, in Ref. 7 the
same-site Hamiltonian, Eq.~3a!, was considered with hop
pings t i j8 5t i j9 50 instead of Eq.~4!, and the same qualitative
physics was obtained as in the model considered here.
tainly, quantitative differences will occur depending on the
choices, which should be studied in the future. In this co
nection it is also relevant to note that in a recent study of
periodic Anderson model, different choices of the hybridiz
tion ~whether same site or neighboring sites! were found to
not affect the underlying physics.8

III. ANALYTIC RESULTS

A. Noninteracting band structure

The single-electron part of the Hamiltonian, Eq.~3!, is,
after Fourier transforming,

H5(
k

S cks
† cks8

†DHkS cks

cks8 D , ~5a!

Hk5S ek ek2t8

ek2t8 ek1e D , ~5b!

with

ek522t cosk ~6!

for a one-dimensional geometry. Two bands result, with
energy versusk relation

Ek
1,25ek1

e

2
6AS e

2D 2

1~ek2t8!2. ~7!

The two bands are separated by an indirect gap

D5Ek50
2 2Ek5p

1 5AS e

2D 2

1~2t2t8!2

1AS e

2D 2

1~2t1t8!224t, ~8!

which is always positive fore.0. The bandwidth of the two
bands is approximately given byD154t12t8, D254t
22t8. Figure 1 shows the band structure for various para
eters. Note that the effective mass in the lower band is la
near the top of the band than near the bottom; this ef
becomes much more pronounced in the presence of elec
electron interactions.
3-2
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The zero-temperature single-electron spectral function
the system withN electrons is

Aa~k,v!5(
n

u^nN11ucaks
† u0N&u2

3d„v2~En
N112E0

N11

1mN!…1u^nN21ucaksu0N&u2

3d„v1~En
N212E0

N212mN21!…. ~9!

Here, unN&u is the nth excited state of the system withN
electrons (n50 is the ground state!, En

N is the eigenvalue,
and mN5E0

N112E0
N , mN215E0

N2E0
N21. For a metalmN

5mN21[m and we redefine the frequencyv→v1m so that

Aa~k,v!5(
n

u^nN11ucaks
† u0N&u2d„v2~En

N112E0
N11!…

1u^nN21ucaksu0N&u2d„v1~En
N212E0

N21!….

~10!

The indexa labels the fermion operator of the unprimed
primed orbital, or an appropriate linear combination there
The creation operator for an electron in band 1 is given

c1ks5ukcks1vkcks8 , ~11!

FIG. 1. Noninteracting band structure for the model under c
sideration for various parameters.~a! As e increases, the gap be
tween lower and upper bands increases.~b! As t8 increases the
bandwidth of the lower band increases and that of the upper b
decreases.
03510
r

f.

with uk , vk obtained from diagonalization ofHk , Eq. ~5b!.
Using this operator in Eq.~10! we have simply

A1~k,v!5d„v2~Ek
12m!… ~12!

and the quasiparticle weight for a single electron in this ba
is the coefficient of thed function in Eq.~12!:

zk51. ~13!

B. Quasiparticle weight for an interacting system

In an interacting many-body system the spectral funct
has the form

Aa~k,v!5zkd„w2~ek2m!…1Aa8 ~k,v!, ~14!

where 0<zk<1 is the quasiparticle weight, andAa8 is the
incoherent part of the spectral function. We define the qu
particle weight in our model at the Fermi energy by

z~N!5u^ON21ucakFsuON&u2, ~15!

with the quasiparticle operator defined by

cakFs5ukF
ckFs1vkF

ckFs8 , ~16!

with uk
21vk

251. We choose the particular linear combin
tion that maximizes the quasiparticle weight, Eq.~15!. The
following simple relations are easily proved:

z~N!5(
i

@ u^ON21ucisuON&u21u^ON21ucis8 uON&u2#,

~17!

ukF

2 5

(
i

u^ON21ucisuON&u2

z~N!
, ~18a!

vkF

2 5

(
i

u^ON21ucis8 uON&u2

z~N!
. ~18b!

Equation ~17! gives the total quasiparticle weight at th
Fermi energy, and 12z gives the amount of spectral weigh
in the incoherent part of the spectral function. The quantit
ukF

,vkF
indicate how much of the quasiparticle resides in t

lower and upper orbitals, respectively. For a single-band c
ventional Hubbard model the quasiparticle weight at
Fermi energy is given by the first term in Eq.~17!.

C. Optical conductivity and effective mass

The current operator in our model is given by

J5 i t(
i

@~ci 11s
† 1ci 11s8† !~cis1cis8 !2H.c.#, ~19!

and we will compute the optical conductivity at zero tem
perature given by

-

nd
3-3



ica

th
he
f
ia

rit

he
d

sid
d
he
i

r

q

her

a
q.

e
dis-

nd

op-

rgy,
an
of

m
the
he

tail

xi-
uce
er-
ard
any
that
will

ion
re,
of

-
r.
rt

four-

J. E. HIRSCH PHYSICAL REVIEW B 67, 035103 ~2003!
s1~v!5p(
m

u^0uJum&u2

Em2E0
d„v2~Em2E0!…. ~20!

The optical sum rule states that the integral of the opt
conductivity is9

E
0

`

dvs1~v!5
p

2
^0u2Tu0&, ~21!

with the kinetic energy given by

T52t(
isd

~cis
† 1cis8

†!~ci 1ds1ci 1ds8 !. ~22!

In our two-orbital model, optical transitions include bo
‘‘intraband’’ transitions as well as interband transitions to t
second band. For parameters where a clear separation o
ergy scales occurs one can define an effective Hamilton
describing the low-energy part of the Hilbert space and w
a ‘‘partial’’ conductivity sum rule

E
0

vm
dvs1~v!5Al5

p

2
^0u2Te f fu0&, ~23!

whereTe f f is the kinetic energy in the lower band, and t
high-frequency cutoffvm excludes transitions to the secon
band.

D. Strong-coupling limit

We consider the Hamiltonian, Eq.~3!, in the parameter
regime

U812e,V1e,U, ~24a!

U,U8,V@e@t8. ~24b!

These conditions ensure that a single electron at a site re
primarily in the lower orbital, while in the doubly occupie
site two electrons of opposite spin reside primarily in t
higher orbital. Some results in this limit were discussed
Ref. 7. The site eigenstates to lowest order int8 are

u↑̃&5u↑&u0&1du0&u↑&, ~25a!

u↑↓̃&5u0&u↑↓&1d8@ u↑&u0&1u0&↓&u0&], ~25b!

where the first~second! ket in the product refers to the lowe
~higher! orbital, and

d5t8/e, ~26a!

d85
t8

V2U82e
. ~26b!

The single-site quasiparticle weight for a hole is, from E
~17!,

zh5u^↓̃uc↑u↑↓̃&u21u^ ↓̃uc↑8u↑↓̃&u25~d1d8!2[S2 ,
~27a!

and the single-site quasiparticle weight for an electron is
03510
l
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.

ze5u^0uc↑u↑̃&u21u^0uc↑8u↑̃&u251. ~27b!

Hence the single-site spectral function for a hole has ot
terms in addition to the quasiparticle term sincezh,1, while
the site spectral function for an electron is a singled func-
tion. Consequently, in the solid the spectral function for
single electron in the ground state of the Hamiltonian, E
~3!, is a d function, while the spectral function for a singl
hole in the lower band has incoherent contributions, as
cussed in Ref. 3.

We can define quasiparticle operators for the lower ba
c̃is as operators connecting the site ground states,

c̃is
† u0&5us̃&, ~28a!

c̃
is

8†
u0&5u↑↓̃&, ~28b!

and the relation between bare electron and quasiparticle
erators is10

cis5@11~S21!ñi ,2s# c̃is . ~29!

Replacing the bare fermion operators in the kinetic ene
Eq. ~3b!, in terms of the quasiparticle operators yields
effective Hamiltonian for quasiparticles in the lower band,
the form

He f f52t(
i j ,s

@11~S21!~ ñi ,2s1ñ j ,2s!

1~S21!2ñi ,2sñ j ,2s#~ c̃is
† c̃ j s1H.c.!. ~30!

This Hamiltonian gives rise to a ‘‘correlated hopping’’ ter
which leads to a pairing of holes. The enhancement of
hopping amplitude for a hole when the sites involved in t
hopping process have an additional hole is

Dt5tS~12S! ~31!

and leads to superconductivity as discussed in de
elsewhere.11

IV. NUMERICAL RESULTS

We diagonalize the Hamiltonian, Eq.~3!, on an
(N54)-site lattice with number of electronsNe ranging
from 0 to 8, as appropriate to fill the lower band. The ma
mum number of states in the Hilbert space is 4900. To red
the computational complexity and because we will be int
ested in the case of large Coulomb interactions, we disc
all states where there are more than two electrons at
given site from the Hilbert space. We also discard states
have two electrons of the same spin at a site, because we
not be interested in spin-polarized states. This simplificat
should not change the qualitative physics of interest he
and such states certainly become irrelevant in the limit
large interorbital repulsionV; however, it could have a quan
titative effect for smallV and should be investigated furthe
With these simplifications the maximum size of the Hilbe
space is 1024 states when there are six electrons in the
site system.
3-4
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Figure 2 shows schematically the band under consid
ation and the number of states in the Hilbert space for
ferent positions of the Fermi level. Note that there are ma
more states in the Hilbert space for a given number of ho
in the band than for the same number of electrons. This
alone indicates that the system will be more incoherent w
the band is more than half-filled compared to when it is l
than half-filled. The figure shows one representative stat
each sector: when there is one electron at the site, it res
primarily in the lower orbital; when there are two electrons
the site, they are depicted as occupying the higher orb
which will be the dominant contribution in the paramet
range of interest.

A. Choice of boundary conditions

For the small system under study boundary conditions
of course important. We have calculated properties of
system using periodic, antiperiodic, and free-end bound
conditions ~BC’s!. While periodic BC’s may yield results
closer to the thermodynamic limit in some cases, we beli
free-ends BC’s are preferable for several reasons. Most
portantly, the single-particle eigenstates for the finite ch
are nondegenerate with free-end BC’s, while degene
states occur for both periodic and antiperiodic BC’s.

Consider the effective interaction between two electro
in the chain withNe electrons, defined as

Ue f f~Ne!5E0~Ne!1E0~Ne22!22E0~Ne21!, ~32!

with E0(Ne) the ground-state energy withNe electrons. Fig-
ure 3 shows the effective interaction versus band occupa
for various parameter values. For all the different bound
conditions the effective interaction becomes attractive n
the top of the band for certain parameter values. This
robust effect. On the other hand, it can be seen that the
fective interaction can be negative for the half-filled ba
case for periodic BC’s, and it is zero near the bottom of
band for antiperiodic BC’s. These are spurious effects rela
to finite system degeneracies, which are expected to dis
pear in the thermodynamic limit.12 Instead, for free-end BC’s
the effective interaction is repulsive except near the top

FIG. 2. Schematic depiction of states in four-site cluster
different band fillings. Because of the largeU in the lower orbital,
two electrons at the same site will predominantly occupy the hig
orbital. The number of states in the Hilbert space for each filling
also given.
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the band. This behavior should persist for larger syste
Quantitatively, we expect the magnitude of the attractive
teraction to be somewhat smaller for the infinite system th
for the small cluster.13

Another reason to use free-end boundary conditions
that the optical sum rule is satisfied in that case for the fin
system,14 while if periodic boundary conditions are used, th
‘‘Drude weight’’ needs to be added by hand to the optic
response. Furthermore, the expression for the quasipar
weight, Eq.~17!, is not correct when there are degenera
states at the Fermi energy. Hence we will use free-e
boundary conditions for the remainder of this paper.

B. Quasiparticle bands

We begin our study with a look at the energy level spe
trum of the model. We choose sets of parameters that yie
clear separation of the spectrum of the lower-band sta
Figure 4 shows the energy levels as a function ofNe , the
number of electrons in the cluster, for a noninteracting c

r

r
s

FIG. 3. Effective interaction, Eq.~32!, vs band filling for differ-
ent boundary conditions, for four sets of parameters.t51 here and
in the following figures. For all cases hereU510 andV56. The
lines through the data are a guide to the eye. Solid line:U852, e
52, t850.2. Dashed line:U854, e52, t850.2. Dash-dotted line:
U852, e51, t850.2. Dotted line:U852, e52, t850.5.
3-5



s
s

an
u
rg

se
-
n
i

iv
th
le
n
e
th
ba
l
an
om
ac
th

iers
-
ffec-
cle
nic

well
f
q.
se,

e
f in-
the
les.
ses
nce
the
at

nal

at,
ight
ing

nd

q.
er-
ram-
tric
ard

op-
in
tate.
in-

ll-
s as
the

.
nd

n.

on-
ig.
s
de

a

ra
th
e

ra

le

J. E. HIRSCH PHYSICAL REVIEW B 67, 035103 ~2003!
~a! and for an interacting case~b!. The dashed line separate
the low-lying band ‘‘intraband’’ states from the other state
For the noninteracting case, the spectrum in the lower b
is nearly symmetric for electrons and holes, as one wo
expect. Instead, with electron-electron interactions a la
electron-hole asymmetry exists.

Consider first the states for a single electron (Ne51) and
for a single hole (Ne57). There are four states in each ca
~5 the number of sites in the cluster!, and the distance be
tween the lowest and highest intraband state is the ba
width. Clearly, for the interacting case the hole bandwidth
much smaller than the electron bandwidth. The effect
mass of the quasiparticle is inversely proportional to
spacing between intraband states. Clearly, the quasiho
substantially heavier than the quasielectron in the prese
of electron-electron interactions for these parameter valu

As the number of electrons or of holes is increased,
number of intraband states increases. There are 6 intra
states for the half-filled band (Ne54) and 12 states for al
other occupations, because states with double site occup
are pushed to much higher energies due to the large Coul
repulsions. Note the asymmetry in the spectra in the inter
ing case for band filling less and more than one-half:

FIG. 4. Energy eigenvalues for the different band fillings. P
rameters are~a! e512, t850.2, U5V5U850; ~b! e56, t8
50.2, U520, V512, U852. The dashed lines show the sepa
tion between the ‘‘intraband’’ states described approximately by
Hamiltonian, Eq.~3!, below it, and the rest of the states in th
Hilbert space. For other less extreme parameters no clear sepa
is seen. Note that in the interacting case~b! the spectrum is strongly
electron-hole asymmetric, with the lower-band bandwidth for ho
(Ne.4) much smaller than for electrons (Ne,4).
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quasiparticle band is substantially narrower when the carr
are holes~more than half-filled band! compared to the corre
sponding case when the carriers are electrons. In the e
tive strong-coupling Hamiltonian one obtains a quasiparti
bandwidth that decreases monotonically as the electro
band filling increases:

D~ne!5DF12
ne

2
~12S!G2

, ~33!

with 0<ne5Ne /N<2 the band filling.

C. Quasiparticle properties versus band filling

We consider first a case where the second band is
separated in energy, withe510. Consider the evolution o
the quasiparticle weight at the Fermi energy, given by E
~17!, as the magnitude of the Coulomb interactions increa
shown in Fig. 5~a!. The quasiparticle weight is 1 for th
noninteracting case, and it remains 1 in the presence o
teractions at the bottom and at the top of the band, since
single electron and the single hole behave as free partic
When the band filling increases from empty or decrea
from full the quasiparticle weight decreases in the prese
of interactions and is lowest at the half-filled band. Thus
spectral function will have largest incoherent contribution
and close to half-filling, as one expects in the conventio
single-band Hubbard model.

The quasiparticle weights in Fig. 5~a! appear to be
electron-hole symmetric. However, a close look reveals th
except for the noninteracting case, the quasiparticle we
for holes is always slightly smaller than the correspond
one for electrons, i.e.,

z~ne!.z~22ne!, ~34!

for ne,1. This effect is due to the presence of the seco
band and will exist always as long ase,` in our model.

Figure 5~b! shows the effective interaction defined by E
~32! versus band filling for these cases. The effective int
action becomes more repulsive as the bare repulsion pa
eters increase and is approximately electron-hole symme
in this case, as in the case of the conventional Hubb
model.

We can estimate the effective mass or the effective h
ping amplitude for the quasiparticle from the difference
energy between the ground state and the first excited s
Figure 5~a! shows the results for these cases. For the non
teracting casete f f is approximately constant versus band fi
ing, and as the repulsive interactions increase it decrease
the number of carriers in the band increases. Here
electron-hole asymmetry due to the fact thate,` is more
apparent, with holes always being heavier than electrons

Next we consider the effect of decreasing the interba
energy separatione in the presence of Coulomb repulsio
Figure 6 shows results fore510, 5, 4, and 2. Ase decreases,
the quasiparticle properties become increasingly electr
hole asymmetric. The quasiparticle weight, shown in F
6~a!, is substantially smaller for holes than for electrons ae
becomes small. Similarly the effective hopping amplitu
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shown in Fig. 6~c! decreases as the band filling increas
and holes are much heavier than electrons whene becomes
small. The effective interaction@Fig. 6~b!# remains repulsive
for these parameters for all band fillings.

For sufficiently smalle and not too largeU8, however,
the effective interaction at the top of the band will becom
atractive. Figure 7 shows results fore52 andU852. We
also show for comparison the casese52, U855 and e
55, U852, where the effective interaction is always repu
sive: both smalle and smallU8 are required to yield an
attractive interaction for holes.

It is interesting to examine the quasiparticle weight a
effective hopping amplitude for these cases. For the par
eters whereUe f f is attractive the quasiparticle weight for
single hole is smallest, and the quasiparticle weight is lar
for two holes@Fig. 7~a!#. This is in contrast to the cases o

FIG. 5. The parameters used aree510, t850.2, and the follow-
ing interactions. Solid lines:U5V5U850. Dashed lines:U53,
V52, U851. Dash-dotted lines:U56, V54, U853. Dotted
lines:U510, V56, U855. Plotted vs band fillingNe are~a! qua-
siparticle weight at the Fermi energy, Eq.~17!; ~b! effective inter-
action Eq.~32!; ~c! effective hopping defined as the energy g
between the ground state and the first excited state. Note that
for this case of largee there is a small electron-hole asymmetr
with the quasiparticle weight and effective hopping being sligh
smaller for holes than for electrons.
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repulsiveUe f f , where the quasiparticle weight for two hole
is smaller than for one hole. Similarly the effective hoppi
@Fig. 7~c!# for two holes is larger than for one hole whe
Ue f f is attractive and smaller whenUe f f is repulsive. In other
words, quasiparticles ‘‘undress,’’ i.e., increase their quasip
ticle weight and decrease their effective mass, when t
pair.

It is also interesting to examine the expectation value
the kinetic energy operator, Eq.~22!. This is shown in Fig. 8
for the three parameter sets under consideration. The kin
energy is lowered both when electrons are added to
empty band and when holes are added to the full band.
the case of attractiveUe f f where the single hole is highly
dressed~small z) and the effective hopping is smallest, th
kinetic energy is highest, as one would expect. As Fig
shows, in that case only when a second hole is added to
full band does the kinetic energy decreasebelow twice the
value of the single-hole kinetic energy. This indicates th
pairing of holes is driven by a lowering of the kinetic ener
in this model.

Finally, Fig. 9 shows the composition of the quasipar
cles, as given by the quantitiesukF

,vkF
in Eq. ~18!. As e

decreases the quasiparticles occupy predominantly the hi

en

FIG. 6. Same as Fig. 5 fort850.2, U510, V56, U855, ande
values given in the figures. Ase decreases holes become mo
incoherent and heavier, i.e., smallerz and te f f .
3-7
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orbital ~largevkf
) when the number of electrons in the ba

increases. In the case where the pairing interaction is att
tive the quasiparticle weight for a hole in the system w
two holes is also dominantly in the higher orbital, because
the large probability for two holes to be on the same site
contrast, for smalle and largerU8 when the holes are no
paired,vkf

is much smaller for the system with two hole
because the holes occupy different sites. For the case of
e, the quasiparticle weight is dominantly in the lower orbi
for all fillings. These results indicate that a necessary but
sufficient condition for pairing in this model is that param
eters be such that there is a large probability for electron
occupy the higher orbital when the band is close to full.

D. Hole pairing

As seen in the previous section, the model can give ris
pairing for carriers near the top of the quasiparticle band w
repulsive Coulomb interactions. In this section we exam

FIG. 7. Same as Fig. 5 fort850.2, U510, V56 and values of
e andU8 given in the figure. For smalle andU8 ~solid lines! the
effective interaction is attractive for holes; in that case, the qu
particle weight at the Fermi energy for the band filled with tw
holes is larger than for the band with one hole~a!, and the effective
hopping is larger for the band with two holes than for the band w
one hole.
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in which regions of parameter space is the effective inter
tion between holes attractive and shed some light on its
gin.

Figure 10 shows the dependence ofUe f f for two holes at
the top of the band on various Hamiltonian parameters.
seen in Fig. 10~a!, Ue f f is attractive when the repulsive in
teraction in the higher orbital,U8, is sufficiently small. This
is because two electrons at a site will occupy dominantly
higher atomic orbital in the regime where pairing occurs. T
energy difference between the two atomic orbitals,e, plays
an important role: both for large and for smalle the attrac-
tion is suppressed, withe;1.5 yielding the largest range o
U8 whereUe f f is attractive. This value ofe is found to be
optimal for a wide range of the parametersU, V, andt8; i.e.,
it is set by the value of the hopping amplitudet51.

In contrast, attraction between holes is favored by a la
value of the lower orbital repulsionU, as seen in Fig. 10~b!
~we ignore the small region of very smallU whereUe f f is
attractive which is presumably unphysical!. This is because

i-

h

FIG. 8. Expectation value of the kinetic operator, Eq.~22!, for
the same parameters as in Fig. 7. Note that for the case of attra
effective interaction~solid line! the kinetic energy for two holes is
lower than twice the kinetic energy for one hole, while in the ca
of repulsive effective interaction it is higher.

FIG. 9. Composition of the quasiparticles, from Eq.~18!, for the
parameters of Fig. 7.ukF

andvkF
give the amplitude of the quasi

particle at the Fermi energy in the lower and upper atomic orbit
As the band filling increasesukF

decreases andvkF
increases, with

the changes being largest for the case of attractive effective in
action
3-8
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the attraction requires a large change in the state of the
maining electron when a second electron is removed fr
the site. IfU becomes small, two electrons will occupy th
smaller rather than the higher orbital and this effect is lo
Similarly, we find~not shown! that large values of the inter
orbital Coulomb repulsionV are favorable to pairing: the
dependence ofUe f f on V is similar to the dependence onU
shown in Fig. 10~b!.

As a function of the interorbital hybridizationt8, pairing
will occur when t8 is not too large, as seen in Fig. 10~c!.
Again, the reason is presumably that the states of an elec
in a singly and in a doubly occupied site need to be su
ciently different, which will not happen if the two orbital
are strongly mixed byt8.

It is interesting to examine the change in kinetic ene
when carriers pair. In Fig. 11 we plot the difference betwe
twice the kinetic energy of a hole in the filled band and th
of two holes in the filled band:

DT52^T&1 hole2^T&2 holes, ~35!

FIG. 10. Dependence of effective interaction for two holes
the filled band on Hamiltonian parameters. The values ofe are
given in the figures:~a! versusU8, with U510, V56, t850.2; ~b!
versusU, with U852, V56, t850.2; ~c! versust8, with U510,
V56, U852.
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with the kinetic energy operator given by Eq.~22!. It can be
seen by comparison with Fig. 10 that the kinetic energy
always lowered (DT.0) when the carriers pair, i.e., in th
regime whereUe f f is attractive. The conditionDT.0 is nec-
essary but not sufficient to yieldUe f f,0. This is because
pairing is associated with a decrease in kinetic energy an
increase in potential energy in this model.

E. Comparison with conventional pairing

In conventional models of superconductivity pairin
arises from an effective electron-electron attraction indu
by coupling to a boson degree of freedom that does not
ferentiate between electrons and holes. The resulting ef
tive interaction is electron-hole symmetric, and in such mo
els pairing is driven by a lowering of the potential rather th
the kinetic energy. We can describe such a scenario in
model by assuming negative values of the on-site interac
U, presumably resulting from integrating out a boson. W
also take a very large value of the interorbital spacinge so as
to approach a single-band Hubbard model and compute
effective interaction between two holes~which is the same as

FIG. 11. Dependence of kinetic energy difference betwe
single holes and pair of holes, Eq.~35!, on Hamiltonian parameters
for the same cases as Fig. 9.
3-9



in
-

ub
b

n
ul

it

tiv

ard
les
air.

m
first
les

ed
urs.
les
is
for
r if
e

e
fer-
the
e-
re-

he
re-
ith
e-
en-
is

.e.,
and
on
r in
nd

on-
ce-

e
the

the
by

-

g

ral
hat

tical
ers.
y
ith

a
d

-

r

s

J. E. HIRSCH PHYSICAL REVIEW B 67, 035103 ~2003!
between two electrons! from Eq.~32!. Not surprisingly,Ue f f
for this conventional regime is attractive~repulsive! whenU
is attractive~repulsive!.

It is interesting to compare the behavior of the model
the conventional regime~i.e., attractive Hubbard model re
gime! with that in the regime discussed in the previous s
section where holes pair, which we call the ‘‘dynamic Hu
bard’’ regime. We compute the effective interactionUe f f
versusU8 in the dynamic Hubbard regime and versusU
~positive and negative! in the conventional regime, and i
Fig. 12 we plot various properties as a function of the res
ing effective interactionUe f f in both regimes. Figure 12~a!
shows the ratio of quasiparticle weights in the system w
two holes and one hole. In the conventional regime,z2 /z1 is
less than 1 both when the effective interaction is attrac

FIG. 12. Comparison of behavior of model in convention
~electron-hole symmetric! regime and regime of dynamic Hubbar
physics. Parameters used for dynamic Hubbard regime areU510,
V56, e52, t850.2, andU8 ranging from 0 to 6; for the conven
tional regime,e5100, t850.2, V56, U855, andU ranging from
21.5 to 8. In both casesUe f f is calculated from Eq.~32! and the
results are plotted vsUe f f . ~a! Ratio of quasiparticle weights fo
two holes and for one hole;~b! ratio of hopping amplitudes for two
holes and one hole;~c! difference in kinetic energy of single hole
and paired holes, Eq.~35!.
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and when it is repulsive. In contrast, in the dynamic Hubb
regime the quasiparticle weight for the case of two ho
becomes much larger than for a single hole when holes p
Note, however, thatz2 can be bigger thanz1 even when the
effective interaction is still repulsive. In Fig. 12~b! we show
the behavior of the effective hopping amplitude defined fro
the difference in energy between the ground state and
excited state in the model. In the conventional regime, ho
becomes heavier than single particles (t2 /t1,1) when they
pair; in contrast, in the dynamic Hubbard regime, pair
holes are much lighter than single holes when pairing occ
However, once again pairs can be lighter than single ho
even when the effective interaction is still repulsive. This
of course a finite-size effect because in an infinite system
low-hole-concentration holes would be far from each othe
not bound in a pair. Finally, Fig. 12~c! compares the chang
in kinetic energy upon pairing. In the conventional regim
the kinetic energy increases upon pairing, so that the dif
ence between twice the single-hole kinetic energy and
pair kinetic energy is negative, while the kinetic energy d
creases strongly upon pairing in the dynamic Hubbard
gime.

These results illustrate the qualitative difference in t
physics of pairing in these two different regimes. In the
gime of dynamic Hubbard physics, pairing is associated w
undressing,10 i.e., an increase in quasiparticle weight, d
crease in quasiparticle mass, and lowering of the kinetic
ergy. In the conventional regime, the physics of pairing
exactly opposite; pairing is associated with dressing, i
smaller quasiparticle weight, larger quasiparticle mass,
an increase in kinetic energy for the pair. In summary, up
pairing quasiparticles become more coherent and lighte
the dynamic Hubbard regime and more incoherent a
heavier in the conventional regime.

Note that the attractive Hubbard model can describe c
ventional superconductivity both in the short-coheren
length regime~large attractiveU) and in the regime where
the coherence length is thousands of lattice spacings~small
attractiveU). The qualitative contrast that we make her
between the physics of that model and the physics of
dynamic Hubbard model applies to both regimes.

V. OPTICAL CONDUCTIVITY

We calculate the optical conductivity given by Eq.~20!.
The total optical spectral weight in the model is related to
expectation value of the kinetic energy operator as given
Eq. ~21!. We will divide the frequency range into a low
frequency range with cutoffvm52, which defines the low-
frequency spectral weightAl , and denote the remainin
spectral weight at higher frequencies byAh . The low-
frequency spectral weight includes the ‘‘intraband’’ spect
weight; it also includes some low-frequency absorption t
is not intraband when the lower band is close to full ande is
not too large.

Figure 13 shows the dependence of the integrated op
spectral weights on band filling, for three sets of paramet
For Fig. 13~a!, with e510, the absorption is approximatel
electron-hole symmetric; however, even in this case w

l
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large e it can be seen that for holes the intraband lo
frequency absorption is somewhat lower and the hi
frequency absorption is somewhat higher than for electro
As e decreases@Fig. 13~b!# and even more so whenU8 also
decreases@Fig. 13~c!#, the intraband absorption becom
much smaller for holes than for electrons. Note also that
the case of Fig. 13~b! whereUe f f is still repulsive between
holes the low-frequency absorption for two holes is on
slightly larger than for one hole; instead, asU8 is decreased
andUe f f becomes attractive@Fig. 13~c!# the intraband optica
absorption for two holes becomes more than twice the in
band optical absorption for one hole, because optical spe
weight is transferred from high to low frequencies wh
pairing occurs.

Figure 14 compares the optical conductivity for the nea
empty and the nearly full bands, for the cases withe510 and
e52. For the large-e case, the intraband conductivity~per
particle! is only slightly smaller for holes than for electron

FIG. 13. Integrals of optical conductivity.Al denotes the low-
frequency integral, Eq.~23!, with cutoff vm52; Ah denotes the
high-frequency optical spectral weight forv.vm , and A5Al

1Ah the total optical spectral weight Eq.~21!. Parameters areU
510, V56, t850.2, and values ofU8 and e given in the figures
~same parameters as Figs. 7–9!.
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Instead, fore52 there is a dramatic difference in the optic
conductivity for electrons and holes: for holes, the intraba
conductivity is very small and most of the optical absorpti
occurs at higher frequencies.

Next we consider the behavior of the optical conductiv
upon doping. For the case of largee, it is similar for elec-
trons and for holes, as seen in Fig. 15: the intraband cond
tivity per carrier decreases slightly with doping, and som
spectral weight is added at higher frequencies. For the c
of small e, Fig. 16, the behavior is similar for electrons b
dramatically different for holes: in the latter case, there i
large increase in the low-frequency spectral weight for
case of two holes, which is due to the undressing of ho
when they pair. Furthermore, there is an overall shift of
nonintraband spectral weight at higher frequencies to lo
frequencies. Similar behavior is found in other realizations
dynamic Hubbard models.15 Such a transfer of optical spec
tral weight from high to low frequencies has been seen
high-Tc cuprates upon hole doping and upon lowering t
temperature below the superconducting critic
temperature.16–20

Finally we show the behavior of optical absorption in t
regime of conventional pairing. We choose a large value
the on-site attraction to illustrate the behavior clearly; ho

FIG. 14. Comparison of optical conductivity for one electro
and one hole fort850.2 and values ofe given in the figure. Here
and in the following figures of optical conductivity, thed functions
in Eq. ~20! are broadened to Lorentzians with widthG50.25. The
lowest-frequencyd function at the ‘‘Drude precursor’’ frequency
~Ref. 14! is shifted tov50 and represented by a Drude form~semi-
Lorentzian!. Note that for largee the conductivities for electrons
and holes are very similar, for smalle the conductivity for holes is
very small, and in particular the intraband conductivity is mu
smaller than for the case of largee.
3-11
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ever, the qualitative behavior persists for a smaller attrac
interaction. The optical absorption is electron-hole symm
ric as one would expect, and most of the optical spec
weight is at low frequencies~intraband! in this case for all
band fillings. Comparing the case of one hole and two ho
~or one electron and two electrons! in Fig. 17~b!, it is seen
that pairing is associated with a decrease in the lo
frequency optical spectral weight; i.e., quasiparticles beco
more dressed when they pair. This is in accordance with
behavior found for the quasiparticle weight and effect
hopping in Fig. 12 and qualitatively different to the behav
in the dynamic Hubbard model regime.

VI. RELATION WITH ATOMIC PHYSICS AND WITH
REAL MATERIALS

For any given atom one can relate the parameters in
site Hamiltonian

Hi5Uni↑ni↓1U8ni↑8 ni↓8 1eni81Vnini8

2t8(
s

~cis
† cis8 1H.c.! ~36!

FIG. 15. Comparison of optical conductivity for one carrier a
two carriers in the band. The optical conductivity for one carrie
multiplied by a factor of 2 to make it comparable to the optic
conductivity for two carriers.~a! Electrons,~b! holes. Here and in
the next figureU510, V56, t850.2. Here,e510, U855. Note
that the optical conductivity is similar for one and two carrie
~normalized to number of carriers! both for electrons and for holes
with the low frequency absorption~per carrier! being slightly
smaller when the number of carriers is larger.
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to atomic quantities by comparison of properties obtain
from it and properties of the electronic states of the at
obtained from quantum chemical calculations. As the s
plest example we discuss here qualitatively the relation
tween the Hamiltonian parameters and electrons in a hy
genic ion with nuclear chargeZ within the Hartree
approximation. The difference in energy between an elect
in the 1s and 2s atomic orbitals corresponds to the ener
difference between the two single-particle eigenstates in
~36!, namely,

Ae214t82;13.63Z23
3

4
, ~37!

in eV units here and in what follows. For smallt8 we have
approximately

e;10.2Z2. ~38!

We will assumet8 small in what follows so that the strong
coupling analysis is applicable. The repulsionU in the lower
orbital corresponds to the repulsion of two electrons in
1s orbital:

U517Z. ~39!

In the Hartree approximation the single-electron orbital w
wave functionw}e2Zr expands upon double occupancy
wave functionw̄}e2Z̄r , with

l

FIG. 16. Same as Fig. 15 for parameterse52, U852. For the
case of electrons the results are similar to Fig. 15; for the cas
holes they are very different: for the case of two holes there
large increase in the low-frequency absorption and an overall s
in the optical absorption to lower frequencies.
3-12
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Z̄5Z2
5

16
. ~40!

We identify the Coulomb repulsion in the upper orbital,U8,
as the repulsion of two electrons in the Hartree expan
orbital, i.e.,

U8517Z̄5U25.31. ~41!

We can estimate the Coulomb repulsion between electron
the two different orbitals,V, by calculating the Coulomb in
tegral for one electron in the 1s orbital and another in the
expanded Hartree orbital. This yields~in eV!

V527.2ZZ̄
Z213ZZ̄1Z̄2

~Z1Z̄!3
. ~42!

Finally we can estimate the intra-atomic hoppingt8 from the
overlap matrix element of the single-electron wave funct
in the doubly and singly occupied sites. In the model, tha
approximately

S5^ ↓̃uc↑8u↑↓̃&5t8S 1

e
1

1

V2U82e
D , ~43!

FIG. 17. Optical absorption for parameters in the ‘‘conve
tional’’ regime, given in the caption of Fig. 12, with strong on-si
attractive interactionU528, giving rise to effective attraction
Ue f f525.6. ~a! Integrated optical absorption, same cutoff as
Fig. 13. Note that the low-frequency absorption does not increas
the number of carriers increases from one to two.~b! Optical con-
ductivity for one and two holes~essentially the same as for 1 and
electrons for these parameters!. Note that upon pairing the low
frequency absorption decreases strongly as paired carriers are
highly dressed.
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and in the Hartree atom it is

S5^wuw̄&5
~ZZ̄!3/2

@~Z1Z̄!/2#3
. ~44!

It can be seen that in the atomU.V.U8 for all Z. As Z
decreases, all Coulomb repulsions decrease, as well ase and
the overlapS. This is the regime favorable for pairing in thi
model. The Hartree calculation is of course very appro
mate, and in particular it overestimates the overlap ma
elementS. Nevertheless, it illustrates the basic trend. F
orbitals higher than the 1s the energy levels become closer
energy and the effects discussed in this paper should bec
stronger.

In summary, the atomic chargeZ, with Z22 the charge of
the ion when the relevant band is full, is the key atom
parameter. For smallZ the parameters in the Hamiltonia
studied in this paper move towards the regime of intere
namely, small Coulomb repulsionU8, small interband sepa
ration e, and small overlap matrix elementS. In that regime
electron-hole asymmetry in the band becomes domin
holes become heavily dressed in the normal state, and
strongly undress when they pair.

For high-Tc cuprates the relevant band of interest is o
formed by overlapping planar oxygenpp orbitals in the
CuO2 planes.21 Since in the undoped system~no holes! the
ion is O5, Z50 in this case. For MgB2, the relevant band is
formed by overlapping boronpxy orbitals in theB2 planes,22

andZ51. The fact that the planes are negatively charged
both cases (Z,2) favors the physics discussed here, w
the effects stronger for the cuprates due to the smalleZ.
Even stronger hole dressing and higherTc’s would be ex-
pected in a structure with even smallerZ—for example, if
one managed to make a material withN[ planes doped with
some holes (Z521).

The material LiBC has been recently proposed as a c
didate for high-temperature superconductivity when h
doped, by analogy with MgB2, within electron-phonon
theory.23 Because the (BC)2 planes in that material would b
less negatively charged than the (B2)5 in MgB2, i.e., effec-
tively Z51.5 instead ofZ51, we expect this not to be a
modification of MgB2 conducive to higherTc’s within the
physics discussed here. If such material was found to ha
Tc larger than MgB2, as predicted,23 it would directly con-
tradict the assumptions of this paper and prove the inap
cability of the concepts discussed here to real materials.

VII. DISCUSSION

Electrons in solids interact with each other with an inte
action strength (e2514.4 eVA) that is of the same magni
tude as the interaction strength of electrons with ions. It w
recognized from the beginnings of solid-state physics t
Bloch’s approach of prioritizing the electron-ion interactio
over the electron-electron interaction was anad hocassump-
tion that could certainly not be rigorously justified. Eve
though Landau’s Fermi liquid theory with the concept of
quasiparticle provides an explanation for the fact that ma
properties of solids look amazingly ‘‘independent-electro
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like,’’ the fundamental role of electron-electron interactio
in solids is still not well understood.

This paper is part of a continuing effort to understand
role of electronic correlation in energy bands. We argue t
a key fact that has been ignored in previous treatments o
problem is the dependence of quasiparticle weight on b
filling and the fundamental role of electron-hole asymme
In this paper we studied a ‘‘minimal model’’ that incorpo
rates these key features. We believe that this physics is
of the physics of all electronic energy bands: that quasip
ticle weights at the Fermi level when the band fillingn (0
,n,2) is below and above the half-filled band (n51) are
related by

z~n!.z~22n!, ~45!

with n,1, i.e., that holes arealwaysmore dressed than elec
trons. How different the quasiparticle weights in the low
and upper halves of the band are determines how impor
the new physics originating in this effect is. This in tu
depends on the ionic chargeZ (Z225 ionic charge when the
band is full! with the strongest effects occurring for smallZ.
Because quite generally in an atom the intra-orbital Coulo
repulsion is linear inZ @e.g., Eq.~39!# and the energy leve
spacing is quadratic inZ @e.g., Eq.~38!#, the effects dis-
cussed here will become unimportant for sufficiently largeZ.

We have called the models describing this physics ‘‘d
namic Hubbard models.’’ In these models, unlike the case
the conventional Hubbard model, the strength of the on-
repulsion U becomes a dynamical variable that can ta
more than one value depending on the state of the two e
trons in the atom. Here this dynamics is incorporated
having two electronic orbitals per site; in other work we ha
described this dynamics with a single electronic orbital
site and an auxiliary boson degree of freedom.13,15,24,25While
the model discussed here is more realistic and closer to
physics of real atoms, the models with auxiliary boson
grees of freedom are simpler to treat theoreticaly and t
may yield useful insight into the fundamental physics of t
class of models. From the results in this paper and in pr
ous work we believe that dynamic Hubbard models w
only electronic degrees of freedom and those with auxili
boson degrees of freedom share the same fundamental p
ics.

We have studied the two-orbital model by exact diagon
ization of a small cluster. It should be possible to study lar
clusters with more computing power and more sophistica
numerical techniques such as Lanczos diagonalizat
density-matrix renormalization group, and quantum Mo
Carlo methods. We believe that the qualitative physics fou
here is likely to exist in larger systems.

The calculations in this paper yield the properties of
teracting electrons in a model Hamiltonian for the ent
range of band fillings from empty to full, without uncon
trolled approximations. Before this work such studies h
only been performed for simpler models such as the sin
band conventional Hubbard model, which as we have arg
lacks some essential physics. The results found here sh
qualitatively apply to all electronic energy bands in solids
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The results found here corroborate some of our ear
findings concerning the importance of electron-ho
asymmetry10 and display clearly the interpolation betwee
the conventional understanding of electronic correlations
energy bands and the physics stressed in the theory of
superconductivity. In the conventional understanding el
trons and holes are similar, quasiparticles are undres
when the band is almost empty and almost full, and
dressing and importance of electron-electron interactions
crease as one approaches the half-filled band from ei
side. Instead, in the theory of hole superconductivity in
simplest interpretation the dressing of a quasiparticle
creases monotonically as the band filling increases from
empty to the full band. As we have seen in this paper,
actual situation is always in between these two limiting d
scriptions, with the relationship, Eq.~45!, holding in all
cases.

The essential difference between conventional~static! and
dynamic Hubbard models concerning ‘‘intraband’’ physics
that the state of a given electron is the same in the singly
doubly occupied atoms in the static Hubbard model, while
is different in the dynamic Hubbard model. Through th
modification of the state the intraband bare particles, wh
were strongly interacting with repulsionU, become weakly
interacting quasiparticles with interactionU8. This occurs at
the level of a single site and is expressed by the rela
between bare particle operatorscis and quasiparticle opera
tors c̃is :

cis5@11~S21!ñi ,2s# c̃is . ~46!

The quasiparticle dynamics is described by the kinetic
ergy, Eq.~30!, and the local repulsionU8, and their weight is
further modified by the weak interactions in the quasiparti
band. The quasiparticle weight at the Fermi energy can
approximately written as

z~n!5F11~S21!
n

2G2

zib~n!, ~47!

with 0<n<2 the band filling, and the ‘‘intraband’’ quasipa
ticle weightzib defined by

zib5u^0N21uc̃kFsu0N&u2 ~48!

calculated using the ground states of the Hamiltonian for
intraband quasiparticles@Eq. ~30! plus weak on-site repul-
sion#. In particularzib(n→0)5zib(n→2)51 and is smallest
near the half-filled band, as in the conventional Hubba
model. The factor multiplyingzib in Eq. ~47! isolates the
main effect of electron-hole asymmetry. However, evenzib
will exhibit some additional electron-hole asymmetry~of the
same sign! due to the dependence of the effective bandwi
on filling, Eq. ~33!: the residual intraband interactions wi
more strongly dress the quasiparticles in the upper half of
band where the effective bandwidth is smaller.

For materials with large ionic chargeZ, Swill be close to
1, electrons and holes will be very similar, and the domin
dressing will occur near the half-filled band. Instead, for m
terials with smallZ, Swill be much smaller than 1, the phys
3-14
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ics of hole superconductivity will dominate, and holes w
be highly dressed near the full band and strongly undres
the local hole concentration increases. We propose that
physics of high-temperature superconductivity in solids
described by the latter regime. As the parameters bec
less extreme with increasing ionic chargeZ the dressing of
holes in the normal state becomes less extreme, the und
ing effect of pairing becomes less apparent, the cohere
,

.

s
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length of the Cooper pairs increases, and one moves tow
the regime of ‘‘conventional’’ superconductivity.26
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